
© 1999 Factor 5 LLC 08/25/99

1

Audio Tools

for

Nintendo®64 and Game Boy®

 Audio Tools

08/25/99

2

D.C.N. NOA-06-8207-001 REV A

“Confidential”

This document contains confidential and
proprietary information of FACTOR 5 LLC and
Nintendo of America Inc. and is also protected
under the copyright laws of the United States and
foreign countries. No part of this document may
be released, distributed, transmitted or
reproduced in any form or by any electronic or
mechanical means, including information storage
and retrieval systems, without permission in
writing from Nintendo.

© 1999 FACTOR 5 LLC

Printed and distributed by Nintendo of America
Inc., August, 1999

MusyX, and Factor5 are registered trademarks of
Factor 5, LLC.
Nintendo, Game Boy, and N64 are registered
trademarks of Nintendo of America Inc.
Dolby is a registered trademark of Dolby
Laboratories, Inc.

Introduction

© 1999 Factor 5 LLC 08/25/99

3

Introduction

Sequenced vs. Streaming
In an age of gigabyte sized multimedia applications, memory is no longer
the limiting factor it once was. Streamed audio has become a de facto
standard for most games and multimedia applications. It seems to
overcome the limited possibilities associated with sequenced sound and,
from the perspective of the musician, it allows studio quality productions to
be used for the first time. There really seems to be no reason why one
should even consider using sequenced sounds instead of digital audio
streams.

The developers of MusyX have been working in the games industry since
the 80’s and therefore experienced the shift from sequenced sound to
streamed audio first hand. At first glance streamed audio is tempting, but
there are some major drawbacks.

• Even on CDs, memory is not totally unlimited. 650 MB seems to be a
lot of memory, but even when using ADPCM compressed audio you
cannot get more than 4 hours worth of audio data on a single CD.
Take into consideration that program and graphics data need to be
stored somewhere, too.

• Since a CD is not always the most reliable type of media, huge data
buffers in memory are needed to assure that no breakups in the
audio stream occur.

• Streamed audio can hardly be called truly interactive, since locating
different places on a CD, when looking for specific data, results in
delays.

• Crossfading between multiple pieces of music is almost impossible
without major programming effort.

• Accessing a CD-Drive causes major slowdowns in game applications
on most systems.

• There are still cartridge-based platforms out there, where streaming
audio is not an option.

Since today’s games more and more resemble little movies with a quality
you would expect from big screen films, having fast, interactive sound is
crucial for a smooth, real-time playing experience. The score has to react
to the action when it takes place, without delay.

It therefore does not make much sense to use streamed audio, the
disadvantage of which is obvious: Noticeable delays, when it is supposed
to react instantly to sudden shifts in the action, which disturbs the smooth
progression of the game play.

 Audio Tools

08/25/99

4

The Advantages of MusyX for Musicians
MusyX is designed to be used like any normal synthesizer during
development. The only difference is that a Windows application is used to
edit all the parameters of the synthesizer.

All the musician needs is a standard keyboard and the sequencer of his
choice. A slave program running either on the same, or a separate
computer, represents the MIDI synthesizer he would normally use, and
emulates the sound of the target system.

MusyX actually gives the musician greater freedom because sounds are
not predetermined and fixed, like in a normal General MIDI synthesizer.
Therefore he can create his own sounds, use his own samples or
rearrange the sounds he wants to use.

MusyX works with

Keymaps and layers to build complex sounds and sound sets
SoundMacros to create truly unique sounds

while a convenient grouping arrangement allows the musician to manage
songs and sound effects effectively.

Sequenced sound does not need to sound sterile or artificial. With MusyX
the musician has the power and necessary control to create vibrant,
original sound with the greatest possible ease.

Screen Credits
All developers who incorporate the MusyX audio system into their game
are required to make their best efforts to display a screen credit on the
opening licensing screen, which states the following.

" MusyX Audio Tools Licensed by Factor 5"

Using Dolby Surround Logo
A developer may become a Dolby Surround Licensee, free of charge. This
grants the right to use the Dolby Surround Logo. To become a Dolby
Surround Licensee, four basic criteria need to be met.

1 The developer must use a Dolby-approved Phase Positioner, such as
MusyX, or other Dolby-approved real-time encoding scheme for
positioning sound effects that are triggered in real-time.

2 If the game includes linear audio, the developer must use a Dolby-
approved Surround facility to encode linear audio.

Introduction

© 1999 Factor 5 LLC 08/25/99

5

3 The developer must sign and complete a Dolby Surround Trademark
Agreement which grants a license to use the Dolby Surround
trademark, subject to these conditions.

4 The developer must send a sample of the finished title at or prior to the
time of release.

For more information on becoming a Surround licensee, please contact
Dolby directly:

Dolby Laboratories, Inc.
100 Potrero Avenue
San Francisco, CA 94103-4813
Tel: (415) 558-0200
Fax: (415) 863-1373
Email: multimedia@dolby.com

 Audio Tools

08/25/99

6

Table of Contents

© 1999 Factor 5 LLC 08/25/99

7

Table of Contents

Introduction.. 3
Sequenced vs. Streaming..3
The Advantages of MusyX for Musicians ...4
Screen Credits ...4
Using Dolby Surround Logo ...4

Working with MusyX.. 11
SoundMacros...11
Macrolanguage vs. Parameter Setup...12
Layers and Keymaps ...12
Groups- Organizing Data ...14
Dynamic Voice Allocation...14
Game Applications...15
Data Conversion ..15

The Installation Process ... 17
Hardware Setup...17
Installing MusyX on Nintendo 64..19
System Requirements for Dual System Setup21
Installing MusyX on Game Boy ..24
System Requirements for Dual System Setup26
MIDI Loopback Devices ...28
Changing General Settings ..29
Software Start-up Routine..31

Overview... 33
How MusyX Works ..33

SoundMacros and the SoundMacro Editor ... 35
General..35
Creating a SoundMacro ...36
Creating SoundMacros by Using Templates ..37
Editing SoundMacros...37
The Command Pool ...38
Editing Values..39
Loops and Jumps in SMaL...40
Calling other SoundMacros in SMaL..40

Keymaps and Layers... 41
General..41
Keymaps..42
Layers..44

 Audio Tools

08/25/99

8

The Sound Editor... 49
What is a Sound? ..49
Defining Sounds and Import/Export ...49
The Sound Object Properties Window ...51
The Search Window...53

Organizing Data ... 55
General..55
Managing Groups ..59
SongGroups and Their Parameters ...60
SFXgroups and Their Parameters..62
Testing Sound Effects..63
Managing the Object Pool..65
Adding Samples...65
The Different Parts of a Project ..66
How the Structure Relates to the Actual Game Data..............................67
Transferring Data Between Projects ..67

The Project Manager ... 69
General..69
Project Manager Menus...70

Walk Through... 75
General..75
Start the Soundslave..76
Launch the MusyX Editor...76
Creating a New Project ..77
The Project Window...79
Adding Samples...80
A Very Simple SoundMacro (SMaL Program) ..81
Defining a SongGroup ...83
Playing the Instrument for the First Time..85
Recording a Sequence ..86
Looped Midi-files..87
Defining a Sound Effect ...88
How to Test a Sound Effect ...89
Saving Your Work..89
Finish! ..89

Additional Tools .. 91
The Table Editor ..91
Using the Table Editor ...91
Using the ADSR Envelope Editor...92

Table of Contents

© 1999 Factor 5 LLC 08/25/99

9

The MIDI Setup Window.. 93
What is the Purpose of this Window?...93
How to Use the Window in Everyday Work ..93
The Importance of the Window when Exporting Data.............................93
Using Multiple MIDI Setups within One SongGroup94

The Virtual MIDI Keyboard.. 95
Why a Virtual Keyboard? ...95
Using the Keyboard ...95
Testing Sound Effects..96
Limitations in Comparison to a Real Keyboard.......................................96

The Network Master Window.. 97
What can be Controlled Using this Window?..97
What Kind of Information is Displayed?..97

Data Conversion .. 99
General..99
What the Musician has to do to Prepare the Data 100
The Actual Data Conversion .. 101
The Description File ... 103
MusyX Sample Program for N64 ... 106

Appendix 1 - N64 Musicians Reference... 107

Appendix 2 - Game Boy Musicians Reference.................................. 177

Appendix 3 - N64 Programmers Reference....................................... 255

Appendix 4 - Game Boy Programmers Reference............................ 345

Appendix 5 - Slave Reverb Control (N64) ... 385

MINI-M.O.R.T. .. 391

 Audio Tools

08/25/99

10

Working with MusyX

© 1999 Factor 5 LLC 08/25/99

11

Working with MusyX

SoundMacros
The element that makes MusyX so powerful is the SoundMacro.

SoundMacros are basically small and simple programs used to define
both instruments and sound effects within MusyX. SoundMacros are
created using a customized programming language called SMaL (Sound
Macro Language).

Each line of the SoundMacro program constitutes a single MacroStep
command, most of which are executed sequentially and define various
attributes of the sound. Other commands control the flow of the program
and make it possible to create loops or conditional jumps in the program.

Something every musician wants to be able to do is to create full, complex
sounds with minimal effort, which cannot be achieved by using a static set
of parameters. MusyX on the other hand offers a dynamic algorithm and
allows the musician to do just that. SoundMacros offer all necessary
means to gradually influence sounds as they move forward in time.

A great advantage of SMaL programs is their simplicity. It is not necessary
to be a professional programmer in order to design a SMaL program. This
programming language is easy to learn. It is therefore easy to quickly gain
maximum control over the generated sounds.

To make working with MusyX even easier, it comes with library features
like predefined SoundMacro programs. The musician can simply use
these or edit them. With customized instruments defined by using SMaL, it
is easy to make every piece of music sound truly unique.

Sound effects are also created using SoundMacros, allowing complete
control over the effect without having to sample every variation required by
the sound designer.

 Audio Tools

08/25/99

12

Macrolanguage vs. Parameter Setup
All synthesizers and samplers use parameters to make modifying sounds
easier, but in a game application the amount of data for the entirety of all
parameters is huge. Since every single parameter needs to be processed,
it would take too much CPU time to work with a parameter setup.

With the macrolanguage in MusyX, users choose from the beginning only
those features and parameters they need to modify for each individual
sound. This eliminates the need for setting and resetting unused or
unneeded parameters, and gains valuable CPU time because the CPU
does not have to process unnecessary data.

When working with a standard synthesizer, the musician sets specific
parameters at the beginning, and is not able to change them during the
course of the song or sound. With the macrolanguage of MusyX, the user
now has the tool he needs to change the parameters of a sound while it
progresses in time, starting off with one set of parameters and concluding
the sound with a different set.

Layers and Keymaps
In the same context where a Macro is the next larger structure over a
sample, Keymaps and Layers are above Macros.

Their design makes keymaps and layers an important tool for the musician
to organize his data.

In the keymap editor, the musician allocates Macros to keys of the
keyboard, one macro per MIDI key number (1-128). This way he can
reference up to 128 sounds (i.e. Macros) in one keymap. The keys that
are not defined by the user remain empty.

If the user wishes to do so, he can allocate layers or even other keymaps
instead of Macros.

Keymaps are perfect for creating drum sets or other complex
arrangements.

In comparison to a keymap, a layer is more powerful.

In the layer editor, the musician also allocates Macros to keys of the
keyboard. One of the main differences is that he can reference more than
one key per Macro. He can specify whole key ranges, where the same
Macro is supposed to play.

Working with MusyX

© 1999 Factor 5 LLC 08/25/99

13

For the next step, he might now want to specify a key range for a different
Macro, this key range overlapping the previously mentioned one. This
way, whenever one of the keys that are allocated to both Macros at the
same time is played, both Macros will play – at the same time.

The other difference is that the size of a layer varies, whereas the size of a
keymap is fixed by design.

Since the musician can now work with overlapping key ranges when he
uses a layer and is able to play several Macros simultaneously, layers are
the perfect tools for building multi-sample instruments.

 Audio Tools

08/25/99

14

Groups- Organizing Data
Data within the system is stored in either SongGroups or FXGroups,
depending on whether it is used for music or for Sound effects. Both
groups contain references to all objects used in that Group, like Macros,
layers, keymaps, samples, and tables.

Data within the system is stored in either SongGroups or FXGroups,
depending on whether it is a whole song or a sound effect. Both groups
contain references to all instruments used, and to all of the macros,
samples, and other data used to create or edit these instruments.

In addition, SongGroups contain references to arrangements and General
MIDI information, while FXGroups store information related to sound
effects.

Since the amount of memory used for sound tends to be limited, working
with groups is an effective way to manage the data. Depending on the
needs of the game, groups can be moved in or out of memory quickly and
easily.

Dynamic Voice Allocation
In order to be played, instruments and sound effects need to be assigned
a hardware voice. As the amount of voices is limited, MusyX uses an
intelligent mechanism to allocate voices on the basis of priority and age.
The system first searches for free voices and allocates any that are found.
If no free voices are available, the system searches for the voice occupied
by the lowest priority Sound.

If two voices share the same ‘lowest’ priority, allocation is based on age.
MusyX contains an ‘age counter’ that decreases over time to determine
age. The user can control and change both priority and age by assigning a
priority to instruments, or by manipulating the age counter with MacroStep
commands.

New allocations occur only if free voices are available or if the new
instrument has an equal or greater priority than an instrument currently
playing. If neither is the case, the new instrument cannot be allocated.

Working with MusyX

© 1999 Factor 5 LLC 08/25/99

15

Game Applications
For game applications, MusyX offers a full-blown sound effect API
including all the functions a programmer could possibly want. In a 3D
game, for example, the programmer simply places the sound effect
somewhere in 3D-space and the system takes care of all volume,
panning, or surround sound changes that occur when the listener is
changing his position in the environment of the game. For the
programmer’s convenience a low level API is also included in case he
prefers to handle these higher level tasks on his own.

Data Conversion
With the tools MusyX provides, the programmer can quickly and easily
transfer the generated data from his PC into the target platform’s specific
format. This gives the musician the ability to truly concentrate on the
creative aspects of his work.

 Audio Tools

08/25/99

16

 The Installation Process

© 1999 Factor 5 LLC 08/25/99

17

The Installation Process

Hardware Setup
A Single System Setup is the standard configuration of MusyX. The
connections must be as follows:

• Connect an external Keyboard’s Midi-out to Midi-in of the computer.
• TCP/IP MUST be installed for the communication between MusyX

Editor and MIDI-Slave. Although an external network connection is
possible, it is not necessary.

Although a One-Computer setup is the standard configuration, other
configurations are possible. The three tools (MusyX editor, MIDI Slave
and Sequencer) may run on three separate machines or in any
combination on two machines. In all cases, the following connections must
be maintained:

• Be sure to connect the Sequencer’s Midi-out to Midi-in of the Slave.
(on a single system setup this will require the use of a “MIDI loopback
device”)

• Connect an external Keyboard’s Midi-out to Midi-in of the Sequencer.
• The Midi-out from the slave is not used and can be left unconnected.
• TCP/IP MUST be installed for the communication between MusyX

Editor and MIDI-Slave.

One Computer Setup:

 Audio Tools

08/25/99

18

Two Computer Setup Version A:

Two Computer Setup Version B:

Three Computer Setup:

The Installation Process

© 1999 Factor 5 LLC 08/25/99

19

Installing MusyX on Nintendo 64

System Requirements
Windows 95/98 or
Windows NT 4.0 (Slave program requires Windows 95/98)
Pentium MMX 200Mhz (Pentium II 266Mhz or better recommended)
64Mbytes of RAM
800x600 resolution or higher
Winsocket & DirectX 3 or higher installed
16-bit sound card

How to Install the Software
Install all MusyX components from the CD via the SETUP.EXE program.

Consult the README.TXT file in the target directory of the installation for
the newest updates and changes.

If you want to run your sequencer program on the same machine as the
slave program, you should now install a MIDI loopback device, if you have
not already installed one (See ‘MIDI Loopback Devices’ on page 28, for
details).

The Slave Configuration Tool
Start the slave configuration program, "MusyX Slave Configuration", which
can be found in the MusyX Program folder. This program will let you
configure all aspects of the slave’s behavior.

The default settings assume a single system setup, which is the most
likely configuration. You will need a dual system setup only when running
the editor under Windows NT. So you will probably want to keep the link
configuration the way it is (See ’Installing MusyX on a Dual System
Setup’ on page 21, for details about the dual system setup).

Select the MIDI port you want to use to input MIDI data to the slave (e.g. a
port provided by a MIDI loopback device).

In the sound settings you may select the master mixing frequency to be
used (probably 22050Hz) and the default maximum number of voices
available at one time. The latter can be changed at runtime, too.

 Audio Tools

08/25/99

20

The latency value determines the speed with which the slave program can
react to your keyboard input via MIDI. The lower the number, the shorter
the delay or latency. Since not all systems are reliable enough in respect
to timing to allow for short latencies, you may be forced to use a higher
latency value. If you experience any problems, start this program again
and increase the latency value. (When setting the number of voices keep
in mind that the N64‘s runtime library only supports a maximum of 32
voices, while the slave program supports up to 64 voices.)

Finally you have to decide whether to use 16-bit RAW samples or
compressed samples with the slave. Compressed samples give you the
advantage of a 100% accurate preview of the sound, so you can hear how
it will sound when played on the N64. Compressed samples have been
ADPCM compressed, then decompressed, in order to simulate the
realtime decompression performed by the hardware. On the other hand,
converting the samples will take some initial setup time.

The slave program uses a cache directory on the local hard drive to store
compressed samples for later use. The user can define the size of this
cache by setting the cache size value. We found that the difference in
sound quality between raw (uncompressed) samples and compressed
samples is minimal, and makes it therefore possible to mainly use raw
samples. But we leave this decision up to the individual musician.

Exit the configuration tool by clicking on "Ok“.

You now have finished the single system setup.

The Installation Process

© 1999 Factor 5 LLC 08/25/99

21

System Requirements for Dual System Setup

Master
Windows 95/98 or Windows NT 4.0
Pentium 200Mhz or better
32Mbytes of RAM
800x600 resolution or higher
Winsocket installed

Slave
Windows 95/98 (NT is not supported)
Pentium MMX 200Mhz (Pentium II 266Mhz or better recommended)
32Mbytes of RAM or better
800x600 resolution or higher
Winsocket & DirectX 3 or higher installed
16-bit sound card

Installing MusyX on a Dual System Setup

Install all MusyX components from the CD via the SETUP.EXE program.

Consult the README.TXT file in the target directory of the installation for
the newest updates and changes.

Installing the Slave Program:

Install the MusyX "Musician's Tools" from the CD via the Setup program.
The other items are not required to be installed on the slave PC.

Configuring the Slave:

Start the slave configuration program, "MusyX Slave Configuration", which
can be found in the MusyX Program folder. This program will let you
configure all aspects of the slave’s behavior.

The default settings assume a single system setup. To change to dual
system setup simply tag the "dual system“ checkbox. Normally it will not
be necessary to deactivate the "automatic IP configuration“. If you wish to
do so, you will have to specify the local IP of the slave manually.

Select the MIDI port you want to use to input MIDI data to the slave (e.g. a
port provided by a MIDI loopback device).

 Audio Tools

08/25/99

22

In the sound settings you may select the master mixing frequency to be
used (probably 22050Hz) and the default maximum number of voices
available at one time. The latter can be changed at runtime, too.

The latency value determines the speed with which the slave program can
react to your keyboard input via MIDI. The lower the number, the shorter
the delay or latency. Since not all systems are reliable enough in respect
to timing to allow for short latencies, you may be forced to use a higher
latency value. If you experience any problems start this program again
and increase the latency value. (When setting the number of voices keep
in mind that the N64‘s runtime library only supports a maximum of 32
voices, while the slave program supports up to 64 voices.)

Finally you have to decide whether to use 16-bit RAW samples or
compressed samples with the slave. Compressed samples give you the
advantage of a 100% accurate preview of the sound, so you can hear how
it will sound when played on the N64. Compressed samples have been
ADPCM compressed, then decompressed, in order to simulate the
realtime decompression performed by the hardware. On the other hand,
converting the samples will take some initial setup time.

The slave program uses a cache directory on the local hard drive to store
compressed samples for later use. The user can define the size of this
cache by setting the cache size value. We found that the difference in
sound quality between raw (uncompressed) samples and compressed
samples is minimal, and makes it therefore possible to mainly use raw
samples. But we leave this decision up to the individual musician.

Exit the configuration tool by clicking on "Ok“.

The Installation Process

© 1999 Factor 5 LLC 08/25/99

23

Configuring the MusyX Editor:

Start the MusyX editor program and select "environment“ from the
"options“ pull down menu. In the dialog box which appears, select the
"network“ panel.

The default configuration assumes a single system setup. Replace the
127.0.0.1 with the IP address of the system running the slave program.
Make sure that the port is set to the same port as in the slave
configuration program. (By default, they are both 1024.)

Exit the dialog by clicking on "Ok“.

You now have finished the dual system setup.

 Audio Tools

08/25/99

24

Installing MusyX on Game Boy
System Requirements

Windows 95/98 or
Windows NT 4.0 (Slave program requires Windows 95/98)
Pentium MMX 200Mhz (Pentium II 266Mhz or better recommended)
64Mbytes of RAM
800x600 resolution or higher
Winsocket & DirectX 3 or higher installed
16-bit sound card

How to Install the Software
Install all MusyX components from the CD via the SETUP.EXE program.

Consult the README.TXT file in the target directory of the installation for
the newest updates and changes.

If you want to run your sequencer program on the same machine as the
slave program, you should now install a MIDI loopback device, if you have
not already installed one (See ‘MIDI Loopback Devices’ on page 28, for
details).

Windows 95/98 and Windows NT4.0:
Connect your Game Boy Color with the supplied custom link cable to any
unused parallel port of your PC. Configure the slave to use a loopback
device.

Windows 95/98 ONLY:
Configure MusyX to use this parallel port (you need to know the port
address of the parallel port you wish to use) using the Game Boy Data
Link section of the Game Boy slave configuration.

Windows NT4.0 ONLY:
After installing all MusyX components onto your PC hard drive, you will
find a folder "Windows NT Driver" in your installation directory. Contained
therein is a device driver for Windows NT to allow access to the parallel
port.

Copy the file GAMEBOY.SYS into the Windows NT system folder
"system32\drivers".

The Installation Process

© 1999 Factor 5 LLC 08/25/99

25

To setup the driver for the port address of the parallel port you wish to
use, double-click on one of the provided registry key files. Typical
addresses are 0x3bc, 0x378 and 0x278. If you are unsure about which
port address to use please contact your system administrator.

Next open the system control panel and double-click on "Devices". Locate
the "parport" device and select it. Click on the "Startup" button and select
"Disabled" from the list of startup options.
Close the control panel and reboot your machine.

Open the "Devices" control panel once more and verify that the new
device "Gameboy" has a "started" status and an "automatic" startup state.
If the startup state does not state "automatic" change it using the startup
options as described above. If the service is not yet started, select it and
press the "Start" button. If for some reason the device fails to start please
contact your system administrator.

Configuring the Slave
Start the slave configuration program, "MusyX Game Boy Slave
Configuration", which can be found in the program menu under the MusyX
Game Boy folder. This program will let you configure all aspects of the
slave’s behavior.

The default settings assume a single system setup, which is the most
likely configuration. So you will probably want to keep the link
configuration the way it is (See ’Installing MusyX on a Dual System
Setup’ on page 26, for details about the dual system setup).

Select the MIDI port you want to use to input MIDI data to the slave (e.g. a
port provided by a MIDI loopback device).

Configure the parallel port that MusyX will use to communicate with Game
Boy, by entering the parallel port address in the Game Boy Data Link
section.

Exit the configuration tool by clicking on "Ok“.

You now have finished the single system setup.

 Audio Tools

08/25/99

26

System Requirements for Dual System Setup

Master
Windows 95/98 or Windows NT 4.0
Pentium 200Mhz or better
32Mbytes of RAM
800x600 resolution or higher
Winsocket installed

Slave
Windows 95/98 or Windows NT 4.0
Pentium MMX 200Mhz (Pentium II 266Mhz or better recommended)
32Mbytes of RAM or better
800x600 resolution or higher
Winsocket & DirectX 3 or higher installed

Installing MusyX on a Dual System Setup

Install all MusyX components from the CD via the SETUP.EXE program.

Consult the README.TXT file in the target directory of the installation for
the newest updates and changes.

Installing the Slave Program:

Install the MusyX "Musician's Tools" from the CD via the Setup program.
The other items are not required to be installed on the slave PC.

Configuring the Slave:

Start the slave configuration program, "MusyX Game Boy Slave
Configuration", which can be found in the program menu under the MusyX
Game Boy folder. This program will let you configure all aspects of the
slave’s behavior.

The default settings assume a single system setup. To change to dual
system setup simply tag the "dual system“ checkbox. Normally it will not
be necessary to deactivate the "automatic IP configuration“. If you wish to
do so, you will have to specify the local IP of the slave manually.

Select the MIDI port you want to use to input MIDI data to the slave (e.g. a
port provided by a MIDI loopback device).

The Installation Process

© 1999 Factor 5 LLC 08/25/99

27

Configure the parallel port that MusyX will use to communicate with Game
Boy, by entering the parallel port address in the Game Boy Data Link
section.

Exit the configuration tool by clicking on "Ok“.

Configuring the MusyX Editor

Start the MusyX editor program and select "environment“ from the
"options“ pull down menu. In the dialog box which appears, select the
"network“ panel.

The default configuration assumes a single system setup. Replace the
127.0.0.1 with the IP address of the system running the slave program.
Make sure that the port is set to the same port as in the slave
configuration program. (By default, they are both 1024.)

Exit the dialog by clicking on "Ok“.

You now have finished the dual system setup.

 Audio Tools

08/25/99

28

MIDI Loopback Devices
Since it is not possible to loopback MIDI data within the system by default
when using Windows, MIDI programmers and users devised a way to
make this possible. So-called “MIDI loopback devices” are available on the
internet (e.g. “Hubi’s MIDI loopback device” [Freeware]). Your MusyX CD
contains a version of this MIDI loopback device, for N64 in the directory
called "MusyX\Gifts", and for Game Boy in a directory called "MusyX\MIDI
loopback device".

These devices interact with the system like hardware MIDI ports and are
capable of routing MIDI data, eliminating the need for a real hardware
MIDI port, when data is looped back internally.

In the context of MusyX this will let you run the slave program, the editor,
and your sequencer program on one system with only one sound card,
where normally you would need two soundcards to setup a hardware-
based MIDI loopback.

Follow the directions in the file, MIDLPBK.TXT, under HLD_25.ZIP, to
install the MIDI loopback device.

To run the MIDI loopback device, run the HWMDCABLE.EXE. You can
also make a shortcut to this program, to make it easier to start it.

The MIDI loopback program will add a program to the Windows task bar.
To configure it for use with MusyX, right click the program on the task bar.
Then select LB1 for the input device and LB1 for the output device.

Note: Make sure that your sequencer program uses LB1 for its MIDI
output device. Also make sure that LB1 is configured in the
Windows Multimedia Properties panel.

The Installation Process

© 1999 Factor 5 LLC 08/25/99

29

Changing General Settings

Start the MusyX editor program and select "environment“ from the
"options“ pull down menu. Select the "general“ panel in the dialog which
appears.

This menu allows you to define external utilities and to choose your
favorite WAV and AIF Editor. "Soundforge" is one possibility for a sample
editor for use with MusyX, though any WAV and AIF editor can be used.
(Soundforge is a professional Sample editing software and not included in
the package). The third selection under External Utilities lets you add
WinRAR as an archive. "WinRAR" provides an easy way to make backups
of your projects; MusyX supports the WinRAR Archiver directly from within
the program (WinRAR is Shareware and not included in the package).

The ‘General’ screen contains two switches for the SoundMacro editor:

“Show comments” This enables/disables the comments under the
value fields.

“Show object names” This enables/disables the names shown with the
Object Ids.

You will also find a switch for enabling/disabling the confirmation requester
after closing internal editors.

 Audio Tools

08/25/99

30

To customize the appearance of the Editor environment you can choose
your own icons and wallpaper. To do so, use the "Appearance" and
"Background" tabs in the Options screen.

The "Network" tab allows you to set the IP address of the slave and the
port to be used.

The Installation Process

© 1999 Factor 5 LLC 08/25/99

31

Software Start-up Routine
Now that your system is properly configured, perform system start-up in
accordance with the appropriate paragraphs below.

N64 Start-up Routine
If this is the first time that you have run MusyX, you will find it helpful to
refer to the "Walk Through" on page 69.

Start "MusyX Slave" and "MusyX Editor" from your PC.

Then, start your external sequencer program.

Game Boy Start-up Routine
Burn a copy of "Slave ROM" onto a flash ROM. This can be found on the
CD under "MusyX_GB\Slaverom\gbc_slave.com".

Plug the flash ROM into your Game Boy and turn on the Game Boy's
power switch.

From your PC, start "MusyX Game Boy Slave". Please refer to the
Musician's Reference, Appendix 2.

Start "MusyX Editor".

Then, start your external sequencer program.

 Audio Tools

08/25/99

32

Overview

© 1999 Factor 5 LLC 08/25/99

33

Overview

How MusyX Works
The purpose of MusyX is to produce sound. Both musical instruments and
sound effects are based upon what is simply called a sound.

The composition of a sound within MusyX:

A sound in itself is made up of a group of underlying data structures. A
sound can be constructed from these data structures in different ways
using three different tools.

Every sound must contain at least one SoundMacro. A SoundMacro is
nothing more than a very simple and easy-to-understand program that
defines what is being done to produce a sound over time. The
programming language used in a SoundMacro is called SMaL (Sound
Macro Language).

Another way of looking at the mechanism of a SoundMacro would be to
consider a sound as being made up of a number of events that take place
on a time line. Encoded in SMaL, the actions needed to define this sound
are listed in the SoundMacro.

 Audio Tools

08/25/99

34

Every sound contains at least one SoundMacro, though it could very well
contain more than one. Some sounds only need one sample at a time, but
every MIDI key has to be occupied by a different sample.

More complex sounds may demand the use of more than one sample at
any one given time. To organize multiple SoundMacros running within one
sound, MusyX offers two data structures: Keymaps and Layers.

SoundMacros and the SoundMacro Editor

© 1999 Factor 5 LLC 08/25/99

35

SoundMacros and the SoundMacro Editor

General
SoundMacros are simple, straightforward ‘programs’ that are used to
define sounds. A very simplistic SoundMacro, on a sample-based system
like the Nintendo 64, might say something like this (not formulated using
the SMaL programming language, but in simple English):

1.) Use a specified ADSR
2.) Start a specified sample
3.) End

SoundMacros do far more than simply start samples or oscillators.
SoundMacros have the ability to reference data, and thereby, to bind that
data to the sound. This example references data defining an ADSR and a
sample.

In addition, a SoundMacro does not necessarily need to start sound
reproduction immediately. As mentioned above, starting a sound with a
SoundMacro could simply reserve a voice.

The SoundMacro may do a number of things before any sample or
oscillator is started, e.g. create a set waiting period among other things.

 Audio Tools

08/25/99

36

Creating a SoundMacro
To be able to use the full potential of SoundMacros, it is helpful to
understand the basics of how the Sound routine really handles a “sound“.

If a new note is received via MIDI, a logic routine searches for a free voice
and starts a SoundMacro (some lower performance systems, such as
Game Boy, may use a fixed voice allocation scheme instead).

A SoundMacro is a small program made up of special commands
comparable to a very simple form of the BASIC language. SoundMacros
can be quickly and easily programmed from scratch, but you may also use
and enhance existing SoundMacros either by template or by library
functions.

To create a new SoundMacro, select the folder “SoundMacros” of the
Object-pool. Then double-click inside the view area of the project window
or use the “new” entry from the pop-up menu [click right mousebutton]. Be
sure not to double-click on the name of an existing SoundMacro, because
this would open the SMaL-editor.

It is also possible to transfer a SoundMacro from one project to another.
Both the source and destination Projects must be opened. Then drag the
desired SoundMacro from the source Project to the target Project and
drop it into the “SoundMacros” folder. All dependent Objects will then be
copied to the new Project automatically.

SoundMacros and the SoundMacro Editor

© 1999 Factor 5 LLC 08/25/99

37

Creating SoundMacros by Using Templates
The easiest way to create SoundMacros is by using one of the templates
from the pop-up menu inside the sample-pool. Simply select a Sample,
click [right mousebutton] and select “Templates - Generate SoundMacro“
from the popup menu.

Editing SoundMacros

SoundMacros are built by combining MacroStep commands into a SMaL
program. All SoundMacro commands are available in and defined by a
plain-text Macro definition file. The MacroStep commands are different for
each different target platform, and there is a separate Macro Definition File
for each platform.

 Audio Tools

08/25/99

38

The Command Pool
To spare the programmer the effort of typing
in each MacroStep Command, MusyX comes
with a graphical interface for the creation of
SoundMacros.

The Command Pool Window contains all
MacroStep commands that are available for a
particular platform. To easily create a
SoundMacro, drag these commands from the
Command Pool and drop them into the
SoundMacro Editor.

A new command dropped on top of another
will be inserted before the existing command.
To delete a command, select it with either the
cursor keys or the mouse and press “Delete”
on your computer keyboard. A dialog box will
ask you to confirm the deletion (this can be
turned off in the Options screen).

All SMaL programs must finish with the “END”
command. This command cannot be moved
to a different place in the program or deleted.

A complete listing of MacroStep commands
and their features can be found in the
Musicians Reference, along with a selection
of "sample" SoundMacros.

SoundMacros and the SoundMacro Editor

© 1999 Factor 5 LLC 08/25/99

39

Editing Values
Most MacroStep commands contain parameters. These parameters can
be divided into three different groups: Numerical, Switch, and Reference.
All parameters can be selected for editing with either the cursor keys or
the mouse.

To adjust numerical parameters, select a parameter box and type over the
value. The value is updated the moment the parameter is de-selected. De-
selecting a parameter by using the “Enter” key on the computer keyboard
allows value updates while leaving the cursor on the parameter, making it
easier to quickly re-edit the parameter.

Numerical parameters can also be entered as a hexadecimal value if a “$”
is typed before the number. After pressing “enter” the value will be saved
and displayed as a decimal number again.

Switch parameters contains only two settings: On and Off. To toggle these
either double-click or use the return key.

Reference parameters are similar to numerical parameters except that the
numbers here represent ID’s instead of values. Each ID references
another piece of data within the system, like a sample or a table. The
visual difference between IDs and values is that the name of the
referenced object is shown behind the number.

Parameters can also be increased or decreased using the +/- keys (Switch
values will change between on and off).

 Audio Tools

08/25/99

40

Loops and Jumps in SMaL
With some commands you can build loops and jumps, either conditional or
unconditional. For more details refer to the Macro command-reference.

While jumps to illegal locations will be detected by the slave program and
cause the macro program to be stopped, the runtime libraries do NOT
perform such tests. So you have to be careful when using jumps.

Calling other SoundMacros in SMaL
It is possible to call other SoundMacros from a running SoundMacro. This
can be helpful to define subroutine SMaL-programs or to further structure
your work.

For more details refer to the Macro command-reference.

Keymaps and Layers

© 1999 Factor 5 LLC 08/25/99

41

Keymaps and Layers

General
MusyX provides two structures to allow the building of even more complex
sounds, keymaps and layers.

Keymaps and layers allow you to start or reference SoundMacros, as well
as other keymaps and layers, depending on which key is being
depressed/received via MIDI.

Because of the performance of the Game Boy / Game Boy Color,
keymaps and layers are NOT supported on this system.

 Audio Tools

08/25/99

42

Keymaps
A keymap is basically a large table containing an entry for each of the 128
MIDI keys that exist in the MIDI standard. When a specific key is used,
MusyX looks at the entry belonging to the current key and starts the
specified SoundMacro or Layer. In addition, other parameters like panning
offsets, volume and so on can be specified for each entry.

A keymap can be used to build a simple multi-sample instrument or to
design a drum set.

Parameters

Keynum, Key Rather than a real parameter, this information describes
which key number this entry belongs to. The GM-
instrument usually mapped here is displayed as a
reference.

ID The ID of the object assigned to this key. It can be a
macro, keymap or layer.

Name The name of the object assigned to this key.

Transp Transposes the sound from a single key up or down in
one-note steps.

Pan Panning-Offset - adjusts the pan position of the sound
relative to the one of the keymap.

Srrnd If this is not zero, the sound on this key will be played
through the surround-channel.

PrioOfs Priority Offset - adjusts the priorities of the sounds from
the keymap. This value is added to the priority which is
used to “start” this keymap.

Keymaps and Layers

© 1999 Factor 5 LLC 08/25/99

43

Create a New Keymap
To create a new keymap, select the "keymap" folder from the Object-pool.

Then go to the right side of the project window and double-click in an area
without text, or press the right mouse button, and select "new" from the
resulting pop-up menu. Don't double-click on an existing keymap (in the
list), because you will edit that keymap, instead.

A keymap may be transferred from one project to another by dragging it
from one project into the keymaps folder of the current project. All
dependent objects will be copied automatically. The keymap is ready to
use in the new project.

 Audio Tools

08/25/99

44

Layers
This structure is even more flexible. The length of a layer is flexible and, in
contrast to a keymap, an entry here is not necessarily linked to a single
key but rather to a key range. These ranges may even overlap between
different layers.

When a key is being played, MusyX checks all entries in a layer and
simultaneously starts all SoundMacros in the entries whose ranges
contain the current key in their keyrange.

Since it is possible to let the Macros used for specific key ranges overlap,
layers allow the musician to build a more elaborate multi-sample
instrument.

Layers can cause multiple Objects to be started simultaneously. It can
also be useful for non-drum mappings of Objects to zones on the
keyboard. You can reference SoundMacros or Keymaps here.

Layers Can be Used to:

• Make stacks of 2 or more sounds
• Create stereo sounds
• Map sounds to zones of the keyboard

The example layer above, “StringEnsemble2.mxl”, would be presented on
the keyrange like this:

Keymaps and Layers

© 1999 Factor 5 LLC 08/25/99

45

Parameters

ObjectID The objectID from the object on this key. It can be a Macro,
keymap or layer.

Name The name of the object from this key.

KeyLo Specifies the lowest key of this range.

KeyHi Specifies the highest key of this range.

Transp Transposes the sound from this range in one-note steps up or
down.

Vol Volume setting defines volumes of instruments and sounds
relative to the volume of the Layer.

Pan Panning-Offset adjusts the panorama position of a sound
relative to the one of the layer.

Srrnd If this is not 0, the sound on this key will be played through the
surround-channel.

PrioOfs Priority Offset adjusts the priorities of the sounds from the layer
among each other. This value is added to the priority which is
used to “start” this Layer.

 Audio Tools

08/25/99

46

Create a New Layer
To create a new Layer, first select the “Layers” folder of the Object-pool.

Then go to the right side of the project window and double-click in an area
without text, or press the right mouse button, and select "new" from the
resulting pop-up menu.

Don't double-click on an existing layer (in the list), because you will edit
that layer, instead.

Keymaps and Layers

© 1999 Factor 5 LLC 08/25/99

47

Importing a Layer from another project is also possible. Both the source
and the destination Project must be opened. Then simply drag the desired
Layer from the source Project to the target Project and drop it on the
“Layers” folder. All dependent Objects will be copied to the new Project
too. The layer is ready to use in the new Project.

 Audio Tools

08/25/99

48

The Sound Editor

© 1999 Factor 5 LLC 08/25/99

49

The Sound Editor

What is a Sound?
In MusyX, a sound is used to define an instrument.

Since an Instrument can consist of different Objects like Keymaps, Layers
or SoundMacros, the Sound definition can be used to define the parental
Object.

Once defined, Sounds can also be exported to a single file, including all
dependent objects. Exported Sounds can easily be imported into other
Projects.

Defining Sounds and Import/Export
To create a new Sound, first select the “Sounds” folder of the Object-pool.
Then go to the right side of the project window and double-click in an area
without text, or press the right mouse button, and select "new" from the
resulting pop-up menu. Don't double-click on an existing sound (in the list),
because you will edit that sound, instead.

 Audio Tools

08/25/99

50

This Object can then be easily exported to a single file including all
dependent Objects (also Samples).

To import a Sound Export File select the “Sounds” folder and choose
“Import” from the pop-up menu [right mousebutton] inside the view area.

Transferring a Sound from another project is also possible. Both the
source and the destination Project must be opened. Then simply drag the
desired Sound from the source Project to the target Project and drop it on
the “Sounds” folder. All dependent Objects will be copied to the new
Project, too.

The Sound Editor

© 1999 Factor 5 LLC 08/25/99

51

The Sound Object Properties Window

After creating a Sound object you can view the object properties window.
Here you can give the new Sound a name and edit some additional
information. This information includes the author's name, comments and
some attributes to describe the Sound. These definitions do not change
the sound, they are only used to categorize a sound object.
These properties are not only available for Sounds, but for all objects
(Layers, Keymaps, Soundmacros, Tables and Samples). In combination
with the search objects window, this can be used to search for a specific
sound in a large project.

 Audio Tools

08/25/99

52

A description of the fields and buttons is included below.

Name Change the name of the object
ObjectID Change the ID number of an object
"Find new" Used to find a new available ID for the object
Comment Used for a short description of the sound
Author Author’s name can be entered here
Audio compression Type of compression used for a sample object
Category Choose from a list of instrument types
Sub category Some instrument types have a sub type
Sound Sound character
Pitch Frequency range
Duration Length of the sound
"Copy" Sets the same attributes to the defined parent object

of the sound (a layer, keymap or a soundmacro)
"Copy recursive" Sets the same attributes to ALL child objects of the

sound including dependent objects

The Sound Editor

© 1999 Factor 5 LLC 08/25/99

53

The Search Window

This window is used to find objects in a large project. Here, you can
search for one or more of the attributes for object properties. Additionally,
there are fields for the time & date and file size (important for samples) of
the objects.

Before you can start searching, you have to choose the project using the
"change project" button. Only opened projects can be searched.

If you edited some or all of the fields for your desired object, simply hit the
search button and all matching objects will be listed.

Samples can be auditioned by selecting them and then hitting the space
bar on the keyboard. Found objects can also be dragged into a new
project, if you drop them on their destination folder in the project window.

Hint: You can also create your own sound and object library, using a
normal project that can be opened at the same time as your working
project. Finished objects can be copied by drag & drop, to the library
project for later use in other projects.

 Audio Tools

08/25/99

54

Organizing Data

© 1999 Factor 5 LLC 08/25/99

55

Organizing Data

General
The basic structure MusyX uses to organize the data of whole songs or a
set of sound effects is a group. For structuring the data even further,
groups may be sorted into groupsets. These structures constitute sub-
directories and are simply a means to get your project organized.

By splitting a whole project into small units, the amount of data which has
to be present at a given time can be limited. Keep in mind that memory is
limited. Sound usually is one of the first things where people are trying to
save some space when memory space gets tight.

MusyX uses two types of groups: SongGroups and SFXgroups.

Note: The example project's "SongGroup" is named "Demo". The actual
name is arbitrary.

SongGroup

SFXgroup

 Audio Tools

08/25/99

56

SongGroups contain all data that is necessary to play back one or more
songs (useful to keep a level-music and a boss-music together in the
memory). They reference all song data generated with an external
sequencer program, as well as all sounds that are used as instruments
within the songs.

MIDI uses program numbers from 1 to 128 to identify instruments. MusyX
maps sounds to these numbers using the Soundlist or Drumchannel from
the SongGroup Properties, which contain one entry for each MIDI program
number. To access the songgroup's properties, simply double-click the
songgroup in the project window.

The Soundlist and the Drumchannel, together with some other data,
represent a SongGroup. This SongGroup can contain more than one
song, as long as those songs use the same instrument definitions.

In the tab “Songs/Midifiles”, MIDI-files can be entered. This does not serve
an immediate purpose during development, but is necessary for the
conversion of the data. When converting the data, the Editor uses the
entry to determine which file has to be included in the conversion.

Each song referenced by a specific SongGroup has its own MIDI-setup.
This structure consists of 16 channels that are referenced by the
SongGroup. The MIDI-setup contains initial settings for some major MIDI
controllers and allocates the programs (i.e. instruments) that are to be
initially played to their MIDI channels.

The settings can be changed while the song is in progress, allowing for
instruments to be changed in mid-song.

Organizing Data

© 1999 Factor 5 LLC 08/25/99

57

The Drumchannel, e.g., is for MIDI channel 10, which is defined as the
drum channel in the General MIDI standard. The other 15 MIDI channels
can be referenced with sounds from the soundlist the way the musician
chooses.

SFXgroups basically consist of just one large table containing one entry
for each sound effect to be defined. Each sound effect uses a specific
sound. Since several sound effects can start with the same sound, it is
imperative that sound effects define other parameters like priority,
Maxvoices and Default Panning to differentiate the sound effects.

To further simplify the teamwork between sound artist and programmer,
each sound effect is assigned a Label.

 Audio Tools

08/25/99

58

MusyX automatically generates a header file that defines constants, which
the programmer can use to reference the sound effects at runtime. These
constants contain the Label that is assigned to the sound effect.

As a result of this labeling, musician and programmer no longer have to
pass cryptic sound effect ID numbers to each other in order to synchronize
their work.

Because they gather together a predefined set of sounds to be used as
sound effects, SFXgroups are the perfect tool for organizing multiple
groups of sound effects, e.g. all sound effects that are to be used in a
specific level of a game.

Organizing Data

© 1999 Factor 5 LLC 08/25/99

59

Managing Groups
To create a new Group, click [right mousebutton] on the Groupfolder and
select “New“ from the pop-up menu.

You have the following choices:

• SongGroup is used for one or several Songs
• SFX-Group for one or several Sound-FX
• Object-Group to collect a bunch of Objects
• Groupset similar to a Folder which can contain several

other Groups

 Audio Tools

08/25/99

60

SongGroups and Their Parameters
A SongGroup is comparable to a set of soundprograms and multisetups of
a synthesizer or sampler. For every SongGroup that represents a level or
stage in a game you have to sort the required “Sounds“ from the Object
Pool into a Soundlist to assign them to the correct MIDI program number.

To edit a SongGroup, double-click on it to open the Properties window.
Inside the Properties window, you can edit the “Soundlist“ or select one or
several “MIDI files” for this SongGroup. This “Soundlist represents MIDI-
programs that reference the instruments for channel 1~9, 11~16 and the
“Drumchannel“ for MIDI-channel 10 in the MIDI setup.

Take a closer look at the Soundlist. On the very left you see the MIDI
specific program change number from 1 to 128.

The GM equivalent soundprogram is listed behind the number, but it is not
obligatory to follow this “guideline“. You can put a Bass sound on MIDI
program #1 if you want to, but realize that it will be a Bass and not a Piano
if you later select this soundnumber from your Sequencer.

The Drumchannel is very similar to the Soundlist, but for GM-compatibility
reasons it represents an alternate list of Sounds (in this case Drumkits)
always solely for MIDI channel #10.

Organizing Data

© 1999 Factor 5 LLC 08/25/99

61

To enter a Sound into the Soundlist or Drumchannel, select the desired
number and double-click on it or press the “Enter“ key on your computer
keyboard. A dialog box will show all objects from the pool that fit in here,
such as Sounds, Layers, Keymaps or SoundMacros.

If you do not use program changes in your MIDI-file, please also read the
section of this manual concerning MIDI Setups, because you need to pre-
set the MIDI programs to the MIDI channels.

 Audio Tools

08/25/99

62

SFXgroups and Their Parameters
In the simplest case, a Soundeffect is just a Sound or a SoundMacro.
Within the system, of course, SFX are handled somewhat differently than
Sounds or SoundMacros.

Because the programmer of a game wants to be able to insert SFX into
his program as easily as possible, the sound designer has to define one or
more special tables called SFX-Groups.

The first major difference between SongGroups and SFX-Groups is the
length of the Table. An SFX-Group can handle many more Sound IDs
than a SongGroup can. Thus the table-length varies and in contrast to a
SongGroup, a newly created SFX-Group has no entries to edit.

To add new entries, use the “Add new” function of the pop-up menu by
right-clicking inside the SFX-Group properties window.

Here you can now enter, for example, the name of the Macro, or you may
enter a Layer. You can also adjust parameters, if you wish to do so.

Organizing Data

© 1999 Factor 5 LLC 08/25/99

63

Testing Sound Effects
It is possible to test SFX with the MusyX editor and slave before
incorporating them into the game. This is useful to check priority settings or
volume levels.

First you have to send the desired SFX-group to the slave the same way you
would send a SongGroup. If the slave receives a SFX-group, it automatically
switches to a different playmode.

Beginning with MIDI-channel #1 every keynumber represents one SFX-ID
and can be played by a connected MIDI keyboard or the virtual MIDI
keyboard. A connected external keyboard has the advantage that more than
one SFX can be triggered at the same time.

If there are more than 128 SFX, MIDI channel #2 represents IDs 128-255,
MIDI channel #3 represents IDs from 256 to 383 and so on.

 Audio Tools

08/25/99

64

The Parameters

ID The number that the programmer sends to the SFX-API to
start a SFX using the defined label (see below)

Macro SoundMacro number

Name Name of the SoundMacro

Priority A Priority number for each SFX, if voices are shared

Maxvoices The maximum of voices allowed for this SFX

Def.Vel Default velocity or Start-volume (the programmer can override
this value)

Def.Pan Default panning (the programmer can override this value)

Def.Key The default key (the programmer can override this value)

Label The programmer uses this label to reference a SFX

Comment Comments for each SFX

Organizing Data

© 1999 Factor 5 LLC 08/25/99

65

Managing the Object Pool
You can create unlimited sub-folders for any kind of Object inside the
Pool. To do this, select an existing folder and use the “Create folder” entry
of the pop-up menu [right mousebutton]. This is useful for organizing your
work.

Adding Samples
To add a sample to your project, first select the samplefolder from the
Object-pool. You can either double-click inside the view area of the
Sample-pool or choose “new” from the pop-up menu [right mousebutton].

You can now select a sample you want to import through the appearing
file dialog box. If you select a sample using the mouse or the cursor keys,
you can play it through your Soundcard from within the editor by pressing
“space” on your computer keyboard. This can be done any time you select
a sample in any window or dialog box.

MusyX supports both Microsoft WAV and Macintosh AIF files. WAV files,
however, often do not support loops and MusyX then uses them only for
one-shot samples. AIF files support both loops and one-shot format and
are preferred for use with MusyX.

 Audio Tools

08/25/99

66

The Different Parts of a Project
All of the data of one game soundtrack is called a Project.

Within a project the system distinguishes between two different basic data
types, Groups and Objects.

A Group is a collection of Objects belonging to the same level or stage of
a game. It can be a SongGroup, SFX-Group or a Groupset of Groups.

Which one of these it is going to be depends on the need of the project or
the game. To choose a way to organize the data for a game is at the
user’s discretion.

When contemplating the sounddefinition side, one will find a more
complex data hierarchy. In this context, a Sample is the lowest part of a
Sound. A Sound on the other side represents the highest kind of data in a
sounddefinition.

Hint: Layers and Keymaps can refer to each other or to SoundMacros.

Organizing Data

© 1999 Factor 5 LLC 08/25/99

67

How the Structure Relates to the Actual Game Data
There is no major structural difference between the Project data used
inside the Manager and the final converted Game data. The Project data
is of course more comprehensive, since it contains additional information,
e.g. names of Objects. Samples may also be stored in a different format
from the one needed for the destination platform.

Transferring Data Between Projects
Objects can be transferred between Projects either by exporting and
importing Sound-objects, or simply by dragging any desired Object from
one Project window to another.

 Audio Tools

08/25/99

68

The Project Manager

© 1999 Factor 5 LLC 08/25/99

69

The Project Manager

General
The Project Manager is the main working environment of MusyX. It is
used to edit and manage all data related to the project.

A typical screen layout of the Project Manager.

 Audio Tools

08/25/99

70

Project Manager Menus

File Menu Description

New Creates a new project

Open Opens a saved project

ReOpen Chooses a saved project from a list of the last 10
recent projects

Exit Exits MusyX -Manager

After you open a project, the Project Menu becomes available.

Project Menu Description

Save Saves the active project

Save as Saves the project under a different name

Generate scriptfile
for export…

Scriptfile for the converter

The Project Manager

© 1999 Factor 5 LLC 08/25/99

71

Backup When a valid path to a WinRAR archive program is
entered in the Options menu, this menu item will be
activated. When selected, it will use this program to
"RAR" all data of the project together into one file.
This may not be used to archive or transport data
easily.

Search objects Searches for objects using the library functions

Browse objects in
tree…

Opens an additional project window with the
complete tree of all objects and their hierarchy.

Scan for new
files…

Files that are copied or saved to the project
directories by external tools can easily be imported
into the project with this function

Delete all
unnecessary
files…

Deletes all files that are not related to or depending
on objects within the project.

Options… Setup options relating to the project.

Update sample-
information

Updates the cached sample information if samples
were changed by external tools.

Refresh objectlist This causes the object reference list (in the right-
hand part of the project window) to be refreshed
manually. Not only the display will be refreshed, but
also the internal data structures. During normal use
of the editor, there should be no need to use this
function.

Close all editors Closes all open editors at once

Close Closes the project

Options Menu Description

Environment Options and setup of the editors environment

 Audio Tools

08/25/99

72

Window Menu Description

Undo last
command

Undoes any window arrangements

Cascade Re-arranges windows in an overlapping diagonal
line. You can choose between “all windows“ and
“Project windows“ or “Editors“ only.

Tile Re-arranges windows. You can choose between
“Project windows“ or “Editors“.

Align commandpool Aligns the commandpool-window with the right side
of the main window

1 Midisetup Quickselect for the Midisetup-window

2 State Quickselect for the Status-window

3 Network: Master Quickselect for the Network/Master-window

4 Properties Quickselect for the Group-/Object- Properties-
window

5 Search Objects Quickselect for the Librarian search window
(disabled until a project is opened)

6 Midi-Keyboard Quickselect for the Virtual MIDI-keyboard window

7 Commandpool Quickselect for the Commandpool window

8 Testproject.mxp Quickselect for an open project

The Project Manager

© 1999 Factor 5 LLC 08/25/99

73

Info Menu Description

About MusyX Developers information & copyright notice

 Audio Tools

08/25/99

74

Walk Through

© 1999 Factor 5 LLC 08/25/99

75

Walk Through

General
This chapter provides a step by step example of how to design a simple
instrument and a simple sound effect and export it so that the programmer
can include it into his or her game.

The steps are:

• Start the MusyX Editor
• Create a Project
• Import a Sample
• Create an Instrument using a SoundMacro
• Create and setup a SongGroup
• Make a short MIDI sequence
• Create a Sound-FX
• Convert the data

 Audio Tools

08/25/99

76

Start the Soundslave
Start the slave manually from Win95/98-Startmenu/Programs/ MusyX.

Launch the MusyX Editor
Start the “MusyX Editor“ from the Win95-Startmenu or directly by double-
clicking the MusyX -Icon from your desktop if available.

The Manager screen after startup

Walk Through

© 1999 Factor 5 LLC 08/25/99

77

Creating a New Project
Select “New project“ from the ‘File’ pull down menu.

This opens a regular File dialog box, where you name the Project. For this
example name it “Testproject”.

Next, choose a Macro definition file. This file can be found in your
MusyX\bin\misc Folder (“macrodef.mxd”). This file defines the set of
commands used by the SoundMacro language (SMaL). The Game Boy
macro definition file is located in MusyX-GB\macrolibrary.

Finally a confirmation window appears and you have the option to create
the project (click on the “Create”-button].

 Audio Tools

08/25/99

78

Walk Through

© 1999 Factor 5 LLC 08/25/99

79

The Project Window
The newly created Project looks like this:

From this window you have access to all data related to the project. It is
split into a left and right area. On the left side is a folder structure, the
“Groups” and the “Object Pool”. On the right side of the window is the view
area where the Sound-Objects are displayed. (Since a new Project
contains no Sound-Objects, this area is empty at the moment.)

The “Object Pool” contains Subfolders for sound-related Objects like
Samples, SoundMacros, Layers, Keymaps, Tables and sounds, but more
about this later. For now we need only Samples and SoundMacros.

The “Groups” are mainly used to organize the different sounds into
SongGroups (e.g. for the different levels of a game) and SFX-Groups (lists
of Sound effects).

The next step is to add a Sample and build an Instrument using a
SoundMacro. MusyX supports both Microsoft WAV files and Macintosh
AIF files.

Keep in mind that WAV files often do not contain loop information.

 Audio Tools

08/25/99

80

Adding Samples
To add (import) a sample to your project, first expand the “Object Pool”
folder by clicking on the “+”-symbol.

Select the “Samples” folder:

Then go to the right side of the project window and double-click in an area
without text, or press the right mouse button, and select "new" from the
resulting pop-up menu. Don't double-click on an existing sample (in the
list), because you will edit that sample, instead.

Walk Through

© 1999 Factor 5 LLC 08/25/99

81

Select the Sample “Marimba.wav” from the Directory “Demo_Samples” of
your MusyX Folder and click the OK-Button. Now the Sample has been
imported into the project.

Before we can use the Sample as a sound, we have to create a
SoundMacro.

A Very Simple SoundMacro (SMaL Program)
Starting with a Sample, the smallest building block in this context, the
easiest way to create a Sound Macro is using a “Template”. “Templates”
are nothing more than predefined SoundMacros.

Click [right mousebutton] on the “Marimba.wav” Sample and select
“Templates” from the appearing pop-up menu.

This will bring up a window with some SoundMacro-templates. For our
“Marimba.wav”-Sample we can use the “Oneshot” Template.

 Audio Tools

08/25/99

82

Now we have created a SoundMacro that plays our Sample. To see what
this SoundMacro looks like: Select the SoundMacros Folder in the Object
Pool and open the SoundMacro-editor by double-clicking on the
marimba_oneshot1.mxm Object.

To actually play this sound we need to tell the system when to use it. Here
we are going to set the sound up to be used as an instrument.

Hence the next step is to define a song group.

Walk Through

© 1999 Factor 5 LLC 08/25/99

83

Defining a SongGroup
To create a SongGroup click [right mousebutton] on the “Groups” folder in
the Project window and a pop-up menu appears. Select “New
Folder/Group“.

From the following dialog box choose “SongGroup“ and click OK.

To edit the new SongGroup double-click on its name and it will open the
Properties window. Inside the Properties window you have to enter our
new SoundMacro into the “Soundlist“.

 Audio Tools

08/25/99

84

The Soundlist is used to map SoundMacros or other Objects, Keymaps or
Layers for example, to a MIDI program-number that can be accessed by
MIDI program-changes. The names beside the numbers on the left side
are only shown as a reminder for General MIDI purposes. More detailed
information about the Soundlist is coming up in a later chapter.

Next double-click on the blank field below “Object name”, of row No 1. A
dialog box is shown with different types of Objects from the “Object Pool”.

Open the “SoundMacros” Folder and choose the new
“Marimba_Oneshot1”-Soundmacro. Click Ok.

Walk Through

© 1999 Factor 5 LLC 08/25/99

85

Playing the Instrument for the First Time
The SongGroup is now ready to be sent to the Slave. Select the
SongGroup and click the right mousebutton to open a pop-up menu.
Choose “Send to slave” and all data belonging to this SongGroup will be
transferred to the Soundslave.

The transfer should last only a few seconds for our small testproject. On
the status-window of the Soundslave PC you can watch the transfer.

After the transfer is completed you can play your first instrument using
your sequencer and MIDI-keyboard. Make sure that your sequencer is set
to the right MIDI-output and channel 1.

You can also play the instrument using the virtual MIDI-keyboard window
inside MusyX. See later chapter for details.

 Audio Tools

08/25/99

86

Recording a Sequence
Use your favorite MIDI-sequencer to record a short sequence with the new
sound, using the slave program as synthesizer.

Save the finished Sequence as a MIDI-file (*.mid) into the Midifiles-folder
of our Testproject.

Switch back to the MusyX Editor. Open the Properties window of the
SongGroup and click [left mousebutton] on the panel called
“Songs/Midifiles”. Assign the Midifile to the Midisetup by double-clicking on
the midifile field or by clicking on the “Browse Midifile” button.

A regular File dialog box appears. Here you have to change the directory,
select your *.mid sequence that you recorded earlier, and click “Open”.
Your sequence is now attached to the SongGroup and you can close the
Properties window.

Attaching midifiles to a SongGroup is not necessary as long as you work
only with the slave, but it must be done before we convert the data for the
game. Otherwise, the converter will not be able to find any midifile to
include into the final data.

Walk Through

© 1999 Factor 5 LLC 08/25/99

87

Looped Midi-files

Midifiles can be played like samples as oneshot (meaning only once) or
they can be looped. If you do not want to loop the whole sequence or if
your music contains a pause at the end before it starts from the beginning,
you need to define two custom controllers inside your MIDI sequence.

These controllers determine, between them, the start and the end of the
loop.

Controller 102 marks the left locator position or start of the loop.
Controller 103 marks the right locator position or end of the loop.

Controller 104 marks a position from where certain actions are possible,
e.g. fading out, or beginning one song while the one playing is faded out.
This controller makes it easier for the programmer who needs to combine
various Midifiles in a game. Due to this controller, he does not have to
worry about finding the exact right spot from where to fade out for
example.

The values of the controllers are ignored for now, but should be kept zero.

 Audio Tools

08/25/99

88

Defining a Sound Effect
Sound effects (SFX) can be designed by importing a sample into your
project and creating a SoundMacro, just the way you would create any
instrument. The only difference is that unlike instruments, SFX are
organized in so-called SFX-Groups. In these Groups you can edit a list of
special settings for creating a SoundMacro.

Import the Sample “Gunshot.aif” from the Samples Directory (MusyX\GM-
Set\GM-Set_44100\Samples\SFX) and create a SoundMacro using the
Oneshot-Template. This is done exactly the same way you did the
“Marimba” Sound.

Now create a new Group using the Groups pop-up menu. Logically, this
time you select “SFX-Group” instead of a SongGroup.

Open the SFX-Group by double-clicking on its name and add the new
SFX to the list. Use the pop-up menu [right mousebutton] to add a new
entry first. Then double-click on the empty field under “Macro” and choose
the “Gunshot_Oneshot.mxm” from the following dialog box. (This is the
same procedure you followed in the SongGroup properties.)

Walk Through

© 1999 Factor 5 LLC 08/25/99

89

Close the Properties Window and send the SFX-Group to the slave the
same way you did the SongGroup.

How to Test a Sound Effect
After having sent the SFX-Group to the Slave, you can now easily play the
SFX from the virtual MIDI-keyboard. The keynumber now represents the
FX-ID, so you have to move the scrollbar of the MIDI-keyboard Window to
the left to reach the appropriate key.

Every MIDI channel consists of 128 IDs, meaning that 128 different sound
effects can be played at once. Since there is a total of 16 MIDI channels,
you can directly test 2048 sound effects.

Saving Your Work
To save your Project select “Save” from the Project menu.

Finish!
The next step would be to convert the project using the external MusyX
commandline tools.

 Audio Tools

08/25/99

90

Additional Tools

© 1999 Factor 5 LLC 08/25/99

91

Additional Tools

The Table Editor
The Table-object is an additional database that the user can prepare for
specific SoundMacro-commands. These can access the table to obtain
large amounts of data quickly and conveniently. Tables can only be
referenced by specific SoundMacro-commands.

Tables can be used as curves for scaling the volume or to define ADSR
Envelopes.

To create a new table, double-click on an empty space in the Tables
directory. Then type in a name of a non-existing file. This will create the
table. Next, double-click on the table to enter the table editor.

Using the Table Editor
To open the table editor, select the tables folder from the project window.
Then right-click in the right view window and create a new table. Open the
new table by double-clicking on its name in the right view window.

The table editor displays the data in 16 columns. By entering a new value
in the length-field on the bottom right, the length of a table can be changed
anytime.

 Audio Tools

08/25/99

92

To change the data in a table, simply select the field using the mouse or
the cursor keys and enter a value. The numerical Input and Output can be
changed from the pop-up menu [right mousebutton].

Refer to the musician’s reference of the SMaL language description
concerning the use of tables in SoundMacros.

Using the ADSR Envelope Editor
If the length of a table equals 8 bytes exactly, you can access the ADSR
section of the Table editor. This is the most common use of tables. Set the
table length to 8, using the "length" option at the bottom of the Value
Editor.

Here you can edit Attack, Decay, Sustain, and Release either by typing
the values into the appropriate fields or by dragging the lines of the
graphic display. The scale slider can be used to scale the graphical
appearance of the Envelope.

Drag here for both
Decay and Sustain

Drag this line to
change the Release

The MIDI Setup Window

© 1999 Factor 5 LLC 08/25/99

93

The MIDI Setup Window

What is the Purpose of this Window?
The MIDI setup is used to pre-set MIDI-programs, volumes, panning and
other data for all 16 channels. This is comparable to the multimode setup
of a Synthesizer. Every SongGroup of a project can contain several MIDI-
setups, one for each song in this SongGroup.

How to Use the Window in Everyday Work
If you open the properties of a SongGroup you’ll find a sub-window called
“MIDI-setups/Songs”, where you can add, remove and edit MIDI-setups.
To open the MIDI setup window double-click on the name of the setup or
use the “Edit” button, on the right side.

The Importance of the Window when Exporting Data
A MIDI-setup can be exported as simple data or as a MIDI standard file.
This file can be used to import a setup into a MIDI sequencer.

 Audio Tools

08/25/99

94

Using Multiple MIDI Setups within One SongGroup
Each SongGroup can contain an unlimited number of Songs and MIDI
Setups.

Please read also about looping MIDI-files in the section, “Recording a
Sequence” of the Walkthrough.

The Virtual MIDI Keyboard

© 1999 Factor 5 LLC 08/25/99

95

The Virtual MIDI Keyboard

Why a Virtual Keyboard?
If you want to test a sound but you have no real MIDI keyboard connected,
you can use the virtual keyboard.

In addition, it can help you check key numbers when building Layers or
Keymaps.

Using the Keyboard
When you move the mouse pointer over the virtual keyboard window the
arrow will change into a hand. On the status bar above you can see the
key number of the key where the hand is currently pointing.

Clicking the left mouse button on one of the keys sends this note to the
slave. Clicking the right mouse button opens a pop-up menu where you
can change the setup of the keyboard parameters.

Info about current
settings

Scroll keyboard
for accessing all
octaves

 Audio Tools

08/25/99

96

Testing Sound Effects
One of the virtual keyboard’s main purposes is to allow for quick tests of
sound effects.

Sound effects are mapped to the keyboards – both the virtual and the
physical one – the moment you send a SFX group over to the slave. The
method in which they are mapped is both simple and effective.

First the key number and the MIDI channel are used to calculate the ID of
the sound effect that is to be started. Once the ID is determined, the
sound effect will be started.

The first seven bits of the ID represent the key number, bits eight to
eleven the MIDI channel.

Every MIDI channel consists of 128 IDs, meaning that 128 different sound
effects can be played at once. Since there is a total of 16 MIDI channels,
you can directly test 2048 sound effects.

Limitations in Comparison to a Real Keyboard
The disadvantage of a virtual keyboard is that the user cannot play real
music. Since only one key at a time can be pressed, there is no
polyphony.

In addition, no controllers are available and the virtual keyboard cannot
send MIDI commands to a sequencer.

The Network Master Window

© 1999 Factor 5 LLC 08/25/99

97

The Network Master Window

What can be Controlled Using this Window?
The Network Master Window is used as a remote and displays status
information about the Slave.

The Buttons and Fields:
• Connect Establishes a connection and resets the Slave
• Panic Resets all “hanging” voices on the Slave if needed
• Disconnect Break the connection to the Slave
• Voices Sets the maximum amount of Voices the Slave should

play at once.

What Kind of Information is Displayed?
On the left side of the window, information about memory is displayed.
You are informed about the available memory on the Slave system, about
the space used by all sent objects and about remaining free memory
space.

 Audio Tools

08/25/99

98

 Data Conversion

© 1999 Factor 5 LLC 08/25/99

99

Data Conversion

General
MusyX stores its data in a platform-independent and easy-to-work-with set
of files. This format is not suitable to be used at runtime on the target
platform. This is the reason why the data has to be converted before it can
be used in the game application.

 Audio Tools

08/25/99

100

What the Musician has to do to Prepare the Data
The first step is to export the current project structure in a form that the
command-line-based converter tools can understand. The so-called “script
file” must be generated by the musician before handing the whole project's
data structure over to the programmer.

Select the “Generate script file for export” item from the “Project” pull down
menu.

A dialog box will appear that lets you select the name for the script file. If
no extension is specified, .TXT will be added.
You are now ready to hand the whole project directory over to the
programmer.

At the same time the musician should specify to the programmer which
groups should be used at what time in the game application.

Data Conversion

© 1999 Factor 5 LLC 08/25/99

101

The Actual Data Conversion
There are two tools needed to convert the data.

GM2SONG.EXE is used to convert MIDI-1 files to the song file format
used on the target platform.

MUCONV.EXE is used to convert all other data. This program even calls
GM2SONG.EXE. Because of this we will have a closer look at
MUCONV.EXE, only. GM2SONG.EXE must be in a location where it can
be executed, but the user of MusyX will never come into direct contact
with it.

In addition to a so-called description file (see below for details) and the
export scripts defining the projects to be used as source, the tool can
accept the following options.

-a
MUCONV will generate an include file for easy reference to all IDs
generated by the conversion process. By default the file will be written
using C-syntax. You may use the -a option to write the file in assembler
syntax instead.

-b
This option switches between little endian and big endian number
representation. By default big endian is used (N64).

-p <path>
If the tool is not invoked from the project directory itself you may use this
option to specify a search path for referencing all files from the project.
This may be useful if you specify more than one project to be jointly
converted. This option may be used multiple times and will add a search
path to the search path list each time.

-t <sys>
This switch selects the target system for which the data should be
converted. Be aware that this option does not set the appropriate endian
mode on its own. Supported values for <sys> currently are either N64 or
GB.

 Audio Tools

08/25/99

102

-s
Use this switch to disable the sample conversion step. If your project
contains a lot of samples converting them may take a little while. You can
avoid this by skipping this conversion step. You have to make sure
though, that none of the samples have changed since you did the last
complete conversion.

-d
Some platforms (e.g. N64) support different compression schemes. This
switch causes MUCONV.EXE to always use the default sample format no
matter what the musician specified in the tool.

Tip:
On the N64, there are two formats supported: 16-Bit RAW and ADPCM
compressed. The latter is the default format and should be used most of
the time since the quality is usually very high and it imposes less
performance overhead on the system.

-v
Enables the verbose mode. You’ll get detailed information about every
conversion step.

Example:

For a simple N64 project to be converted you may specify a command line
like this:

MUCONV –b –t N64 script.txt your.desc

You may specify multiple export scripts and search paths as source. All
specified projects will be joined together and converted as one big project.

The description file may reference groups from all projects as if they were
inside a single project. Be careful to avoid identical names across projects,
though. This will cause the linking process to fail.

This feature can be used to allow a musician and a sound effects designer
to work separately and still use both data sets as one big project in the
game application.

Data Conversion

© 1999 Factor 5 LLC 08/25/99

103

The Description File
An important part of the information needed to do the data conversion
comes from the “desc” or “description” file. This file specifies all
parameters needed in addition to the project data to generate the final
output files.

The file is divided into sections. A title line that looks like this marks each
section: [section name]

Each line within the section specifies one parameter. Some sections just
accept one parameter, some accept multiple parameters. The following is
a list of sections and their parameters.

[project]
This section contains a case-sensitive list of all group names that should
be included into the proj file.

[pool]
This section contains a case-sensitive list of all group names that should
be included into the pool file.

[sampledir]
This section contains a case-sensitive list of all group names that should
be included into the sdir file.

[samples]
This section contains a case-sensitive list of all group names that should
be included into the samp file.

[outdir]
This section just contains one parameter. It specifies the output directory
where all files produced by the tool will be stored.

 Audio Tools

08/25/99

104

[basename]
The base name, specified in this section, will be used to store all files
except the song files and the include file. The section only contains one
parameter.

[include]
The parameter of this section specifies the complete name of the include
file to be written. The file will be stored in the output directory.

[stack]
This section contains the names of all the groups that should be taken into
consideration for being in the “sound stack”, while considering which data
is to be included in the various files (please see Programmer’s
Reference).

It is necessary to specify the groups that are to be included in each output
file.

For example:
One could try to save memory by simply putting all groups into the project
file, while all other files just contain subsets of the data.

Together with the [stack] section it is possible to load only those files
containing the groups really needed in a certain situation. In this case the
[stack] section is used to tell the tool which groups to assume to be in the
stack and in which order.

Multiple calls to the tool with different description files can now be used to
generate all needed files.

Although this tool provides all these possibilities, in most cases you will
not be forced to go to such extremes to generate your data. The simplest
way is to include all needed groups in each output file and to skip the
[stack] section all together.

Once you have edited the description file and selected the proper options,
you are ready to start the tool.

It will produce four files that contain the project data and any number of
song files that contain the data needed by the sequencer to playback the
songs.

Data Conversion

© 1999 Factor 5 LLC 08/25/99

105

The files in the first group of files will all have the same base name, but
different extensions. Here is a list of extensions and the type of data
contained in the files.

.PROJ
This file contains all data about the structure of the project. This includes
the information concerning what belongs to which group.

.POOL
The pool file contains all data except the samples. This includes, for
example, all macros needed by the specified groups.

.SDIR
This file contains information about the location of all samples needed by
the specified groups. The actual data is stored separately to make it
possible to put it wherever the hardware allows. It may be stored in RAM
where the CPU can reach it, but it may also be left in the ROM.

.SAMP
This file contains the actual sample data in the format needed on the
target platform.

Once you have all these files converted you are ready to use them on your
target platform.

 Audio Tools

08/25/99

106

MusyX Sample Program for N64
A complete MusyX project can be found in the "MusyX\example"
directory. You will need to run the "Setup_Example.bat" file to copy the
necessary libraries for your development environment. Supported
environments are IRIX (5.3/6.2) and PC (Partner and SN 64).

The project directory is located in MusyX\Example\Data\Project.

To run the MUCONV data converter, use the makedata.bat file located in
MusyX\Example\Data.

Sample output files (.proj, .pool, .sdir, .samp) are already located in
MusyX\Example\Data\output.

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 107

Appendix 1 – N64 Musicians Reference

Table of Contents:

Appendix 1.1 - N64 Macro Commands .. 109

END... 110

Structure Macros ... 111
STOP... 111
SPLITKEY.. 112
SPLITVEL.. 113
WAIT_TICKS ... 114
LOOP... 115
GOTO.. 116
WAIT_MS .. 117
PLAYMACRO .. 118
SENDKEYOFF .. 119
SPLITMOD .. 120
SPLITRND... 121
TRAP_KEYOFF... 122
UNTRAP_KEYOFF.. 123
IF_EQUAL ... 124
IF_LESS .. 125

Sample Macros... 126
STARTSAMPLE .. 126
STOPSAMPLE .. 127

Volume Macros .. 128
SETADSR.. 128
SCALEVOLUME.. 129
ENVELOPE ... 130
FADE-IN .. 131

Pitch Macros .. 132
PORTLAST.. 132
RNDNOTE... 133
ADDNOTE ... 134
SETNOTE.. 135
LASTNOTE.. 136
VIBRATO... 137
PITCHSWEEP1 ... 138
PITCHSWEEP2 ... 139
SETPITCH... 140

 Audio Tools

08/25/99

Appendix 1: 108

Control Macros... 141
PIANOPAN .. 141
PANNING .. 142
KEYOFF .. 143

Special Macros... 144
ADDAGECOUNT... 144
SETAGECOUNT ... 145
SENDFLAG ... 146
REV_LEVEL .. 147
SETPRIORITY... 148
ADDPRIORITY .. 149
AGECNTSPEED.. 150
AGECNTVEL... 151
ADD_VARS ... 152
SUB_VARS ... 154
MUL_VARS ... 155
DIV_VARS... 156
ADDI_VARS .. 157
SET_VAR .. 158

Setup Macros ... 159
PORTAMENTO ... 159
PITCHWHEELR... 160
VOL_SELECT.. 161
PAN_SELECT ... 162
PitchW_SELECT ... 163
ModW_SELECT .. 164
PEDAL_SELECT ... 165
PORTA_SELECT .. 166
REVERB_SELECT .. 167
SPAN_SEL .. 168
DOPPLER_SEL... 169
SETUP_LFO.. 170

Appendix 1.2 - N64 Macro Templates .. 171
?_ONESHOT... 172
?_LOOPED.. 174

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 109

Appendix 1.1 - N64 Macro Commands

This part contains descriptions of all Macro Commands used by MusyX
for the Nintendo64.

 Audio Tools

08/25/99

Appendix 1: 110

 END
End of the Macro

 $00 END

Description:
This is always the last macro command. It cannot be deleted from the
macro. It terminates the macro permanently.

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 111

Structure Macros

STOP
Similar to END, but can be used as a return command

Type: Structure

Return flag

 $01 STOP mode

Description:
If mode is set to zero, this macro command has the same functionality as
END. In contrast to END, it can be placed anywhere in the macro. If
mode is set to a non-zero value, the macro will not be terminated and
macro execution will continue from the last used GOTO command.

Parameters:

mode = Return flag (0 = on, 1 = off)

 Audio Tools

08/25/99

Appendix 1: 112

SPLITKEY
Splits the macro flow depending on the midikey

Type: Structure

Keynumber SoundMacro ID SoundMacro step

 $02 SPLITKEY key macro step

Description:
This command is used to conditionally change the flow of execution in
the current macro. The macro program will jump to the given macrostep
inside the specified macro, if the current key is higher than or equal to
the key parameter.

Parameters:

key = This parameter (0-127) specifies a key number to compare
against. If the key you play is higher or the same as this key, the
macro will jump, otherwise it resumes.

macro = The ID of the macro to jump to

step = The step number inside the macro to jump to

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 113

SPLITVEL
Splits the macro flow depending on the velocity

Type: Structure

Velocity SoundMacro ID SoundMacro step

 $03 SPLITVEL velocity macro step

Description:
This command is used to conditionally change the flow of execution in
the current macro. The macro program will jump to the given macrostep
inside the specified macro, if the current velocity is higher than or equal
to the velocity parameter.

Parameters:

velocity = Specifies the velocity to compare the current velocity against.
If the current velocity is higher or the same, the macro will
jump, otherwise it will resume.

macro = The ID of the macro to jump to

step = The step number inside the macro to jump to

 Audio Tools

08/25/99

Appendix 1: 114

WAIT_TICKS
Wait, depending on different conditions

Type: Structure

Keyoff Random Sampleend ms switch Ticks/millisec.

 $04 WAIT_TICKS key
release

random sample
end

ms flag time

Description:
The execution of the current macro will be suspended until the given time
is elapsed. By default, the time is specified in ticks. If the ms flag is set
the time will be specified in ms. Independent from the selected time
format a value of $FFFF (65535) will cause an endless wait.
If one of the other flags is set, execution will resume as soon as one of
the corresponding conditions becomes true or the time given has
elapsed.

Key release Wait until a keyoff is sent to the macro
Sampleend Wait until the sample has reached its end
Random The time will be used as a maximum to generate a

randomized delay

Parameters:

key release = If this flag is set, the macro will resume after a keyoff is received

random = If this flag is set, the macro will resume after a random time is
elapsed. In this case the ticks/millisec. parameter defines the
maximum wait time

sampleend = If this flag is set, the macro will resume when the sample
reached its end (this works only with oneshot samples)

ms flag = This flag switches the mode of the time parameter

Ticks/Millisec. = The wait time specified in ticks or milliseconds

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 115

LOOP
Loop back to a macrostep

Type: Structure

Keyoff Random Sampleend SoundMacro step Times

 $05 LOOP key
release

random sample
end

step times

Description:
Loop to the specified location within the current macro n-times. If one of
the flags is set, the loop may be executed fewer than the specified
number of times. A value of $FFFF (65535) will cause an endless loop.

Key release Loop until a keyoff is sent to the macro
Sampleend Loop until the sample has reached its end
Random The number of loops will be used as a maximum to

generate a randomized counter

Parameters:

key release = If set to on and a keyoff is received the command will not loop
but proceed with the next step in the macro

Random = If set to on the command will loop random times, where the times
parameter specifies the maximal count of loops

sampleend = If set to on the command will not loop when the sample reached
its end (this works only with oneshot samples)

step = This defines the macrostep, to which the command loops

times = The number of loops to be performed. A times value of 65535
will cause an endless loop, if none of the other conditions apply.

Hint: Loops cannot be nested!

 Audio Tools

08/25/99

Appendix 1: 116

GOTO
Jump to another macro

Type: Structure

SoundMacro ID SoundMacro step

 $06 GOTO Macro Step

Description:
Performs an unconditional jump to the specified location. Note that
command $01 STOP, has the option to jump back to the position after
the GOTO command. This can be used to create a sub-macro.

Parameters:

macro = The macro ID to jump to

step = The step inside the specified macro to jump to

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 117

WAIT_MS
Wait, depending on various conditions

Type: Structure

Keyoff Random Sampleend Millisec.

 $07 WAIT_MS key
release

random sample
end

ms

Description:
The execution of the current macro will be suspended until the given time
has elapsed. By default, the time is specified in ms. A value of $FFFF
(65535) will cause an endless wait.

If one of the other flags is set, execution will resume as soon as one of
the corresponding conditions becomes true or the time given has
elapsed.

Key Release Wait until a keyoff is send to the macro
Sampleend Wait until the sample has reached its end
Random The time will be used as a maximum to generate a

randomized delay

Parameters:

key release = If this flag is set, the macro will resume after a keyoff is received

random = If this flag is set, the macro will resume after a random time has
elapsed. In this case the ticks/millisec. parameter defines the
maximum wait time

sampleend = If this flag is set, the macro will resume when the sample
reached its end (this works only with oneshot samples)

ms. = The wait time specified in milliseconds

 Audio Tools

08/25/99

Appendix 1: 118

PLAYMACRO
Starts another macro

Type: Structure

 Addnote SoundMacro ID SoundMacro step Priority Max Voices

 $08 PLAYMACRO addnote macro step priority maxVoc.

Description:
Starts another macro in parallel to the current one. Since it will be started
like any other macro, the normal delays etc. apply. The macro will be
passed the priority and the maxVoc. value specified. The key is
calculated by adding addnote to the original key of the macro starting the
new one. The new macro may be started at any macrostep, using the
step parameter. See also command $09 SENDKEYOFF.

Parameters:

addnote = A keyshift or transpose value (-128 to 127) can be added
to start the new voice with a different note.

macro = The ID of the new macro to start

step = The step inside the new macro to start

priority = Defines the priority of the new voice

maxVoc. = The maximum count of voices that this new macro can allocate.

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 119

SENDKEYOFF
Send a keyoff to the specified macro

Type: Structure

Addnote SoundMacro ID

 $09 SENDKEYOFF addnote macro

Description:
Send a keyoff to the specified macro. Since the macro is only identified
by its ID and the key value, which is calculated by adding the parameter
addnote to the original key of the current macro, multiple macros may be
found. In this case, the keyoff is sent to all macros encountered. This
command is mainly used to signal a midi-keyoff to other previously
started macros by the PLAYMACRO command.

Parameters:

addnote = Please see the description of the PLAYMACRO command

macro = The ID of the macro that will receive the keyoff

 Audio Tools

08/25/99

Appendix 1: 120

 SPLITMOD
Splits the macro flow depending on modwheel

Type: Structure

Mod value SoundMacro ID SoundMacro step

 $0A SPLITMOD mod. macro step

Description:
This command is used to conditionally change the flow of execution in
the current macro. The macro program will jump to the given macrostep
inside the specified macro, if the current modulation value is higher than
or equal to the mod. parameter.

Parameters:

mod. = This defines the point where the split occurs (0-127)

macro = The ID of the macro to jump to

step = The step number inside the macro to jump to

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 121

SPLITRND
Splits the macro flow depending on a generated random value

Type: Structure

RND value SoundMacro ID SoundMacro step

 $13 SPLITRND rnd macro step

Description:
This command is used to conditionally change the flow of execution in
the current macro. The macro program will jump to the given macrostep
inside the specified macro, if the generated random value is higher than
or equal to the rnd parameter.

Parameters:

rnd = The higher this value is, the less is the chance that the jump will
be performed

macro = The ID of the macro to branch to

step = The step number inside the macro to branch to

 Audio Tools

08/25/99

Appendix 1: 122

TRAP_KEYOFF
Registers a jump destination in a macro if a keyoff occurs

Type: Structure

SoundMacro ID SoundMacro step

 $28 TRAP_KEYOFF macroID step

Description:
Registers a jump destination in a macro if a keyoff occurs.

Parameters:

macro = The macro ID to jump to

step = The step inside the specified macro to jump to

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 123

UNTRAP_KEYOFF
Remove a keyoff trap

Type: Structure

 $29 UNTRAP_
KEYOFF

Description:
Removes a previously registered keyoff trap.

 Audio Tools

08/25/99

Appendix 1: 124

IF_EQUAL
Goto MacroStep if condition is true

Type: Structure

Ctrl A== Ctrl B Not Sound Macro Step

 $70 IF_EQUAL Var/Ctrl A Var/Ctrl B Not MacroStep

Description:
If the condition is TRUE, the execution of the SMaL program will be
continued at MacroStep. A jump outside the current macro is not
possible. The condition evaluated is a simple comparison of the values of
variables A and B. If the Not field is “Off”, the condition is TRUE as soon
as both values are identical. If Not is set to “On”, the condition is TRUE if
both values are not equal.

For details about variables see ADD_VARS.

Parameters:

Var/Ctrl = Controller A switch (OFF = Variable, ON = extended controller)

A = Variable / Controller A

Var/Ctrl = Controller B switch (OFF = Variable, ON = extended controller)

B = Variable / Controller B

Not = logical not

MacroStep = MacroStep number to jump to inside the current macro

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 125

IF_LESS
Goto MacroStep if condition is true

Type: Structure

Ctrl A< Ctrl B Not Sound Macro Step

 $71 IF_LESS Var/Ctrl A Var/Ctrl B Not MacroStep

Description:
If the condition is TRUE, the execution of the SMaL program will be
continued at MacroStep. A jump outside the current macro is not
possible. The condition evaluated is a simple comparison of the values of
variables A and B. If the Not field is “Off”, the condition is TRUE as soon
as A < B is satisfied. If Not is set to “On”, the condition is TRUE if A >= B
is satisfied.

For details about variables see ADD_VARS.

Parameters:

Var/Ctrl = Controller A switch (OFF = Variable, ON = extended controller)

A = Variable / Controller A

Var/Ctrl = Controller B switch (OFF = Variable, ON = extended controller)

B = Variable / Controller B

Not = logical not

MacroStep = MacroStep number to jump to inside the current macro

 Audio Tools

08/25/99

Appendix 1: 126

Sample Macros

STARTSAMPLE
Start a sample

Type: Sample

Sample-ID Vel. Scale Sample Start Offset

 $10 STARTSMP smpID Mode Offset

Description:
Starts the sample playback of the sample specified by smpID. An offset
inside the sample may be specified, but is not supported on all hardware
platforms. (Startsample playing from offset is not supported under Game
Boy.) If it is supported, it is always specified in samples, not bytes. If no
ADSR was previously specified, a standard ADSR will be used, that
avoids click-sounds as much as possible but starts & stops the sample
almost immediately.

Parameters:

smpID = The ID of the Sample to be started

mode = 0=apply offset directly,
1=scale offset with negative velocity (higher velocity results in
smaller offset),
2=scale offset with positive velocity (higher velocity results in
higher offset)

offset = The offset in sample-units. If mode = 1 or 2 the offset defines the
maximal range

Hint: Use an ADSR with at least 1ms fade-in time or the FADEIN command
with 18ms fade time to avoid clicking if you use the offset function!

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 127

STOPSAMPLE
Stops the sample playback immediately

Type: Sample

 $11 STOPSAMPLE

Description:
Stops the sample playback immediately by sending a keyoff and setting
the ADSR to a very short release time. Click-sounds will be avoided as
much as possible.

 Audio Tools

08/25/99

Appendix 1: 128

Volume Macros

SETADSR
Hardware ADSR Envelope

Type: Volume

Table-ID (ADSR)

 $0C SETADSR Table

Description:
The data from the specified table will be used to define an ADSR to be
used with the voice. The editor presents a graphical edit dialog to define
tables containing the needed data.

Parameters:

table = This references the ID of the table that contains the ADSR

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 129

SCALEVOLUME
Scales the velocity passed to the macro by the sequencer or the effect
handler to calculate a new volume for the current voice

Type: Volume

Scale Add Table-ID (Curve) Org Vol.

 $0D SCALEVOLUME Scale Add curve org.vel

Description:
Calculates a new volume for the current voice by scaling the velocity.
The velocity is either passed to the macro by the sequencer (via midi) or
the effect handler. A scale of 127 equals 100%. Smaller values scale
down and larger scale up. In addition to the simple scale, an offset can
be specified in the ‘add’ parameter. The result of this calculation can be
passed through a curve that will act as a translation table. A value of
zero in the curve parameter will disable this feature. The new volume is
calculated either using the current velocity (Org.Vel = 0) or the original
velocity (Org.Vol = 1).

Parameters:

scale = The scaling factor of the velocity

add = A fixed offset can be added to the volume

curve = This is a table ID of a volume translation curve (0=linear)

org.vel = If this switch is set to on the original velocity (when the macro
was started) is used instead of the current velocity/volume

 Audio Tools

08/25/99

Appendix 1: 130

ENVELOPE
Starts a software envelope

Type: Volume

Scale Add Table-ID (Curve) ms switch Ticks/Millisec.

 $0F ENVELOPE Scale add curve ms flag ticks/ms

Description:
Starts a software envelope. The velocity of the current macro will be
faded to the new one, in the time specified by the ticks/ms parameter. If
the ms flag is set, ms will be used instead of ticks. The new volume is
calculated just as described in SCALEVOLUME. The volume sweep may
be of lower quality than the hardware ADSR.

Parameters:

scale = The scaling factor of the velocity

add = A fixed offset can be added to the velocity. Clipping is applied if
the result exceeds 127

curve = This is a table ID of a volume translation curve (0=linear)

ms flag = This switches the following parameter from ticks to milliseconds

ticks/ms = Specifies fade time in either ticks or milliseconds

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 131

FADE-IN
Starts a software fade-in envelope

Type: Volume

Scale Add Table-ID (Curve) ms switch Ticks/Millisec.

 $14 FADE-IN Scale Add Table ms flag ticks/ms

Description:
Starts a software fade-in envelope. The velocity of the current macro will
be faded from zero to the new one in the time specified by the ticks/ms
parameter. If the ms flag is set, ms will be used instead of ticks. The new
volume is calculated just as described in SCALEVOLUME. The volume
sweep may be of lower quality than the hardware ADSR.

Parameters:

scale = The scaling factor of the velocity

add = A fixed offset can be added to the velocity. Clipping is applied if
the result exceeds 127

table = This is a table ID of a volume translation curve (0=linear)

ms flag = This switches the following parameter from ticks to milliseconds

ticks/ms = Specifies fade time in either ticks or milliseconds

 Audio Tools

08/25/99

Appendix 1: 132

Pitch Macros

PORTLAST
Not implemented yet

Type: Pitch

Add Detune ms switch Ticks/Millisec.

 $16 PORTLAST --- --- --- ---

Description:
Not implemented yet.

Parameters:

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 133

RNDNOTE
Sets random pitch

Type: Pitch

Note Lo Detune Note Hi Fixed/Free

 $17 RNDNOTE note-lo detune note-hi fix/free

Description:
Sets random pitch. Note-lo is the lower end of the range, note-hi the
upper end. The detune value will be added after the random pitch is
calculated. It is specified in cents. If the fix/free flag is set, the pitch will
be generated freely inside the range without respect to any key steps. If
rel/abs is set, the note-lo parameter specifies how many keys below the
current key the range should start, while note-hi defines the size of the
upper range.

Parameters:

note-lo = Lower end of the range

detune = Applies a detune after the note is calculated

note-hi = Upper end of the range

fix/free = OFF = the random pitch is quantized to note values
ON = the pitch is calculated freely within the range

 Audio Tools

08/25/99

Appendix 1: 134

ADDNOTE
Recalculates the current pitch by adding keysteps to the current key

Type: Pitch

Add Detune Org Key ms switch Ticks/Millisec.

 $18 ADDNOTE add detune org.key ms flag ticks/ms

Description:
Recalculates the current pitch by adding add keysteps to the current key
(or original key, if the Original Key flag is set to on) and applying the
detune value in cents. The add parameter is a signed value. The last two
parameters are zero by default. If they are a non-zero value they will be
used as in WAIT, to suspend the execution of the current macro for a
given time interval.

Parameters:

add = This can be used to transpose the midi-key to a new note

detune = A detune of +/-99 cent can be applied

org.key = If set to on the original midi-key is used to calculate the new pitch

ms flag = This flag switches the mode of the time parameter

Ticks/Millisec. = A wait time specified in ticks or milliseconds. If 0 the macro
proceeds directly to the next step

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 135

SETNOTE
Sets note by a fixed key

Type: Pitch

Key Detune ms switch Ticks/Millisec.

 $19 SETNOTE key Detune ms flag ticks/ms

Description:
Calculating a new pitch by setting the current key to the new value
specified by key. After this, the detune specified in cents will be applied.
The last two parameters are zero by default. If they are a non-zero value,
they will be used as in WAIT, to suspend the execution of the current
macro for a given time interval.

Parameters:

key = A fixed key in the normal midi key range (0-127)

detune = A detune of +/-99 cent can be applied

ms flag = This flag switches the mode of the time parameter

Ticks/Millisec. = A wait time specified in ticks or milliseconds. If 0 the macro
proceeds directly to the next step

 Audio Tools

08/25/99

Appendix 1: 136

LASTNOTE
Adds note to last note on current channel

Type: Pitch

Add Detune ms switch Ticks/Millisec.

 $1A LASTNOTE add detune ms flag ticks/ms

Description:
Recalculates the current pitch/key by adding add keysteps to the last key
played on this MIDI (!) channel and applying the detune value in cents.
The add parameter is a signed value. The last two parameters are zero
by default. If they are a non-zero value they will be used as in WAIT, to
suspend the execution of the current macro for a given time interval.

Parameters:

add = This can be used to transpose the midi-key to a new note

detune = A detune of +/-99 cent can be applied

ms flag = This flag switches the mode of the time parameter

Ticks/Millisec. = A wait time specified in ticks or milliseconds. If 0 the macro
proceeds directly to the next step

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 137

VIBRATO
Adds a vibrato to the voice currently used to play the macro

Type: Pitch

Level note Level fine Modwheel flag ms switch Ticks/Millisec.

 $1C VIBRATO Level levelfine mod. ms flag ticks/ms

Description:
Adds a vibrato to the voice currently used to play the macro. Vibrato
means that the pitch is modulated by a triangular waveform with a period
specified by ticks. If the ticks/ms flag is set, the period is given in ms
instead of ticks. A period of zero will disable the vibrato. The number of
keysteps that it should go up or down gives the amplitude of the
waveform. The level parameter is a signed value. If it is negative the
pitch offset will go down first. If it is positive the offset will go up first.
levelfine is specified in cents. If the mod. flag is set to on, the values from
the modulation wheel will be used to scale the vibrato. "Off" disables any
scaling by controllers.

Parameters:

level = This is the level in note-steps (+/-12)

levelfine = The fine level (+/-99 cents)

mod. = On = Scale the level with the modwheel controller

ms flag = This switches the following parameter from ticks to milliseconds

ticks/ms = Specifies period time in either ticks or milliseconds

 Audio Tools

08/25/99

Appendix 1: 138

PITCHSWEEP1
Add a sweep to the pitch

Type: Pitch

Times Add ms switch Ticks/Millisec.

 $1D PitchSWEEP1 Times Add-value ms flag ticks/ms

Description:
Adds the add-value n-times to the current pitch. After this, the action
starts again at the original pitch. To stop the effect, set add to zero. The
last two parameters are zero by default. If they are a non-zero value,
they will be used as in WAIT, to suspend the execution of the current
macro for a given time interval. There are actually two commands of this
kind (PITCHSWEEP1 & PITCHSWEEP2). They work independently from
each other and combine to perform very nice effects, if used
simultaneously.

Parameters:

Times = This defines how many frames the add-value will be applied

Add-value = The value to be added to the pitch per frame

ms flag = This flag switches the mode of the time parameter

Ticks/Millisec. = A wait time specified in ticks or milliseconds. If 0 the macro
proceeds directly to the next step

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 139

PITCHSWEEP2
Add a sweep to the pitch

Type: Pitch

Times Add ms switch Ticks/Millisec.

 $1E PitchSWEEP2 Times Add-value ms flag ticks/ms

Description:
Adds the add-value n-times to the current pitch. After this, the action
starts again at the original pitch. To stop the effect, set add to zero. The
last two parameters are zero by default. If they are a non-zero value,
they will be used as in WAIT, to suspend the execution of the current
macro for a given time interval. There are actually two commands of this
kind (PITCHSWEEP1 & PITCHSWEEP2). They work independently from
each other and combine to perform very nice effects, if used
simultaneously.

Parameters:

Times = This defines how many frames the add-value will be applied

Add-value = The value to be added to the pitch per frame

ms flag = This flag switches the mode of the time parameter

Ticks/Millisec. = A wait time specified in ticks or milliseconds. If 0 the macro
proceeds directly to the next step

 Audio Tools

08/25/99

Appendix 1: 140

SETPITCH
Sets the pitch directly

Type: Pitch

Frequency in Hz Fine

 $1F SETPITCH Hz (24bit) (fine)

Description:
Sets the frequency to be used to playback a sample, directly. The fine
parameter is not supported by all platforms, since most platforms do not
have a fine resolution in selecting the playback frequency (10Hz steps
are common).

Parameters:

Hz = The coarse frequency in Hz (0-88200)

fine = A fine resolution parameter (0-65535)

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 141

Control Macros

PIANOPAN
Piano stereo panning

Type: Control

Scale Centerkey Centerpan

 $0B PIANOPAN scale cen.key cen.pan

Description:
This macro command is especially designed to give instruments like a
piano a naturalistic stereo behavior. The current key will be used to
calculate a panning position. First, the key is converted to an offset by
subtracting the cen.key. Next, the scale is applied. A scale of 127 will
give you the full range, while a scale of 0 will eliminate any offset. Finally,
the cen.pan is added. This last value can be viewed as the position of
the instrument in the room. Since the final values may exceed the normal
panning range, illegal values are clipped. A negative scale will invert the
stereo panorama.

Parameters:

scale = This scales the range of the panning

cen.key = This defines the middle key of the panning

cen.pan = An offset of the panning range

 Audio Tools

08/25/99

Appendix 1: 142

PANNING
Sets the panning to be used with the macro

Type: Control

Pan position Time ms Width

 $0E PANNING pan.pos Time width

Description:
Sets the panning to be used with the macro. If no panning is specified,
the default center panning will be used. The pan.pos parameter specifies
the position (0=Left, 64=Center, 127=Right). The time and width
parameters enable an automated pan-sweep. The panning will move
from the current location to the new one specified by the signed offset
within time ms. If these parameters are zero, the new panning will be set
immediately.

Parameters:

pan.pos = like midi-panning (0-127), where 0 is totally left, 64 is center and
127 is totally right

time = Auto panning slide time

width = An offset to the pan position to which the auto panning slides to

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 143

KEYOFF
Sends a keyoff to the currently used voice

Type: Control

 $12 KEYOFF

Description:
Sends a keyoff to the currently used voice, but does not change the
ADSR. This command should be used instead of STOPSAMPLE, to
finish sample playback if any ADSR has been set.

 Audio Tools

08/25/99

Appendix 1: 144

Special Macros

ADDAGECOUNT
Add a value to the age-counter

Type: Special

 $30 ADDAGECOUNT add

Description:
Adds a signed number to the age-counter of the current voice. This
allows customized priority handling.

Parameters:

add = Signed value to be added to the age-counter. In order to make a
voice “older” a negative value has to be added (-32768 to 32767)

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 145

SETAGECOUNT
Set age-counter

Type: Special

Counter

 $31 SETAGECOUNT counter

Description:
Directly sets the age-counter of the current voice. This allows customized
priority handling.

Parameters:

counter = This sets the age value (0-65535). The lower the value, the older
the voice

 Audio Tools

08/25/99

Appendix 1: 146

SENDFLAG
Sends a flag to the game program

Type: Special

Flag-ID Value

 $32 SENDFLAG num value

Description:
Sends a flag to the game program. This feature is used mainly to signal
certain events to the game program. After startup, the values are all
zero. There are 16 values.

Parameters:

num = The flag ID (0-15)

value = The number to be set (0-255)

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 147

REV_LEVEL
Set reverb level

Type: Special

 Scale Add

 $34 REV_LEVEL scale add

Description:
Sets or scales the reverb level for the current voice. If the reverb effect
engine is enabled, all voices are passed through this engine with a send
level defined by midi controller 91 (Effect1Depth) or as predefined by the
reverb setting in the midi-setup of each MusyX-song. The scale and add
parameter can be used to change or override those settings. This is
especially useful for drum kits, where each drum may need a different
reverb level. If both values are 0, the reverb engine is bypassed for the
voice currently used so that, e.g. a base drum can be kept "dry".

Parameters:

scale = Scales the reverb level of the current midi channel

add = Adds a fixed value to the scaled reverb level

 Audio Tools

08/25/99

Appendix 1: 148

SETPRIORITY
Directly sets the priority

Type: Special

 Priority

 $36 SETPRIORITY prio

Description:
Directly sets the priority. This allows customized priority handling.

Parameters:

prio = Sets the priority of the current macro

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 149

ADDPRIORITY
Adds a value to priority

Type: Special

Add

 $37 ADDPRIORITY add

Description:
Adds a signed number to the priority. This allows customized priority
handling.

Parameters:

add = A signed number to be added to the current priority

 Audio Tools

08/25/99

Appendix 1: 150

AGECNTSPEED
Sets age-counter speed

Type: Special

Time until Zero

 $38 AGECNTSPEED Time

Description:
Changes the speed by which the age-counter is decremented. By default
the counter will reach zero after about 18 minutes. The time value sets
the time in milliseconds the counter will need to decrement to zero from
its current value. If Time is set to zero, the priority counter will not be
changed over time at all.

Parameters:

time = The time (0-1080000) in milliseconds to reach 0

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 151

AGECNTVEL
Sets the age-counter using velocity

Type: Special

Age Base Age Scae

 $39 AGECNTVEL AGE Base AGE Scale

Description:
Sets the age-counter of the current voice, calculated from a base number
and the midi velocity. This allows customized priority handling.

Parameters:

AGE Base = The age base value (0-65535)

AGE Scale = The scaling factor for the velocity (0-65535) to be added

 Audio Tools

08/25/99

Appendix 1: 152

ADD_VARS
Add variables

Type: Special

Ctrl A= Ctrl B+ Ctrl C

 $60 ADD_VARS Var/Ctrl A Var/Ctrl B Var/Ctrl C

Description:
The current values of variable B and C are added together and stored in
variable A. The Var/Ctrl switches select whether a variable or a controller
should be accessed. If the switch is set to “On”, the corresponding value
index is used as an extended controller number.

Parameters:

Var/Ctrl = Controller A switch (OFF = Variable, ON = extended controller)

A = Variable / Controller A

Var/Ctrl = Controller B switch (OFF = Variable, ON = extended controller)

B = Variable / Controller B

Var/Ctrl = Controller C switch (OFF = Variable, ON = extended controller)

C = Variable / Controller C

About variables:

All variable-handling commands can work with extended MIDI controllers
and variables. Variables are referenced by specifying a number that
identifies the variable to be used. There are local and global variables.
While local variables are just accessible from the current macro and are
initialized to zero each time the macro is started, global variables can be
accessed by all macros and even the application program. They are just
initialized to zero when the system is initialized.

Local variables are identified by indices 0 to 15, while indices 16 to 31
specify global variables.

All types of variables – including controllers – are handled as 16-bit
signed values. All operations are saturated, meaning that results of
mathematical operations are clipped against the maximum and minimum
values.

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 153

When writing to or reading from controllers, one must be aware that all
controllers are handled as 14-bit values, even if they are just 8-bits in
size. For example, a MIDI volume of 127 would be represented as 16256
(127*128). This is done so that generalized routines can be written
without having to watch out for all the different MIDI controller sizes.
The 14-bit value is always used as an unsigned quantity. E.g. a neutral
pitchbend position would be 8192, not zero.

All extended MIDI controllers with the exception of the two LFOs may be
written to, external MIDI data may overwrite these values at any time,
though.

 Audio Tools

08/25/99

Appendix 1: 154

SUB_VARS
Subtract variables

Type: Special

Ctrl A= Ctrl B- Ctrl C

 $61 SUB_VARS Var/Ctrl A Var/Ctrl B Var/Ctrl C

Description:
The current value of variable C is subtracted from variable B and the
result is stored in variable A. The Var/Ctrl switches select whether a
variable or a controller should be accessed. If the switch is set to “On”
the corresponding value index is used as an extended controller number.

For details about variables see ADD_VARS.

Parameters:

Var/Ctrl = Controller A switch (OFF = Variable, ON = extended controller)

A = Variable / Controller A

Var/Ctrl = Controller B switch (OFF = Variable, ON = extended controller)

B = Variable / Controller B

Var/Ctrl = Controller C switch (OFF = Variable, ON = extended controller)

C = Variable / Controller C

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 155

MUL_VARS
Multiply variables

Type: Special

Ctrl A= Ctrl B Ctrl C

 $62 VAR_MUL Var/Ctrl A Var/Ctrl B Var/Ctrl C

Description:
The current values of variable B and C are multiplied and the result is
stored in variable A. The Var/Ctrl switches select whether a variable or a
controller should be accessed. If the switch is set to “On”, the
corresponding value index is used as an extended controller number.

For details about variables see ADD_VARS.

Parameters:

Var/Ctrl = Controller A switch (OFF = Variable, ON = extended controller)

A = Variable / Controller A

Var/Ctrl = Controller B switch (OFF = Variable, ON = extended controller)

B = Variable / Controller B

Var/Ctrl = Controller C switch (OFF = Variable, ON = extended controller)

C = Variable / Controller C

 Audio Tools

08/25/99

Appendix 1: 156

DIV_VARS
Divide variables

Type: Special

Ctrl A= Ctrl B/ Ctrl C

 $63 DIV_VARS Var/Ctrl A Var/Ctrl B Var/Ctrl C

Description:
The current value of variable B is divided by the value of variable C and
the result is stored in variable A. The Var/Ctrl switches select whether a
variable or a controller should be accessed. If the switch is set to “On”,
the corresponding value index is used as an extended controller number.

For details about variables see ADD_VARS.

Parameters:

Var/Ctrl = Controller A switch (OFF = Variable, ON = extended controller)

A = Variable / Controller A

Var/Ctrl = Controller B switch (OFF = Variable, ON = extended controller)

B = Variable / Controller B

Var/Ctrl = Controller C switch (OFF = Variable, ON = extended controller)

C = Variable / Controller C

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 157

ADDI_VARS
Add immediate value

Type: Special

Ctrl A= Ctrl B+ Imm

 $64 ADDI_VARS Var/Ctrl A Var/Ctrl B Immediate

Description:
The immediate value is added to the value of variable B and the result is
stored in variable A. The Var/Ctrl switches select whether a variable or a
controller should be accessed. If the switch is set to “On”, the
corresponding value index is used as an extended controller number.

For details about variables see ADD_VARS.

Parameters:

Var/Ctrl = Controller A switch (OFF = Variable, ON = extended controller)

A = Variable / Controller A

Var/Ctrl = Controller B switch (OFF = Variable, ON = extended controller)

B = Variable / Controller B

Immediate = Immediate value to add to B

 Audio Tools

08/25/99

Appendix 1: 158

SET_VAR
Set variable to immediate value

Type: Special

Ctrl A= Imm

 $65 SET_VAR Var/Ctrl A Immediate

Description:
The current value of variable A is replaced with the specified immediate
value. The Var/Ctrl switch selects whether a variable or a controller
should be accessed. If the switch is set to “On”, the value index is used
as an extended controller number.

For details about variables see ADD_VARS.

Parameters:

Var/Ctrl = Controller A switch (OFF = Variable, ON = extended controller)

A = Variable / Controller A

Immediate = 16 bit value (0-65535) to be stored in A

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 159

Setup Macros

PORTAMENTO
Sets portamento mode and time

Type: Setup

Port. State Port. Type ms switch Ticks/Millisec.

 $1B PORTAMENT. state type ms flag ticks/ms

Description:
Setup the mode for portamento operation. If state equals zero,
portamento will be disabled, while 1 enables it. A value of 2 keeps the
state unchanged. By default, portamento is controlled by the MIDI
portamento controller (65). The time parameter controls the time needed
to reach the current key. By default, this is 500ms. Type defines the type
of portamento function desired. Zero performs portamento only if the last
key is still depressed, while 1 performs it all the time. A legato function
can be achieved by setting the time parameter to zero.

Parameters:

mode state = 0=off, 1=on, 2=midi controller 65 controls off/on

type = 0=enable portamento when the last key is held, and while the
new key is pressed. 1=portamento is always active.

ms flag = This switches the following parameter from ticks to milliseconds

ticks/ms = Specifies portamento time in either ticks or milliseconds

 Audio Tools

08/25/99

Appendix 1: 160

 PITCHWHEELR
Sets the number of keysteps used to calculate the pitchwheel range

Type: Setup

Range up Range down

 $33 PITCHWEELR rng up rng dwn

Description:
Sets the number of keysteps used to calculate the pitchwheel range. The
size of the lower and the upper range can be selected separately. The
default value is two keysteps for both ranges.

Parameters:

rng up = The positive range in key steps

rng dwn = The negative range in key steps

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 161

 VOL_SELECT
Adds a volume calculation component

Type: Setup

 MIDI Contr. Scale Percentage Combine uCode

 $40 VOL_SELECT ctrl scale comb

Description:
Selects an additional component for the volume calculation. The first use
of this command resets the default values to empty and adds the new
component. All further calls add additional components. A comb value of
0 sets the value, 1 adds the value and 2 multiplies the old and the new
values.

Parameters:

ctrl = The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

ctrl = 0 = set value from defined controller, 1 = add value to current
controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the
following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)
129 Aftertouch (since there is no controller in the MIDI standard)
130 LFO1 (see SETUP_LFO macro command)
131 LFO2 (see SETUP_LFO macro command)
132 Surround Panning (0= front, 127=surround)

 Audio Tools

08/25/99

Appendix 1: 162

PAN_SELECT
Adds a panning calculation component

Type: Setup

 MIDI Contr. Scale Percentage Combine uCode

 $41 PAN_SELECT ctrl Scale comb

Description:
Selects an additional component for the panning calculation. The first
use of this command resets the default values to empty and adds the
new component. All further calls add additional components. A comb
value of 0 sets the value, 1 adds the value and 2 multiplies the old and
the new values.

Parameters:

ctrl = The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

ctrl = 0 = set value from defined controller, 1 = add value to current
controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the
following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)
129 Aftertouch (since there is no controller in the MIDI standard)
130 LFO1 (see SETUP_LFO macro command)
131 LFO2 (see SETUP_LFO macro command)
132 Surround Panning (0= front, 127=surround)

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 163

PitchW_SELECT
Adds a pitchwheel calculation component

Type: Setup

 MIDI Contr. Scale Percentage Combine uCode

 $42 PitchW_SELECT ctrl Scale comb

Description:
Selects an additional component for the pitchwheel calculation. The first
use of this command resets the default values to empty and adds the
new component. All further calls add additional components. A comb
value of 0 sets the value, 1 adds the value and 2 multiplies the old and
the new values.

Parameters:

ctrl = The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

ctrl = 0 = set value from defined controller, 1 = add value to current
controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the
following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)
129 Aftertouch (since there is no controller in the MIDI standard)
130 LFO1 (see SETUP_LFO macro command)
131 LFO2 (see SETUP_LFO macro command)
132 Surround Panning (0= front, 127=surround)

 Audio Tools

08/25/99

Appendix 1: 164

ModW_SELECT
Adds a modulation wheel calculation component

Type: Setup

 MIDI Contr. Scale Percentage Combine uCode

 $43 ModW_SELECT ctrl Scale comb

Description:
Selects an additional component for the modulation wheel calculation.
The first use of this command resets the default values to empty and
adds the new component. All further calls add additional components. A
comb value of 0 sets the value, 1 adds the value and 2 multiplies the old
and the new values.

Parameters:

ctrl = The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

ctrl = 0 = set value from defined controller, 1 = add value to current
controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the
following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)
129 Aftertouch (since there is no controller in the MIDI standard)
130 LFO1 (see SETUP_LFO macro command)
131 LFO2 (see SETUP_LFO macro command)
132 Surround Panning (0= front, 127=surround)

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 165

PEDAL_SELECT
Adds a pedal calculation component

Type: Setup

 MIDI Contr. Scale Percentage Combine uCode

 $44 PEDAL_SELECT ctrl Scale comb

Description:
Selects an additional component for the pedal calculation. The first use
of this command resets the default values to empty and adds the new
component. All further calls add additional components. A comb value of
0 sets the value, 1 adds the value and 2 multiplies the old and the new
values.

Parameters:

ctrl = The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

ctrl = 0 = set value from defined controller, 1 = add value to current
controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the
following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)
129 Aftertouch (since there is no controller in the MIDI standard)
130 LFO1 (see SETUP_LFO macro command)
131 LFO2 (see SETUP_LFO macro command)
132 Surround Panning (0= front, 127=surround)

 Audio Tools

08/25/99

Appendix 1: 166

PORTA_SELECT
Adds a portamento calculation component

Type: Setup

 MIDI Contr. Scale Percentage Combine uCode

 $45 PORTA_SELECT ctrl Scale comb

Description:
Selects an additional component for the portamento calculation. The first
use of this command resets the default values to empty and adds the
new component. All further calls add additional components. A comb
value of 0 sets the value, 1 adds the value and 2 multiplies the old and
the new values.

Parameters:

ctrl = The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

ctrl = 0 = set value from defined controller, 1 = add value to current
controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the
following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)
129 Aftertouch (since there is no controller in the MIDI standard)
130 LFO1 (see SETUP_LFO macro command)
131 LFO2 (see SETUP_LFO macro command)
132 Surround Panning (0= front, 127=surround)

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 167

REVERB_SELECT
Adds a reverb calculation component

Type: Setup

 MIDI Contr. Scale Percentage Combine uCode

 $46 REVERB_SELECT ctrl Scale comb

Description:
Selects an additional component for the reverb calculation. The first use
of this command resets the default values to empty and adds the new
component. All further calls add additional components. A comb value of
0 sets the value, 1 adds the value and 2 multiplies the old and the new
values.

Parameters:

ctrl = The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

ctrl = 0 = set value from defined controller, 1 = add value to current
controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the
following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)
129 Aftertouch (since there is no controller in the MIDI standard)
130 LFO1 (see SETUP_LFO macro command)
131 LFO2 (see SETUP_LFO macro command)
132 Surround Panning (0= front, 127=surround)

 Audio Tools

08/25/99

Appendix 1: 168

SPAN_SEL
Adds a surround panning calculation component

Type: Setup

 MIDI Contr. Scale Percentage Combine Mode

 $47 SPAN_SEL ctrl Scale comb

Description:
Selects an additional component for the surround panning calculation.
The first use of this command resets the default values to empty and
adds the new component. All further calls add additional components. A
comb value of 0 sets the value, 1 adds the value and 2 multiplies the old
and the new values.

Parameters:

ctrl = The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

ctrl = 0 = set value from defined controller, 1 = add value to current
controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the
following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)
129 Aftertouch (since there is no controller in the MIDI standard)
130 LFO1 (see SETUP_LFO macro command)
131 LFO2 (see SETUP_LFO macro command)
132 Surround Panning (0= front, 127=surround)

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 169

DOPPLER_SEL
Adds a reverb calculation component

Type: Setup

 MIDI Contr. Scale Percentage Combine Mode

 $48 DOPPLER_SEL ctrl Scale comb

Description:
Selects an additional component for the doppler calculation. The first use
of this command resets the default values to empty, and adds the new
component. All further calls add additional components. A comb value of
0 sets the value, 1 adds the value and 2 multiplies the old and the new
values.

Parameters:

ctrl = The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

ctrl = 0 = set value from defined controller, 1 = add value to current
controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the
following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)
129 Aftertouch (since there is no controller in the MIDI standard)
130 LFO1 (see SETUP_LFO macro command)
131 LFO2 (see SETUP_LFO macro command)
132 Surround Panning (0= front, 127=surround)

 Audio Tools

08/25/99

Appendix 1: 170

SETUP_LFO
Sets up LFO characteristics

Type: Setup

LFO Nr. Period in ms

 $50 SETUP_LFO num period

Description:
Enables or disables the specified LFO. A value of zero as period will
disable the LFO. From that point on it will continue to produce the last
value as a constant. The LFO always starts at center level, unless it
already was active. Num specifies which LFO should be setup. Currently
two LFOs (0,1) are supported.

The LFOs always swing through the full amplitude. Use the scale
parameter when combining them, using the x_SELECT macro
commands to control the amplitude.

Parameters:

num = The LFO number to be set (0 or 1)

period = The period time of one LFO cycle in milliseconds

The following table shows how the two LFOs can be accessed in
combination with any of the x_SELECT macro commands

ExCTRL Function

130 LFO1
131 LFO2

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 171

Appendix 1.2 - N64 Macro Templates

This part contains descriptions of the Macro templates used by MusyX
for the Nintendo64. The descriptions for the templates are based upon
the content of the first template. So, to understand the various aspects of
programming in SMaL, you should read the descriptions in order.

 Audio Tools

08/25/99

Appendix 1: 172

?_ONESHOT
Template for starting a simple oneshot sample

Description:
This short SoundMacro is an example of how to get a simple oneshot
sample working. It may also work even with just 2 commands:
STARTSAMPLE and END. But one has to understand the underlying
priority and voice allocation scheme in order to build a correct
SoundMacro.

The dynamic-voice-allocation of MusyX is a very important part of the
system and understanding how it works help to produce better results. A
voice in MusyX uses a priority from 0-255 and the so-called age counter
(0-65535) to determine their importance. Please refer to “Dynamic Voice
Allocation“, on page 14 of the MusyX Manual, for a detailed description.

Step by Step:

Assume that this SoundMacro is properly set to the desired midichannel
and ready to play. If the slave now receives a midi-on command (a note
is played from a connected midikeyboard or a midi-sequencer), the slave
searches for a (free) voice and execution of the SoundMacro starts at
step 0.

However, before the first command is executed, there are some basic
settings made by the init-routine. The frequency of the voice will be set to
the note received by midi. The volume of the voice will be calculated
using the midi-velocity and the channel volume. The priority will be set as
defined in the Soundlist and the age-counter will be set to 60000
(decimal).

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 173

Step 0:
The first command to be executed is STARTSAMPLE, which is of course
used to start the sample. The first parameter of this command is the
Sample-ID referencing our desired sample (in this case a snare drum).
The “Vel scale“ and “offset“ offer a nice option to start the sample with an
offset (measured in samples), which can be scaled to the beginning of
the sample using the velocity. This can provide instruments of different
attack styles depending on the velocity and helps to give some sounds a
more natural feel. If the offset is 0, this option is disabled. Since
STARTSAMPLE has no wait parameter, the execution continues
‘virtually’ in real-time.

Step 1:
The second command (WAIT) is a part of the priority and voice allocation
scheme mentioned earlier. The “Millisec.“ parameter regularly defines in
milliseconds how long the execution of the macro is to be stopped. If set
to the highest possible value 65535 (hex $FFFF), the sample will play
continuously.

However, the execution of the SoundMacro will continue when one of the
condition parameters (keyoff, random or sample-end) becomes ‘true’. In
this case the command waits until the sample is finished. This is very
important, because of the two following commands.

Step 2:
The next command (SETAGECOUNT) is used to set or reset the age-
counter of the voice. Since the sample has played to the end and there
are no other things to do in this SoundMacro, we can reset the age
counter to 0 (oldest). Thus, a new midi-note can use this voice as soon
as possible. This command also proceeds directly to the next and last
command in our SoundMacro.

Step 3:
The END command is the last command in all SoundMacros and also
resets the priority of the voice to 0. In this case, the voice is now totally
free and can be used by any new midi-note, even one with a lower
priority.

Tip:
Reset the age counter at the end of every SoundMacro and keep an eye
on the voice bars appearing in the slave window.

 Audio Tools

08/25/99

Appendix 1: 174

?_LOOPED
Template for playing a looped sample

Description:
This is an example for a looped instrument. (The following explanation of
the steps is based on the description of the first macro-template
“?_ONESHOT” which you should have already read.)

Step 0:
The first command is, again, a STARTSAMPLE command. Since we
have a looped sample (trumpet.aif) here it would play forever, so we
have to take care of what to do after the midi-key is released.

Step 1:
The WAIT_MS command this time is set to wait until the midikey is
released. After the keyup is received, we want to stop the sample. But to
get a more musical result, we decide to fade out smoothly before we stop
the sample.

Step 2:
During the fade out we also want to give the voice more “age”, because it
is not so important compared to voices that are still held. To do this we
use the ADDAGECOUNT command, but with a negative value (-30000)
because the lower the counter the older is the voice.

N64 Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 1: 175

Step 3:
This command (Envelope) fades the volume of the voice to a new one,
calculated from the midi-velocity using the “scale” and “add” parameter.
Since both values are 0, the voice will be faded to 0 in the time given by
the milliseconds parameter (1000ms or one second).

Step 4:
Here we have, again, a WAIT, but this time no condition is given and the
milliseconds parameter is set to the same time like in the envelope
command, before. So we can make sure that the next command will be
executed just when the envelope fade is completed.

Step 5:
The volume is now 0 and the sample cannot be heard anymore.
However the sample is still playing, so we should switch it off if we want
to end this soundmacro. It is also recommended to do this because the
mixing routine will be unburdened.

Step 6:
The same procedure as in our last macro. We set the age to 0 so that
the voice is free.

Step 7:
End our macro.

 Audio Tools

08/25/99

Appendix 1: 176

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 177

APPENDIX 2 –
 Game Boy Musicians Reference

Table of Contents:

An Introduction to Sound on the Nintendo Game Boy 179

Appendix 2.1 – Game Boy Slave .. 183
What is this Slave? .. 183
Starting the Slave .. 184
Working with the Slave .. 187
Testing your Project with the Slave .. 191
Exiting the Slave .. 192

Appendix 2.2 – SlaveROMGenerator ... 193
Creating a Slave ROM ... 195

Appendix 2.3 – Game Boy Macro Commands 197

END... 198

Structure Macros ... 199
STOP... 199
SPLITKEY.. 200
SPLITVEL.. 201
LOOP... 202
GOTO.. 203
WAIT ... 204
PLAYMACRO .. 205
KEYOFF .. 206
SPLITRND... 207
TRAP_KEYOFF... 208
UNTRAP_KEYOFF.. 209

 Audio Tools

08/25/99

Appendix 2: 178

Voice/Sample Macros .. 210
PLAYKEYSAMPLE.. 210
SETVOICE... 211
STARTSAMPLE .. 212
VOICE_OFF .. 213
VOICE_ON .. 214
SETNOISE .. 215
PWM_START .. 216
PWM_UPDATE ... 217
PWM_FIXED ... 218
PWM_VELOCITY .. 219
WAVE_ON... 220

Volume/Pan Macros... 221
SETADSR.. 221
SETVOLUME... 222
PANNING .. 223
ENVELOPE ... 224
HARDENVELOPE ... 225

Pitch Macros .. 226
RESET_MOD .. 226
STOP_MOD... 227
PORTLAST.. 228
RNDNOTE... 229
ADDNOTE ... 230
SETNOTE.. 231
LASTNOTE.. 232
PORTAMENTO ... 233
VIBRATO... 234
PITCHSWEEP... 235

Special Macros... 236
SENDFLAG ... 236
SAMPLEMAP .. 237
CURRENTVOL.. 238
ADD_SET_PRIO.. 239

Appendix 2.4 – Performance Issues .. 241

Appendix 2.5 - Troubleshooting Guide.. 243

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 179

An Introduction to Sound on the Nintendo
Game Boy

Since the Game Boy hardware is already ten years old, it can be
considered rather old fashioned by today’s standards. Nevertheless it is
possible to create surprisingly good sounds, if the sound artist is fully
aware of the possibilities and the limitations of the Game Boy sound
hardware.

This appendix is meant to introduce you to what the Game Boy has to
offer (and what not to expect).

First, there is need to mention that the Game Boy and Game Boy Color
sound hardware are identical. No improvements have been made to the
Game Boy Color with respect to sound.

Having stated this, we will refer to any kind of Game Boy hardware
(including the traditional Game Boy, the Game Boy pocket and the Game
Boy Color) as Game Boy.

Note: MusyX for Game Boy does not provide support for the extended
sound capabilities offered by Super Game Boy hardware.

Game Boy sound hardware is comprised of 4 individual sound
generators of three different kinds. Two of those four generators are
identical in function with the exception of one special feature on one of
them.

The Game Boy programming manual calls the sound generators
Sound1, Sound2, Sound3 and Sound4. To prevent confusion with the
general understanding of what a sound is, we will continue to call them
Voice1 through Voice4.

The three different kinds of sound generators are as follows:
Voice1 and Voice2 use rectangular wave patterns to create a sound.
Voice3 uses a 32 4-bit sample long wave pattern to create sound.
Voice4 uses a polynomial counter to create random noise.

All four voices have a volume control that can, with the exception of
Voice3, be set in 16 steps from mute (0) to maximum (15). Voice3 does
not have the full range of volume control. It can be set only in 4 steps
from mute (0) to 25%, 50% and 100% (3). There is also an envelope
available in hardware for all but Voice3. MusyX however offers a more
flexible envelope for all 4 voices in software.

 Audio Tools

08/25/99

Appendix 2: 180

All voices, with the exception of Voice4, have a frequency setting that
allows for sounds to be produced from 64Hz to 131kHz. Since Voice4 is
a noise generator, it does not have such a setting. It can produce
different kinds of frequencies by modifying the parameters of the
polynomial clock.

For Voice1 and Voice2 you may choose from hardwired pulse widths for
the rectangular wave pattern. It offers pulse widths of 12.5%, 25%, 50%
and 75%. The latter is the equivalent of the 25% pulse width, but it is
phase inverted.

Voice1 also offers a very limited pitchsweep function, which is NOT
supported by MusyX. Instead we offer 2 sophisticated pitchsweeps for
each Voice1 through Voice3 in software.

Finally, each voice can be assigned to the left, right or both sound
outputs individually. This selection allows for a wide stereo spectrum only
(the sound is played back entirely on the left, right or on both). Smooth
panning changes are not possible.

The Game Boy sound hardware has just two flaws that are important to
know and that unfortunately cannot be circumvented.

Whenever a voice is started or stopped a clicking sound is produced.
The intensity of it varies depending on the signal being output at the
moment of the start or stop.

Whenever a change in volume on a playing voice is requested, the voice
needs to be restarted. This usually creates a slight clicking sound as
well.

MusyX extends on the capabilities of the Game Boy and adds a few new
features like extended sample playback and pulse-width modulation.

Extended features fall into the categories of pitch and volume changes.
To modify pitch for instance, MusyX adds features like vibrato,
portamento, pitch sweeps, fixed pitches and random pitches for Voice1,
Voice2 and Voice3.

Enhancements for volume controls are ADSR curves, envelopes, fade-
ins and fixed volumes for all 4 voices.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 181

New features are:

Ø Velocity dependent selection of the rectangular wave pattern for
Voice1 and Voice2.

Ø Pulse-width modulation of a rectangular wave pattern for Voice3
Ø Velocity dependent creation of a rectangular wave pattern for Voice3
Ø Playback of samples in two quality settings (normal and low) for

Voice3 as music instruments or sound effects
Ø Playback of samples in high quality using full CPU performance for

introductory voice or music.

In addition, the SMaL programming language offers control of the sound
while it is playing in numerous ways with control commands like: wait,
loop, goto, trap, split and more.

To experience the possibilities of MusyX, listen to the provided example
and see how each sound is achieved by examining its corresponding
SMaL macro.

 Audio Tools

08/25/99

Appendix 2: 182

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 183

Appendix 2.1 – Game Boy Slave

What is this Slave?
The slave program running on the PC communicates with the MusyX
editor and the Game Boy slave running on Game Boy Color.
It also receives MIDI data from a connected MIDI keyboard or the virtual
MIDI keyboard in the MusyX editor.

The slave is responsible for relaying all the data it receives to Game Boy,
which will in turn produce sound.

To do this you will need to connect a standard Game Boy Color to the
PC running the slave program, via the supplied customized link cable.
This cable plugs into the link port of Game Boy Color and any available
printer port of the PC.

The slave receives data from the MusyX editor using a network
connection known as TCP/IP. This virtually enables any machine in your
Local Area Network or even any machine on the globe, to serve as your
sound slave. If you are planning to use the same machine to run both the
slave and the editor, you still need to have TCP/IP installed and have
both the editor and the slave refer to the same IP address.

The slave receives MIDI data through a Windows MIDI device, usually a
sound card with a built-in MIDI port. If you plan on using the same
machine for the slave and your favorite sequencer program, you will
need to connect a loopback plug to your soundcard's midiport, or install a
so-called loopback device driver, which serves as a MIDI device to
Windows. More on this later.

 Audio Tools

08/25/99

Appendix 2: 184

Starting the Slave
The slave program is a Windows GUI executable, which has been
installed on your system along with the MusyX editor.

When you start the program, you will see a window similar to this:

Note that the main window is divided into three sections: the main log,
the Link status and the MIDI data.

The Main Log
This window holds all the information about the data received from the
MusyX editor while you are working. Right after the start of the program,
it will display system information, as seen above.

Program Version:
This displays the type and version of the slave you are currently
running. Your version and build numbers are likely to be different
from the example above.

Available MIDI Devices:
These lines enumerate all MIDI devices that can be used for input.
The number of devices depends on your Windows installation and
the MIDI devices you have installed on your system.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 185

Used MIDI Device:
This line tells you which MIDI device number, from the presented list
of available devices, you are now using for input. This should be the
setting you made in the slave configuration program. If you need to
use a different input device, you must reconfigure the slave with the
configuration program.

TCP/IP Network Info
This tells you the local IP and port address the slave program uses
to communicate with the MusyX editor. It also shows you the name
of the machine on which you are running the slave.
The IP and port numbers are the ones that you need to enter in the
editors network options to have it communicate with this slave.

The Link Status
This window contains information about the current data link between the
slave PC and the connected Game Boy Color. Initially it will display
system information, as seen on the previous page.

Link Speed:
If the communication to the Game Boy Color can be established
successfully, you can see here how fast the communication is taking
place. This speed can drop, if during the course of transmitting data
errors cause packets to be retried. Should the speed drop to below
70% of the initial value shown here and the slave is idle for more
than 30 seconds, it will try to reconnect to the Game Boy Color at a
higher speed.

Number of ROM Samples:
Here, the number of samples that are registered in the Game Boy
Color slave ROM is displayed. ROM samples become important
when the internal RAM of Game Boy Color cannot hold all the
samples your project requires. Please refer to "Data Conversion
Tools" in the Programmers Reference, for more details about ROM
samples.

SRAM Size:
This states how much SRAM is installed in the flash ROM that holds
the Game Boy Color slave program. This number can be anything
between 0K and 128K in 16K increments.

 Audio Tools

08/25/99

Appendix 2: 186

If you see the following error message instead of a successful
connection message...

... then the slave was not able to establish a link with Game Boy Color. In
this case, please refer to the troubleshooting section at the end of this
appendix.

The MIDI Data Window
This window shows all incoming MIDI data from the MIDI device in their
form, as 3 byte data packets.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 187

Working with the Slave

When you create your sounds, the moment will come when you want to
test them on Game Boy. Before you can do this, you need to send your
sound project to the slave program, which will process it and in turn
transfer the data to the Game Boy itself.

You initiate this process by highlighting the sound group (song group or
sound effect group) you wish to test and choose "Send to slave" from the
context sensitive pop-up menu:

The slave program will now receive all of this group's data and print it out
in the main log.

As soon as the slave program has received all data from the group, it will
download it to Game Boy Color. This may take some time, depending on
the established communication speed and the size of your project.

You will see the line "Downloading project..." during the download phase,
at the end of which a "done!" is appended if everything worked fine.

 Audio Tools

08/25/99

Appendix 2: 188

Here is an example of what it looks like when you transfer the supplied
demo to the slave.

While the slave program is downloading data into Game Boy Color, a
rotating transfer indicator on Game Boy signals you that a download is in
progress.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 189

The available size of memory will be displayed in two separate units in
the main log (see the screenshot on the previous page).

First, we have the available project memory. This is a fixed size chunk of
memory, unaffected by any SRAM in the flash ROM, of 7424 bytes.
It holds all the sound macros and ADSR tables.

Second, we have an area of variable size, between 24 KB and 152 KB,
depending on the amount of SRAM on the flash ROM that holds the
Game Boy slave program. This area stores sound samples and is the
one most likely to run out first.

The usage of the sample RAM is also displayed in the MusyX editor’s
Network Master window:

When you are running out of sample RAM, you need to move some or all
of your samples into ROM to clear some space. Your project can still use
samples that have been moved to ROM. The difference is that they do
not consume any RAM space, so you can continue to add more samples
here.

Please refer to, "Data Conversion Tools" in the Programmers Reference,
for details on how to move samples to ROM.

 Audio Tools

08/25/99

Appendix 2: 190

When you are sending a project to the slave repeatedly, you will see a
line displayed in the Link status window like this.

To preserve time, the slave program keeps an internal backup of what it
knows is already located in Game Boy. If it determines that the data is
accurate it will not download anything to Game Boy.

You are most likely to encounter this when you are actively working on a
macro while trying out your changes. Some parameters of a macro
command have a limited resolution in Game Boy, so sometimes a
change you make will actually have no effect.

The WAIT command is a good example. Its resolution is limited to 16.67
milliseconds inside Game Boy, although you can enter any number you
like. Because of this, values like 4, 10 and 13 milliseconds will be
rounded up to 16.67 and, even though you made a change to the macro,
it does not make any difference to Game Boy. Since there is no change
to download, you will be prompted with the above line, "no change!”.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 191

Testing your Project with the Slave
Once you have successfully downloaded a valid project into Game Boy,
you can use your MIDI keyboard, sequencer program or the MusyX
virtual MIDI keyboard to test your sounds.

Whenever the slave program receives either kind of MIDI data, it
displays them in either the MIDI data window or the Main log, depending
on the type of MIDI data (data from the virtual keyboard or from the
sequencer).

As you feed MIDI data to the slave program it sends it to Game Boy,
where it will be processed and a sound is created.

When Game Boy receives MIDI data, the transfer indicator will rotate
next to the line "Receiving MIDI" on the Game Boy display.

Since MIDI data is very short compared to project data you download
into the Game Boy, the transfer indicator will stay on screen longer for
MIDI data than it does for project data, to give you a better visual
feedback.

NOTE:
The slave program can only transfer one kind of data at a time. While
project data is being downloaded, all incoming MIDI data is discarded.
Downloading project data also takes precedence over MIDI data so,
whenever you modify your project while your sequencer is sending MIDI
to the slave, sound output will stop for the time of the project download.
This is normal.

 Audio Tools

08/25/99

Appendix 2: 192

Exiting the Slave
To close the slave program, click on the Windows X symbol in the upper
right hand corner of the programs window.

When you still have the MusyX editor running while closing the slave
program, a window will pop up telling you that the slave program is no
longer running.

This can also occur when the link between Game Boy Color and the PC
is severed. Possible causes are removing the link cable or switching off
Game Boy.

Another occurrence for this is bad communication between the PC and
Game Boy. If too many errors occur in a short period of time and they
can not be error-corrected, the slave program terminates itself.

Errors usually occur due to line noise caused by radio interference in the
link cable or by weak batteries in Game Boy.

We recommend using an AC adapter rather than batteries to
operate Game Boy Color, since the batteries are quickly exhausted
when flash ROM is used (according to Nintendo, use of the new
flash ROM with built-in Rumble Pak can cause batteries to be
drained in as little as 1 hour). Using the serial link also increases
the required current.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 193

Appendix 2.2 – SlaveROMGenerator

While creating music and sound effects for an application, there is
always the possibility that Game Boy, which is used to preview the work,
will run out of free memory.

Usually this happens because the musician makes extensive use of
samples.

The other possibility is that the entire sound project data exceeds the
available project memory, which is only 7.25KB in size.

Should the latter occur, the only solution is for the musician to try and
optimize his project, since the project cannot exceed this size restriction.

The former problem can be remedied by "swapping out" the samples into
ROM, which can hold many more times the samples than the internal
RAM of a Game Boy Color, or by using a flash ROM with added built-in
RAM. Flash ROM can provide up to an additional 128 KBytes of
memory. The total of 152 Kbytes (128 extension together with the built-in
Game Boy Color RAM) is now available for samples.

Although using a flash ROM with RAM seems to be the most convenient
way to work, moving samples into ROM offers the benefit of not needing
to download them into Game Boy via the serial link. This can save you a
lot of time.

Moving samples into ROM is easy, too. We are providing a Windows
GUI driven tool that allows the musician to take his project, as it is, and
put all samples therein into ROM.

After a couple of mouse clicks a new Game Boy slave ROM is created
that contains the samples and only needs to be flashed on the existing
flash ROM.

Once installed in the Game Boy, the PC slave program will determine if a
sample it received is already stored in Game Boy ROM. If it is, the newly
received one will not be transferred. This identification process takes the
length of the sample and a 32-bit CRC checksum into consideration.
Thus the possibility that any new sample added to the project is
accidentally believed to be in ROM (and therefore would not be
transferred) is minimized.

 Audio Tools

08/25/99

Appendix 2: 194

Sometimes a single sample exceeds the above mentioned 152KByte
(usually the flash ROM available today have only 32 KByte on them,
limiting the size of any one sample to 56 KByte). Locating a sample in
ROM is then the only way for the musician to actually listen to the
sample

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 195

Creating a Slave ROM
To create a new slave ROM with the samples currently in the sound
project, you will need to create an export file from within the MusyX
editor. This is the same procedure you would use if you wanted to
convert your project for being built into the application.

From the Project-menu choose "Generate scriptfile for export", enter a
file name for the exported script and click the 'save' button.

Now you need to start the SlaveROMGenerator tool (which has been
installed in the same location as the MusyX editor).

This is what it looks like.

Initially, there will be nothing displayed in the large white area and the
"Save ROM" button will be disabled.

What you need to do is click on the "Open" button and navigate, in the
file dialog box that appears, to the export script you just created from the
MusyX editor.

If the script file is correct, in the large group area you will be shown a list
of all groups defined in the MusyX editor. In the above example, the
project contains 2 groups.

For your reference the name of the project script is shown at the bottom
in the "File Info" box.

 Audio Tools

08/25/99

Appendix 2: 196

All groups are pre-selected to be included in the new ROM image. If you
do not want the samples of a particular group to be included, click on the
groups corresponding checkbox to disable it.

For the "Save ROM" button to become enabled, at least one group must
be selected.

After you have selected the groups you want to include, click on the
"Save ROM" button to bring up a dialog box prompting you for a filename
for the resulting ROM image.

Note:
• The file extension for a binary ROM image to be written with the

Game Boy development system unfortunately is .COM, which is not
to be confused with an MSDOS executable, even though the
Windows explorer will call it as such.

If for some reason the ROM file could not be successfully created, a
popup dialog box will inform you.

The name of the new ROM image will also be shown in the "File Info"
box for your reference.

Now you need to remove the flash ROM from your Game Boy. Flash the
new ROM you just created on it and put it back in. You're all set.

Note:
• The next time you start the PC slave program, it will tell you how

many ROM samples are installed in your flash ROM.
• If you edit a sample that is located in ROM it will be downloaded into

RAM again, since it has changed, and the ROM version will not be
used. This ensures that you are always listening to the correct
sample.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 197

Appendix 2.3 – Game Boy Macro Commands

On the following pages you will find a description of all Macro
Commands used by MusyX for Game Boy and Game Boy Color.

 Audio Tools

08/25/99

Appendix 2: 198

END
End of the Macro

Type: Structure

 $00 END

Description:
This is always the last macro command. It can not be deleted from the
macro. It terminates the macro permanently.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 199

Structure Macros

STOP
Similar to end

Type: Structure

 $01 STOP

Description:
This macro command serves the same function as END, but in contrast
to END it can be placed anywhere in the macro.

 Audio Tools

08/25/99

Appendix 2: 200

SPLITKEY
Splits the macro flow depending on the midikey

Type: Structure

Key Nr. SoundMacro ID SoundMacro step

 $02 SPLITKEY key macro step

Description:
This command is used to conditionally change the flow of execution in
the current macro. The macro program will jump to the given macrostep
inside the specified macro, if the current key is higher or the same as the
key specified in the parameter.

Parameters:

key = This parameter specifies a key number to compare against. If the
key you play is higher or the same as this key, the macro will
branch, otherwise it resumes.

macro = The ID of the macro to branch to

step = The step number inside the macro to branch to

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 201

SPLITVEL
Splits the macro flow depending on the velocity

Type: Structure

Velocity SoundMacro ID SoundMacro step

 $03 SPLITVEL velocity macro step

Description:
This command is used to conditionally change the flow of execution in
the current macro. The macro program will jump to the given macrostep
inside the specified macro, if the current velocity is higher or the same as
the velocity parameter.

Parameters:

velocity = Specifies the velocity to compare the current velocity against.
If the current velocity is higher or the same, the macro will
branch, otherwise it will resume.

macro = The ID of the macro to branch to

step = The step number inside the macro to branch to

 Audio Tools

08/25/99

Appendix 2: 202

LOOP
Loops back to a macrostep

Type: Structure

SoundMacro step Times

 $05 LOOP step times

Description:
Loops to the specified location within the current macro n-times.

Parameters:

step = The step number inside the current macro to loop back to

times = Number of times to loop back (0=infinite)

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 203

GOTO
Jumps to another macro

Type: Structure

SoundMacro ID SoundMacro step

 $06 GOTO macro step

Description:
Performs an unconditional jump to the specified location.

Parameters:

macro = The ID of the macro to jump into

step = The step number inside the target macro to jump to

 Audio Tools

08/25/99

Appendix 2: 204

WAIT
Suspends macro execution for some time

Type: Structure

Keyoff Random Time Milliseconds

 $07 WAIT key
release

random Ms

Description:
The execution of the current macro will be suspended until the specified
time has elapsed or a keyoff occurs.

Parameters:

key release = If this flag is set to ON, the macro will resume when it receives
a keyoff regardless of the specified wait time

random = If this flag is set, the macro will resume after a random time has
elapsed. In this case the ticks/millisec. parameter defines the
maximum wait time

ms = Specifies, in milliseconds, the time to delay macro execution
A value of 65535 will cause the wait to be endless

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 205

PLAYMACRO
Start a macro on another voice

Type: Structure

 Voice Nr. SoundMacro ID Don’t reset

 $08 PLAYMACRO Voice macro Rst.flag

Description:
Starts another macro on the specified voice. Can be used to start 2 or
more macros at the same time from a single note.

Parameters:

Voice Nr. = Identifies the voice to be associated with the macro to be started.
(0=Voice1,..., 3=Voice4)

Macro ID = The ID of the macro to start

Don’t reset = If this flag is set to ON the voice specified will not be reset
This is useful to take over the voice as it is at this point.

 Audio Tools

08/25/99

Appendix 2: 206

KEYOFF
Sends keyoff to voice

Type: Control

Voice Nr.

 $12 KEYOFF Voice

Description:
Sends a keyoff to the specified voice. Specify 255 to send a keyoff to the
current voice.

Parameters:

Voice = Specifies the voice to send a keyoff to (0-3). Enter 255 to send a
keyoff to this voice.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 207

SPLITRND
Splits the macro flow depending on a random number

Type: Structure

RND SoundMacro ID SoundMacro step

 $13 SPLITRND rnd macro step

Description:
This command is used to conditionally change the flow of execution in
the current macro. The macro program will jump to the given macrostep
inside the specified macro, if the generated random value is higher or the
same as the rnd parameter.

Parameters:

rnd = Value to compare the random number against.

macro = The ID of the macro to branch to

step = The step number inside the specified macro to branch to

 Audio Tools

08/25/99

Appendix 2: 208

TRAP_KEYOFF
Sets a trap on reception of a keyoff

Type: Structure

SoundMacro ID SoundMacro step

 $28 TRAP_KEYOFF macroID step

Description:
This command sets a so-called trap for a keyoff. This means that as
soon as the macro receives a keyoff by either the MIDI sequencer or the
KEYOFF command, the macro will jump to the macrostep where the trap
was set. As long as no keyoff is received the macro proceeds its
execution in normal fashion.

This command is used to escape an infinite loop or wait.

Parameters:

macro = ID of the macro to jump to as soon as a keyoff is received

step = Step number in the macro to jump into as soon as a keyoff is
received

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 209

UNTRAP_KEYOFF
Removes a trap set for keyoff

Type: Structure

 $29 UNTRAP_KEYOFF

Description:
Remove a previously set TRAP_KEYOFF.

 Audio Tools

08/25/99

Appendix 2: 210

Voice/Sample Macros

PLAYKEYSAMPLE
Starts a sample on key index

Type: Voice/Sample

 $09 PLAYKEYSAMPLE

Description:
Starts a sample on voice 3, using the midikey as an index, into an index
table called “sample-map”. This index table must be defined with one
single macro using the SAMPLEMAP command. This “sample-map”
macro must be placed in the Songgroup on the first Drumlist entry. There
can be only one index table per project.

See also SAMPLEMAP.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 211

SETVOICE
Selects a voice for this macro

Type: Voice/Sample

Voice Nr. Don’t reset S 1/2 toggle

 $0B SETVOICE Voice Rst.Flag Toggle flag

Description:
Selects a new voice channel for the current macro. This command
overrides any selections by the MIDI channel.

This command *must* be the first one in the macro.

Parameters:

Voice = Specifies the voice number to use (0-3). A value of 255 keeps
the voice chosen by the MIDI sequence

Rst.Flag = If this flag is set to ON the voice selected will not be reset. This is
useful to take control over the voice in its present state.

Toggle Flag = If this flag is set to ON and the voice selected by the MIDI
sequencer is voice 1 or 2, the voice really used to play the sound
will toggle between voice 1 and 2 on every key played.
This is very effective to create echos.

 Audio Tools

08/25/99

Appendix 2: 212

STARTSAMPLE
Plays a sample

Type: Voice/Sample

Sample-ID

 $10 STARTSAMPLE SampIe ID

Description:
Plays back the specified sample.

Parameters:

SampIe ID = The ID of the sample to play back.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 213

VOICE_OFF
Stops sound

Type: Voice/Sample

 $11 VOICE_OFF

Description:
Stops the sound on the current voice.

 Audio Tools

08/25/99

Appendix 2: 214

 VOICE_ON
Starts sound

Type: Voice/Sample

Duty cycle

 $14 VOICE_ON Duty Cycle

Description:
This command starts the sound after all initial setups (if the initialization
phase was not overridden by a SET_VOICE command). The DutyCycle
parameter is used for the rectangular wave oscillator (voice 1/2), with
values from 0-3 representing 12.5, 25, 50 and 75 percent pulse-width. A
duty-cycle of 255 can be used to have the velocity influence the pulse-
width.

For voice 3 use the WAVE_ON command.
For voice 4 the parameter is unimportant.

Parameters:

DutyCycle = Specify the duty cycle to use (see above). Enter 255 to have the
velocity modify the duty cycle (0-31=12.5%, 32-63=25%,
64-95=50%, 96-127=75%)

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 215

SETNOISE
Sets parameters for the noise generator

Type: Voice/Sample

Poly.clock Poly.Step Freq.ratio

 $15 SETNOISE Clock Step Freq.

Description:
Sets up the polynomial clock counter for the white noise generator (voice
4).

Parameters:

Clock = Values from 0-13 select the ratio of frequencies

Step = If 0 selects 15 steps for the counter, 1 selects 7 steps

Freq. = Values from 0-7 select the frequency ratio

 Audio Tools

08/25/99

Appendix 2: 216

PWM_START
Starts the Pulse-Width-Modulation effect on voice 3

Type: Voice/Sample

Low limit High limit Speed

 $1F PWM_START LimitLo LimitHi ms

Description:
Starts a software generated pulse-width effect on voice 3. The width of
the pulse will change over time (in a ping-pong-like fashion) between the
specified low and high limits.

Parameters:

LimitLo = Low limit of the pulse width (0-15)

LimitHi = High limit of the pulse width (0-15)

ms = Time in milliseconds it takes to complete one pulse cycle

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 217

PWM_UPDATE
Updates the Pulse-Width-Modulation effect on voice 3

Type: Voice/Sample

Low limit High limit Speed

 $20 PWM_UPDATE LimitLo LimitHi ms

Description:
This is basically the same as the PWM_START command. It modifies the
pulse width limits and the pulse cycle time, without restarting the effect.

Parameters:

LimitLo = Low limit of the pulse width (0-15)

LimitHi = High limit of the pulse width (0-15)

ms = Time in milliseconds it takes to complete one pulse cycle

 Audio Tools

08/25/99

Appendix 2: 218

PWM_FIXED
Starts a generated pulse wave of fixed width

Type: Voice/Sample

Duty

 $21 PWM_FIXED Duty

Description:
Starts a fixed generated rectangular pulse wave on voice 3. The duty
parameter specifies the pulse-width from 0-15, which is equivalent to a
0-50% duty cycle.

Parameters:

Duty = Width of the rectangular pulse (0-15)

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 219

PWM_VELOCITY
Starts a generated pulse wave of velocity-dependent width

Type: Voice/Sample

 $22 PWM_VELOCITY

Description:
Starts a fixed generated pulse wave on voice 3. The pulse-width is set
according to the current key velocity.

 Audio Tools

08/25/99

Appendix 2: 220

WAVE_ON
Loads a looping wave into voice 3 and starts it

Type: Voice/Sample

1 Block_SMPID

 $26 WAVE_ON Sample ID

Description:
This command loads a short, 32 sample long looping waveform into the
WaveRAM and starts voice 3 after all initial setups (if the initialization
phase was not overridden by a SET_VOICE command).

Parameters:

SampleID = ID of the sample to load into Wave RAM. If the ID is 0 no new
sample will be loaded and the contents of the Wave RAM remain
unchanged.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 221

Volume/Pan Macros

SETADSR
Uses a software ADSR envelope on the current voice

Type: Volume/Panning

Table-ID (ADSR)

 $0C SETADSR Table

Description:
The data from the specified ADSR table will be used to perform an
ADSR envelope on the current voice.

Parameters:

Table = The ID of the ADSR table to use

 Audio Tools

08/25/99

Appendix 2: 222

SETVOLUME
Sets an absolute volume

Type: Volume/Panning

Volume

 $0D SETVOLUME Volume

Description:
Sets a fixed volume on the current channel.

Parameters:

volume = Specifies an absolute volume for the current channel (0-127).

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 223

PANNING
Sets the panning to be used with the macro

Type: Volume/Panning

Pan position

 $0E PANNING pan.pos

Description:
Sets the position for the current voice channel. Game Boy hardware only
allows for absolute left, absolute right and center positions.

Parameters:

pan.pos = 0-41 designates left output, 42-83 center and 84-127 right

 Audio Tools

08/25/99

Appendix 2: 224

ENVELOPE
Starts a software envelope

Type: Volume/Panning

Envelope/Fade-in Milliseconds

 $0F ENVELOPE Flag ms

Description:
Starts a software envelope. The volume will be faded out/in to mute level
or full volume in the time specified. Due to Game Boy hardware
restrictions, this may be of lower quality than the hardware envelope.

Parameters:

Flag = If OFF, fades out to mute level, if ON fades in to maximum level

ms = Time to fade out to zero in milliseconds

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 225

HARDENVELOPE
Starts hardware envelope

Type: Volume/Panning

Envelope/Fade-in Milliseconds

 $1E HARDENVELOPE Flag ms

Description:
Starts a hardware envelope. The volume will be faded out/in in the
specified time, which cannot be longer than 1640ms and is dependent on
the current volume. By employing the hardware feature for the envelope,
the sound might be slightly less distorted in comparison with the software
envelope. The software envelope, however, can span longer fading
times and also works on voice 3.

Parameters:

Flag = If OFF, fades the voice down to mute level. If ON, fades the
voice in from the current volume to maximum.

ms = Time in milliseconds (highly approximate!) for the fade to
complete. Due to hardware restrictions this value cannot be
larger than 1640 ms for a fade from maximum volume.

 Audio Tools

08/25/99

Appendix 2: 226

Pitch Macros

RESET_MOD
Reset all pitch modulations

Type: Pitch

 $04 RESET_MOD

Description:
This command will stop and reset any active pitch modulation on the
current voice channel.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 227

 STOP_MOD
Stops any pitch modulation

Type: Pitch

 $0A STOP_MOD

Description:
Stops any pitch modulation on the current voice channel, but does not
reset the current values.

 Audio Tools

08/25/99

Appendix 2: 228

PORTLAST
Portamento from the last note

Type: Pitch

Transpose Detune Milliseconds

 $16 PORTLAST Keys Cents Ms

Description:
The pitch will slide from the last known value to the pitch of the current
key, plus the keys and cents parameters, in the specified time.

Parameters:

Keys = Transposes the current key by this value (-127 ~ 127)

Cents = Transposes the current key by a fraction of one key (-99 ~ 99)
Can be used together with the whole key transposed

ms = A time in milliseconds for the portamento to be finished

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 229

RNDNOTE
Creates a random pitch

Type: Pitch

Note Lo Detune Note Hi Fixed/Free Abs/Rel

 $17 RNDNOTE note-lo detune note-hi fix/free Rel/abs

Description:
Sets random pitch. Note lo is the lower end of the range, note hi the
upper end. The detune value will be added after the random pitch is
calculated and is specified in positive cents. If the free flag is set, the
pitch will be generated freely inside the range. Otherwise, a random key
from this range will be generated. If the abs flag is set, the specified
range is absolute. Otherwise it is relative to the current key.

Parameters:

note-lo = Specifies the low key for the random range

detune = Specifies a fraction of a key (0-99) to be added to the random
result in the end

note-hi = Specifies the top key for the random range

fix/free = If OFF, a random key will be generated inside the specified
range. If ON a random pitch inside the permissable range is
generated without respect to any keys.

rel/abs = If OFF, the range is relative to the current key. If ON the range is
fixed by the specified keys

 Audio Tools

08/25/99

Appendix 2: 230

ADDNOTE
Modifies the current key by offset values

Type: Pitch

Add Detune Org Key

 $18 ADDNOTE add detune org.key

Description:
Transposes the current key by a number of keys and a cent fraction.

The result is temporary when the org.key flag is set, so that further
ADDNOTE commands will again take the MIDI key as base. If the flag is
OFF, the result of this command will be considered to be the new base.

Parameters:

add = Value (-127 – 127) to transpose the current key by

detune = Key fraction (-99 – 99) to transpose the current key by

org.key = If set to OFF the result will form a new base key. If set to ON the
result is temporary until the next ADDNOTE command.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 231

SETNOTE
Sets pitch to a fixed note

Type: Pitch

Key Detune

 $19 SETNOTE Note Detune

Description:
Sets the pitch to a fixed note and detune in cents.

Parameters:

key = The key number to set the pitch to (0-127)

detune = The fraction of a key (-99 – 99) to add to the pitch

 Audio Tools

08/25/99

Appendix 2: 232

LASTNOTE
Retrieves the last note of the current voice

Type: Pitch

Add Detune

 $1A LASTNOTE Add detune

Description:
Recalculates the current key by transposing the last key played on this
voice.

Parameters:

add = Number of keys to transpose the last key by (-127 – 127)

detune = The fraction of a key to transpose the last key by (-99 – 99)

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 233

PORTAMENTO
Starts a portamento

Type: Pitch

Range Note Range Detune Abs/Rel Milliseconds

 $1B PORTAMENT. Keys Cents Flag ms

Description:
Slides the pitch from the current pitch to a target pitch specified in the
given time.

Parameters:

Keys = Transpose value for the current key to yield the target key of the
portamento (-127 ~ 127)

Cents = Transpose value in fractions of a key to yield the target key of
the portamento (-99 ~ 99)

Flag = If OFF, the key and cents specified form the target of the
portamento. If ON, the key and cents are added to the current
key (relative mode) to yield the target of the portamento.

ms = A time in milliseconds for the portamento to be finished

 Audio Tools

08/25/99

Appendix 2: 234

VIBRATO
Starts a vibrato effect

Type: Pitch

Level note Level fine Milliseconds

 $1C VIBRATO Keys Cents ms

Description:
Adds a vibrato effect to the current voice. The intensity of the vibrato is
specified by a displacement of the current key by a number of keys and
cents. When the keys parameter is negative, the effect will start to
decrease in frequency. Otherwise, the frequency will first increase.

Parameters:

Keys = Intensity of the vibrato in keys relative to the current key

Cents = Intesity of the vibrato in fractions of a key relative to the current
key. This value is added to the Keys parameter.

ms = Time in milliseconds for a full frequency cycle to complete.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 235

PITCHSWEEP
Adds a sweep effect to the pitch

Type: Pitch

Note Limit Cent Limit Sweep 0/1 Milliseconds

 $1D PITCHSWEEP Limit Limit fine Select Ms

Description:
Adds a sliding effect to the current pitch. After reaching the limit, the pitch
wraps back and the slide starts again. There are 2 independent
modulators that can be selected by the select parameter. If the Limit is
negative the sweep goes downwards, otherwise upwards.

Parameters:

Limit = Specifies the number of keys to slide up or down relative to the
current key.

Limit fine = Specifies the fraction of a key in addition to the full keys to slide
up or down to.

Select = If 0 selects sweep effect 1, if 1 selects sweep effect 2. Two
independent sweep effects which may work against each other
can be started.

ms = Time for one sweep cycle to complete in milliseconds

 Audio Tools

08/25/99

Appendix 2: 236

Special Macros

SENDFLAG
Raises a flag the application can evaluate

Type: Special

Flag Bit

 $23 SENDFLAG Num

Description:
Raises one of 8 user flags the game application can evaluate.

This feature is mainly used to signal certain events to the game program.

A raised flag remains raised until the application has read its status, at
which point the flag will be cleared again.

Parameters:

num = Number of the flag to raise (0~7)

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 237

SAMPLEMAP
Builds the sample map macro

Type: Voice/Sample

SMP ID

 $24 SAMPLEMAP SampIe ID

Description:
This command can be used multiple times inside a single macro, for the
entire project to define the order of the samples that can be used with the
PLAYKEYSAMPLE command. Each such macrostep references a
sample that will be assigned to the keynumber that is equivalent to the
macro step number.

Parameters:

SampIe ID = ID of the sample to assign to the midikey equivalent to the macro
step number

 Audio Tools

08/25/99

Appendix 2: 238

CURRENTVOL
Fakes the internal volume

Type: Special

Volume

 $25 CURRENTVOL Volume

Description:
This command is used to change the internal volume in the sound
system, only. The real voice volume remains unaffected. This is
necessary after the HARDENVELOPE command has been used which,
due to hardware limitations, leaves the sound system uninformed about
the real hardware volume.

Use this command in conjunction with carefully timed macros, to tell the
soundsystem your idea of the current hardware volume (usually after a
full fade-in or fade-out).

Parameters:

volume = MIDI volume (0~127) to set as a fake value in the sound system

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 239

 ADD_SET_PRIO
Changes the priority of a sound effect

Type: Special

Prio Add/Set

 $27 ADD_SET_PRIO Value Flag

Description:
Modifies the current priority of a sound effect. Depending on the state of
Flag, the Value is either set directly or added to the current priority.

Parameters:

Flag = If OFF, adds the Value parameter to the current priority. If ON,
sets the Value parameter immediately as the new priority.

Value = Ranges from –128 to 127. If the Flag parameter is OFF, it will be
added to the current priority. If the Flag parameter is ON, this
value will be set as an absolute priority (using the 2's
complement of the value. So –1 becomes 255 and –128
becomes 128).

 Audio Tools

08/25/99

Appendix 2: 240

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 241

Appendix 2.4 – Performance Issues

Because of the age and nature of the Game Boy architechture, some
macro commands require more CPU performance than others.

This means that the musician has, to some extent, direct influence on the
overall performance of the game application.

If the game logic is simple enough, as for instance in a puzzle game like
Tetris, performance might not be much of an issue. More complex
games, like action shooters on the other hand, could suffer if the music is
using a lot of special features. This would require more performance to
be spent on the music.

The table on the following page puts all commands in categories, from 1
through 5, with 1 being the category that requires the most performance.

All commands that do something just once might sometimes require
more time than other commands, just because what they are doing is
more complex.

 Audio Tools

08/25/99

Appendix 2: 242

Category Command(s)
1 PORTAMENTO

PORTLAST
2 VIBRATO

PITCHSWEEP
PWM_START, PWM_UPDATE
PWM_FIXED, PWM_VELOCITY
PLAYKEYSAMPLE, START_SAMPLE
SETADSR
ENVELOPE

3 RNDNOTE
PLAYMACRO
SPLITRND
VOICE_ON
WAVE_ON

4 VOICE_OFF
ADDNOTE, SETNOTE, LASTNOTE
SETVOLUME
SPLITKEY, SPLITVELOCITY
WAIT
LOOP
KEYOFF
SETVOICE

5 RESETMOD
STOPMOD
PANNING
SETNOISE
GOTO
HARDENVELOPE
SENDFLAG
ADDSETPRIO
TRAPKEYOFF, UNTRAPKEYOFF
CURRENTVOL
ENDMACRO, STOP
SAMPLEMAP

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 243

Appendix 2.5 - Troubleshooting Guide

This section is intended to provide answers to potential problems you
might encounter.

I start the slave program but it fails to connect to
Game Boy

There are a number of possibilities. Please read through every one of
them to find out which one applies to your situation.

• Is the link cable securely connected to your PC's parallel port on the
one end and securely to the Game Boy Color on the other end?

• Is Game Boy Color switched on?

• Does the Game Boy Color have a fresh set of batteries, if you are not
using an AC adapter?

• Try using a fresh set of batteries instead of an AC adapter. Some
adapters may cause too much interference for the serial link.

• Is the slave cartridge properly inserted into the Game Pak slot? When
you turn on the Game Boy, you should see a screen similar to this.

• Did you use an MBC-5 Flash ROM when you flashed the slave
program for Game Boy Color?

 Audio Tools

08/25/99

Appendix 2: 244

Windows 95/98:
• Have you specified to correct parallel port in the configuration

program of the slave?

Windows NT 4.0
• Have you installed the device driver?
• Have you specified the correct parallel port address in the registry?
• Have you disabled the parport device driver?

• If you are using an on-board parallel port of your PC’s mainboard, is it
set from the BIOS to be a standard parallel port (no ECP/EPP mode
with DMA)?

• If you are using an on-board parallel port of your PC’s mainboard, is it
accidentally disabled from the BIOS?

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 245

I get the Game Boy to recognize a connection but it
seems to get stuck immediately

Once the Game Boy Color acknowledges a connection to the slave
program, the display of the Game Boy will look like this.

If you do not get out of the negotiating phase, check for the following.

• Does the Game Boy Color have a fresh set of batteries, if you are not
using an AC adapter?

• Try using a fresh set of batteries instead of an AC adapter. Some
adapters may cause too much interference for the serial link.

• Did you use an MBC5 Flash ROM when you flashed the slave
program for Game Boy Color?

• If you are using an on-board parallel port of your PCs mainboard, is it
set from the BIOS to be a standard parallel port (no ECP/EPP mode
with DMA)?

Once you are out of the negotiation phase the Game Boy screen should
look like this.

 Audio Tools

08/25/99

Appendix 2: 246

If you are getting errors in the slave program Link status window like this,

OR

check the following.

• Does the Game Boy Color have a fresh set of batteries, if you are not
using an AC adapter?

• Try using a fresh set of batteries instead of an AC adapter. Some
adapters may cause too much interference for the serial link.

• Did you use an MBC5 Flash ROM when you flashed the slave
program for Game Boy Color?

• If you are using an on-board parallel port of your PCs mainboard, is it
set from the BIOS to be a standard parallel port (no ECP/EPP mode
with DMA)?

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 247

I send a project to the slave but it does not download
any data

This is most likely caused by an error in your project.

All references in all sound macros, for instance, need to be resolved
before a project that is suitable for the Game Boy can be created and
downloaded by the slave program.

Typical project errors are:
• Another macro referenced in a sound macro that does not yet exist,

or no longer exists. The editor will have assigned the reserved ID 0
(zero) for it.

• An ADSR curve referenced in a sound macro that does not yet exist,
or no longer exists. The editor will have assigned the reserved ID 0
(zero) for it.

• A sample referenced from a sound macro that does not exist. Here
the reserved ID 0 (zero) will also have been assigned.

• SETVOICE command inside a macro is not step 0.
• A soundeffect macro contains no SETVOICE instruction.
• More than 256 macros used.
• More than 256 ADSR curves used.
• More than 256 samples used.
• Out of project memory.
• Out of sample memory.
• More than one (1) keymap macro in the project.
• A loop command in a macro that does not loop back above the

command itself.

I made changes to my project but the slave tells me
there are none

This is caused by accuracy problems in the Game Boy target format.

Sometimes Game Boy can not exactly represent values you specify. For
instance, a wait time can be specified in milliseconds, but the millisecond
resolution on Game Boy is a raster of 16.67ms. Hence the values 5, 10
and 16 would all be treated like 16.67ms by the Game Boy hardware and
effectively cause no change in the project data.

 Audio Tools

08/25/99

Appendix 2: 248

While I'm working the sound slave disconnects itself
The slave program verifies the connection to the Game Boy hardware
every second. During this phase, it also determines if the highest
possible transfer rate can still be obtained.

If the slave program detects that the link to Game Boy has been severed
or too many data transmission errors occur, which can not be corrected,
it will terminate the connection and close itself. In these cases this popup
window will be displayed.

The most common causes for too many transmission errors are:
• The Game Boy is running on batteries rather than an AC adapter and

the batteries are too weak to supply the power for the serial port.
• The link cable is intertwined with other cables or is routed alongside a

monitor or other electrical devices, which causes interference in the
link cable.

• A 'noisy' AC-adapter is used to supply power to the Game Boy. Use
only a stabilized adapter that does not introduce any artifacts like
humming sound or noise in the Game Boy (can usually be quickly
verified by connecting a headset to the Game Boy and listening
closely for any disturbances).

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 249

I send MIDI data but I do not hear anything
First, you need to make sure that the project data was all valid. If you
send the project to the slave program but nothing is downloaded to
Game Boy, please refer to the previous section in this trouble-shooting
guide titled, " I send a project to the slave but it does not download any
data ".

Step #1:
Assuming that your project has been downloaded to Game Boy, we must
first verify that the slave program receives MIDI data. To do this, keep an
eye on the 'MIDI data' window in the slave program, while pressing a key
on your MIDI keyboard. Is the received MIDI data printed out in the
slave's MIDI data window?

If yes, please skip right to step #2.

Otherwise:
• Verify that your MIDI cabling between your keyboard (or whatever

MIDI device you are sending the MIDI data from) and the PC running
the slave program is correct.

• Verify that the slave program is using the correct MIDI device for its
data. A list of all accessible devices appears in the main log when
you start the slave. Right after this list, it tells you which device
number corresponding to the list was opened. If this is the wrong
device, please reconfigure the slave using the configuration program.

• If you are using a single machine setup with multiple MIDI input and
output devices and you are sending MIDI data from your PC to an
output device (which you have also opened for input in the slave),
verify that a hardware loopback device is installed to send the MIDI
data back into the PC. This can be circumvented by using a MIDI
loopback device (software based) like "MIDI Yoke" or "HuBi" or a two
machine setup with a dedicated MIDI input device.

• Verify that the hardware port used for MIDI data input is operational.
The best way to do so is to monitor the MIDI input signal indicators on
your sequencer program (like CuBase).

When you have found the problem please fix it and try again.

 Audio Tools

08/25/99

Appendix 2: 250

Step #2:
Now that the slave program is receiving MIDI data, does the Game Boy
itself receive it?

Examine the line "Receiving MIDI" on the Game Boy screen. Does a
rotating indicator appear while you are sending MIDI data?

If yes skip ahead to Step #3.

Otherwise:
• Are you currently downloading anything into Game Boy? While a

project is being downloaded to Game Boy all incoming MIDI data is
discarded. This is normal.

• Are you sending data on a MIDI channel >4? Only the first four MIDI
channels can be used.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 251

Step #3:
The reception of MIDI data by Game Boy suggests that there is a fault in
either the MIDI setup or the sound macro itself.

• Verify that the correct MIDI program for the MIDI channel being used
is set in the MIDI setup for your sound group in the MusyX editor.

• Verify that the correct sound macro has been assigned to the
program number that you have assigned to the MIDI channel on
which you send data. Refer to the screen shot below.

(follow the path of the arrows above, in determining these settings)

• Verify that the macro contains either a VOICE_ON (for voices 1, 2
and 4) or WAVE_ON, STARTSAMPLE, PLAYKEYSAMPLE,
PWM_START, PWM_FIXED or PWM_VELOCITY (for voice 3)
instruction.

• Verify that the macro does not contain a SETVOLUME 0 instruction.
• Verify that the velocity of the key you are sending is not 0.

In addition, you need to make sure that you did not assign a macro,
created for instance for voice 3, to another voice. Although this will not
be harmful to the system, mixing macros and their implicitly associated
voices will rarely produce desirable results. The only occasion where this
does not make a difference is the usage on either voice 1 and 2, since
these are of identical design.

 Audio Tools

08/25/99

Appendix 2: 252

You may always override any implicit voice selection (made by MIDI
channels 1-4 which map to voices 1-4) with the macro instruction
SETVOICE. This must appear as the very first instruction inside a macro.

In doing so, you can reroute any macro to any voice you want. This
requires careful design of your sound sequence. Using the SETVOICE
command in a song macro is usually discouraged, unless used to select
the Voice1/2 toggle option.

The SETVOICE command, however, is required for every sound effect
macro, since they have no default voice assignment.

When I play a sample I hear a humming sound
The Game Boy hardware was originally not intended to play back music
or sound which contains more than 32 samples. To reproduce samples
which are longer, Game Boy needs to be fed the samples in parts
containing 32 samples each. While feeding it these parts, sound output
needs to be stopped temporarily (due to hardware restrictions) and then
restarted. This stopping/restarting causes an audible distortion.

Depending on the quality of the sample (either 1920Hz or 8192Hz), this
distortion changes frequency as well, due to the fact that the voice needs
to be fed those 32 sample chunks at a different rate.

At a sample rate of 1920Hz, the distortion has a frequency of 60Hz and
256Hz at a sample rate of 8192Hz.

Also, this distortion is always of a fixed volume, regardless of the volume
setting of voice 3. Therefore, it becomes much more audible when the
sample is not played back at full volume. We recommend playing back
samples at the highest possible volume to minimize notable distortions.

This problem does not arise when you use looping music or sound of
only 32 samples in length, since no further reloads are necessary.

Game Boy Musicians Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 2: 253

There seem to be timing problems with regard to the
start and length of notes

The shortest note Game Boy can handle is 1/16th. This is due to internal
timing resolutions of the Game Boy hardware vs. acceptable CPU
performance. Because of this, the length of a note should always be a
multiple of 1/16th.

We suggest that you quantize your arrangement to 1/16th to minimize
any timing artifacts.

You may still experience timing problems with a 1/16th note limit when
you play your song from your MIDI sequencer. These problems will
vanish once the song is integrated in the game application and played
back solely by Game Boy.

The reason for this lies in the fact that the PC and Game Boy, in the
master/slave setup, are not synchronized while creating a song.
Whenever a note is to be played back *during* this Game Boy internal
1/16th raster, the note will be delayed in its keyon until the next
scheduled point in this raster.

To slightly compensate for this, a keyoff is sent to a note immediately.
This does not necessarily cause anything to happen right away. But
should the keyoff be received while servicing the voice or before, while
already being in the raster, the voice will react to the keyoff. If the time
frame for the corresponding voice has elapsed, the keyoff will be delayed
until the next scheduled time within the raster.

Once implemented in the application this no longer applies, since the
Game Boy synthesizer is of course in sync with its own sequencer.

Further timing problems while working on the song which are beyond any
control are:
• Windows MIDI device delays.
• Windows preempting a task.
• Network delays in multiple machine setups.
• Recurring communication errors with Game Boy.

 Audio Tools

08/25/99

Appendix 2: 254

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 255

APPENDIX 3 – N64 Programmers Reference

Table of Contents:

MusyX Basic Architecture .. 257

MusyX and MORT Voice Compression.. 260

Performance Impact on the Game Application............................... 261

Requirements for Services Provided to MusyX.............................. 264

Reverb Effect Engine - REE.. 266

Volume Control.. 266

IDs... 267

3D API... 267

Function Section: SOUND .. 269
SND_INIT .. 269
SND_QUIT... 271
SND_SHUTDOWN .. 272
SND_GET_PLAYBACKINFO... 273
SND_REINIT ... 274
SND_VOLUME .. 276
SND_MASTER_VOLUME ... 277
SND_MONO.. 278
SND_PLAY.. 279
SND_STOP ... 282
SND_PAUSE... 283
SND_SILENCE.. 284
SND_IS_IDLE.. 285
SND_CROSSFADE... 286
SND_CROSSFADE_DONE... 289
SND_CONTINUE... 290
SND_MUTE... 291
SND_SPEED... 292
SND_SEQLOOP.. 293
SND_GET_SEQLOOPCNT ... 294
SND_GET_SEQVALID .. 295

 Audio Tools

08/25/99

Appendix 3: 256

Function Section: SOUND (Continued)
SND_SEQ_VOLUME... 296
SND_GET_SEQVOLGROUP .. 297
SND_ASSIGN_VGROUP2TRACK .. 298
SND_FXSTART... 299
SND_FXKEYOFF .. 300
SND_FXCHECK .. 301
SND_FXPANNING .. 302
SND_FXSURROUNDPANNING.. 303
SND_FXVOLUME.. 304
SND_FXPITCHBEND .. 305
SND_FXMODULATION... 306
SND_FXPEDAL... 307
SND_FXDOPPLER.. 308
SND_FXREVERB.. 309
SND_PUSHGROUP .. 310
SND_POPGROUP... 311
SND_READFLAG.. 312
SND_WRITEFLAG .. 313
SND_ALLOC_STREAM... 314
SND_STREAM_ALLOCLENGTH .. 316
SND_STREAM_MIXPARAMETER .. 317
SND_FREE_STREAM... 318
SND_ACTIVATE_REVERB ... 319
SND_DEACTIVATE_REVERB .. 321
SND_ADD_LISTENER .. 322
SND_UPDATE_LISTENER ... 324
SND_REMOVE_LISTENER .. 325
SND_ADD_EMITTEREX ... 326
SND_ADD_EMITTER .. 329
SND_UPDATE_EMITTER ... 330
SND_REMOVE_EMITTER .. 331
SND_CHECK_EMITTER ... 332
SND_EMITTER_FXID.. 333

Function Section: VoiceLib MORT Interface................................... 334
VOICE_INIT... 334
VOICE_EXIT.. 335
VOICE_SET_DIRECTORY.. 336
VOICE_START.. 337
VOICE_STOP.. 339
VOICE_CHECKACTIVE .. 340
VOICE_PARAMETERS ... 341
VOICE_GET_TIME.. 342
VOICE_SYNC_IDLE.. 343

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 257

MusyX Basic Architecture
Every sound system has one central element, the instrument or sound
effect, depending on whether you are speaking about music or effects.
Sometimes they are handled separately from each other, sometimes the
only difference is the way they are started. MusyX follows the latter
approach. According to the unified way these two entities are handled,
we will use just one name, Sound.

A sound is the central element in MusyX. Although the name suggests
that the sound really is nothing more than a sample and a few
parameters, things are quite different within MusyX.

In MusyX a sound actually represents a little program that is executed in
a tokenized form at run time. This allows the music / sound designer
more control over the produced sound.

From a programmer’s point of view, these details are quite well hidden.
The only time a programmer gets in contact with the macro program is
when data is exchanged between the sound and application program.

As mentioned before, there are two basic types of any kind of sound
reproduction within MusyX. Instruments are used in the context of a
piece of music, called a song. Each song has its very own ID, to identify
which song is to be started once the application decides to do so.

Songs always use a MIDI-like, but much more powerful, proprietary
representation. Sequenced music reproduction was chosen over
streamed audio, since it offers much more flexibility.

Streamed audio is supported, but the application programmer will have
to take care of the actual streaming process. MusyX just offers buffers
for streaming data.

Sound effects are directly accessed using an automatically generated,
unique sound effect ID. The sound designer has the possibility of
accessing multiple sounds using just one ID, but this detail is totally
hidden from the programmer.

Both sound effects and songs are grouped together to form units called
Groups. Groups are the basic data element that the programmer has to
deal with. Groups are used to build small units of data that can be more
easily managed than the whole project. On CD based systems or other
systems that cannot access their mass storage device in real time,
saving ROM space is always an issue. This way of structuring the data is
meant to help with that.

 Audio Tools

08/25/99

Appendix 3: 258

For example, the musician and the programmer could agree on setting
up a group containing all basic sound effects, and yet another one that
contains all basic jingles needed during normal game play.
These groups probably would be present all the time, while groups
containing special boss songs and sound effects could be loaded as
needed. MusyX takes care of all data that is defined multiple times, so
that every item is stored just as often as needed.

To manage the groups, MusyX uses a stack structure. We will make
references to it as "soundstack“. Groups are pushed onto the stack and
can be removed by just popping them off the top of the stack. This is
done to prevent memory fragmentation in internal structures of the sound
system and to simplify the data management used to prevent multiple
data storage.

Data is not actually copied when it‘s pushed onto the stack. The
programmer has to keep most of the data around as long as the
references remain on the stack. There are several types of data that the
programmer has to deal with. The data is saved in separate files to allow
for more flexible data management.

Project Data
Project data is one of two data types, which are not pushed
onto the soundstack. It is actually used to represent the
logical structure of the project the musician hands over to the
programmer, and to enable the programmer (and the
system) to access all the other data easily.

Pool Data
This set of data contains macros and all data that is
referenced by these, with the exception of samples. The
musician uses macros to describe the kind of sounds the
synthesizer is to produce. Since this data is necessary to
reproduce the sound, it has to be present in RAM all the
time. The size of this data block is often quite small.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 259

Sample Data
This data contains all the samples to be used. It therefore,
can be quite large. This type of data sometimes can be
discarded after it has been pushed onto the soundstack.
This will be the case if the system features a separate sound
RAM.

Some systems even allow specifying a ROM location, so
that the samples do not have to be present in RAM. So does
the N64.

Some platforms, like Game Boy, don’t need sample data at
all or just in a very limited way (Game Boy).

Sequencer Data
All the data about the song(s) is stored here. The size very
much depends on the complexity and length of the song(s)
contained within. Just the currently played or paused songs
need to be loaded. The sequencer data itself is not pushed
onto the stack, but is just specified as a reference while
pushing a group containing song data onto the stack.

The pool, sample, and sequencer data sections are always used
together with the Project Data. There may be multiple sets of these data
sets in one project file. This is because the data may be split up into
multiple sections, to limit the amount of memory used at one time.

 Audio Tools

08/25/99

Appendix 3: 260

MusyX and MORT Voice Compression
MORT is currently not included with MusyX. Nevertheless, to integrate
MORT as easily as possible into MusyX, the “voicelib” library has been
implemented. It uses MusyX’s standard streaming interface to pass the
decompressed MORT data into MusyX’s system. The functions are
simply a wrapper, to hide the details of the implementation from the
game application and thereby make things easier for the game
programmers.

The voice library introduces a new way to store MORT compressed
samples. To make the data easier to handle, all MORT compressed
sample files are joined in one large “MORT directory file”. The tool
generating this file will also write a header file containing defines, that
make it possible to reference the MORT samples contained in the
directory file by their name.

Each running MORT data stream will need about 5% of the total CPU
power. The overhead produced by passing the data through MusyX is
minor. The RSP workload for a MORT voice will be less than for a
standard ADPCM sample, since the decompression takes place on the
host CPU.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 261

Performance Impact on the Game Application

MusyX has been designed to offer a maximum of flexibility at a minimum
of CPU and RSP performance impact. Nevertheless, there are a couple
of things that one has to keep in mind to yield better results.

On the average, MusyX will use about 0.7% to 0.9% of the CPU's and
about 0.7% to 0.8% of the RSP's calculation time per active voice in an
ideal setup. The impact the system has on ROM transfer or RDP
performance is hard to profile. There are just too many variables in the
equation. Nevertheless, there are a couple of basic thoughts that may
help evaluate the situation.

MusyX uses a cache system to optimize ROM transfers of samples. This
cache is very efficient even at small sizes. A sample set of 3Mb may
work very well with a cache area of just about 90Kb. The size of the
cache rarely needs to be larger, but as always this largely depends on
what is going on in the system. A larger cache may be helpful if you use
a lot of different and long samples, or your application needs to transfer
extreme amounts of data over the PI bus.

The impact on the RDP from the sound generation on the RSP is also
hard to evaluate. The microcode designed for MusyX has been
optimized to use the RSP's time as little as possible. If your game is
limited by RDP fill rate, the RSP performance hit for MusyX should not
affect the RDP too much, since the RSP will be waiting for the RDP to
finish drawing anyway. The worst situation for the RSP is reached when
it has a lot of very small triangles to draw. The RSP is very much
involved in the triangle setup during drawing and will almost never wait
for the RDP, if the FIFO is large enough. This will cause any RSP
performance hit to effect the RDP in a very pronounced way. Yet again,
it’s obvious that one has to evaluate the specific needs of the application.

Generally, one can say that reducing the amount of voices processed
tends to have a larger impact on the performance than reducing the
mixing rate. MusyX’s priority system offers a lot of ways to control the
use of a very small number of voices. Tests have shown that about 20
voices at 22KHz are a good compromise, and still allow for big orchestral
scores if needed.

Reverb is another element that can cost quite a bit of RSP time. The
CPU is only indirectly impacted by the increase of DMA traffic to the
RSP. This impact will usually be very small.

 Audio Tools

08/25/99

Appendix 3: 262

An average reverb setup while filtering the output will cost about as much
as a voice on the RSP. Generally, one can say that the reverb
calculations take more time when more DMA is needed. The worst case
would obviously be if all 8 reflections are used, and are spread out over a
very wide range in the reverb buffer.

All issues up to now have been primarily of importance to the
programmer, but the musicians have influence on the performance, too.
Here are some things to think about.

The SMaL language has been designed with performance in mind. When
you design macro programs, you’ll notice that these programs are most
often waiting for something. This “idle” state is obviously the least
performance eating state. But one can write macros that handle a lot of
commands in a row, which will lead to a larger performance hit. Common
sense presents a good rule of thumb. Do what you have to do, but only
use the features you really need for a specific task.

The MIDI controller-mapping feature offers a lot of flexibility.
Nevertheless, one has to keep in mind that the controller data is needed
every frame, whether new macro commands are handled or not. So, the
more complex the combinations which are used simultaneously, the
more calculation time is needed.

Pitching up samples can cost calculation time. If samples are pitched up
so far that their required playback frequency is above the mixing rate, the
system has to provide more data to the resampler than will be output.
Normally this will have little impact, but in extreme situations it may be
necessary to consider this. (Keep in mind that, due to memory limitations
in the RSP, the system cannot handle playback frequencies above twice
the mixing frequency.)

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 263

Memory is another resource of which one never has enough. It may be
useful to know that pitchbend and modulation wheel controllers are
specially optimized to use up very little memory in song files. All other
controllers are stored in a simpler, more RAM consuming way. So if you
are going to use a lot of controller data over time, you should consider
mapping the input that you want to control to these controllers.

Each running MORT data stream will need about 5% of the total CPU
power. The overhead produced by passing the data through MusyX is
minor. The RSP workload for a MORT voice will be less than the RSP
workload for a standard sample, since the decompression takes places
on the host CPU.

 Audio Tools

08/25/99

Appendix 3: 264

Requirements for Services Provided to MusyX

MusyX needs a couple of services provided by the game application.
Here’s a list of these services and the requirements that MusyX imposes
on them.

VBL Hooks
MusyX requires two functions from the application to install and remove
a VBL handler. MusyX will only use these functions during system
initialization and shutdown. The VBL handler needs to be called at 50 to
60Hz. All internal structures and lists are optimized for a minimum calling
frequency of about 50Hz. A lower frequency would make the system's
timing far too slow to guarantee proper playback of music, and would
concentrate the performance hit in a very unsymmetrical fashion.

Memory Allocation
MusyX requires basic memory allocation services. These services will
only be used during system initialization and shutdown, to avoid
unnecessary memory fragmentation. In addition to the required size of
the memory block, MusyX will tell the service routine if the memory block
will be needed for a long time or if it will be freed shortly using a flag field.
All memory blocks allocated must be aligned to 16 byte boundaries
(cache boundaries).

RSP Yielding
The system needs a function to start an audio task on the RSP, and one
to wait for the task to be finished. The function starting the audio task
should return immediately and leave the "potential waiting for the RSP’s
yield" to a separate thread. The function should then start the task as
soon as possible. The wait function will be called by MusyX one frame
after the audio task start has been issued to the RSP scheduler to be
implemented by the application. This is done to support the rare instance
when the RSP can not finish audio processing within one frame. The
game application should try to ensure that this is a rare exception.
Nevertheless, the application has total freedom to delay the RSP’s audio
task start as it sees fit, as long as the audio task is finished within one
frame.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 265

DMA Services
Once a frame, MusyX will issue a list of ROM data blocks to be
transferred to the game application. This is done during the VBL handler.
MusyX expects these data packages to be transferred to the specified
RAM addresses within one frame. How the application takes care of this
task, is totally up to the game programmer. As with yielding the RSP,
MusyX only expects that the application handles the request in a
separate thread. The function called by MusyX should be returned as
fast as possible.

One possible way to handle DMA transfers would be to subdivide any
DMA transfer by the game applications into smaller blocks, so that the
sound system’s requests can be handled in time, even if a very large
data block is downloaded by the application. MusyX uses a cache
system to minimize the amount of data to be transferred.

M.O.R.T. Services
The voice library uses the services provided to MusyX by the game
application, to allocate buffers and initiate DMA transfers (see
initialization routines for details). In some modes, the voice library will
expect to be able to allocate and free memory at run-time. The library
uses no additional VBL hooks, but installs hooks internally within MusyX.

 Audio Tools

08/25/99

Appendix 3: 266

Reverb Effect Engine - REE
Like most hardware platforms, the N64 System supports a reverb engine
to add some hall, echo or delay to the output signal. The architectures
and possibilities vary greatly from platform to platform. Please refer to
Appendix 5 for details on the implementation.

Volume Control
MusyX uses an elaborate scheme to control the volume of both music
and sound effects. Besides all local volume control, either through MIDI
velocities or direct specification of a volume to be used for sound effect
playback, there are a large number of so called "volume groups“ which
take care of the master volume control.

During the development of MusyX, a limited number of master volumes
(e.g. just separated for music and sound effects) proved to be far too
limited in today’s complex game environments. By default just one
volume group is defined. It is used to control the master volume for all
sound effects. Each time a song is started, a new volume group that
controls the master volume for that specific song is created.

In addition to this default behavior, the application programmer may
define new volume groups for single sound effects or a set of sound
effects, as well as defining new volume groups to control single tracks
within a song separately from the rest of the song. Just think of it as a
large mixer that can be completely software controlled.

Each volume group actually contains two faders. This is done so that
crossfades can be performed, while the secondary fader is still available
for overall volume control. (Crossfades are directly controlled by the main
fader of each volume group. So, if this fader is manipulated during a
crossfade, the crossfade may fail.)

Two master faders, scaling all sound effect volume groups and music
volume groups respectively, are also implemented.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 267

IDs
MusyX uses IDs to reference sound effects, songs and groups. These
IDs are automatically generated during the data conversion process. To
make them easily accessible from the programmer’s side, a header file is
generated automatically (either in C or assembler syntax) that contains
symbolic constants for these IDs. Their names are generated using the
names for these entities, given to them by the musician.

In this way, we ensure that both the musician and the programmer have
a common basis to reference IDs – their names – and that changes in
the project do not change anything on the programmer’s side of things.

3D API
MusyX features a complete 3D API. It handles all parameters of SFXs
that change over time in a 3D environment. Volume, panning – including
surround panning – and Doppler effects are calculated in real time. The
API does not feature any kind of culling mechanism. While SFXs that are
not audible will not use any voices, they will still be calculated – in case
they become audible again. The application has to take care of any form
of scene culling to limit the amount of handled SFXs via the 3D API.
It specifies SFX as "emitters". These emitters are structures that the
application has to allocate space for, and that are made known to the
system using snd_add_emitter(). The position and orientation of the
"listeners" is specified using another structure made known to the system
using snd_add_listener(). There may be more than one listener. Using
more than one listener makes it impossible for the system to generate a
Doppler effect, though. For a detailed description of the functions and
structures see the following Function Section.

MusyX uses a standard right-handed coordinate system.

 Audio Tools

08/25/99

Appendix 3: 268

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 269

Function Section: SOUND

SND_INIT

int snd_init(ULONG playfrq, UBYTE voices,
UBYTE music, UBYTE sfx, UWORD maxdelay, ULONG flags);

Purpose:
This function initializes the sound system. It must be called once before
any other routines of the system are used. This includes the interrupt
handlers, if they are installed by the application program. Whether or not
that is the case, depends upon the platform on which you are running.
See Musician’s Reference for details.

The system will come up initially, with no voices active and the main
volume for music and FX down.

Input:
ULONG mixfrq
Specifies the frequency in Hz used to mix all voices. This frequency will
be the actual playback frequency used with the sound hardware. Invalid
values will be clipped. See each platform appendix for supported values
with the various platforms. Be aware that some platforms impose limits
on how far samples may be pitched up or down. Some playback
frequencies may be incompatible with the music and or sound effects
that you try to play back. See Musician’s Reference for details.

UBYTE voices
Specifies the maximum number of voices to be mixed at a time. The
maximum number of voices allowed varies from platform to platform. See
Musician’s Reference for details.

UBYTE music
Specifies the maximum number of voices, of the total amount of voices,
that can be used by the synthesizer to playback instruments.

UBYTE sfx
Specifies the maximum number of voices, of the total amount of voices,
that can be used by the synthesizer to playback sound effects.

 Audio Tools

08/25/99

Appendix 3: 270

UWORD maxdelay
Maximum delay size of the reverb engine. On most platforms, the delay
buffer will be allocated before the actual game is started up, to avoid
memory fragmentation. The reverb processing is not activated, even if
values different from zero are specified.

ULONG flags
These flags are used to trigger specific behaviors of the sound system.
Most flags are platform specific and can be found in the Musician’s
Reference. A few, however, are platform independent.

SND_FLAGS_DEFAULT
Default settings are used.

SND_FLAGS_STEREOONLY
Any surround processing or multi channel output is disabled. This may
save calculation time on some platforms. Some platforms may ignore
this flag.

SND_FLAGS_NOINTERPOLATION
Any interpolation will be switched off. This may save calculation time on
some platforms. Some platforms may ignore this flag.

Output:
The function returns a value of 0, if successful.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 271

SND_QUIT

void snd_quit(void)

Purpose:
This function exits the sound system and frees all allocated resources.
IRQ handlers should not be called after this function has been executed,
if any were manually installed.

Input:
None.

Output:
None.

 Audio Tools

08/25/99

Appendix 3: 272

SND_SHUTDOWN

void snd_shutdown(void)

Purpose:
This function exits the sound system in preparation for a reinitialization of
the system. IRQ handlers should not be called after this function has
been executed.

Input:
None.

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 273

SND_GET_PLAYBACKINFO

SND_PLAYBACKINFO(* SNDCALL) snd_get_playbackinfo(void)

Purpose:
This function returns information about the version of the sound system.

Input:
None.

Output:
A pointer to the following initialized structure is returned.

typedef struct _snd_playbackinfo {
ULONG frq; // frequency used to

 output audio
BYTE stereo; // TRUE if output is

 stereo
UBYTE bits; // Number of bits per

 sample
char devname[256]; // ASCII name of device
char version_text[256]; // ASCII driver name &

 version
} SND_PLAYBACKINFO;

 Audio Tools

08/25/99

Appendix 3: 274

 SND_REINIT

reint SNDCALL snd_reinit(ULONG playfrq,
UBYTE voices, UBYTE music, UBYTE sfx,
UWORD maxdelay, ULONG flags);

Purpose:
This function reinitializes the sound system. It must be called once
before any other routines of the system are used after a temporary
shutdown. This includes the interrupt handlers, if they are installed by the
application program. Whether that is the case, depends on the platform
you are running on. See Musician’s Reference for details.

The system will initialize with no voices active and the main volume for
music and FX down.

Input:
ULONG mixfrq
Specifies the frequency in Hz used to mix all voices. This frequency will
be the actual playback frequency used with the sound hardware. Invalid
values will be clipped. See each platform appendix for supported values
with the various platforms. Be aware that some platforms impose limits
on how far samples may be pitched up or down. Some playback
frequencies may be incompatible with the music and or sound effects
that you try to play back. See Musician’s Reference for details.

UBYTE voices
Specifies the maximum number of voices to be mixed at a time. The
maximum number of voices allowed varies from platform to platform. See
Musician’s Reference for details.

UBYTE music
Specifies the maximum number of voices, of the total amount of voices,
that can be used by the synthesizer to playback instruments.

UBYTE sfx
Specifies the maximum number of voices, of the total amount of voices,
that can be used by the synthesizer to playback sound effects.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 275

UWORD maxdelay
Maximum delay size of the reverb engine. On most platforms, the delay
buffer will be allocated before the actual game is started up, to avoid
memory fragmentation. The reverb processing is not activated, even if
values different from zero are specified.

ULONG flags
These flags are used to trigger specific behaviors of the sound system.
Most flags are platform specific and can be found in the Musician’s
Reference. A few, however, are platform independent.

SND_FLAGS_DEFAULT
Default settings are used.

SND_FLAGS_STEREOONLY
Any surround processing or multi channel output is disabled. This may
save calculation time on some platforms. Some platforms may ignore
this flag.

SND_FLAGS_NOINTERPOLATION
Any interpolation will be switched off. This may save calculation time on
some platforms. Some platforms may ignore this flag.

Output:
None.

 Audio Tools

08/25/99

Appendix 3: 276

SND_VOLUME

void snd_volume(UBYTE volume, UWORD time,
UBYTE volgroup)

Purpose:
This function sets the current volume for any volume groups. The volume
may be set at once or may be faded to the new setting. A fade does not
need to be finished before a new one can be started.

Input:
UBYTE volume
Specifies the volume to be used for set / fade. 0=Silence, 127=100%.

UWORD time
Specifies the time in ms to fade to the new volume. If zero is specified,
the volume will be set immediately. This may result in clicking sounds.

UBYTE volgroup
Specifies which volume group is to be changed. You may also specify
one of the constants below to modify a set of volume groups at one time,
while only using only one call.

SND_USERMUSIC_VOLGROUPS
SND_USERFX_VOLGROUPS
SND_USERALL_VOLGROUPS

Set a new volume for all music, sfx or both volume groups, defined by
the user.

SND_MUSIC_VOLGROUPSS
SND_FX_VOLGROUPS
SND_ALL_VOLGROUPS

Set a new volume for all music, sfx or both volume groups, predefined or
defined by the user.

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 277

SND_MASTER_VOLUME

void snd_master_volume(UBYTE volume, UWORD time,
UBYTE music, UBYTE fx)

Purpose:
This function sets the current volume for the master faders of music or
sfx. The volume may be set at once or may be faded to the new setting.
A fade does not need to be finished before a new one can be started.

Input:
UBYTE volume
Specifies the volume to be used for set / fade. 0=Silence, 127=100%.

UWORD time
Specifies the time in ms to fade to the new volume. If zero is specified,
the volume will be set immediately. This may result in clicking sounds.

UBYTE music
Set to TRUE if music master fader should be affected.

UBYTE sfx
Set to TRUE if sfx master fader should be affected.

Output:
None.

 Audio Tools

08/25/99

Appendix 3: 278

SND_MONO

void snd_mono(UBYTE mono)

Purpose:
Set the system to mono or stereo mode.

Input:
UBYTE mono
If TRUE, all output will be mono. FALSE selects stereo mode. The
default mode is FALSE.

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 279

SND_PLAY

ULONG snd_play(UWORD sgid, UWORD sid,
void *arrfile, SND_PLAYPARA *para)

Purpose:
This function starts the playback of a song contained within a song
group.

Input:
UWORD sgid
Specifies the ID of the song group to be used as a source.

UWORD sid
ID that specifies which sequencer file in the specified song group is to be
used.

ULONG *arrfile
Pointer to memory containing sequencer data. Certain alignment
requirements may apply for certain platforms.

SND_PLAYPARA *para
Pointer to a structure containing various parameters for starting the song.
This pointer may be set to NULL. In this case, the song will be started
immediately, and no volume will be set (by default the volume is down).

 Audio Tools

08/25/99

Appendix 3: 280

typedef struct _snd_playpara {
ULONG flags; // Enable features by

 using these flags
ULONG trackmute[2]; // Initial mute settings
UWORD speed; // Initial speed factor

 (0x100 = 1:1)
struct { // Start volume

 information
UWORD time;
UBYTE target;
} volume;

UBYTE num_seqvoldef; // Number of non-
 standard volume group
 tracks

SND_SEQVOLDEF *seqvoldef;// List of tracks and
 volume groups

UBYTE num_faded; // Number of entries to
 the fade list

UBYTE *faded;
} SND_PLAYPARA;

The flags field defines which subset of parameters is active at any given
time. The following values are defined.

SND_PLAYPARA_DEFAULT

No parameters are valid.

SND_PLAYPARA_TRACKMUTE

The trackmute fields are active. Each cleared bit in these two ULONGs
defines a track to be muted.

SND_PLAYPARA_SPEED

The speed field is active. A value of 0x100 selects normal speed. Lower
values slow the song down. Higher levels speed it up.

SND_PLAYPARA_VOLUME

This flag turns on the basic volume control. The time and target values
become active. Target specifies the volume level at the end of the fade,
while time specifies the time in milliseconds that fade should take. A
value of zero will simply set the new volume immediately.

SND_PLAYPARA_SEQVOLDEF

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 281

Each track in an arrangement may be controlled by its very own volume
group. This flag enables one to control this feature in detail. If the flag is
set, the following fields have to be initialized.

Num_seqvoldef has to be initialized with the number of tracks to which
the non default settings should be applied. The seqvoldef field is a
pointer to an array of SND_SEQVOLDEF structures that define all
parameters for the specific tracks.

typedef struct _snd_seqvoldef {
UBYTE track; // Target track (0-63)
UBYTE volgroup; // Volume group to

 assign / use
} SND_SEQVOLDEF;

Num_faded contains the number of tracks that should be faded. One
may enable or disable fading for each track, to enable the programmer to
fade in and out separate tracks without having to setup all volume groups
manually. The faded field contains a pointer to a list of track numbers.

SND_PLAYPARA_PAUSE

The song will be "started“ in pause mode. No audio from the song will be
audible until you restart it.

Output:
The function returns a 32-bit sequencer ID if successful, if not it returns
SND_SEQ_ERROR_ID.

 Audio Tools

08/25/99

Appendix 3: 282

SND_STOP

void snd_stop(ULONG seqid)

Purpose:
Stops the song currently playing with the specified ID. If the song is not
playing anymore, nothing happens.

Input:
ULONG seqid
ID that specifies which sequencer is to be stopped.

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 283

SND_PAUSE

void snd_pause(ULONG seqid)

Purpose:
Pauses the song currently playing with the specified ID. If the song is not
playing anymore, nothing happens.

Input:
ULONG seqid
ID that specifies which sequencer is to be paused.

Output:
None.

 Audio Tools

08/25/99

Appendix 3: 284

SND_SILENCE

void snd_silence(void)

Purpose:
All voices (Music & FX) will be stopped immediately.

Input:
None.

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 285

SND_IS_IDLE

UBYTE snd_is_idle (void)

Purpose:
Checks to see if all activity in the sound system has ended.

Input:
None.

Output:
The function returns TRUE if there is no activity left in the sound system
and it’s ready to be shut down. It returns FALSE otherwise.

 Audio Tools

08/25/99

Appendix 3: 286

SND_CROSSFADE

void snd_crossfade(SND_CROSSFADE *ci,
ULONG *new_seq_id);

Purpose:
Initiates a crossfade between two pieces of music.

Input:
SND_CROSSFADE *ci
Pointer to a structure containing all necessary information to perform the
crossfade.

typedef struct _snd_crossfade {
ULONG seq_id1;
UWORD time1;

ULONG seq_id2;
UWORD time2;
void *arr2;
UWORD gid2;
UWORD sid2;
UBYTE vol2;

ULONG trackmute2[2]; // Mute bits (see
 snd_mute())

UWORD speed2; // Initial speed
 (of new song)

UBYTE flags;
} SND_CROSSFADE;

The song specified by the ID passed in seq_id1 will be faded down in the
time specified by time1. Flags defines what is to be done to it at this
moment.

SND_CROSSFADE_STOP
Stop song after fade down is finished.

SND_CROSSFADE_PAUSE
Pause song after fade down is finished.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 287

SND_CROSSFADE_MUTE
Mute song after fade down (no voices will be allocated), but continue
handling (playing) it.

A couple of other flags define how the new song is to be faded up.

SND_CROSSFADE_CONTINUE
The new song is in paused state. Continue playback from that position.
The ID of that song must be specified in seq_id2, which is otherwise
unused.

SND_CROSSFADE_PAUSENEW
The new song will be started, but immediately put into paused state.

SND_CROSSFADE_TRACKMUTE
The trackmute fields will be used to setup the track muting of the new
song.

SND_CROSSFADE_SPEED
The new song will be started with a playback speed specified in the
speed2 field.

SND_CROSSFADE_MUTENEW
Start new song, but mute it completely, immediately after its start.

In all cases where a completely new song is started the arr2 field must
be initialized with a pointer to the arrangement data. Gid must contain
the ID of the group which contains the settings for the new song. Sid
contains the ID of the song itself.

The volume at end of fade in the time time2 is always to be specified in
vol2.

 Audio Tools

08/25/99

Appendix 3: 288

Crossfades can be synchronized to certain points in a song. The
musician can place special controllers into the MIDI data representing
the song. If the flag,

SND_CROSSFADE_SYNC

is set, the crossfade will be delayed until the next controller of that type is
detected.

Crossfades are controlled directly by the faders. If you reuse a fader
while a crossfade is in progress, the crossfade may not succeed. This
should rarely be necessary, though. On the one hand the system‘s
master faders can still be used and, on the other hand, each volume
group has two faders. A standard fader and a so-called "pause“ fader.
The later can be freely used, even if a crossfade is in progress.

ULONG *new_seq_id
Pointer to a ULONG that will be assigned the new sequencer ID as soon
as it is available. A temporary ID will be assigned immediately, while the
real ID will be assigned at some point during the crossfade. This variable
must be present during the crossfade for that reason. The temporary ID
can be used for most control purposes, as long as no real ID is
generated.

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 289

SND_CROSSFADE_DONE

UBYTE snd_crossfade_done (ULONG seqid)

Purpose:
Check if a crossfade has finished.

Input:
ULONG seqid
ID that specifies which sequencer is to be checked. The ID specified is
the one of the new song, not the old one.

Output:
The function returns TRUE if the crossfade is complete, otherwise
FALSE is returned.

 Audio Tools

08/25/99

Appendix 3: 290

SND_CONTINUE

void snd_continue(ULONG seqid)

Purpose:
Resumes playback of a paused song.

Input:
ULONG seq_id
ID of the song / sequencer to be continued.

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 291

SND_MUTE

void snd_mute(ULONG seqid, ULONG mask1, ULONG mask2)

Purpose:
This function mutes / turns on volume for single tracks from the
sequencer file. The 64 tracks are represented by 32 Bits in 2 ULONGs.

Input:
ULONG seqid
ID of sequencer to be affected.

ULONG mask1
Mute mask for lower 32 tracks. A 0 mutes the corresponding channel.

ULONG mask2
Mute mask for upper 32 tracks. A 0 mutes the corresponding channel.

Output:
None.

 Audio Tools

08/25/99

Appendix 3: 292

SND_SPEED

void snd_mute(ULONG seqid, UWORD speed)

Purpose:
This function changes the playback speed of the specified sequencer.

Input:
ULONG seqid
ID of sequencer to be affected.

UWORD speed
Speed to be set. A value of 0x100 will reset the speed to normal. Lower
values will slow down the playback, higher values will speed it up.

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 293

SND_SEQLOOP

void snd_seqloop(ULONG seqid, UBYTE on)

Purpose:
This function allows the looping of songs to be disabled. By default
looping is enabled, if the musician defined loop locators. Disabling
looping may be useful if e.g. a song is meant to loop a couple of times
before finally coming to an end.

Input:
ULONG seqid
ID of sequencer to be affected.

UBYTE on
A value of TRUE will enable looping (default), FALSE will disable it.

Output:
The function will return TRUE on success, FALSE otherwise.

 Audio Tools

08/25/99

Appendix 3: 294

SND_GET_SEQLOOPCNT

UWORD snd_get_seqloopcnt (ULONG seqid)

Purpose:
This function retrieves how often the playing song has looped.

Input:
ULONG seqid
ID of sequencer to report.

Output:
Returns the number of loops taken by the song.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 295

SND_GET_SEQVALID

UBYTE snd_get_seqvalid (ULONG seqid)

Purpose:
This function is used to determine if the song is actually playing or still in
a temporary state. Songs may be in a temporary state immediately after
or during crossfades

Input:
ULONG seqid
ID of song / sequencer to report.

Output:
Returns TRUE if the sequencer actually is playing the song specified by
the ID. FALSE is returned if the ID is temporary.

 Audio Tools

08/25/99

Appendix 3: 296

SND_SEQ_VOLUME

void snd_seq_volume(UBYTE volume, UWORD time, ULONG
seq_id, UBYTE mode);

Purpose:
This function is used to set / fade the volume of the specified sequencer /
song.

Input:
UBYTE volume
Specifies the volume to be used for set / fade. 0=Silence, 127=100%.

UWORD time
Specifies the time in ms to fade to the new volume. If zero is specified,
the volume will be set immediately. This may result in clicking sounds.

ULONG seqid
ID of sequencer to be affected.

UBYTE mode
Mode of fade operation. The following modes are defined:

SND_SEQVOL_CONTINUE
Continue playback of the current song when fade is finished.

SND_SEQVOL_STOP
Stop current song when fade is finished.

SND_SEQVOL_PAUSE
Pause song when fade is finished.

SND_SEQVOL_MUTE
Mute all tracks of the current song when fade ends. The song will
continue playing although muted.

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 297

SND_GET_SEQVOLGROUP

UBYTE snd_get_seqvolgroup (ULONG seqid)

Purpose:
This function is used to determine the volume group used to control the
referenced song / sequencer. If non default groups have been assign by
the user, the default one will be returned.

Input:
ULONG seqid
ID of song / sequencer to report.

Output:
The volume group used to control the default song / sequencer volume.

 Audio Tools

08/25/99

Appendix 3: 298

SND_ASSIGN_VGROUP2TRACK

void snd_assign_vgroup2track (ULONG seq_id,
UBYTE track, UBYTE vgroup);

Purpose:
Assign a non standard volume group to the specified track of the given
song / sequencer.

Input:
ULONG seqid
ID of song / sequencer to affect.

UBYTE track
Track to be affected.

UBYTE vgroup
Volume group to assign to track.

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 299

SND_FXSTART

ULONG snd_fxstart(UWORD fid, UBYTE vol, UBYTE pan)

Purpose:
Starts a sound effect.

Input:
UWORD fid
Specifies the ID of the sound effect to be used.

UBYTE vol
Specifies the default volume to be used with this sound effect. This value
may or may not be used by the sound effect. (0=Silence, 127=100%,
0xFF=Use default volume)

UBYTE pan
Specifies the default panning to be used with this sound effect. This
value may or may not be used by the sound effect. (0=Left, 64=Center,
127=Right, 128=Surround, 0xFF=Use default panning)

Output:
Returns SND_ID_ERROR if failed, a 32-bit voice ID if successful.

 Audio Tools

08/25/99

Appendix 3: 300

SND_FXKEYOFF

int snd_fxkeyoff(ULONG vid)

Purpose:
Send a "KeyOff“ to the sound effect with the specified voice ID. A "Key
off“ is used to signal the sound effect to go into its final phase. In most
cases it will be used to stop the sound effect.

Input:
ULONG vid
The voice ID obtained through snd_fxstart().

Output:
Returns 0 if successful.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 301

SND_FXCHECK

UBYTE snd_fxcheck(ULONG vid)

Purpose:
Test if the given sound effect is currently processed by the sound
system.

Input:
ULONG vid
The voice ID obtained through snd_fxstart().

Output:
Returns the ID passed to it if sound effect is currently active,
SND_ID_ERROR otherwise.

 Audio Tools

08/25/99

Appendix 3: 302

SND_FXPANNING

int snd_fxpanning(ULONG vid, UBYTE pan)

Purpose:
Set new panning offset for the specified sound effect. The default
panning offset after start is 64. (0=Left, 64=Center, 127=Right,
128=Surround) A value of 128 should no longer be used. It’s still
supported for now to maintain compatibility with older versions.

Input:
ULONG vid
The voice ID obtained through snd_fxstart().

UBYTE pan
The new panning value to be applied to the effect.

Output:
Returns 0 if successful.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 303

SND_FXSURROUNDPANNING

int snd_fxsurroundpanning(ULONG vid, UBYTE pan)

Purpose:
Set new surround panning offset for the specified sound effect. The
default panning offset after start is 0. (0=Front, 64=Center, 127=Back)

Input:
ULONG vid
The voice ID obtained through snd_fxstart().

UBYTE pan
The new surround panning value to be applied to the effect.

Output:
Returns 0 if successful.

 Audio Tools

08/25/99

Appendix 3: 304

SND_FXVOLUME

int snd_fxvolume(ULONG vid, UBYTE vol)

Purpose:
Set new volume for the specified soundeffect. The default volume set
after start is 127. (0=Silence, 127=100%)

Input:
ULONG vid
The voice ID obtained through snd_fxstart().

UBYTE vol
The new volume value to be applied to the effect.

Output:
Returns 0 if successful.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 305

SND_FXPITCHBEND

int snd_fxpitchbend(ULONG vid, UWORD pb)

Purpose:
Set new pitchbend value for the specified sound effect. The default
pitchbend value set after start is $2000. ($2000=No Pitch offset, lower
values pitch down, higher up).

Input:
ULONG vid
The voice ID obtained through snd_fxstart().

UWORD pb
The new pitchbend value to be applied to the effect.

Output:
Returns 0 if successful.

 Audio Tools

08/25/99

Appendix 3: 306

SND_FXMODULATION

int snd_fxmodulation(ULONG vid, UWORD mod)

Purpose:
Set new modulation value for the specified sound effect. The default
modulation value set after start is 0. (0=Lowest, 16383=Highest)

Input:
ULONG vid
The voice ID obtained through snd_fxstart().

UWORD mod
The new modulation value to be applied to the effect.

Output:
Returns 0 if successful.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 307

SND_FXPEDAL

int snd_fxpedal(ULONG vid, UBYTE pedal)

Purpose:
Set new pedal state for the specified sound effect.

Input:
ULONG vid
The voice ID obtained through snd_fxstart().

UBYTE pedal
The new pedal state. If the pedal controller is still mapped to the pedal
input of the synthesizer (see Musicians Reference), a value lower than
0x3F will clear the pedal state, while a larger value will set it.

Output:
Returns 0 if successful.

 Audio Tools

08/25/99

Appendix 3: 308

SND_FXDOPPLER

int snd_fxpitchbend(ULONG vid, UWORD doppler)

Purpose:
Set new Doppler value for the specified sound effect. The default
Doppler value set after start is $2000. ($2000=No Pitch offset, lower
values pitch down, higher up). In contrast to the pitchbend, the Doppler
effect is applied by scaling the frequency, rather than offsetting the pitch
by offsetting the current key.

Input:
ULONG vid
The voice ID obtained through snd_fxstart().

UWORD doppler
The new Doppler value to be applied to the effect.

Output:
Returns 0 if successful.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 309

SND_FXREVERB

int snd_fxreverb(ULONG vid, UBYTE rvol)

Purpose:
Set new reverb volume for the specified sound effect.

Input:
ULONG vid
The voice ID obtained through snd_fxstart().

UBYTE rvol
The new reverb volume to set.

Output:
Returns 0 if successful.

 Audio Tools

08/25/99

Appendix 3: 310

SND_PUSHGROUP

UBYTE snd_pushgroup(void *prj_data, UWORD gid,
void *samples, void *sampdir, void *pool);

Purpose:
Push group data onto soundstack. See general information section for
details.

Input:
void *prjdata
Pointer to project data.

UWORD gid
ID of the group to be pushed.

void *samples
Pointer to sample data / ID to reference data.

void *sampdir
Pointer to sample directory containing data to locate samples within the
sample data.

void *pool
Pointer to pool data.

Output:
Returns TRUE if successful.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 311

SND_POPGROUP

UBYTE snd_popgroup(void)

Purpose:
Pop group from soundstack. See general information section for details.

Input:
None.

Output:
Returns TRUE if successful.

 Audio Tools

08/25/99

Appendix 3: 312

SND_READFLAG

SWORD snd_readflag(UBYTE num)

Purpose:
Read flag value from synthesizer. Flags may be used to signal certain
conditions of the synthesizer to the main program. There are 16 flags.

Input:
UBYTE num
Number of flag to read from.

Output:
Returns value obtained from flag. Default after startup is zero.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 313

SND_WRITEFLAG

void snd_writeflag(UBYTE num, SWORD value)

Purpose:
Writes flag value to synthesizer. Flags may be used to signal certain
conditions of the synthesizer to the main program. There are 16 flags.

Input:
UBYTE num
Number of flag to write to.

SWORD value
Value to write to specified flag.

Output:
None.

 Audio Tools

08/25/99

Appendix 3: 314

SND_ALLOC_STREAM

ULONG snd_alloc_stream(UBYTE prio, void *buffer,
ULONG size, ULONG frq, UBYTE vol, UBYTE pan,
UBYTE span, UBYTE fxvol,
UBYTE (*update_function)(SWORD *buffer1,
ULONG len1, SWORD *buffer2, ULONG len2,
ULONG user), ULONG user)

Purpose:
Allocates a voice for stream playback. The allocated voice will no longer
be available to the synthesizer for playing instruments or sound effects
until it’s explicitly freed.

Input:
UBYTE prio
Priority for allocating the voice to be used for playing the stream. To
guarantee allocation, the priority should be set as high as possible.

void *buffer
Pointer to buffer used to stream the data into the voice. The buffer is
used as a simple ring buffer.

ULONG size
Size of the ring buffer in samples.

ULONG frq
Frequency to be used for playback.

UBYTE vol
Volume used for playback (0-127).

UBYTE pan
Panning used for playback (0-127).

UBYTE span
Surround panning used for playback (0-127).

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 315

UBYTE fxvol
Reverb volume used for playback (0-127).

UBYTE (*update_function)(SWORD *buffer1,ULONG len1,SWORD
*buffer2,ULONG len2,ULONG user)
Pointer to a function that will be called by MusyX each time that the
buffer has to be updated. Buffer1 and len1 define the 1st area to be
updated, while buffer2 and len2 define the 2nd area. Two areas are
necessary, since the buffer is used as a ring buffer, and the area to be
updated may therefore wrap around. Len2 will be zero if no second area
is needed. User is a value specified by the application, see below).

ULONG user
Value to be passed to the update function. E.g. it can be used to identify
different instances of streams to the update function.

Output:
The function returns a handle to the stream if successful and
SND_ID_ERROR if not.

 Audio Tools

08/25/99

Appendix 3: 316

SND_STREAM_ALLOCLENGTH

ULONG snd_stream_alloclength(ULONG num)

Purpose:
Return the number of bytes to be allocated for a stream buffer,
containing the specified number of samples. This may or may not be
identical to the number of samples multiplied by the number of bytes per
sample. The reason for this is that some platforms need a couple of extra
samples that are managed automatically to ensure proper looping.

Input:
ULONG num
Number of samples in the buffer.

Output:
Size of the buffer that has to be allocated in bytes.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 317

SND_STREAM_MIXPARAMETER

void snd_stream_mixparameter(ULONG stid,
UBYTE vol, UBYTE pan, UBYTE span, UBYTE fxvol)

Purpose:
Change stream playback parameters during playback.

Input:
ULONG stid
Handle of stream to be manipulated.

UBYTE vol
New volume to be set.

UBYTE pan
New panning to be set.

UBYTE span
New surround panning to be set.

UBYTE fxvol
New reverb volume to be set.

Output:
None.

 Audio Tools

08/25/99

Appendix 3: 318

SND_FREE_STREAM

void snd_free_stream(ULONG stid)

Purpose:
Free an allocated stream. The voice will be made accessible to the
synthesizer, again.

Input:
ULONG stid
Handle of stream to be freed.

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 319

SND_ACTIVATE_REVERB

void snd_activate_reverb(SND_REVERB *rev);

Purpose:
Activate reverb engine with the given parameters. Only signals on the
reverb or "auxiliary“ bus are put through the engine.

Input:
SND_REVERB *rev
Pointer to a structure describing the desired reverb effect.

typedef struct _snd_reverb {
UWORD buf_size;
UWORD ref_off[SND_MAX_REFLECTIONS];
UBYTE ref_vol[SND_MAX_REFLECTIONS];
UBYTE ref_num;
UBYTE fb_vol;
UBYTE filter;
SWORD filter_coef[4];
} SND_REVERB;

Buf_size specifies the total size of the reverb delay buffer in milliseconds.
This size must be smaller or equal to the maximum size specified at
system initialization.

Ref_num must be set to the number of reflections to be used. The
maximum number of reflections in current implementations is 8.

Fb_vol specifies the volume of the feedback into the buffer. The buffer
output is continuously fed back into the buffer together with new input. If
this volume is specified too high, there is the danger of a so-called
"resonant catastrophe“.

A FIR filter may be used to filter the output signal. Filter can be set to
SND_FILTER_ON to enable the filter or SND_FILTER_OFF to disable it.
If it is enabled, one must specify the filter coefficients to be used. These
values are passed in the filter_coef[] array. The values are specified as
integers in S15 format. A value of 0xFFFF equals about 1.0.
Reflections are specified using two arrays. Each pair of array elements
specifies one reflection. The ref_off[] array contains the amount of delay
for each reflection in milliseconds. The ref_vol[] array contains the
volume of each reflection. A value of 127 specifies full volume. A volume
of zero is possible, but should be avoided for performance reasons.

 Audio Tools

08/25/99

Appendix 3: 320

Generally one can say, that the more reflections used and the more
these reflections are spread out over the buffer, the bigger the
performance hit will be.

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 321

SND_DEACTIVATE_REVERB

void snd_deactivate_reverb(void);

Purpose:
Stop reverb processing.

Input:
None.

Output:
None.

 Audio Tools

08/25/99

Appendix 3: 322

SND_ADD_LISTENER

void snd_add_listener(SND_LISTENER *li,
SND_FVECTOR *pos, SND_FVECTOR *dir,
SND_FVECTOR *heading, SND_FVECTOR *up,
float front_sur, float back_sur,
float soundspeed, ULONG flags, UBYTE vol);

Purpose:
Add a listener structure to the list of listeners.

Input:
SND_LISTENER *li
Pointer to a structure defining the parameters of the listener to be
added.

typedef struct _snd_listener {
struct _snd_listener *next;
struct _snd_listener *prev;

ULONG flags;
SND_FVECTOR pos;
SND_FVECTOR dir;
SND_FVECTOR heading;
SND_FVECTOR right;
SND_FVECTOR down;
SND_FMATRIX mat;
float surround_dis_front;
float surround_dis_back;
float soundspeed;
float vol;

} SND_LISTENER;

All values are initialized by the called function. The structure is not
copied by the function. It has to be kept around as long as the listener is
active.

SND_FVECTOR *pos
Pointer to a vector containing the initial position of the listener.

SND_FVECTOR *dir
Pointer to a vector containing the initial movement direction of the
listener.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 323

SND_FVECTOR *heading
Pointer to a vector containing the initial normalized viewing direction of
the listener.

SND_FVECTOR *up
Pointer to a vector containing the initial normalized up vector of the
listener.

Float front_sur
Distance at which an emitter will only be audible on the front channels.

Float back_sur
Distance at which an emitter will only be audible on the surround
channel.

ULONG flags
Flags contains one or more of the following flags:

SND_LISTENER_DEFAULT
No Doppler effect is calculated. The speed of sound does not need to be
set, anymore. This mode should be chosen if more than one listener is
specified.

SND_LISTENER_DOPPLERFX
Doppler effects are calculated.

Float soundspeed
Defines the speed of sound for use in Doppler effects. It’s specified in
“units” per second, and will depend on the game's world coordinate
system. Float soundspeed must be set to "less than" the speed of sound
(in game world coordinates).

UBYTE vol
Overall volume value to be applied to all emitters that are audible to this
listener.

Output:
None.

 Audio Tools

08/25/99

Appendix 3: 324

SND_UPDATE_LISTENER

void snd_update_listener(SND_LISTENER *li,
SND_FVECTOR *pos, SND_FVECTOR *dir,
SND_FVECTOR *heading, SND_FVECTOR *up, UBYTE vol);

Purpose:
Update a listener structure.

Input:
SND_LISTENER *li
Pointer to a structure containing the current settings of the listener.

SND_FVECTOR *pos
Pointer to a vector containing the new position of the listener.

SND_FVECTOR *dir
Pointer to a vector containing the new movement direction of the listener.

SND_FVECTOR *heading
Pointer to a vector containing the new normalized viewing direction of the
listener.

SND_FVECTOR *up
Pointer to a vector containing the new normalized up vector of the
listener.

UBYTE vol
Overall volume value to be applied to all emitters that are audible to this
listener.

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 325

SND_REMOVE_LISTENER

void snd_remove_listener(SND_LISTENER *li);

Purpose:
Remove a listener structure from the sound systems list. The structure
may be discarded after calling this function.

Input:
SND_LISTENER *li
Pointer to a structure containing the current settings of the listener.

Output:
None.

 Audio Tools

08/25/99

Appendix 3: 326

SND_ADD_EMITTEREX

ULONG add_emitterex(SND_EMITTER *em,
SND_FVECTOR *pos, SND_FVECTOR *dir,
float max_dis, float comp, ULONG flags,
UWORD fxid, UWORD groupid, UBYTE maxvol,
UBYTE minvol);

Purpose:
Add an emitter structure to the list of emitters.

Input:
SND_EMITTER *em
Pointer to a structure defining the parameters of the emitter to be added.

typedef struct _snd_emitter {
struct _snd_emitter *next;
struct _snd_emitter *prev;

ULONG flags;
SND_FVECTOR pos;
SND_FVECTOR dir;
float max_dis;
float maxvol;
float minvol;
float volpush;
ULONG vid;
ULONG group;
UWORD fxid;

UWORD vollevel_cnt;
float fade;

} SND_EMITTER;

All values are initialized by the called function. The structure is not
copied by the function. It has to be kept around as long as the emitter is
active.

SND_FVECTOR *pos
Pointer to a vector containing the initial position of the emitter.

SND_FVECTOR *dir
Pointer to a vector containing the initial movement direction of the
emitter.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 327

float max_dis
Maximum distance at which the emitter will still be audible.

float comp
Normally the volume will be lowered linearly over distance. At times it
may be desirable to keep the volume up for some time and later fade it
down faster. MusyX offers both methods. This value allows fading
between both extremes. A value of zero will use only the linear method.
Higher values will switch more and more toward the “compressed” form.
A value of 1 uses only the “compressed” method.

ULONG flags
The following flags are defined to influence the behavior of the emitter.

SND_EMITTER_DEFAULT
No special features are activated.

SND_EMITTER_CONTINOUS
Update all parameters continuously. If this is not set, the volume,
panning and Doppler values will just be calculated at the start of the
emitter. This may be used to save calculation time with short time SFX.

SND_EMITTER_RESTARTABLE
The SFX handled by the emitter may be restarted after being stopped for
any reason. This can be used to reactivate e.g. an engine hum after an
explosion has interrupted it for a short time.

SND_EMITTER_PAUSABLE
If the emitter is no longer in the audible range it may be stopped. If this
flag is not set, the SFX will remain active although its volume is all the
way down. This costs valuable voices, but may be necessary to run long
term sound effects.

SND_EMITTER_DOPPLERFX
If this flag is set, the emitter will be included into the Doppler effect
calculations of all listeners having Doppler calculations enabled.

SND_EMITTER_HARDSTART
Continuos emitters are by default faded in over a short period of time.
This is done to avoid any popping artifact and similar effects. This flag
disables the default effect. The feature is currently not implemented.

 Audio Tools

08/25/99

Appendix 3: 328

UWORD fxid
ID of the SFX to be used by the emitter.

UWORD groupid
A value used to group emitters together. Emitters that share the same
group are all fighting for the available voices on the basis of their volume
and time being audible. The group ID specified here has nothing to do
with the groups used to store data. It is simply an integer between 0 and
65535 that is chosen by the game application to identify such an emitter
group.

Emitters of different groups just use the normal priority system.

UBYTE maxvol
Volume to be used at maximum audible range.

UBYTE minvol
Volume to be used at the position of the listener.

Output:
The function returns a handle to the SFX started by the emitter. This
value may be SND_ID_ERROR without any failure. Continuous emitters
are not immediately started sometimes.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 329

SND_ADD_EMITTER

ULONG snd_add_emitter(SND_EMITTER *em,
SND_FVECTOR *pos, SND_FVECTOR *dir,
float max_dis, float comp, ULONG flags,
UWORD fxid, UBYTE maxvol, UBYTE minvol);

Purpose:
Add an emitter structure to the list of emitters.

Input:
All parameters are the same as the ones listed for
SND_ADD_EMITTEREX. The groupid parameter of this function is
internally set, so that each SFX forms its own emitter group.

Output:
The function returns a handle to the SFX started by the emitter. This
value may be SND_ID_ERROR without any failure. Sometimes
continuous emitters are not started immediately.

 Audio Tools

08/25/99

Appendix 3: 330

SND_UPDATE_EMITTER

UBYTE snd_update_emitter(SND_EMITTER *em,
SND_FVECTOR *pos, SND_FVECTOR *dir, UBYTE maxvol);

Purpose:
Update an emitter structure.

Input:
SND_EMITTER *em
Pointer to a structure containing the current settings of the emitter.

SND_FVECTOR *pos
Pointer to a vector containing the new position of the emitter.

SND_FVECTOR *dir
Pointer to a vector containing the new movement direction of the emitter.

UBYTE maxvol
Volume to be used at position of listener for this emitter.

Output:
Returns TRUE if successful, FALSE otherwise.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 331

SND_REMOVE_EMITTER

UBYTE snd_remove_emitter(SND_EMITTER *em);

Purpose:
Remove an emitter structure from the sound systems list. The structure
may be discarded after calling this function.

Input:
SND_EMITTER *em
Pointer to a structure containing the current settings of the emitter.

Output:
Returns TRUE if successful, FALSE otherwise.

 Audio Tools

08/25/99

Appendix 3: 332

SND_CHECK_EMITTER

UBYTE snd_check_emitter(SND_EMITTER *em);

Purpose:
Check if the specified emitter is currently active or not.

Input:
SND_EMITTER *em
Pointer to a structure containing the current settings of the emitter.

Output:
Returns TRUE if emitter is active, FALSE otherwise.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 333

SND_EMITTER_FXID

ULONG snd_emitter_fxid(SND_EMITTER *em);

Purpose:
Get the handle of the SFX handled by the emitter specified.

Input:
SND_EMITTER *em
Pointer to a structure containing the current settings of the emitter.

Output:
If the SFX is active, the function will return its handle. If not
SND_ID_ERROR will be returned. Even the latter value may be passed
to all SFX functions without any negative side effects.

 Audio Tools

08/25/99

Appendix 3: 334

Function Section: VoiceLib MORT Interface

VOICE_INIT

void voice_init(ULONG flags);

Purpose:
This function initializes the voice library and MORT. It must be called
once, before any other routines of the library are used. MusyX must be
fully initialized before this function is called.

Input:
ULONG flags
These flags are used to trigger specific behaviors of the voice library.

VOICE_FLAGS_DEFAULT

Default settings are used. Buffers for streaming MORT data will be
allocated at run-time (during the call to voice_start()) and will be freed at
run-time. This, depending on the implementation of the memory
allocation system, may lead to memory fragmentation.

VOICE_FLAGS_PREALLOCATE_BUFFERS

All buffers needed to stream MORT data are allocated during
initialization and stay allocated until the library is shutdown using
voice_exit().

Output:
None.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 335

VOICE_EXIT

void voice_exit(void)

Purpose:
This function exits the voice library and frees all allocated resources.
Voices still active will be stopped.

Input:
None.

Output:
None.

 Audio Tools

08/25/99

Appendix 3: 336

VOICE_SET_DIRECTORY

UBYTE voice_set_directory(void *vdir, void *vdata)

Purpose:
This function tells the voice library where the MORT directory data file
can be found.

Both vdir and vdata can be RAM addresses or ROM offsets. If vdir is a
ROM offset, the function assumes that all data of the MORT directory is
still in ROM. It will use the MusyX DMA services to download the MORT
directory data table, without the actual compressed sample data section,
into an allocated RAM area. (This may take as much as 2 frames, due to
the nature of the MusyX DMA services.) In this configuration the second
parameter is ignored and should be left at NULL.

If vdir specifies a RAM address, it’s assumed that the MORT directory
table is already downloaded into RAM. (It’s always located at the very
beginning of the data and its size is defined using the
MORTDIR_DIRECTORY_LENGTH constant generated by
MORTDIR.EXE.) Whether or not the actual MORT sample data is still in
ROM is determined by examining the second parameter. If vdata
specifies the same RAM location as vdir, it’s assumed that all data is in
RAM. If vdata specifies the “original” ROM offset of the whole MORT
directory file, it’s assumed that the table part has been downloaded to
RAM but the samples are still in ROM.

Both addresses / offsets are passed through the MusyX address
translation hook to enable the user to abstract data location via handles,
if desired.

Input:
void *vdir
Pointer to the logical table part of the MORT directory file.

void *vdata
Pointer to the MORT directory file. (Used only if vdir specifies a RAM
address. Keep it printing to NULL otherwise.)

Output:
The function returns TRUE if successful or FALSE otherwise.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 337

VOICE_START
ULONG voice_start(ULONG dir_index, ULONG frq,
UBYTE prio, UBYTE vol, UBYTE pan, UBYTE span,
UBYTE fxvol)

Purpose:
This function starts a MORT compressed sample on a MusyX voice. The
voice will be registered as an SFX voice. The current implementation
allows two voices to be used simultaneously.

Input:
ULONG dir_index
Index of the MORT sample within the MORT directory file to be played. A
header file containing these indices, in symbolic form, is generated by
MORTDIR.EXE.

ULONG frq
Specifies the frequency to be used to playback the MORT sample. If you
specify VOICE_DEFAULT_FRQ, the frequency stored within the MORT
directory file will be used (only 8 or 16 kHz are supported). Sample rates
above 22KHz may cause clicking artifacts, due to the limited size of the
stream buffers.

UBYTE prio
Priority to be used to allocate the voice into which the data will be
streamed. To “guarantee” a successful allocation, you should specify a
priority of 255. Lower values mean a lower priority.

UBYTE vol
Volume to be used to play the MORT sample. (0-127, 127 = 100%)

UBYTE pan
Panning to be used to play the MORT sample. (0-127, left->right)

UBYTE span
Surround panning to be used to play the MORT sample.
(0-127, front->back)

UBYTE fxvol
FX (or AUX) Volume to be used to play the MORT sample (0-127, 127 =
100%). In the current implementation, this is the “reverb volume”.

 Audio Tools

08/25/99

Appendix 3: 338

Output:
The function returns a 32-bit handle if successful or VOICE_ERROR if
not.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 339

VOICE_STOP

UBYTE voice_stop(ULONG handle)

Purpose:
Stop a MORT sample which is playing.

Input:
ULONG handle
Handle of the MORT sample voice to be stopped.

Output:
Returns TRUE if successful, FALSE otherwise.

 Audio Tools

08/25/99

Appendix 3: 340

VOICE_CHECKACTIVE

UBYTE voice_checkactive(ULONG handle)

Purpose:
This function checks if the specified handle still refers to an active voice.
The voice will be active a couple of frames before and after audio is
audible.

Input:
ULONG handle
Specifies the voice to be checked.

Output:
The function returns TRUE if the voice is active and FALSE otherwise.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 341

VOICE_PARAMETERS

UBYTE voice_parameters(ULONG handle, UBYTE vol,
UBYTE pan, UBYTE span, UBYTE fxvol)

Purpose:
This function changes the mixing parameters for the specified voice.

Input:
ULONG handle
Handle that specifies which voice is to be influenced.

UBYTE vol
New volume to be used.

UBYTE pan
New panning to be used.

UBYTE span
New surround panning to be used.

UBYTE fxvol
New FX (AUX) volume to be used.

Output:
Returns TRUE if the parameters were set successfully, FALSE
otherwise.

 Audio Tools

08/25/99

Appendix 3: 342

VOICE_GET_TIME

float voice_get_time(ULONG handle, float *total_time)

Purpose:
Returns information on both, total playing time and current time into
playback of the MORT sample playing on the specified voice. This
information can be used to synchronize other events to the MORT
sample’s playback (e.g. subtitles).

Input:
ULONG handle
Handle that specifies which voice’s info structure is to be accessed.

float *total_time
Pointer to a float that will receive the total playing time of the MORT
sample active on this voice, in seconds.

Output:
The function returns the current duration of the sample playback on the
specified voice in seconds or zero if not successful.

 N64 Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 343

VOICE_SYNC_IDLE

void voice_sync_idle(void)

Purpose:
Stalls until all activity in the voice library and MORT has ended. No
voices will be stopped explicitly.

Input:
None.

Output:
None.

 Audio Tools

08/25/99

Appendix 3: 344

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 345

APPENDIX 4 – Game Boy
Programmers Reference

Table of Contents:

MusyX’s Basic Architecture.. 347

Performance Impact on the Game Application............................ 348

Memory Impact on the Game Application 349

Requirements for the Game Application.. 350

Linking MusyX Object Files to Your Application 351

APPENDIX 4.1 – Game Boy Data Conversion Tools........................ 353
What is Data Conversion? ... 353
MUCONV.EXE... 354
GM2SONG.EXE .. 359

APPENDIX 4.2 - Function Section ... 360
snd_Init .. 361
snd_Exit... 362
snd_Silence ... 363
snd_Handle ... 364
snd_StartSong ... 365
snd_StopSong ... 366
snd_PauseSong .. 367
snd_ResumeSong ... 368
snd_SongActive... 369
snd_ChangeSongSpeed.. 370
snd_SetSongVolume ... 371
snd_GetStateSize.. 372
snd_SaveState .. 373
snd_RestoreState .. 374
snd_StartSFX .. 375
snd_StopSFX... 376
snd_SetSFXVolume... 377
snd_StartSample ... 378
snd_StopSample ... 379
snd_DoSample .. 380
snd_PlaySample.. 381
snd_CheckFlag.. 382
snd_SetMasterVolume... 383

 Audio Tools

08/25/99

Appendix 4: 346

Appendix 4.3 - Mini-MORT Samples.. 384

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 347

MusyX’s Basic Architecture
In every sound system there is but one central element, the instrument or
sound effect (depending upon whether you are talking music or effects).
MusyX does not really differentiate between the two, so we will use the
general term Sound throughout this manual.

In MusyX a sound actually represents a small, tokenized program that is
executed at run time. This allows the sound designer more control over
the produced sound.

As mentioned before there are two basic types of any kind of sound
reproduction within MusyX. Instruments are used in the context of a
piece of music, called a song. Each song has its own unique ID
associated with it, which identifies the song when the programmer
decides to start it.

Sound effects are also accessed using an automatically generated
unique sound effect ID.

All IDs are hidden behind symbolic names so no changes to the program
are required if an ID has changed.

All data, songs and sounds are collected into one larger project file,
which needs to be included in the application.

 Audio Tools

08/25/99

Appendix 4: 348

Performance Impact on the Game Application

MusyX has been designed to offer a maximum of flexibility, at an
acceptable CPU performance impact.

This impact varies depending on the features the musician utilizes in his
or her small sound programs, since some features are slightly more
complex than others.

It is also a question of whether or not it is possible to use MusyX's built-
in capabilities for sample playback in music. Samples for use in music
come in two flavors, low and normal quality. Their difference is sampling
rate. Low quality samples play back at 1920Hz and normal quality at
8192Hz. To make use of the normal quality, the game application must
not make use of the timer interrupt. This interrupt will be used solely by
MusyX, should you allow for samples of normal quality.

If you cannot spare the timer interrupt, the musician will need to resort to
the low quality samples. These are still good enough for most drums.

You will need to coordinate this issue with the musician beforehand.

Finally, performance is naturally better when you write your game in
dedicated Game Boy Color format, since it offers twice the speed of the
conventional Game Boy.

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 349

Memory Impact on the Game Application

MusyX requires exactly 256 bytes of memory for operation.

There is no requirement concerning placement or alignment, but for
simplicity we have decided to let it take the last 256 bytes ranging from
$df00-$dfff.

This will allow you to get the most out of the internal RAM on Game Boy
Color, since it is permissable to have the RAM area in the bank switching
RAM area of Game Boy Color. Before making any calls to MusyX
however, you will need to make sure that the correct RAM bank has
been selected.

For regular Game Boy applications, the top of RAM is also a good
choice. It normally requires little change in your program, since most
programmers keep their stack there, and this is easily moved from $dfff
to $deff.

 Audio Tools

08/25/99

Appendix 4: 350

Requirements for the Game Application

MusyX assumes that its core routines have been linked into their own
bank at an offset of $4000 (start of the switchable bank).

MusyX assumes that it will be called once from within every vertical
blank interrupt, to process all its handling and updating tasks.

MusyX assumes that all calls to its API are made from within the
vertical blank interrupt, or with interrupts disabled.

To guarantee the best possible timing, you should call the service
function right after any updates to the Video RAM and before any game
logic.

If normal quality samples are used in any song, the game will have to
provide a timer interrupt handler that calls a second service function of
MusyX on every timer interrupt. Also, the game needs to allow for
interrupt nesting to service the timer interrupts immediately, when they
occur. Failure to do so will impact the quality of the samples.

After a timer interrupt, the game cannot assume that the ROM bank is
configured as it was prior to the interrupt. It is the responsibility of the
application to restore its own bank configuration. (This is because
MusyX cannot determine the current bank configurations.)

If normal quality samples are used in any song, the game is not allowed
to switch between single and double speed mode on Game Boy Color.
It will need to select one speed to generally run in and then not switch
back and forth as long as a song or effect is playing. This will render the
HALT instruction inoperable when running in double speed mode, but
there is no alternative. (This is because the timer interrupt is curiously
affected by the CPU speed as well.) Failure to do so will impact the
quality of the samples.

Before calling any MusyX function, the game needs to setup the correct
ROM and RAM banks.

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 351

Linking MusyX Object Files to Your Application

Before you can make use of MusyX in your application, you need to link
the supplied object files to it. The object files are in the ISAS object
format and can be linked only with ISLK (which are used by the official
Nintendo development system for each product).

Since both ISAS and ISLK are a bit inflexible when it comes to assigning
addresses and the link order of modules, we have provided the object file
containing code for Bank 0 in two different versions.

After installing the example from the MusyX package, there will be three
object files.

musyx.o
This contains the main code of the MusyX synthesizer and
sequencer. It needs to be linked into an otherwise empty code
bank. To define the bank and the offset (preferably $4000) for
this module, you enter the following to your linker call:

-G MUSYX=$BBXXXX musyx.o

where B specifies the bank number and XXXX the offset
(i.e., $104000)

musyxb0.o
This file contains service code for MusyX which needs to be
located in the common ROM Bank 0. The group name for this
module is MUSYXB0 and you need to manually assign an ORG
address for it on the command line (see musyx.o). Because this is
not an easy task for Bank 0 we have provided an alternate service
code file.

musyxbank00.o
This is essentially the same as musyxb0.o, but the group name for
this module is BANK00, which we figure is the same name as what
you will be calling your bank 0. Because of this, you do not need to
supply an absolute ORG address for this module on the linker
command line. It will be located somewhere in bank 0 at a yet
unused address.

 Audio Tools

08/25/99

Appendix 4: 352

(Please note that all three object files also exist in a subdirectory named
'CapsOff'. If you are using case-sensitive symbols in your application,
you might want to use the object files in the 'CapsOff' directory.)

The current version of the service module, which you need to link to
bank 0 requires $550 (or 1360 bytes) of free space. If you do not have
enough room in bank 0 to accommodate the service module, we suggest
moving some of your code from bank 0 to another bank.

You will also need to specify a target address for the MUSYX_DATA
group which will contain the actual converted project data. The
MUSYX_DATA group must be assigned the next bank after the MUSYX
group with an offset of $4000. Otherwise, it is very likely that any call to
MusyX will cause a crash.

Here's an example of how to do this.

(We assume that the source code created during the data conversion
process, which includes the binary project data, was called sounddata.s
(and therefore assembled to sounddata.o)).

islk -G MUSYX=$44000 musyx.o -G MUSYX_DATA=$54000
sounddata.o -G MUSYXB0=$03ab0 musyxb0.o

Note that the command line in the above example uses the musyxb0.o
module and assigns the address $3ab0 to it, which is the highest
possible address in bank 0 which will hold the $550 byte long service
module. If you will be using musyxb0.o instead of musyxbank00.o, we
recommend using this technique, as it will relieve you of keeping track of
'the next best' bank 0 address.

Please refer to the supplied sample code for further information.
If you are using OPUS make and MKMF, you can actually use the
supplied make file after you have made the appropriate changes for the
path names at the top of it.

We have also supplied the GNU make utility and a suitable GNU
makefile (invoked by the make.bat batch file).

If you're not using makefiles at all, please refer to the makeme.bat batch
file.

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 353

APPENDIX 4.1 – Game Boy
Data Conversion Tools

What is Data Conversion?

Data conversion, is the process in which the sound project created with
the MusyX editor is processed into a suitable format for the target
machine. This process involves converting the actual MusyX project
itself, all related samples and the MIDI sequences.

There are two different processes of converting the project data,
depending upon whether data is needed for the game application itself,
or as sample data for the sound slave.

Data suitable for implementation into the game application is usually
converted from the MusyX project into the final target format by the
application programmer, since he needs to import this data into the
application.

Sample data to be used as add-on ROM samples for the sound slave,
during creation of the sound, can be created by the musician himself
using a simple GUI driven tool. The data this tool creates needs to be
programmed onto a flash ROM. If you have no access to a Flash ROM
Gang Writer, this will be the only time where the application programmer
might need to be involved, to kindly flash the ROM using his
development system.

To convert a MusyX project into either kind of data, a number of
command line based tools are employed. This also applies to Windows
GUI applications, which will invoke those tools to get the job done.
Naturally, this requires that those tools are installed on your machine by
the installation program (which is the default).

The following pages describe the purpose and use of all tools needed to
produce all necessary data files.

 Audio Tools

08/25/99

Appendix 4: 354

MUCONV.EXE

MUConv is a command line driven tool which will convert a MusyX
project into a final target platform data file. During its conversion process,
MUConv will, in turn, call GM2SONG a number of times to convert the
MIDI sequences into the target format. You need to make sure that
MUConv can locate GM2SONG, otherwise the conversion process will
fail.

The output created by MUConv consists of a number of files, three of
which are to be included in the game application. More on this later.

Command Line Parameters
MUCONV.EXE expects the following command line.

MUCONV [Options] <Export script> <Description>

Export Script:
This is the filename of the export script the musician created from within
the MusyX editor (Menu: Project->Generate scriptfile for export). This file
describes the MusyX project in a manner MUConv can understand.
Actually, you may specify more than one export script here, separated by
spaces. These will be merged together. For Game Boy development
however, we do not suspect that you will ever need to do this.

Description:
This is a file the application programmer has to provide. The contents of
this file list which groups contained in the MusyX project need to be
included in the final data file. It also provides information concerning
where the final data files should be created. See below for details.

Options:
-a
This option tells MUConv to create an include file suitable for assembly
language, rather than C. When Game Boy is specified as the target
platform, this will be the default.

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 355

-b
This option will create a data file suitable for systems using big endian
byte order, rather than little endian (the default). For the Game Boy
platform this option has no effect.

-p <path>
If the tool is not invoked from the project directory itself, you may use this
option to specify a search path for referencing all files from the project.
This may be useful if you specify more than one project to be jointly
converted. This option may be used multiple times, to add a search path
to the search path list.

-t <system>
This option will select the target platform for which to convert the project.
Possible systems are:

N64
Game Boy

-s
This option disables the processing of samples, to speed up the
conversion process, when the samples have not changed.
This option has no effect for Game Boy.

-d
This option will force all samples to be converted to the default format for
the target platform, overriding the musician's specifications.
This option has no effect for Game Boy.

-v
This option enables the verbose mode.

 Audio Tools

08/25/99

Appendix 4: 356

Description File
The description file is a text file containing several sections that tell
MUConv what portions of the MusyX project to include in the target data
file. It also tells MUConv the location and base name of the data files to
create, and what to call the automatically created include file for all
assigned IDs.

A general description file has the following layout.

[Pool]
...
[Samples]
...
[Project]
...
[OutputDirectory]
...
[Name]
...
[Include]
...

Before you can successfully convert a project, you need to fill in the
blanks.

[Pool]
This section lists all group names (case sensitive!), which contribute their
macros to the final project data. List one group per line.

[Samples]
This section lists all group names (case sensitive!), from which
referenced samples will be taken into the final project data. List one
group per line.

[Project]
This section lists all group names (case sensitive!), from which
information about MIDI sequences and MIDI setups are taken into the
final project data. List one group per line here, as well.

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 357

[OutputDirectory]
This section contains only one entry, which is the name of the directory
into which all final data files will be written. The directory must exist in
advance, otherwise MUConv will fail.

[Name]
This section contains only one entry, which is the base name (without
extension) for all final data files in the output directory. All created output
files share the same base name, but different extensions will be
appended, according to the type of data written.

[Include]
This final section specifies the file name (with extension) of the include
file to be written, which will contain all IDs for the songs and sound
effects. For assembly type output, the extension for this name is usually
.i (for C-type output .h).

! For Game Boy projects, you should list the same groups in every
section (see example below).

Description File Example
[Pool]
Songgroup
SFX
[Samples]
Songgroup
SFX
[Project]
Songgroup
SFX
[OutputDirectory]
output
[Name]
GameSound
[Include]
SoundIDs.i

 Audio Tools

08/25/99

Appendix 4: 358

Output Files
After a successful conversion process, MUConv will have created a
number of files in the specified output directory.

Three files will be named according to the base name you specified in
the description file with added suffixes. The include file containing all IDs,
will have been created under the full name you gave in the description
file.

Taking the above example, MUConv will have created the following 4
files.
output\GameSound.pool
output\GameSound.proj
output\GameSound.s
output\SoundIDs.i

.pool files
The data in these files contain all converted samples and MIDI
sequences. It needs to be included in your application, starting in the
ROM bank right after the MusyX sound routine.

.proj files
These files contain converted project data, such as sound macros and
ADSR curves. This file needs to be included in your application, in the
same bank as the MusyX sound routine.

.s files
This file is source code that you can add to your application, to include
both the.pool and .proj files more easily.

include files
This file is source code that contains symbolic names for all sound
effects and songs in the MusyX project. Since the numeric
representation of these are likely to change when changes to the sound
project are made, you should always reference an object by its symbolic
name. This requires that you set up a dependency to this file in all your
application source codes that deal with sound.

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 359

Please refer to the supplied example application, for a detailed
demonstration which illustrates how to include the data files into your
own application.

GM2SONG.EXE

GM2SONG.EXE is a command line based tool, which converts a
MIDI-1 sequencer file into a proprietary file format, used by the runtime
library of MusyX.

Since this tool is invoked by MUCONV.EXE, we will not explain it's
stand-alone usage here.

You need to make sure, however, that GM2SONG.EXE can be found by
MUCONV.EXE. You can ensure this by either placing it in your search
path, or by having it in the same directory that you are in when you start
MUCONV.EXE.

 Audio Tools

08/25/99

Appendix 4: 360

APPENDIX 4.2 - Function Section

The MusyX API consists of several functions that the application can call
to do things like starting/pausing/resuming a song, starting sound effects
and similar services.

The following pages contain a description for every API function,
including what they do, what parameters they expect and what they
return.

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 361

snd_Init

Purpose:
This function needs to be called once, during the initialization phase of
your application. It will setup all internal structures and variables of
MusyX. You must call this function to make sound.

Inputs:
A � Bit 0: Set when running on Game Boy Color. Clear if not.

Bit 7: Set when the flash ROM is for Game Boy Color

Output:
None.

Remarks:
There are two distinctions you need to make before calling this routine.
• Are you currently running on Game Boy Color?
• Is the flash ROM enabling Game Boy Color?

For instance, you could be writing a program that does not require the
Game Boy Color features, at all. In this case you would not have the
CGB compatibility flag set in the ROM registration area, and Game Boy
Color would behave like a conventional Game Boy. So all Game Boy
Color features, such as double speed mode, do not function. But still this
flash ROM can be plugged into Game Boy Color. This needs to be
communicated to MusyX.

So:
A = $81 � Running a Game Boy Color game on Game Boy Color
A = $80 � Running a Game Boy Color game on Game Boy

(not permissable)
A = $01 � Running a conventional game on Game Boy Color
A = $00 � Running a conventional game on Game Boy

 Audio Tools

08/25/99

Appendix 4: 362

snd_Exit

Purpose:
This function immediately stops all sounds and disables MusyX.

Inputs:
None.

Output:
None.

Remarks:
After calling snd_Exit, you will need to call snd_Init again, prior to any
other API call.

See also:
snd_Silence

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 363

snd_Silence

Purpose:
This function will immediately stop all sounds and any active song, but
will leave MusyX in an active state.

Inputs:
None.

Output:
None.

Remarks:

See also:
snd_Exit

 Audio Tools

08/25/99

Appendix 4: 364

snd_Handle

Purpose:
This function needs to be called once every vertical blank interrupt.

Inputs:
None.

Output:
None.

Remarks:
To ensure the best possible timing for samples and songs, call this
function as soon as possible in vertical blank. This assumes that all tasks
you do before calling this function will take approximately the same time,
every interrupt.

You will also need to allow interrupt nesting (see Game Boy
Development Manual, Revision G, "CPU Control Register") right before
calling this function, if you are utilizing normal quality samples.

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 365

snd_StartSong

Purpose:
This function will start song playback.

Inputs:
A � ID of the song to start

Output:
None.

Remarks:
The ID you need to pass to this function was created by MUCONV.exe
when you converted the project. Please use only the symbolic names
assigned by MUCONV, as the numeric values behind them are likely to
change when you convert the project again.

See also:
snd_StopSong, snd_PauseSong, snd_ResumeSong,
snd_ChangeSongSpeed, snd_SetSongVolume

 Audio Tools

08/25/99

Appendix 4: 366

snd_StopSong

Purpose:
This function will stop any song that is currently playing.

Inputs:
None.

Output:
None.

Remarks:
The song is stopped immediately, and cannot be resumed. It will need to
be started again by calling snd_StartSong.

See also:
snd_StartSong, snd_PauseSong, snd_ResumeSong,
snd_ChangeSongSpeed, snd_SetSongVolume

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 367

snd_PauseSong

Purpose:
This function will pause a song that is currently playing. It can be
resumed at a later time, by calling snd_ResumeSong. You can also save
the state of a paused song into a user supplied buffer and play another
song. Then, restore the buffered state and resume the first song (to play
a jingle for instance), by calling the state functions snd_GetStateSize,
snd_SaveState and snd_RestoreState.

Inputs:
None.

Output:
None.

Remarks:

See also:
snd_StartSong, snd_StopSong, snd_ResumeSong,
snd_ChangeSongSpeed, snd_SetSongVolume,
snd_GetStateSize, snd_SaveState and snd_RestoreState

 Audio Tools

08/25/99

Appendix 4: 368

snd_ResumeSong

Purpose:
This function will resume a song that was paused. You can also save the
state of a paused song into a user supplied buffer and play another song.
Then, restore the buffered state and resume the first song (to play a
jingle for instance), by calling the state functions snd_GetStateSize,
snd_SaveState and snd_RestoreState.

Inputs:
None.

Output:
None.

Remarks:

See also:
snd_StartSong, snd_StopSong, snd_PauseSong,
snd_ChangeSongSpeed, snd_SetSongVolume
snd_GetStateSize, snd_SaveState and snd_RestoreState

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 369

snd_SongActive

Purpose:
This function will return whether or not a song is currently playing.
The main use of this function, is to determine the end of a 'one-shot'
song, like a jingle.

Inputs:
None.

Output:
A � 0 = Not playing, 1 = playing
ZF � 0 = Playing, 1 = not playing

Remarks:
The song itself, is certain to be at its end, when this function tells you that
no song is playing. This does not necessarily mean that no further sound
can be heard, since the sound macro has control over the sound. If a
note is fading out, the song will have been finished, and you could
prematurely end the sound synthesis. The musician should make sure
that, in case of a 'one-shot' song, the last note is not a note, but a
dummy program change that allows all notes sufficient time to really fade
out.

See also:
snd_StartSong, snd_StopSong, snd_PauseSong, snd_ResumeSong

 Audio Tools

08/25/99

Appendix 4: 370

snd_ChangeSongSpeed

Purpose:
This function will change the play back speed of the currently playing
song. This can be used for instance, in a game to indicate that time is
running out.

Inputs:
BC � Speed scale factor based on $0100 being 1.0.

 If zero is passed, the song's default speed is restored.

Output:
None.

Remarks:
To speed the song up by 50%, set BC to $0180. To undo the 50% speed
increase, set BC to $00ab (not $0080).
Example:
• current speed = $0100
• snd_ChangeSongSpeed with $0180 yields $0180 as new speed
• snd_ChangeSongSpeed with $0080 would yield $00c0, which is half

of $0180. To get back to $0100, you need to specify
($0100/$0180)<<8, or $00ab for this example.

See also:
snd_StartSong, snd_StopSong, snd_PauseSong,
snd_ResumeSong, snd_SetSongVolume

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 371

snd_SetSongVolume

Purpose:
This function sets a new master volume for the playback of a song.
Sound effects are not affected.

Inputs:
A � New master volume (0-15)

Output:
A � Previous master volume

Remarks:

See also:
snd_StartSong, snd_StopSong, snd_PauseSong,
snd_ResumeSong, snd_ChangeSongSpeed

 Audio Tools

08/25/99

Appendix 4: 372

snd_GetStateSize

Purpose:
This function returns the size of the buffer you need, to provide in calls to
the functions snd_SaveState and snd_RestoreState.

Inputs:
None.

Output:
A � Size, in bytes, of the state buffer

Remarks:
Call this function just once, during the course of your game development.
Once you have determined the size of the buffer for this particular
version of MusyX, you do not need to do it again.

See also:
snd_SaveState, snd_RestoreState

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 373

snd_SaveState

Purpose:
This function will backup the current state of the sequencer, for a paused
song. After the state is secured, you can play another song (i.e., a jingle),
then restore the state and resume the original song.

Inputs:
C � Size of the user state buffer (for verification purposes)
HL � Address of the user state buffer to store the state in

Output:
None.

Remarks:

See also:
snd_GetStateSize, snd_RestoreState

 Audio Tools

08/25/99

Appendix 4: 374

snd_RestoreState

Purpose:
This function will restore a previously buffered sequencer song state.

Inputs:
C � Size of the user state buffer (for verification purposes)
HL � Address of the user state buffer to restore the state from

Output:
None.

Remarks:

See also:
snd_GetStateSize, snd_SaveState

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 375

snd_StartSFX

Purpose:
This function will start a sound effect.

Inputs:
A � ID of the effect to start
B � Volume (0-15, or 255 for default)
C � Position (0=left, 1=center, 2=right)

Output:
A � Active ID, or 0 if effect could not be started

Remarks:
The ID returned by this function, if not zero, is a handle for this sound
effect. You need to keep it for a later call to snd_StopSFX.

See also:
snd_StopSFX, snd_SetSFXVolume

 Audio Tools

08/25/99

Appendix 4: 376

snd_StopSFX

Purpose:
This function will stop a sound effect, previously started by
snd_StartSFX.

Inputs:
A � Active ID returned by snd_StartSFX

Output:
None.

Remarks:
The ID returned by snd_StartSFX, will remain unique, as long as no
other sound effect cancels this one due to a higher priority. In this
particular case the ID you kept will become invalid, and might cancel
another soundeffect that has received this ID assignment, in the
meantime.

For one-shot sound effects, this is not a problem, since you need not
stop them, explicitly. For permanent effects however, this could be an
issue, which is best solved by having the sound designer assign
appropriate priorities to the sound effects, to minimize these
occurrences.

See also:
snd_StartSFX, snd_SetSFXVolume

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 377

snd_SetSFXVolume

Purpose:
This function sets a new master volume for the sound effects.
The volume of a song remains unaffected.

Inputs:
A � New master volume (0-15)

Output:
A � Previous master volume

Remarks:

See also:
snd_StartSFX, snd_StopSFX

 Audio Tools

08/25/99

Appendix 4: 378

snd_StartSample

Purpose:
This function will start the playback of a normal quality sample.

Inputs:
A � ROM bank number of the sample to play back
HL � ROM address of the sample to play back
BC � Length of the sample / 16
DE � Bank0 address of a callback to call when sample ends

Output:
None.

Remarks:
The sample cannot be longer than 1 MByte. This function requires the
availability of the timer interrupt. The sample address needs to be
aligned to 16 byte boundaries.

See also:
snd_StopSample, snd_PlaySample, snd_DoSample

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 379

snd_StopSample

Purpose:
This function will stop a sample being played back.

Inputs:
None.

Output:
None.

Remarks:

See also:
snd_StartSample, snd_PlaySample, snd_DoSample

 Audio Tools

08/25/99

Appendix 4: 380

snd_DoSample

Purpose:
This function needs to be called, when the timer interrupt occurs.

Inputs:
None.

Output:
None.

Remarks:
To insure good quality of the sample, you need to respond to the
occurrence of the timer interrupt the moment it occurs. To do this, you
will need to allow for interrupt nesting. Please refer to the Game Boy
Development Manual, "CPU Control Register" for details.

See also:
snd_StartSample, snd_StopSample, snd_PlaySample

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 381

snd_PlaySample

Purpose:
This function suspends MusyX, stops all sound output, then plays back a
high quality sample using all CPU power. When playback is completed, it
resumes MusyX and your application program.

Inputs:
A � ROM bank number of the sample to play back
HL � ROM address of the sample to play back
BC � Length of the sample / 16
E � Bit mask for the buttons A,B,SELECT and START.

Output:
None.

Remarks:
The bitmask you supply, identifies one or more buttons that can cancel
playback of the sample. This is required, because no interrupts occur
during playback, and your application is suspended, as well.

The sample cannot be longer than 1 MByte.

The sample start address needs to be aligned on a 16 byte boundary.

See also:
snd_StartSample, snd_StopSample, snd_DoSample

 Audio Tools

08/25/99

Appendix 4: 382

snd_CheckFlag

Purpose:
Checks if a user flag, triggered by a sound, is set. This enables limited
signaling capabilities from MusyX to your application program. When a
flag is set, it remains set until this function is called. It's state will be
returned, and the flag will then be cleared.

Inputs:
A � Flag number to test for (0-7)

Output:
A � State of the flag
ZF � State of the flag (zero or not zero)

Remarks:

 Game Boy Programmers Reference

© 1999 Factor 5 LLC 08/25/99

Appendix 4: 383

snd_SetMasterVolume

Purpose:
This function is used to set a new master volume in the final mixing
circuit. It does affect both sound effects and music.

Inputs:
A � New master volume (0-7)

Output:
Previous master volume.

Remarks:
This setting works together with the snd_SetSFXVolume and
snd_SetSongVolume. It acts as a final volume scaler.

See also:
snd_SetSFXVolume, snd_SetSongVolume

 Audio Tools

08/25/99

Appendix 4: 384

Appendix 4.3 - Mini-MORT Samples

The samples you can play back, using the functions 'snd_PlaySample'
and 'snd_StartSample', are "Mini-MORT" samples.

MORT is our proprietary compressed sample format, and the 'Mini'
derivative of it is used for small platforms, like Game Boy.

You can create Mini-MORT samples with the supplied Mini-MORT
editing tools, from 16 bit mono samples in WAV or AIFF format.
The only sampling rate supported by Game Boy is 8192 Hz, so your
input samples should be sampled at this rate. No resampling is done in
the Mini-MORT editor, so converting a sample of a different rate is likely
to yield an undesirable result when played back on the actual Game Boy.

A sample written by the Mini-MORT editor cannot be imported into Game
Boy directly. You will need to remove the header of this file, manually,
when you build your data resources for Game Boy.

This file header, as of version 1 MORT files, is 44 (or $2e) bytes in size.
To verify that the file you are processing is a MORT file, verify the
contents of the first 8 bytes of the header and compare to the values
listed below.

0x00: DB "MORT"
0x04: DW 0
0x06: DW Version (little endian)

To verify that the file is in Mini-MORT format, check the bytes at offset 8
in the header.

0x08: DW 1 (little endian)

If this 16 bit value does not contain the value 1, then this file is not in
Mini-MORT format and therefore cannot be used on Game Boy.

 Slave Reverb Control (N64)

© 1999 Factor 5 LLC 08/25/99

Appendix 5: 385

APPENDIX 5 – Slave Reverb Control (N64)

Table of Contents:

The Reverb Effects Engine (REE) on the N64................................. 387
REE Structure.. 387
Performance Issues... 388
How to Use the Reverb Panel.. 389

 Audio Tools

08/25/99

Appendix 5: 386

 Slave Reverb Control (N64)

© 1999 Factor 5 LLC 08/25/99

Appendix 5: 387

The Reverb Effects Engine (REE) on the N64

REE Structure
The schematic below, is a structural overview of the N64 reverb effects
engine.

The incoming data is written into the delay buffer at the current write
position. Next, up to eight reflections are processed by accumulating the
data from the different offsets in the delay buffer, after scaling the
different reflections with their specific volumes.

The accumulated signal is then mixed into the dry part of the output
signal. At the same time, it is passed through a 4 point FIR filter, scaled
with the feedback volume and added to the input signal, written earlier to
the current delay buffer write position.

 Audio Tools

08/25/99

Appendix 5: 388

Performance Issues
The N64 implementation of REE supports up to eight reflections. When
using the engine, keep in mind that resources on the N64 are limited.
While great care as been taken to keep the performance hit as small as
possible on the implementation side of things, there are some “rules” that
can be used to minimize the impact, by the way the system is used.

• Each reflection produces additional work for the RSP. It’s generally a
good idea to use the smallest possible number of reflections to
achieve a certain effect.

• When reflections are spread out over a wide range of delay times,
this will have a larger impact on the overall performance, than the
same number of reflections within a smaller range.

• Do not set the feedback volume to large values. The REE engine
does not protect you against feedback signal amplitudes that are too
high. These can cause the output signal to be distorted.

• The delay buffer will cost main RAM space. At 22.05 KHz 1000ms of
buffer space will cost about 43 Kbytes of RAM.

• REE will align the specified delay buffer size to the next higher
number of samples that can be divided by 192. So, you may not be
able to specify the exact buffer length you want.

 Slave Reverb Control (N64)

© 1999 Factor 5 LLC 08/25/99

Appendix 5: 389

How to Use the Reverb Panel
The parameters that can be influenced using the reverb control panel,
are directly mapped to the parameters in the reverb schematic from the
last section. This is described in the following paragraphs.

To use the parameters, adjust the values as you see fit and press the
update button. Keep in mind that you will have to do this each time you
change any values, otherwise the old values will still be used. This is true
for all settings, including the enable switch and the selection of different
setup sets.

You may define up to 16 different setup sets at any one time. This limit is
only imposed by the slave program. At runtime, the number of different
settings that can be used is not limited at all by the system. These setup
sets are only introduced to allow the musician and/or SFX designer to
test different REE setups quickly.

 Audio Tools

08/25/99

Appendix 5: 390

The export button will bring up a file selector dialog box, that allows
specifying the name of an ASCII text file that will contain all current
parameters of the reverb panel, for easy access by the programmer.

© 1999 Factor 5 LLC

391

Mini-M.O.R.T.
Advanced Sample Optimize Editor

MINI-M.O.R.T.MINI-M.O.R.T.

08/25/99

392

General Information

© 1999 Factor 5 LLC

393

General Information

What is Mini-M.O.R.T.?
Mini-M.O.R.T. is a subset of the M.O.R.T. sample compression system,
specifically designed for smaller platforms (like Game Boy) that cannot
deal with the required computations of the large M.O.R.T. system.
Mini-M.O.R.T. has also stricter requirements for the input format of
samples, which is based on the limitations of the target platform.
The normal compression ratio is about 4:1. This can be increased to
about 7:1 with manual adjustments.

MINI-M.O.R.T.MINI-M.O.R.T.

08/25/99

394

M.O.R.T. File Formats

Source Sample Format
The Mini-M.O.R.T. editor can load samples in WAV format. Basically any
sample processing software you use to create samples should be able to
write in this format.

However, any sample you wish to encode into a Mini-M.O.R.T. sample
needs to be a 16 bit mono audio file. If it is not in this format, the editor
will refuse to load it.

Samples should have a sample rate of either 1920 Hz or 8192 Hz. The
editor can load samples of any rate, but it bases its mode of operation on
a sample rate of 4000Hz. Any sample below this rate will be treated as
"low" quality, all others as "normal" and "high" quality.

Regardless of the sample rate you load into the editor, Game Boy can
play back only at 1920 Hz and 8192 Hz. It chooses the appropriate
frequency based on the "low" or "normal/high" setting. This means that
samples will not sound correct if they were not sampled in one of the two
supported sampling rates.

MIF (M.O.R.T. Information File)
The MIF File is written by the editor, and contains sample processing
information for the sample you edited. This file is useful if you have
already applied Mini-M.O.R.T. compression information on a sample, but
need to make changes to the original wave file.

Change the Wave File as desired and load it into the Mini-M.O.R.T.
editor. Then press the ‘Reload MIF’-button. If you saved the MIF File the
first time, you will find all your blocks optimized, after you have applied
the MIF-data to the voice-file. For this to work as intended it is a
requirement that you do not change the overall length of your sample
(like changing pitch, cutting sections from it, etc.), or otherwise you will
end up with the information stored in the MIF file at blocks where they do
not belong to.

Blocks, Curves, and Easy Optimize

© 1999 Factor 5 LLC

395

Blocks, Curves and Easy Optimize

General
A Mini-M.O.R.T.-file is divided into blocks of 32 samples each.

The actual voice compression scans each block and compresses it. You
can increase the compression ratio by marking some blocks as ‘Empty’
(visualized as a green block).
If at least two consecutive blocks are marked empty, the Mini-M.O.R.T.
voice compression will disregard these blocks and insert zero-data.

To mark a block ‘empty’, it is necessary that the previous block ends on
zero and the next block starts on zero, to assure a smooth playback. To
achieve this, you can choose from three different curves that are used to
fade the previous block out and the next block in. Remember, these
curved blocks (yellow, orange and pink depending on the applied fading
curve) are not empty and cannot be used to increase the compression
ratio.

The Easy Optimize section will help you find empty blocks and mark
them empty. You can adjust the threshold (1-32767) of this ‘Noise-Gate’-
algorithm. When the Optimize-button is used, the tool will mark all those
blocks whose amplitudes stay within the threshold range as empty.

To manually mark any block as empty you need to click on it with the left
mouse button. If you want to remove this empty mark, select it with the
right mouse button and choose "Free” to restore the original data.

The Mini-M.O.R.T. editor will load samples of any rate, but it bases its
mode of operation (sample quality) at a rate of 4000Hz. Any sample with
a lower rate is considered to be of "low" quality. All other samples will
enable the "normal" and "high" quality settings.

MINI-M.O.R.T.MINI-M.O.R.T.

08/25/99

396

General Functions
Open / Open New

Opens a new .WAV sample for editing. Please examine the previous
table for details on sampling rates.

Save / Save As
Saves the sample file. Because of the non-destructive nature of the Mini-
M.O.R.T. Editor, saving your source sample is not necessary. The
exception to this is when you are in the Mini-M.O.R.T preview mode, and
want to save the generated Mini-M.O.R.T. file as a demonstration.

This will play the entire voice file from the beginning of the file.

This will play the voice file from the current position.

This will stop playback of the voice file.

Original / MORT
With these functions, you can switch between the original voice file and
an encoded Mini-M.O.R.T. file for preview purposes. This shows you the
difference in sound between the Mini-M.O.R.T. file and the original wave
file.

Save MIF
Saves the MIF file (M.O.R.T. Information File).

Do MIF
Applies the MIF data to the voice file. Use this with the "Free All"
command to get an A/B comparison with the original voice file and your
optimizations.

 General Functions

© 1999 Factor 5 LLC

397

Free All
Sets all blocks free, so you can get the original status of the file. Use this
with the ‘Do MIF’ command, to get an A/B compare with the original
voice file and your optimizations.

Reload MIF
Loads the matching MIF file for the opened voice file. This function is not
available if you have not saved a MIF file for this voice file before.

Reload WAV
Reloads the wave file. This is a useful feature that enables you to hear
how your changes to the wave file affect the Mini-M.O.R.T. voice
compression.

Save MORT
Saves your final Mini-M.O.R.T file. After using “Save MORT”, it is not
possible to change anything in the .mort file. It can not be loaded into
the Mini-M.O.R.T. editor again.

About
Shows the copyright Information.

Help
Not implemented.

Exit
Exits the editor.

MINI-M.O.R.T.MINI-M.O.R.T.

08/25/99

398

Statistics

Encode
This will test-encode your file and give you information about the
compressed file size and the compression factor.

The "Noise Filter" checkbox right below the "Encode" button enables a
special noise filter for Game Boy samples. It may or may not increase
the quality of normal and high quality samples.
You should try A/B comparisons of an encoded sample with this filter
turned on and off to see if the current sample sounds better with this filter
enabled.

Comp.Size
Is the file size of the compressed Mini-M.O.R.T. file in bytes.

Comp.Factor
Is the compression ratio, as compared to the original file size.

Filelength
Is the length of the original wave file in samples.

Rate
Sample Rate of the wave file.
NOTE: Either 1920 Hz or 8192 Hz are supported on the Game Boy.

Mode
Shows the amount of channels in the original wave file.
NOTE: Mini-M.O.R.T. only supports MONO files with one channel.

Bits
Shows the resolution of the original wave file.
NOTE: Mini-M.O.R.T. only supports 16 bit files.

 Statistics

© 1999 Factor 5 LLC

399

Position
Shows the start-position of the sample-window in blocks. You change the
start position by scrolling the scrollbar, or setting a block as the new start
position. Selecting the block with the middle mouse-key does this. This is

helpful if you want to check a specific range of a sample with the
Button.

Scalefactor
This is the scaling factor you chose in the view area.

MINI-M.O.R.T.MINI-M.O.R.T.

08/25/99

400

View

1:1 - Full
With these Buttons you select a scalefactor and choose how much you
want to zoom into or out of the Sample.

Redraw
Redraws the contents of the sample-window.

Grid
Switches the Grid on or off.

B-Style
Shows the sample-data in a different display style.

