
§Plt

nMUIW mWI9
Windows 95/98/NT

;
- . ’

v . \ ' v

e Yp ^$11* ’ te.o^ Tv - ‘
v ^ Y v V

"\

pp

H^lslv

~Y I I'fV&S***1̂ V- V?nT '^v V v\‘

Ipg '-A
laiiPiitt
I i ^ fei
(fes® - 8• ^-.y; $:* ^ViJsbsr S4^»i—

PAP'Ppfe-%iJT%p^Mp
n 1 11

1

'
,•v v\N^j\^;^X;sV\Nv

M|l|

iSlS

Audio Tools

for

Nintendo«64 and Game Boy®

©1999 Factor 5 LLC

1

08/25/99

D.C.N. NOA-06-8207-00 1 REV A

“Confidential”

This document contains confidential and

proprietary information of FACTOR 5 LLC and
Nintendo of America Inc. and is also protected

under the copyright laws of the United States and
foreign countries. No part of this document may
be released, distributed, transmitted or

reproduced in any form or by any electronic or

mechanical means, including information storage

and retrieval systems, without permission in

writing from Nintendo.

© 1999 FACTOR 5 LLC

Printed and distributed by Nintendo of America

Inc., August, 1999

MusyX, and Factor5 are registered trademarks of

Factor 5, LLC.

Nintendo, Game Boy, and N64 are registered

trademarks of Nintendo of America Inc.

Dolby is a registered trademark of Dolby

Laboratories, Inc.

08/25/99

2

Introduction

Introduction

Sequenced vs. Streaming

In an age of gigabyte sized multimedia applications, memory is no longer

the limiting factor it once was. Streamed audio has become a de facto

standard for most games and multimedia applications. It seems to

overcome the limited possibilities associated with sequenced sound and,

from the perspective of the musician, it allows studio quality productions to

be used for the first time. There really seems to be no reason why one
should even consider using sequenced sounds instead of digital audio
streams.

The developers of MusyVi. have been working in the games industry since

the 80’s and therefore experienced the shift from sequenced sound to

streamed audio first hand. At first glance streamed audio is tempting, but

there are some major drawbacks.

• Even on CDs, memory is not totally unlimited. 650 MB seems to be a

lot of memory, but even when using ADPCM compressed audio you
cannot get more than 4 hours worth of audio data on a single CD.
Take into consideration that program and graphics data need to be
stored somewhere, too.

• Since a CD is not always the most reliable type of media, huge data

buffers in memory are needed to assure that no breakups in the

audio stream occur.

• Streamed audio can hardly be called truly interactive, since locating

different places on a CD, when looking for specific data, results in

delays.

• Crossfading between multiple pieces of music is almost impossible

without major programming effort.

• Accessing a CD-Drive causes major slowdowns in game applications

on most systems.

• There are still cartridge-based platforms out there, where streaming
audio is not an option.

Since today’s games more and more resemble little movies with a quality

you would expect from big screen films, having fast, interactive sound is

crucial for a smooth, real-time playing experience. The score has to react

to the action when it takes place, without delay.

It therefore does not make much sense to use streamed audio, the
disadvantage of which is obvious: Noticeable delays, when it is supposed
to react instantly to sudden shifts in the action, which disturbs the smooth
progression of the game play.

© 1999 Factor 5 LLC

3
08/25/99

MusyJi Audio Tools

The Advantages of MusyX for Musicians

MusyX is designed to be used like any normal synthesizer during

development. The only difference is that a Windows application is used to

edit all the parameters of the synthesizer.

All the musician needs is a standard keyboard and the sequencer of his

choice. A slave program running either on the same, or a separate

computer, represents the MIDI synthesizer he would normally use, and
emulates the sound of the target system.

MusyX actually gives the musician greater freedom because sounds are

not predetermined and fixed, like in a normal General MIDI synthesizer.

Therefore he can create his own sounds, use his own samples or

rearrange the sounds he wants to use.

MusyX works with

Keymaps and layers to build complex sounds and sound sets

SoundMacros to create truly unique sounds

while a convenient grouping arrangement allows the musician to manage
songs and sound effects effectively.

Sequenced sound does not need to sound sterile or artificial. With MusyX
the musician has the power and necessary control to create vibrant,

original sound with the greatest possible ease.

Screen Credits

All developers who incorporate the MusyX audio system into their game
are required to make their best efforts to display a screen credit on the

opening licensing screen, which states the following.

" MusyX Audio Tools Licensed by Factor 5"

Using Dolby Surround Logo

A developer may become a Dolby Surround Licensee, free of charge. This

grants the right to use the Dolby Surround Logo. To become a Dolby

Surround Licensee, four basic criteria need to be met.

1 The developer must use a Dolby-approved Phase Positioner, such as

MusyX, or other Dolby-approved real-time encoding scheme for

positioning sound effects that are triggered in real-time.

2 If the game includes linear audio, the developer must use a Dolby-

approved Surround facility to encode linear audio.

08/25/99

4

Introduction

3 The developer must sign and complete a Dolby Surround Trademark
Agreement which grants a license to use the Dolby Surround
trademark, subject to these conditions.

4 The developer must send a sample of the finished title at or prior to the

time of release.

For more information on becoming a Surround licensee, please contact

Dolby directly:

Dolby Laboratories, Inc.

100 Potrero Avenue
San Francisco, CA 94103-4813
Tel: (415) 558-0200

Fax: (415) 863-1373

Email: multimedia@dolby.com

© 1 999 Factor 5 LLC

5
08/25/99

Table of Contents

Table of Contents

Introduction 3

Sequenced vs. Streaming 3

The Advantages of MusyX for Musicians 4
Screen Credits 4
Using Dolby Surround Logo 4

Working with Musy^X 1

1

SoundMacros 1

1

Macrolanguage vs. Parameter Setup 12
Layers and Keymaps 12
Groups- Organizing Data 14
Dynamic Voice Allocation 14
Game Applications 1

5

Data Conversion 15

The Installation Process 17
Hardware Setup.. 17

Installing MusyX on Nintendo 64 19
System Requirements for Dual System Setup 21

Installing MusyX on Game Boy 24
System Requirements for Dual System Setup 26
MIDI Loopback Devices 28
Changing General Settings 29
Software Start-up Routine 31

Overview....... 33
How MusyX Works 33

SoundMacros and the SoundMacro Editor...... 35
General 35
Creating a SoundMacro 36
Creating SoundMacros by Using Templates 37
Editing SoundMacros 37
The Command Pool 38
Editing Values 39
Loops and Jumps in SMaL 40
Calling other SoundMacros in SMaL 40

Keymaps and Layers...... 41
General 41
Keymaps 42
Layers 44

©1999 Factors LLC 08/25/99

7

MusyJ,. Audio Tools

The Sound Editor....... 49
What is a Sound? ...49

Defining Sounds and Import/Export 49
The Sound Object Properties Window 51

The Search Window 53

Organizing Data 55
General 55
Managing Groups 59

SongGroups and Their Parameters 60

SFXgroups and Their Parameters 62
Testing Sound Effects 63

Managing the Object Pool 65
Adding Samples 65
The Different Parts of a Project.. 66

How the Structure Relates to the Actual Game Data 67

Transferring Data Between Projects 67

The Project Manager 69
General 69

Project Manager Menus .70

Walk Through 75
General 75
Start the Soundslave 76

Launch the MusyX Editor 76
Creating a New Project. 77

The Project Window..... 79

Adding Samples 80

A Very Simple SoundMacro (SMaL Program) 81

Defining a SongGroup ..83

Playing the Instrument for the First Time 85
Recording a Sequence 86
Looped Midi-files 87

Defining a Sound Effect 88
How to Test a Sound Effect 89
Saving Your Work 89
Finish! 89

Additional Tools 91

The Table Editor 91

Using the Table Editor 91

Using the ADSR Envelope Editor 92

08/25/99

8

Table of Contents

The MIDI Setup Window „. 93
What is the Purpose of this Window? 93
How to Use the Window in Everyday Work 93
The Importance of the Window when Exporting Data 93
Using Multiple MIDI Setups within One SongGroup 94

The Virtual MIDI Keyboard 95
Why a Virtual Keyboard? 95
Using the Keyboard 95
Testing Sound Effects 96
Limitations in Comparison to a Real Keyboard 96

The Network Master Window 97
What can be Controlled Using this Window? 97
What Kind of Information is Displayed? 97

Data Conversion 99
General 99
What the Musician has to do to Prepare the Data 100
The Actual Data Conversion 101

The Description File 103

MusyX Sample Program for N64 106

Appendix 1 - N64 Musicians Reference 107

Appendix 2 - Game Boy Musicians Reference 177

Appendix 3 - N64 Programmers Reference. 255

Appendix 4 - Game Boy Programmers Reference 345

Appendix 5 - Slave Reverb Control (N64) 385

MINI-M.O.R.T391

©1999 Factor 5 LLC 08/25/99

9

Working with MusyX

Working with Musfl€

SoundMacros

The element that makes MusyX so powerful is the SoundMacro.

SoundMacros are basically small and simple programs used to define

both instruments and sound effects within MusyX. SoundMacros are

created using a customized programming language called SMaL (Sound
Macro Language).

Each line of the SoundMacro program constitutes a single MacroStep
command, most of which are executed sequentially and define various

attributes of the sound. Other commands control the flow of the program
and make it possible to create loops or conditional jumps in the program.

Something every musician wants to be able to do is to create full, complex
sounds with minimal effort, which cannot be achieved by using a static set

of parameters. MusyX on the other hand offers a dynamic algorithm and
allows the musician to do just that. SoundMacros offer all necessary
means to gradually influence sounds as they move forward in time.

A great advantage of SMaL programs is their simplicity. It is not necessary
to be a professional programmer in order to design a SMaL program. This

programming language is easy to learn. It is therefore easy to quickly gain

maximum control over the generated sounds.

To make working with MusyX even easier, it comes with library features

like predefined SoundMacro programs. The musician can simply use
these or edit them. With customized instruments defined by using SMaL, it

is easy to make every piece of music sound truly unique.

Sound effects are also created using SoundMacros, allowing complete
control over the effect without having to sample every variation required by
the sound designer.

© 1999 Factor 5 LLC

11

08/25/99

Audio Tools

Macrolanguage vs. Parameter Setup

All synthesizers and samplers use parameters to make modifying sounds

easier, but in a game application the amount of data for the entirety of all

parameters is huge. Since every single parameter needs to be processed,

it would take too much CPU time to work with a parameter setup.

With the macrolanguage in MusyVi, users choose from the beginning only

those features and parameters they need to modify for each individual

sound. This eliminates the need for setting and resetting unused or

unneeded parameters, and gains valuable CPU time because the CPU
does not have to process unnecessary data.

When working with a standard synthesizer, the musician sets specific

parameters at the beginning, and is not able to change them during the

course of the song or sound. With the macrolanguage of Musy%, the user

now has the tool he needs to change the parameters of a sound while it

progresses in time, starting off with one set of parameters and concluding

the sound with a different set.

Layers and Keymaps
In the same context where a Macro is the next larger structure over a

sample, Keymaps and Layers are above Macros.

Their design makes keymaps and layers an important tool for the musician

to organize his data.

In the keymap editor, the musician allocates Macros to keys of the

keyboard, one macro per MIDI key number (1-128). This way he can

reference up to 128 sounds (i.e. Macros) in one keymap. The keys that

are not defined by the user remain empty.

If the user wishes to do so, he can allocate layers or even other keymaps
instead of Macros.

Keymaps are perfect for creating drum sets or other complex
arrangements.

In comparison to a keymap, a layer is more powerful.

In the layer editor, the musician also allocates Macros to keys of the

keyboard. One of the main differences is that he can reference more than

one key per Macro. He can specify whole key ranges, where the same
Macro is supposed to play.

08/25/99

12

Working with MusyX

For the next step, he might now want to specify a key range for a different

Macro, this key range overlapping the previously mentioned one. This

way, whenever one of the keys that are allocated to both Macros at the

same time is played, both Macros will play - at the same time.

The other difference is that the size of a layer varies, whereas the size of a
keymap is fixed by design.

Since the musician can now work with overlapping key ranges when he
uses a layer and is able to play several Macros simultaneously, layers are

the perfect tools for building multi-sample instruments.

© 1999 Factor 5 LLC

13

08/25/99

MusyX Audio Tools

Groups- Organizing Data

Data within the system is stored in either SongGroups or FXGroups,

depending on whether it is used for music or for Sound effects. Both

groups contain references to all objects used in that Group, like Macros,

layers, keymaps, samples, and tables.

Data within the system is stored in either SongGroups or FXGroups,

depending on whether it is a whole song or a sound effect. Both groups

contain references to all instruments used, and to all of the macros,

samples, and other data used to create or edit these instruments.

In addition, SongGroups contain references to arrangements and General

MIDI information, while FXGroups store information related to sound
effects.

Since the amount of memory used for sound tends to be limited, working

with groups is an effective way to manage the data. Depending on the

needs of the game, groups can be moved in or out of memory quickly and
easily.

Dynamic Voice Allocation

In order to be played, instruments and sound effects need to be assigned

a hardware voice. As the amount of voices is limited, MusyX uses an

intelligent mechanism to allocate voices on the basis of priority and age.

The system first searches for free voices and allocates any that are found.

If no free voices are available, the system searches for the voice occupied

by the lowest priority Sound.

If two voices share the same lowest’ priority, allocation is based on age.

MusyK contains an ‘age counter’ that decreases over time to determine

age. The user can control and change both priority and age by assigning a

priority to instruments, or by manipulating the age counter with MacroStep
commands.

New allocations occur only if free voices are available or if the new
instrument has an equal or greater priority than an instrument currently

playing. If neither is the case, the new instrument cannot be allocated.

08/25/99

14

Working with Musy,

Game Applications

For game applications, Aft/sjkX offers a full-blown sound effect API
including all the functions a programmer could possibly want. In a 3D
game, for example, the programmer simply places the sound effect

somewhere in 3D-space and the system takes care of all volume,
panning, or surround sound changes that occur when the listener is

changing his position in the environment of the game. For the

programmer’s convenience a low level API is also included in case he
prefers to handle these higher level tasks on his own.

Data Conversion

With the tools Musy*. provides, the programmer can quickly and easily

transfer the generated data from his PC into the target platform’s specific

format. This gives the musician the ability to truly concentrate on the
creative aspects of his work.

©1999 Factor 5 LLC

15
08/25/99

08/25/99

16

The Installation Process

The Installation Process

Hardware Setup

A Single System Setup is the standard configuration of MusyX.. The
connections must be as follows:

• Connect an external Keyboard’s Midi-out to Midi-in of the computer.

• TCP/IP MUST be installed for the communication between MusyX.
Editor and MIDI-Slave. Although an external network connection is

possible, it is not necessary.

Although a One-Computer setup is the standard configuration, other

configurations are possible. The three tools (MusyHL editor, MIDI Slave

and Sequencer) may run on three separate machines or in any
combination on two machines. In all cases, the following connections must
be maintained:

• Be sure to connect the Sequencer’s Midi-out to Midi-in of the Slave.

(on a single system setup this will require the use of a “MIDI loopback
device’’)

• Connect an external Keyboard’s Midi-out to Midi-in of the Sequencer.
• The Midi-out from the slave is not used and can be left unconnected.

• TCP/IP MUST be installed for the communication between MusyK
Editor and MIDI-Slave.

One Computer Setup:

MASTERKEYBOARDmmmi
MIDI Out

MIDI

MusyX Editor
& Sequencer
& MIDI Slave

©1999 Factor 5 LLC

17
08/25/99

tffJfJI Audio Tools

Two Computer Setup Version A:

MusyX Editor

& Sequencer

MASTERKEYBOARDMm
MIDI Out

MIDI

MIDI In MIDI Out

TCP/IP

MIDI

MIDI Slave

MIDI In

Two Computer Setup Version B:

MASTERKEYBOARD

Sequencer
MusyX Editor

& MIDI Slave

MIDI MIDI

Three Computer Setup:

Sequencer MIDI Slave MusyX Editor

MIDI MIDI TCP/IP

08/25/99

18

The Installation Process

Installing MmpCon Nintendo 64

System Requirements
Windows 95/98 or

Windows NT 4.0 (Slave program requires Windows 95/98)

Pentium MMX 200Mhz (Pentium II 266Mhz or better recommended)
64Mbytes of RAM
800x600 resolution or higher

Winsocket & DirectX 3 or higher installed

16-bit sound card

How to Install the Software

Install all MusyX. components from the CD via the SETUP.EXE program.

Consult the README.TXT file in the target directory of the installation for

the newest updates and changes.

If you want to run your sequencer program on the same machine as the

slave program, you should now install a MIDI loopback device, if you have
not already installed one (See ‘MIDI Loopback Devices’ on page 28, for

details).

The Slave Configuration Too!

Start the slave configuration program, "MusyX Slave Configuration", which
can be found in the MusyX Program folder. This program will let you
configure all aspects of the slave’s behavior.

The default settings assume a single system setup, which is the most
likely configuration. You will need a dual system setup only when running

the editor under Windows NT. So you will probably want to keep the link

configuration the way it is (See ’Installing MusyX on a Dual System
Setup’ on page 21, for details about the dual system setup).

Select the MIDI port you want to use to input MIDI data to the slave (e.g. a

port provided by a MIDI loopback device).

In the sound settings you may select the master mixing frequency to be
used (probably 22050Hz) and the default maximum number of voices

available at one time. The latter can be changed at runtime, too.

© 1999 Factor 5 LLC 08/25/99

19

M vsy.X Aud io Tools

The latency value determines the speed with which the slave program can
react to your keyboard input via MIDI. The lower the number, the shorter

the delay or latency. Since not all systems are reliable enough in respect

to timing to allow for short latencies, you may be forced to use a higher

latency value. If you experience any problems, start this program again

and increase the latency value. (When setting the number of voices keep
in mind that the N64‘s runtime library only supports a maximum of 32
voices, while the slave program supports up to 64 voices.)

Finally you have to decide whether to use 16-bit RAW samples or

compressed samples with the slave. Compressed samples give you the

advantage of a 100% accurate preview of the sound, so you can hear how
it will sound when played on the N64. Compressed samples have been
ADPCM compressed, then decompressed, in order to simulate the

realtime decompression performed by the hardware. On the other hand,

converting the samples will take some initial setup time.

The slave program uses a cache directory on the local hard drive to store

compressed samples for later use. The user can define the size of this

cache by setting the cache size value. We found that the difference in

sound quality between raw (uncompressed) samples and compressed
samples is minimal, and makes it therefore possible to mainly use raw
samples. But we leave this decision up to the individual musician.

Exit the configuration tool by clicking on "Ok“.

You now have finished the single system setup.

08/25/99

20

The Installation Process

System Requirements for Dual System Setup

Master

Windows 95/98 or Windows NT 4.0

Pentium 200Mhz or better

32Mbytes of RAM
800x600 resolution or higher

Winsocket installed

Slave

Windows 95/98 (NT is not supported)

Pentium MMX 200Mhz (Pentium II 266Mhz or better recommended)
32Mbytes of RAM or better

800x600 resolution or higher

Winsocket & DirectX 3 or higher installed

16-bit sound card

Installing Musyton a Dual System Setup

Install all MusyVi components from the CD via the SETUP.EXE program.

Consult the README.TXT file in the target directory of the installation for

the newest updates and changes.

Installing the Slave Program:

Install the MusyX "Musician's Tools" from the CD via the Setup program.
The other items are not required to be installed on the slave PC.

Configuring the Slave:

Start the slave configuration program, "MusyX Slave Configuration", which
can be found in the MusyX Program folder. This program will let you
configure all aspects of the slave’s behavior.

The default settings assume a single system setup. To change to dual

system setup simply tag the "dual system
11

checkbox. Normally it will not

be necessary to deactivate the "automatic IP configuration
11

. If you wish to

do so, you will have to specify the local IP of the slave manually.

Select the MIDI port you want to use to input MIDI data to the slave (e.g. a
port provided by a MIDI loopback device).

©1999 Factor 5 LLC

21

08/25/99

MusyX Audio Tools

In the sound settings you may select the master mixing frequency to be

used (probably 22050Hz) and the default maximum number of voices

available at one time. The latter can be changed at runtime, too.

The latency value determines the speed with which the slave program can

react to your keyboard input via MIDI. The lower the number, the shorter

the delay or latency. Since not all systems are reliable enough in respect

to timing to allow for short latencies, you may be forced to use a higher

latency value. If you experience any problems start this program again

and increase the latency value. (When setting the number of voices keep
in mind that the N64‘s runtime library only supports a maximum of 32
voices, while the slave program supports up to 64 voices.)

Finally you have to decide whether to use 16-bit RAW samples or

compressed samples with the slave. Compressed samples give you the

advantage of a 100% accurate preview of the sound, so you can hear how
it will sound when played on the N64. Compressed samples have been
ADPCM compressed, then decompressed, in order to simulate the

realtime decompression performed by the hardware. On the other hand,

converting the samples will take some initial setup time.

The slave program uses a cache directory on the local hard drive to store

compressed samples for later use. The user can define the size of this

cache by setting the cache size value. We found that the difference in

sound quality between raw (uncompressed) samples and compressed
samples is minimal, and makes it therefore possible to mainly use raw
samples. But we leave this decision up to the individual musician.

Exit the configuration tool by clicking on "Ok“.

08/25/99

22

The Installation Process

Configuring the Aft/fjkX Editor:

Start the MusyK editor program and select "environment" from the

"options'
1

pull down menu. In the dialog box which appears, select the

"network" panel.

Options

General
J

;Appearance- 1 Background ; jlfetwork

New Slave:
—

The TCP/IP - Protocol is used. Please insert the IP-Addtess of the soundslave

lag. 100.1 00.1 00. 100) and a valid port *Nch must be the ant a defined L>>

the slave!

ml

|P-Address:

Port:

127 . 0 . 0.1

11024

Enable V/rri Lachelrn ea:e per nuance]

QK. Cancel

The default configuration assumes a single system setup. Replace the

127.0.0.1 with the IP address of the system running the slave program.

Make sure that the port is set to the same port as in the slave

configuration program. (By default, they are both 1024.)

Exit the dialog by clicking on "Ok“.

You now have finished the dual system setup.

©1999 Factor 5 LLC

23
08/25/99

Mu$yX Audio Tools

Installing MusyH on Game Boy
System Requirements

Windows 95/98 or

Windows NT 4.0 (Slave program requires Windows 95/98)

Pentium MMX 200Mhz (Pentium II 266Mhz or better recommended)
64Mbytes of RAM
800x600 resolution or higher

Winsocket & DirectX 3 or higher installed

16-bit sound card

How to Install the Software

Install all MusyK components from the CD via the SETUP.EXE program.

Consult the README.TXT file in the target directory of the installation for

the newest updates and changes.

If you want to run your sequencer program on the same machine as the

slave program, you should now install a MIDI loopback device, if you have
not already installed one (See ‘MIDI Loopback Devices’ on page 28, for

details).

Windows 95/98 and Windows NT4.0:

Connect your Game Boy Color with the supplied custom link cable to any
unused parallel port of your PC. Configure the slave to use a loopback

device.

Windows 95/98 ONLY:
Configure Musy& to use this parallel port (you need to know the port

address of the parallel port you wish to use) using the Game Boy Data

Link section of the Game Boy slave configuration.

Windows NT4.0 ONLY:
After installing all MusyX. components onto your PC hard drive, you will

find a folder "Windows NT Driver" in your installation directory. Contained

therein is a device driver for Windows NT to allow access to the parallel

port.

Copy the file GAMEBOY.SYS into the Windows NT system folder

"system32\drivers".

08/25/99

24

The Installation Process

To setup the driver for the port address of the parallel port you wish to

use, double-click on one of the provided registry key files. Typical

addresses are 0x3bc, 0x378 and 0x278. If you are unsure about which
port address to use please contact your system administrator.

Next open the system control panel and double-click on "Devices". Locate

the "parport" device and select it. Click on the "Startup" button and select

"Disabled" from the list of startup options.

Close the control panel and reboot your machine.

Open the "Devices" control panel once more and verify that the new
device "Gameboy" has a "started" status and an "automatic" startup state.

If the startup state does not state "automatic" change it using the startup

options as described above. If the service is not yet started, select it and
press the "Start" button. If for some reason the device fails to start please

contact your system administrator.

Configuring the Slave

Start the slave configuration program, "MusyX Game Boy Slave

Configuration", which can be found in the program menu under the MusyX
Game Boy folder. This program will let you configure all aspects of the

slave’s behavior.

The default settings assume a single system setup, which is the most
likely configuration. So you will probably want to keep the link

configuration the way it is (See ’Installing MusyX. on a Dual System
Setup’ on page 26, for details about the dual system setup).

Select the MIDI port you want to use to input MIDI data to the slave (e.g. a

port provided by a MIDI loopback device).

Configure the parallel port that Mu$yX will use to communicate with Game
Boy, by entering the parallel port address in the Game Boy Data Link

section.

Exit the configuration tool by clicking on "Ok“.

You now have finished the single system setup.

©1999 Factor 5 LLC 08/25/99

25

hAusyA Audio Tools

System Requirements for Dual System Setup

Master
Windows 95/98 or Windows NT 4.0

Pentium 200Mhz or better

32Mbytes of RAM
800x600 resolution or higher

Winsocket installed

Slave

Windows 95/98 or Windows NT 4.0

Pentium MMX 200Mhz (Pentium II 266Mhz or better recommended)
32Mbytes of RAM or better

800x600 resolution or higher

Winsocket & DirectX 3 or higher installed

Installing MusyKon a Dual System Setup

Install all Mus/X. components from the CD via the SETUP.EXE program.

Consult the README.TXT file in the target directory of the installation for

the newest updates and changes.

Installing the Slave Program:

Install the Afa/syX. "Musician's Tools" from the CD via the Setup program.

The other items are not required to be installed on the slave PC.

Configuring the Slave:

Start the slave configuration program, "MusyX Game Boy Slave

Configuration", which can be found in the program menu under the MusyX
Game Boy folder. This program will let you configure all aspects of the

slave’s behavior.

The default settings assume a single system setup. To change to dual

system setup simply tag the "dual system" checkbox. Normally it will not

be necessary to deactivate the "automatic IP configuration". If you wish to

do so, you will have to specify the local IP of the slave manually.

Select the MIDI port you want to use to input MIDI data to the slave (e.g. a

port provided by a MIDI loopback device).

08/25/99

26

The Installation Process

Configure the parallel port that MusyX will use to communicate with Game
Boy, by entering the parallel port address in the Game Boy Data Link

section.

Exit the configuration tool by clicking on "Ok“.

Configuring the Musy& Editor

Start the Mi/syK. editor program and select "environment
1

' from the

"options" pull down menu. In the dialog box which appears, select the

"network" panel.

(Options Oil

Menerat
j

Ap earanc 8 ground Netwc

;

i New Slave:
'

'

j

I
The TCP/IP - Pn: • j -> i. Please in er li

1
1! Add e o tb ou idslav

! fe.g. 1 00.1 00.1 00.1 00) and a valid port, which must ha the same as defined by •

j
the slave!

;
IP-Addie-js: 127.0.0.1 !;.

: Port 1024

:: rrrzrrr: :rrLT=: rrrrv ri:r:::r=£Sr
-

r Enable Write-Cache (increase performance!

OK Cancel \1

The default configuration assumes a single system setup. Replace the

127.0.0.1 with the IP address of the system running the slave program.
Make sure that the port is set to the same port as in the slave

configuration program. (By default, they are both 1024.)

Exit the dialog by clicking on "Ok“.

You now have finished the dual system setup.

© 1999 Factor 5 LLC

27
08/25/99

Mmyy,. Audio Tools

MIDI Loopback Devices

Since it is not possible to loopback MIDI data within the system by default

when using Windows, MIDI programmers and users devised a way to

make this possible. So-called “MIDI loopback devices” are available on the

internet (e.g. “Hubi’s MIDI loopback device” [Freeware]). Your MusyX. CD
contains a version of this MIDI loopback device, for N64 in the directory

called "MusyX\Gifts", and for Game Boy in a directory called "MusyXWIIDI

loopback device".

These devices interact with the system like hardware MIDI ports and are

capable of routing MIDI data, eliminating the need for a real hardware

MIDI port, when data is looped back internally.

In the context of AfwsyXthis will let you run the slave program, the editor,

and your sequencer program on one system with only one sound card,

where normally you would need two soundcards to setup a hardware-

based MIDI loopback.

Follow the directions in the file, MIDLPBK.TXT, under FILD_25.ZIP, to

install the MIDI loopback device.

To run the MIDI loopback device, run the FIWMDCABLE.EXE. You can
also make a shortcut to this program, to make it easier to start it.

The MIDI loopback program will add a program to the Windows task bar.

To configure it for use with Musy%, right click the program on the task bar.

Then select LB1 for the input device and LB1 for the output device.

Note: Make sure that your sequencer program uses LB1 for its MIDI

output device. Also make sure that LB1 is configured in the

Windows Multimedia Properties panel.

08/25/99

28

The Installation Process

Changing General Settings

Start the MusjM. editor program and select "environment" from the

"options" pull down menu. Select the "general" panel in the dialog which
appears.

This menu allows you to define external utilities and to choose your
favorite WAV and AIF Editor. "Soundforge" is one possibility for a sample
editor for use with MusyX, though any WAV and AIF editor can be used.

(Soundforge is a professional Sample editing software and not included in

the package). The third selection under External Utilities lets you add
WinRAR as an archive. "WinRAR" provides an easy way to make backups
of your projects; Mus^, supports the WinRAR Archiver directly from within

the program (WinRAR is Shareware and not included in the package).

The ‘General’ screen contains two switches for the SoundMacro editor:

“Show comments” This enables/disables the comments under the

value fields.

“Show object names” This enables/disables the names shown with the

Object Ids.

You will also find a switch for enabling/disabling the confirmation requester
after closing internal editors.

©1999 Factor 5 LLC 08/25/99

29

Audio Tools

To customize the appearance of the Editor environment you can choose
your own icons and wallpaper. To do so, use the "Appearance" and
"Background" tabs in the Options screen.

The "Network" tab allows you to set the IP address of the slave and the

port to be used.

08/25/99

30

The Installation Process

Software Start-up Routine

Now that your system is properly configured, perform system start-up in

accordance with the appropriate paragraphs below.

N64 Start-up Routine

If this is the first time that you have run MusyX, you will find it helpful to

refer to the "Walk Through" on page 69.

Start "MusyX Slave" and "MusyX Editor" from your PC.

Then, start your external sequencer program.

Game Boy Start-up Routine

Burn a copy of "Slave ROM" onto a flash ROM. This can be found on the

CD under "MusyX_GB\Slaverom\gbc_slave.com".

Plug the flash ROM into your Game Boy and turn on the Game Boy's

power switch.

From your PC, start "MusyX Game Boy Slave". Please refer to the

Musician's Reference, Appendix 2.

Start "MusyX Editor".

Then, start your external sequencer program.

©1999 Factor 5 LLC

31

08/25/99

Overview

Overview

How Musy* Works

The purpose of Musy& is to produce sound. Both musical instruments and
sound effects are based upon what is simply called a sound.

The composition of a sound within MusyK.

SOUND

A sound in itself is made up of a group of underlying data structures. A
sound can be constructed from these data structures in different ways
using three different tools.

Every sound must contain at least one SoundMacro. A SoundMacro is

nothing more than a very simple and easy-to-understand program that

defines what is being done to produce a sound over time. The
programming language used in a SoundMacro is called SMaL (Sound
Macro Language).

Another way of looking at the mechanism of a SoundMacro would be to

consider a sound as being made up of a number of events that take place

on a time line. Encoded in SMaL, the actions needed to define this sound
are listed in the SoundMacro.

©1999 Factor 5 LLC 08/25/99

33

KSJ?M Audio Tools

Every sound contains at least one SoundMacro, though it could very well

contain more than one. Some sounds only need one sample at a time, but

every MIDI key has to be occupied by a different sample.

More complex sounds may demand the use of more than one sample at

any one given time. To organize multiple SoundMacros running within one
sound, MmfA offers two data structures: Keymaps and Layers.

08/25/99

34

SoundMacros and the SoundMacro Editor

SoundMacros and the SoundMacro Editor

General

SoundMacros are simple, straightforward ‘programs’ that are used to

define sounds. A very simplistic SoundMacro, on a sample-based system
like the Nintendo 64, might say something like this (not formulated using

the SMaL programming language, but in simple English):

1

.

)
Use a specified ADSR

2.

)
Start a specified sample

3.

)
End

SoundMacros do far more than simply start samples or oscillators.

SoundMacros have the ability to reference data, and thereby, to bind that

data to the sound. This example references data defining an ADSR and a
sample.

In addition, a SoundMacro does not necessarily need to start sound
reproduction immediately. As mentioned above, starting a sound with a

SoundMacro could simply reserve a voice.

The SoundMacro may do a number of things before any sample or

oscillator is started, e.g. create a set waiting period among other things.

© 1999 Factor 5 LLC

35
08/25/99

M-usyJ, Audio Tools

Creating a SoundMacro
To be able to use the full potential of SoundMacros, it is helpful to

understand the basics of how the Sound routine really handles a “sound".

If a new note is received via MIDI, a logic routine searches for a free voice

and starts a SoundMacro (some lower performance systems, such as

Game Boy, may use a fixed voice allocation scheme instead).

A SoundMacro is a small program made up of special commands
comparable to a very simple form of the BASIC language. SoundMacros
can be quickly and easily programmed from scratch, but you may also use
and enhance existing SoundMacros either by template or by library

functions.

To create a new SoundMacro, select the folder “SoundMacros” of the

Object-pool. Then double-click inside the view area of the project window
or use the “new” entry from the pop-up menu [click right mousebutton]. Be
sure not to double-click on the name of an existing SoundMacro, because
this would open the SMaL-editor.

It is also possible to transfer a SoundMacro from one project to another.

Both the source and destination Projects must be opened. Then drag the

desired SoundMacro from the source Project to the target Project and
drop it into the “SoundMacros” folder. All dependent Objects will then be

copied to the new Project automatically.

08/25/99

36

SoundMacros and the SoundMacro Editor

Creating SoundMacros by Using Templates

The easiest way to create SoundMacros is by using one of the templates

from the pop-up menu inside the sample-pool. Simply select a Sample,
click [right mousebutton] and select “Templates - Generate SoundMacro"
from the popup menu.

Editing SoundMacros

1 SoundmacioeditorB 79. Cello.mxin

4 @1 ADDPRIOCNT

j

5 -J WAIT M

• 6 _jEM0

jStep: 0

| ;F H jHlBll||!Bil1 HI r~~l
lliSHHI ...

s1i Jo
1

•el ;calf . Offset

~|0 n P~ IP? 1 II jWMmmmt. § 1111111wmm layoff Bandar
. Mife

. M -m _J 1 Jl II
|| rznr~i
||

^1 1

1

li no®.B§ 1KI • , ole srid Mlsec;

"11
II

' m
SoundMacros are built by combining MacroStep commands into a SMaL
program. All SoundMacro commands are available in and defined by a

plain-text Macro definition file. The MacroStep commands are different for

each different target platform, and there is a separate Macro Definition File

for each platform.

©1999 Factor 5 LLC

37
08/25/99

Audio Tools

The Command Pool

To spare the programmer the effort of typing

in each MacroStep Command, MusyX comes
with a graphical interface for the creation of

SoundMacros.

The Command Pool Window contains all

MacroStep commands that are available for a

particular platform. To easily create a

SoundMacro, drag these commands from the

Command Pool and drop them into the

SoundMacro Editor.

A new command dropped on top of another

will be inserted before the existing command.
To delete a command, select it with either the

cursor keys or the mouse and press “Delete”

on your computer keyboard. A dialog box will

ask you to confirm the deletion (this can be

turned off in the Options screen).

All SMaL programs must finish with the “END”
command. This command cannot be moved
to a different place in the program or deleted.

A complete listing of MacroStep commands
and their features can be found in the

Musicians Reference, along with a selection

of "sample" SoundMacros.

^1112553 -Inlxl

|

- STRUCTURE

W STOP

£ SPLIT KEY
'

. SPLITVEL

:
; : WAIT_TIlKS

1
i

: lif LOOP

: :
:

' GOTO
h t WAIT_MS

| : j fH PLAYMACRO

1

;

:

• G SEND! EYOFF

1 • i SPUTMOD
SPLITRND

j

, v TRAP_KEY0FF

1 h-t & UNTRAP_KEY0FF

J, IF_EQUAL

. IF_LESS

g «#• SA MPLE

: fm START SAMPLE

| i
STOPSAMPLE

- ^ VOLUME
|

1 | / SETAD SR

1 i 1* SCALEVOLUME

t-'i ENVELOPE

1
.* FADE-IN

- PITCH

? PORT LAST
]

J RNDNOTE

, J ADDNOTE

: 1 SETNOTE

-] LAST NOTE

J VIBRATO

J PITCHSV/EEP1

: i PITCHSWEEP2

j

SETPITCH

08/25/99

38

SoundMacros and the SoundMacro Editor

Editing Values

Most MacroStep commands contain parameters. These parameters can
be divided into three different groups: Numerical, Switch, and Reference.

All parameters can be selected for editing with either the cursor keys or

the mouse.

To adjust numerical parameters, select a parameter box and type over the

value. The value is updated the moment the parameter is de-selected. De-
selecting a parameter by using the “Enter” key on the computer keyboard
allows value updates while leaving the cursor on the parameter, making it

easier to quickly re-edit the parameter.

Numerical parameters can also be entered as a hexadecimal value if a “$”

is typed before the number. After pressing “enter” the value will be saved
and displayed as a decimal number again.

Switch parameters contains only two settings: On and Off. To toggle these
either double-click or use the return key.

Reference parameters are similar to numerical parameters except that the

numbers here represent ID’s instead of values. Each ID references

another piece of data within the system, like a sample or a table. The
visual difference between IDs and values is that the name of the

referenced object is shown behind the number.

Parameters can also be increased or decreased using the +/- keys (Switch

values will change between on and off).

©1999 Factor 5 LLC

39
08/25/99

MuSyJi Audio Tools

Loops and Jumps in SIVlaL

With some commands you can build loops and jumps, either conditional or

unconditional. For more details refer to the Macro command-reference.

While jumps to illegal locations will be detected by the slave program and

cause the macro program to be stopped, the runtime libraries do NOT
perform such tests. So you have to be careful when using jumps.

Calling other SoundMacros in SIVlaL

It is possible to call other SoundMacros from a running SoundMacro. This

can be helpful to define subroutine SMaL-programs or to further structure

your work.

For more details refer to the Macro command-reference.

08/25/99

40

Keymaps and Layers

Keymaps and Layers

General

Musy& provides two structures to allow the building of even more complex
sounds, keymaps and layers.

Keymaps and layers allow you to start or reference SoundMacros, as well

as other keymaps and layers, depending on which key is being

depressed/received via MIDI.

Because of the performance of the Game Boy / Game Boy Color,

keymaps and layers are NOT supported on this system.

©1999 Factor 5 LLC

41
08/25/99

MiMyX Audio Tools

Keymaps
A keymap is basically a large table containing an entry for each of the 128

MIDI keys that exist in the MIDI standard. When a specific key is used,

MusyX looks at the entry belonging to the current key and starts the

specified SoundMacro or Layer. In addition, other parameters like panning

offsets, volume and so on can be specified for each entry.

A keymap can be used to build a simple multi-sample instrument or to

design a drum set.

Parameters

Keynum, Key Rather than a real parameter, this information describes

which key number this entry belongs to. The GM-
instrument usually mapped here is displayed as a

reference.

ID The ID of the object assigned to this key. It can be a

macro, keymap or layer.

Name The name of the object assigned to this key.

Transp Transposes the sound from a single key up or down in

one-note steps.

Pan Panning-Offset - adjusts the pan position of the sound
relative to the one of the keymap.

Srrnd If this is not zero, the sound on this key will be played

through the surround-channel.

PrioOfs Priority Offset - adjusts the priorities of the sounds from

the keymap. This value is added to the priority which is

used to “start” this keymap.

08/25/99

42

Keymaps and Layers

Create a Mew Keymap
To create a new keymap, select the "keymap" folder from the Object-pool.

Then go to the right side of the project window and double-click in an area

without text, or press the right mouse button, and select "new" from the

resulting pop-up menu. Don't double-click on an existing keymap (in the

list), because you will edit that keymap, instead.

A keymap may be transferred from one project to another by dragging it

from one project into the keymaps folder of the current project. Ali

dependent objects will be copied automatically. The keymap is ready to

use in the new project.

©1999 Factor 5 LLC

43
08/25/99

AlitJSyJC Audio Tools

Layers

This structure is even more flexible. The length of a layer is flexible and, in

contrast to a keymap, an entry here is not necessarily linked to a single

key but rather to a key range. These ranges may even overlap between
different layers.

When a key is being played, MusyX. checks all entries in a layer and

simultaneously starts all SoundMacros in the entries whose ranges

contain the current key in their keyrange.

Since it is possible to let the Macros used for specific key ranges overlap,

layers allow the musician to build a more elaborate multi-sample

instrument.

Layers can cause multiple Objects to be started simultaneously. It can

also be useful for non-drum mappings of Objects to zones on the

keyboard. You can reference SoundMacros or Keymaps here.

Layers Can be Used to:

• Make stacks of 2 or more sounds

• Create stereo sounds
• Map sounds to zones of the keyboard

X Lay er Editor — 14. S IringE nsemble2 mxl HB S21 1

i m Object!D Key Lo
[91 PrioOfs

lilllll
|23Hj§ SlrBass.mxm 0 m m 0

-x. 73 Cello_Afco.mxrn 43 37 0 118 83 0 0

2 74 U ItraS tring_Arco. mxrn PjO 68 0 90 64 o 0

3 Viola_Afco.mxm 69 78 0 127 60 0 0

4 Violin_Aico.rrixrn 79 127 0 127 30 0 0

The example layer above, “StringEnsemble2.mxl”, would be presented on
the keyrange like this:

1 Cl (24) C2 (36) C3 (48) C4 (68) C5 (72) cs 1

1 + + + + 4 1

-
T 1 IT Strips*

i i i i I i i i i

uni m in iin
\-

a

ICello„Arco

i i I I I TT" iT T 1

VioisjArcoi
' X

I it . 1 1 i

i I I I II

08/25/99

44

Keymaps and Layers

Parameters

ObjectID

Name

KeyLo

KeyHi

Transp

Vol

Pan

Srrnd

PrioOfs

The objectID from the object on this key. It can be a Macro,

keymap or layer.

The name of the object from this key.

Specifies the lowest key of this range.

Specifies the highest key of this range.

Transposes the sound from this range in one-note steps up or

down.

Volume setting defines volumes of instruments and sounds
relative to the volume of the Layer.

Panning-Offset adjusts the panorama position of a sound
relative to the one of the layer.

If this is not 0, the sound on this key will be played through the

surround-channel.

Priority Offset adjusts the priorities of the sounds from the layer

among each other. This value is added to the priority which is

used to “start” this Layer.

© 1999 Factor 5 LLC

45
08/25/99

Audio Tools

Create a New Layer

To create a new Layer, first select the “Layers” folder of the Object-pool.

S' GM-Set.mxp Hii
pj ©i Groups Name 1 ObiectlD I Reterence-TInto. i

: if GM_Set ©|Alto_Sax.rnxl 16 Ml 48, Ml 46, Ml 47

ini Object Pool Q1 Atmosphere, mxl 41 M 231, M 232

I- §B Sounds ©] BagPipe. mxl 47 M265, M266, M267
- ©3 Laver*

©| Bandneori.rnxl 29 Ml 76, Ml 34
~jJ;j

;
_j 1 eym%

Q| Baritone Sax.mxl 17 Ml 45. Ml 46, Ml 43

©o Soundmacros 1

0] Bass&Lead.mxl 37 M210.M155
:• 111 Tables

S-Ga Samples
\

B1 BassoonDboe.mxl

01 BowedG lass, mxl

:

39

45

M222.M223

M259, M258, M2G0

fil ChifferLead.mxl
:
30 Ml 26, Ml 27, Ml 28. Ml 28, h

SI Choir,mxl ; 6 Ml 02, Ml 05, Ml 06

QI Clarinet. mxl 42 M 250, M 251, M 249

QI Cristal.mxl 40 M230, M229

Q| DistortionGuitar. mxl 35 M21 4, M215 M216

©| Dulcimer mxl 21 Ml 73 Ml 74

©1 Echoes mxl 52 M 278. M279 T
.|:

4
j J ,±Li-j

Then go to the right side of the project window and double-click in an area

without text, or press the right mouse button, and select "new" from the

resulting pop-up menu.

GM-Set.mxp

,_j Groups

- -|>1 GM_Set

Object Pool

_J Sounds

‘-Si ii-ayerL

t jH Keyrnaps

i±i E3 Soundmacros

: in!! Tables

+ _j Samples

Name

in
Sax.mxl

©I Atmosphere, nrixl

Q1 BagPipe. rnxl

SlBandneon.rnxI

Q| Baritone Sax.mxl

~

'1 B -i ' Lead.mxl^ D assoonObne.rnxl

owedGlass rnxl

©1 ChitierLead.roxI

©1 Choir rnxl

©1 Clarinet rnxl

©1 brutal rnxl

©1 DistortionGuitar rnxl

-©'I Dulcimer rnxf

©I Echoes rnxl

1G Ml 48, Ml 46, Ml 47

41 M 231, M 232

47 M265, M266, M267

23
;

Ml 76, Ml 94

17 Ml 45, Ml 46, Ml 49

37 M 210, Ml 55

39 M222 M 223

46 M 359, M 258, M260
yiew

| Ml 27 Ml 28, Ml 29, t.-

. Ml 05. Ml 06

, M251 . M243

40 : M230.M229

35 M214. M215, M216

21 Ml 73, Ml?

4

52
,
M278.M279

Don't double-click on an existing layer (in the list), because you will edit

that layer, instead.

08/25/99

46

Keymaps and Layers

Importing a Layer from another project is also possible. Both the source

and the destination Project must be opened. Then simply drag the desired

Layer from the source Project to the target Project and drop it on the

“Layers” folder. Ail dependent Objects will be copied to the new Project

too. The layer is ready to use in the new Project.

© 1999 Factor 5 LLC

47
08/25/99

The Sound Editor

The Sound Editor

What is a Sound?

In MusyX, a sound is used to define an instrument.

Since an Instrument can consist of different Objects like Keymaps, Layers

or SoundMacros, the Sound definition can be used to define the parental

Object.

Once defined, Sounds can also be exported to a single file, including all

dependent objects. Exported Sounds can easily be imported into other

Projects.

Defining Sounds and Import/Export

To create a new Sound, first select the “Sounds” folder of the Object-pool.

Then go to the right side of the project window and double-click in an area
without text, or press the right mouse button, and select "new" from the

resulting pop-up menu. Don't double-click on an existing sound (in the list),

because you will edit that sound, instead.

©1999 Factor 5 LLC

49
08/25/99

MusyX Audio Tools

This Object can then be easily exported to a single file including all

dependent Objects (also Samples).

To import a Sound Export File select the “Sounds” folder and choose

“Import” from the pop-up menu [right mousebutton] inside the view area.

Transferring a Sound from another project is also possible. Both the

source and the destination Project must be opened. Then simply drag the

desired Sound from the source Project to the target Project and drop it on

the “Sounds” folder. All dependent Objects will be copied to the new
Project, too.

08/25/99

50

The Sound Editor

The Sound Object Properties Window

After creating a Sound object you can view the object properties window.
Here you can give the new Sound a name and edit some additional

information. This information includes the author's name, comments and
some attributes to describe the Sound. These definitions do not change
the sound, they are only used to categorize a sound object.

These properties are not only available for Sounds, but for all objects

(Layers, Keymaps, Soundmacros, Tables and Samples). In combination
with the search objects window, this can be used to search for a specific

sound in a large project.

©1999 Factor 5 LLC 08/25/99

51

A description of the fields and buttons is included below.

Name
ObjectID

"Find new"

Comment
Author

Audio compression

Category

Sub category

Sound
Pitch

Duration

"Copy"

"Copy recursive"

Change the name of the object

Change the ID number of an object

Used to find a new available ID for the object

Used for a short description of the sound
Author’s name can be entered here

Type of compression used for a sample object

Choose from a list of instrument types

Some instrument types have a sub type

Sound character

Frequency range

Length of the sound
Sets the same attributes to the defined parent object

of the sound (a layer, keymap or a soundmacro)
Sets the same attributes to ALL child objects of the

sound including dependent objects

The Sound Editor

The Search Window

This window is used to find objects in a large project. Here, you can
search for one or more of the attributes for object properties. Additionally,

there are fields for the time & date and file size (important for samples) of

the objects.

Before you can start searching, you have to choose the project using the

"change project" button. Only opened projects can be searched.

If you edited some or all of the fields for your desired object, simply hit the

search button and all matching objects will be listed.

Samples can be auditioned by selecting them and then hitting the space
bar on the keyboard. Found objects can also be dragged into a new
project, if you drop them on their destination folder in the project window.

Hint: You can also create your own sound and object library, using a

normal project that can be opened at the same time as your working
project. Finished objects can be copied by drag & drop, to the library

project for later use in other projects.

©1999 Factor 5 LLC

53
08/25/99

Mmfd Audio Tools

08/25/99

54

Organizing Data

Organizing Data

General

The basic structure MusyVL uses to organize the data of whole songs or a

set of sound effects is a group. For structuring the data even further,

groups may be sorted into groupsets. These structures constitute sub-

directories and are simply a means to get your project organized.

By splitting a whole project into small units, the amount of data which has
to be present at a given time can be limited. Keep in mind that memory is

limited. Sound usually is one of the first things where people are trying to

save some space when memory space gets tight.

Mt/syX uses two types of groups: SongGroups and SFXgroups.

Note: The example project's "SongGroup" is named "Demo". The actual

name is arbitrary.

©1999 Factor 5 LLC

55
08/25/99

Audio Tools

SongGroups contain all data that is necessary to play back one or more
songs (useful to keep a level-music and a boss-music together in the

memory). They reference all song data generated with an external

sequencer program, as well as all sounds that are used as instruments

within the songs.

MIDI uses program numbers from 1 to 128 to identify instruments. MusyK
maps sounds to these numbers using the Soundlist or Drumchannel from

the SongGroup Properties, which contain one entry for each MIDI program
number. To access the songgroup's properties, simply double-click the

songgroup in the project window.

JS\ m
id "'-

rf-M-ttA, isjnsij! MK-.
]

^D!

The Soundlist and the Drumchannel, together with some other data,

represent a SongGroup. This SongGroup can contain more than one
song, as long as those songs use the same instrument definitions.

In the tab “Songs/Midifiles”, MIDI-files can be entered. This does not serve

an immediate purpose during development, but is necessary for the

conversion of the data. When converting the data, the Editor uses the

entry to determine which file has to be included in the conversion.

Each song referenced by a specific SongGroup has its own MIDI-setup.

This structure consists of 16 channels that are referenced by the

SongGroup. The MIDI-setup contains initial settings for some major MIDI

controllers and allocates the programs (i.e. instruments) that are to be
initially played to their MIDI channels.

The settings can be changed while the song is in progress, allowing for

instruments to be changed in mid-song.

08/25/99

56

Organizing Data

The Drumchannel, e.g., is for MIDI channel 10, which is defined as the

drum channel in the General MIDI standard. The other 15 MIDI channels

can be referenced with sounds from the soundlist the way the musician

chooses.

SFXgroups basically consist of just one large table containing one entry

for each sound effect to be defined. Each sound effect uses a specific

sound. Since several sound effects can start with the same sound, it is

imperative that sound effects define other parameters like priority,

Maxvoices and Default Panning to differentiate the sound effects.

Properties — test.mxp. SFXgroup

. 2 4 LaserShoot,mxm 40 4 127 6 60 LASER

3 5 Bonus.mxm iso 2 127 6 60 BONIJ.-

{4 G SmartBomb.mxm iso [

'7
127 G 60 SNAP TBOM

j
5 ;0 • 1

0

\
-755 127 6 60

To further simplify the teamwork between sound artist and programmer,
each sound effect is assigned a Label.

©1999 Factor 5 LLC

57
08/25/99

Audio Tools

MmyK automatically generates a header file that defines constants, which

the programmer can use to reference the sound effects at runtime. These
constants contain the Label that is assigned to the sound effect.

As a result of this labeling, musician and programmer no longer have to

pass cryptic sound effect ID numbers to each other in order to synchronize

their work.

Because they gather together a predefined set of sounds to be used as

sound effects, SFXgroups are the perfect tool for organizing multiple

groups of sound effects, e.g. all sound effects that are to be used in a

specific level of a game.

08/25/99

58

Organizing Data

Managing Groups

To create a new Group, click [right mousebutton] on the Groupfolder and
select “New“ from the pop-up menu.

MOsys FX Soundsystem

I)f layei_demo.mxp

ObjeetID

macro,mxm

IrLl Layers

m K.eymaps

C_J Soundmacro:

_J Tables

wJ Samples

You have the following choices:

• SongGroup is used for one or several Songs
• SFX-Group for one or several Sound-FX
• Object-Group to collect a bunch of Objects

• Groupset similar to a Folder which can contain several

other Groups

Audio Tools

SongGroups and Their Parameters

A SongGroup is comparable to a set of soundprograms and multisetups of

a synthesizer or sampler. For every SongGroup that represents a level or

stage in a game you have to sort the required “Sounds" from the Object

Pool into a Soundlist to assign them to the correct MIDI program number.

To edit a SongGroup, double-click on it to open the Properties window.
Inside the Properties window, you can edit the “Soundlist or select one or

several “MIDI files” for this SongGroup. This “Soundlist represents Ml Dl-

programs that reference the instruments for channel 1-9, 11-16 and the

“Drumchannel" for MIDI-channel 10 in the MIDI setup.

Take a closer look at the Soundlist. On the very left you see the MIDI
specific program change number from 1 to 128.

The GM equivalent soundprogram is listed behind the number, but it is not

obligatory to follow this “guideline". You can put a Bass sound on MIDI

program #1 if you want to, but realize that it will be a Bass and not a Piano
if you later select this soundnumber from your Sequencer.

The Drumchannel is very similar to the Soundlist, but for GM-compatibility

reasons it represents an alternate list of Sounds (in this case Drumkits)

always solely for MIDI channel #10.

08/25/99

60

Organizing Data

To enter a Sound into the Soundlist or Drumchannel, select the desired

number and double-click on it or press the “Enter" key on your computer
keyboard. A dialog box will show all objects from the pool that fit in here,

such as Sounds, Layers, Keymaps or SoundMacros.

I [Sounds]

Path: Object Pool'-,

If you do not use program changes in your MIDI-file, please also read the

section of this manual concerning MIDI Setups, because you need to pre-

set the MIDI programs to the MIDI channels.

©1999 Factor 5 LLC

61

08/25/99

MusyA Audio Tools

SFXgroups and Their Parameters

In the simplest case, a Soundeffect is just a Sound or a SoundMacro.
Within the system, of course, SFX are handled somewhat differently than

Sounds or SoundMacros.

Because the programmer of a game wants to be able to insert SFX into

his program as easily as possible, the sound designer has to define one or

more special tables called SFX-Groups.

The first major difference between SongGroups and SFX-Groups is the

length of the Table. An SFX-Group can handle many more Sound IDs

than a SongGroup can. Thus the table-length varies and in contrast to a

SongGroup, a newly created SFX-Group has no entries to edit.

To add new entries, use the “Add new” function of the pop-up menu by

right-clicking inside the SFX-Group properties window.

Jg Properties — test.mxp, SFXgroup

Information $ {^-Definition I Group-Options

JM

ID Macro Name of Sourdmacro Priority Maxvoice Det.Vel Del.Pan Def.Key Label Comme

1 2 Explosion,mxm 40 4 127 04 60 EXPLOSION

2 4 LaserS hoot, nixnt 40 4 127 04 00 LASER

T 5 Bonus,mxm 50 2 127 04 60 BONUS

4 6 SmartBomb.mxm 50 2 127 64 60 SMARTBOM

5 0 10 255 127 04 00

Delete

Delete all

Strq+D

Export SFX-E ntfies. . . S tta+E

Print SEX-Entries.. Strg+P

±J

Flere you can now enter, for example, the name of the Macro, or you may
enter a Layer. You can also adjust parameters, if you wish to do so.

08/25/99

62

Organizing Data

Testing Sound Effects

It is possible to test SFX with the MusyK editor and slave before

incorporating them into the game. This is useful to check priority settings or

volume levels.

First you have to send the desired SFX-group to the slave the same way you
would send a SongGroup. If the slave receives a SFX-group, it automatically

switches to a different playmode.

Beginning with MIDI-channel #1 every keynumber represents one SFX-ID
and can be played by a connected MIDI keyboard or the virtual MIDI
keyboard. A connected external keyboard has the advantage that more than
one SFX can be triggered at the same time.

If there are more than 128 SFX, MIDI channel #2 represents IDs 128-255,

MIDI channel #3 represents IDs from 256 to 383 and so on.

© 1999 Factor 5 LLC

63
08/25/99

lAittSyX Audio Tools

The Parameters

ID

Macro

Name

Priority

Maxvoices

Def.Vel

Def.Pan

Def.Key

Label

Comment

The number that the programmer sends to the SFX-API to

start a SFX using the defined label (see below)

SoundMacro number

Name of the SoundMacro

A Priority number for each SFX, if voices are shared

The maximum of voices allowed for this SFX

Default velocity or Start-volume (the programmer can override

this value)

Default panning (the programmer can override this value)

The default key (the programmer can override this value)

The programmer uses this label to reference a SFX

Comments for each SFX

08/25/99

64

Organizing Data

Managing the Object Pool

You can create unlimited sub-folders for any kind of Object inside the

Pool. To do this, select an existing folder and use the “Create folder” entry

of the pop-up menu [right mousebuttonj. This is useful for organizing your
work.

Adding Samples

To add a sample to your project, first select the samplefolder from the

Object-pool. You can either double-click inside the view area of the

Sample-pool or choose “new” from the pop-up menu [right mousebuttonj.

You can now select a sample you want to import through the appearing
file dialog box. If you select a sample using the mouse or the cursor keys,

you can play it through your Soundcard from within the editor by pressing

“space” on your computer keyboard. This can be done any time you select

a sample in any window or dialog box.

MvsyK supports both Microsoft WAV and Macintosh AIF files. WAV files,

however, often do not support loops and MusyX. then uses them only for

one-shot samples. AIF files support both loops and one-shot format and
are preferred for use with MusyX..

©1999 Factor 5 LLC

65
08/25/99

MusyJ. Audio Tools

The Different Parts of a Project

All of the data of one game soundtrack is called a Project.

Within a project the system distinguishes between two different basic data

types, Groups and Objects.

A Group is a collection of Objects belonging to the same level or stage of

a game. It can be a SongGroup, SFX-Group or a Groupset of Groups.

Which one of these it is going to be depends on the need of the project or

the game. To choose a way to organize the data for a game is at the

user’s discretion.

When contemplating the sounddefinition side, one will find a more
complex data hierarchy. In this context, a Sample is the lowest part of a

Sound. A Sound on the other side represents the highest kind of data in a

sounddefinition.

Hint: Layers and Keymaps can refer to each other or to SoundMacros.

08/25/99

66

Organizing Data

How the Structure Relates to the Actual Game Data

There is no major structural difference between the Project data used
inside the Manager and the final converted Game data. The Project data

is of course more comprehensive, since it contains additional information,

e.g. names of Objects. Samples may also be stored in a different format

from the one needed for the destination platform.

Transferring Data Between Projects

Objects can be transferred between Projects either by exporting and
importing Sound-objects, or simply by dragging any desired Object from

one Project window to another.

©1999 Factor 5 LLC

67
08/25/99

08/25/99

68

The Project Manager

The Project Manager

General

The Project Manager is the main working environment of Musy%t. It is

used to edit and manage all data related to the project.

fb F“3i&c:T UP?«fri

iiiwi H&itzw

'Sfce&sc.

A typical screen layout of the Project Manager.

©1999 Factor 5 LLC

69
08/25/99

Audio Tools

Project Manager Menus

File Menu Description

New project...

Open protect...

Reopen

Exit

New Creates a new project

Open Opens a saved project

ReOpen Chooses a saved project from a list of the last 10

recent projects

Exit Exits MusyK -Manager

After you open a project, the Project Menu becomes available.

Project Menu Description

Save as..,

G enerate script/ile for export.

.

Backup...

Search M r
'

.

Browse objects in tree...

Scan tor new files...

Delete all unnecessary files...

Options...

Update, sample-information

Refresh ohjectlist

Close all editors

Close

Save Saves the active project

Save as Saves the project under a different name

Generate scriptfile Scriptfile for the converter

for export...

08/25/99

70

The Project Manager

Backup When a valid path to a WinRAR archive program is

entered in the Options menu, this menu item will be
activated. When selected, it will use this program to

"RAR" all data of the project together into one file.

This may not be used to archive or transport data

easily.

Search objects Searches for objects using the library functions

Browse objects in Opens an additional project window with the

tree. . . complete tree of all objects and their hierarchy.

Scan for new Files that are copied or saved to the project

files... directories by external tools can easily be imported

into the project with this function

Delete all Deletes all files that are not related to or depending
unnecessary on objects within the project.

files...

Options... Setup options relating to the project.

Update sample- Updates the cached sample information if samples
information were changed by external tools.

Refresh objectlist This causes the object reference list (in the right-

hand part of the project window) to be refreshed

manually. Not only the display will be refreshed, but

also the internal data structures. During normal use
of the editor, there should be no need to use this

function.

Close all editors Closes all open editors at once

Close Closes the project

Options Menu Description
Environment... I

Environment Options and setup of the editors environment

© 1999 Factor 5 LLC

71

08/25/99

MusyA Audio Tools

Window Menu Description

Cascade

life

Align Commandpool Windovvfs)

1 MIDI 'Setup

2 State

2 Network: Master

4 Properties - (empty)

5 Search Objects {disabled)

S Midi-Keyboard

? Commandpool • Testpr.ojeet.mxp

>/ § T estpfoiect.rnxp

Undo last

command
Undoes any window arrangements

Cascade Re-arranges windows in an overlapping diagonal

line. You can choose between “all windows
11

and
“Project windows" or “Editors" only.

Tile Re-arranges windows. You can choose between

“Project windows" or “Editors
11

.

Aligns the commandpool-window with the right side

of the main window
Align commandpool

1 Midisetup

2 State

Quickselect for the Midisetup-window

Quickselect for the Status-window

3 Network: Master Quickselect for the Network/Master-window

4 Properties Quickselect for the Group-/Object- Properties-

window

5 Search Objects Quickselect for the Librarian search window
(disabled until a project is opened)

6 Midi-Keyboard Quickselect for the Virtual MIDI-keyboard window

7 Commandpool Quickselect for the Commandpool window

8 Testproject.mxp Quickselect for an open project

08/25/99

72

The Project Manager

Info Menu Description

About MusyX. Developers information & copyright notice

©1999 Factor 5 LLC

73
08/25/99

Walk Through

Walk Through

General

This chapter provides a step by step example of how to design a simple

instrument and a simple sound effect and export it so that the programmer
can include it into his or her game.

The steps are:

• Start the MusfA Editor

• Create a Project

® Import a Sample
• Create an Instrument using a SoundMacro
• Create and setup a SongGroup
• Make a short MIDI sequence
• Create a Sound-FX
• Convert the data

©1999 Factor 5 LLC

75
08/25/99

Start the Soundslave

Start the slave manually from Win95/98-Startmenu/Programs/ Mmpi..

Launch the Musfli Editor

Start the “MusyA Editor" from the Win95-Startmenu or directly by double-

clicking the MusyX. -Icon from your desktop if available.

The Manager screen after startup

08/25/99

76

Walk Through

Creating a New Project

Select “New project" from the ‘File’ pull down menu.

This opens a regular File dialog box, where you name the Project. For this

example name it “Testproject”.

Next, choose a Macro definition file. This file can be found in your

J#l/Sj^\bin\misc Folder (“macrodef.mxd”). This file defines the set of

commands used by the SoundMacro language (SMaL). The Game Boy
macro definition file is located in MusyX-GB\macrolibrary.

Finally a confirmation window appears and you have the option to create

the project (click on the “Create”-buttonj.

Walk Through

The Project Window
The newly created Project looks like this:

^ Testproject.mxp

1
Groups

i Er U.I Object Pool

From this window you have access to all data related to the project. It is

split into a left and right area. On the left side is a folder structure, the

“Groups” and the “Object Pool”. On the right side of the window is the view
area where the Sound-Objects are displayed. (Since a new Project

contains no Sound-Objects, this area is empty at the moment.)

The “Object Pool” contains Subfolders for sound-related Objects like

Samples, SoundMacros, Layers, Keymaps, Tables and sounds, but more
about this later. For now we need only Samples and SoundMacros.

The “Groups” are mainly used to organize the different sounds into

SongGroups (e.g. for the different levels of a game) and SFX-Groups (lists

of Sound effects).

The next step is to add a Sample and build an Instrument using a

SoundMacro. MusyK supports both Microsoft WAV files and Macintosh
AIF files.

Keep in mind that WAV files often do not contain loop information.

© 1999 Factor 5 LLC

79
08/25/99

MusyA Audio Tools

Adding Samples

To add (import) a sample to your project, first expand the “Object Pool”

folder by clicking on the “+”-symbol.

Select the “Samples” folder:

1 C:\Program Files\Factor5\MusyX\bin\testproject\testproject.mxp

ii§ Groups

Object Pool

iil Sounds

[Si Layers

£j Keymaps

: 1 Soundmacros

U Tables

CJ Samples

Name
j
ObjectlD

|
References/!nfos

N View

New im

Then go to the right side of the project window and double-click in an area

without text, or press the right mouse button, and select "new" from the

resulting pop-up menu. Don't double-click on an existing sample (in the

list), because you will edit that sample, instead.

08/25/99

80

iMaiimba.wav

& Demo_Samples

Directoiie-.:

; Groups

Object F'ool

'O Sounds

Q LayersQ Keymaps

i j Soundmacw

__j Tables

t3 Samples

Walk Throuah

©1999 Factor 5 LLC 08/25/99

This will bring up a window with some SoundMacro-templates. For our
“Marimba.wav”-Sample we can use the “Oneshot” Template.

Before we can use the Sample as a sound, we have to create a

SoundMacro.

Select the Sample “Marimba.wav” from the Directory “Demo_Samples” of

your AfwsyX Folder and click the OK-Button. Now the Sample has been
imported into the project.

A Very Simple SoundMacro (SMaL Program)

Starting with a Sample, the smallest building block in this context, the

easiest way to create a Sound Macro is using a “Template”. “Templates”

are nothing more than predefined SoundMacros.

Click [right mousebutton] on the “Marimba.wav” Sample and select

“Templates” from the appearing pop-up menu.

Audio Tools

Now we have created a SoundMacro that plays our Sample. To see what

this SoundMacro looks like: Select the SoundMacros Folder in the Object

Pool and open the SoundMacro-editor by double-clicking on the

marimba_oneshot1 .mxm Object.

JC Soundmacroeditor — 1, maimiba_oneshoLmxm

0 t-- j
STARTRAMPLE ‘

^
|l~ r|>anr|iba. |.'vav

BHI ill™
-Tsshe= :

•iit a
sB HI
§1® Wsk

\
^^sailiigemS i s. v '

•: ::: :

:Mil
:
Step: 0, Command-ID

To actually play this sound we need to tell the system when to use it. Here

we are going to set the sound up to be used as an instrument.

Hence the next step is to define a song group.

08/25/99

82

Walk Through

Defining a SongGroup
To create a SongGroup click [right mousebutton] on the “Groups” folder in

the Project window and a pop-up menu appears. Select “New
Folder/Group“.

To edit the new SongGroup double-click on its name and it will open the

Properties window. Inside the Properties window you have to enter our
new SoundMacro into the “Soundlisf.

©1999 Factor 5 LLC 08/25/99

Properties — Testpioject.mxp. Songgroup

Information Soundist
j
.Dramchannel

|

:

PRG-Na, GM-Name

2, Bright Piano

3, Electric Piano

4 . Honky-T onk Piano

5, Rhodes Piano

6, Chorused Piano

Harpsichord

10, Glockenspiel

11, Music Box

1 2 , Vibraphone

13, Marimba

1 4, Xylophone

The Soundlist is used to map SoundMacros or other Objects, Keymaps or

Layers for example, to a MIDI program-number that can be accessed by

MIDI program-changes. The names beside the numbers on the left side

are only shown as a reminder for General MIDI purposes. More detailed

information about the Soundlist is coming up in a later chapter.

Next double-click on the blank field below “Object name”, of row No 1 . A
dialog box is shown with different types of Objects from the “Object Pool”.

Open the “SoundMacros” Folder and choose the new
“Marimba_Oneshot1”-Soundmacro. Click Ok.

08/25/99

84

Walk Through

Playing the Instrument for the First Time
The SongGroup is now ready to be sent to the Slave. Select the

SongGroup and click the right mousebutton to open a pop-up menu.
Choose “Send to slave” and all data belonging to this SongGroup will be
transferred to the Soundslave.

[If Testproject-mxp

1-'
I Marimba Oj

After the transfer is completed you can play your first instrument using

your sequencer and MIDi-keyboard. Make sure that your sequencer is set

to the right MIDI-output and channel 1

.

You can also play the instrument using the virtual MIDi-keyboard window
inside MusyK. See later chapter for details.

X Midi-Keyboaid

Channel:1 Velocity: 1 2? Keynumbec 48

(24) C2 (36) C3 (48) C4 (68) C5 (72)

MnujyiiiJLMXj
©1999 Factors LLC 08/25/99

85

Audio Tools

Recording a Sequence

Use your favorite MIDI-sequencer to record a short sequence with the new
sound, using the slave program as synthesizer.

Save the finished Sequence as a MIDI-file (*.mid) into the Midifiles-folder

of our Testproject.

Testpfojecl sni
File Edit View Help

Keyrnaps Layers i Midifiles

Samples Soundmacro

u
Tables

V fg
macrodef.mxd Testproiect.

8 ob|ect($! 392TB

.

Switch back to the MusyK Editor. Open the Properties window of the

SongGroup and click [left mousebutton] on the panel called

“Songs/Midifiles”. Assign the Midifile to the Midisetup by double-clicking on
the midifile field or by clicking on the “Browse Midifile” button.

I wsfr. S-www&ty

ItwWi

A regular File dialog box appears. Here you have to change the directory,

select your *.mid sequence that you recorded earlier, and click “Open”.

Your sequence is now attached to the SongGroup and you can close the

Properties window.

Attaching midifiles to a SongGroup is not necessary as long as you work
only with the slave, but it must be done before we convert the data for the

game. Otherwise, the converter will not be able to find any midifile to

include into the final data.

08/25/99

86

Walk Through

Looped Midi-files

Midifiles can be played like samples as oneshot (meaning only once) or

they can be looped, if you do not want to loop the whole sequence or if

your music contains a pause at the end before it starts from the beginning,

you need to define two custom controllers inside your MIDI sequence.

These controllers determine, between them, the start and the end of the

loop.

Controller 102 marks the left locator position or start of the loop.

Controller 103 marks the right locator position or end of the loop.

Controller 104 marks a position from where certain actions are possible,

e.g. fading out, or beginning one song while the one playing is faded out.

This controller makes it easier for the programmer who needs to combine
various Midifiles in a game. Due to this controller, he does not have to

worry about finding the exact right spot from where to fade out for

example.

The values of the controllers are ignored for now, but should be kept zero.

©1999 Factor 5 LLC

87
08/25/99

MaSfM, Audio Tools

Defining a Sound Effect

Sound effects (SFX) can be designed by importing a sample into your

project and creating a SoundMacro, just the way you would create any
instrument. The only difference is that unlike instruments, SFX are

organized in so-called SFX-Groups. In these Groups you can edit a list of

special settings for creating a SoundMacro.

Import the Sample “Gunshot.aif from the Samples Directory (MusyX\GM-
Set\GM-Set_44100\Samples\SFX) and create a SoundMacro using the

Oneshot-Template. This is done exactly the same way you did the

“Marimba” Sound.

Now create a new Group using the Groups pop-up menu. Logically, this

time you select “SFX-Group” instead of a SongGroup.

Open the SFX-Group by doubie-clicking on its name and add the new
SFX to the list. Use the pop-up menu [right mousebutton] to add a new
entry first. Then double-click on the empty field under “Macro” and choose
the “Gunshot_Oneshot.mxm” from the following dialog box. (This is the

same procedure you followed in the SongGroup properties.)

Walk Through

Close the Properties Window and send the SFX-Group to the slave the

same way you did the SongGroup.

How to Test a Sound Effect

After having sent the SFX-Group to the Slave, you can now easily play the

SFX from the virtual MIDI-keyboard. The keynumber now represents the

FX-ID, so you have to move the scrollbar of the MIDI-keyboard Window to

the left to reach the appropriate key.

Every MIDI channel consists of 128 IDs, meaning that 128 different sound
effects can be played at once. Since there is a total of 16 MIDI channels,

you can directly test 2048 sound effects.

Saving Your Work
To save your Project select “Save” from the Project menu.

Finish!

The next step would be to convert the project using the external Mus/K
commandline tools.

©1999 Factor 5 LLC

89
08/25/99

Additional Tools

Additional Tools

The Table Editor

The Table-object is an additional database that the user can prepare for

specific SoundMacro-commands. These can access the table to obtain

large amounts of data quickly and conveniently. Tables can only be
referenced by specific SoundMacro-commands.

Tables can be used as curves for scaling the volume or to define ADSR
Envelopes.

To create a new table, double-click on an empty space in the Tables
directory. Then type in a name of a non-existing file. This will create the

table. Next, double-click on the table to enter the table editor.

Using the Table Editor

To open the table editor, select the tables folder from the project window.
Then right-click in the right view window and create a new table. Open the

new table by double-clicking on its name in the right view window.

The table editor displays the data in 16 columns. By entering a new value
in the length-field on the bottom right, the length of a table can be changed
anytime.

©1999 Factor 5 LLC

91

08/25/99

MusyS. Audio Tools

To change the data in a table, simply select the field using the mouse or

the cursor keys and enter a value. The numerical Input and Output can be
changed from the pop-up menu [right mousebutton].

Refer to the musician’s reference of the SMaL language description

concerning the use of tables in SoundMacros.

Using the ADSR Envelope Editor

If the length of a table equals 8 bytes exactly, you can access the ADSR
section of the Table editor. This is the most common use of tables. Set the

table length to 8, using the "length" option at the bottom of the Value
Editor.

Here you can edit Attack, Decay, Sustain, and Release either by typing

the values into the appropriate fields or by dragging the lines of the

graphic display. The scale slider can be used to scale the graphical

appearance of the Envelope.

abb 1 3L

Drag this line to

change the Release

Drag here for both

Decay and Sustain

08/25/99

92

The MIDI Setup Window

The MIDI Setup Window

What is the Purpose of this Window?
The MIDI setup is used to pre-set MIDI-programs, volumes, panning and
other data for all 16 channels. This is comparable to the multimode setup

of a Synthesizer. Every SongGroup of a project can contain several MIDI-

setups, one for each song in this SongGroup.

How to Use the Window in Everyday Work
If you open the properties of a SongGroup you’ll find a sub-window called

“MIDI-setups/Songs”, where you can add, remove and edit MIDI-setups.

To open the MIDI setup window double-click on the name of the setup or

use the “Edit” button, on the right side.

1 26 11 42 50 32 17 47 78 1 49 104 103 ~nOO 1
"j

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l 34 45 JJ .*'8 51 64 92 60 82 64 69 52 87 80 64 64
ng*K

87 m 127 1 00 104 86 126 127 102 127 113 50 115 103 127 127

127

0

Chan.: 1 2

6PM; jl 20 000

r r r rvr r r
i
r

8 3 11 12 13 14 15 16

Get from slave
j

The Importance of the Window when Exporting Data

A MIDI-setup can be exported as simple data or as a MIDI standard file.

This file can be used to import a setup into a MIDI sequencer.

©1999 Factors LLC

93
08/25/99

MusyX Audio Tools

Using Multiple MIDI Setups within One SongGroup
Each SongGroup can contain an unlimited number of Songs and MIDI

Setups.

Please read also about looping Ml Dl-files in the section, “Recording a

Sequence” of the Walkthrough.

08/25/99

94

The Virtual MIDI Keyboard

The Virtual MIDI Keyboard

Why a Virtual Keyboard?

If you want to test a sound but you have no real MIDI keyboard connected,

you can use the virtual keyboard.

In addition, it can help you check key numbers when building Layers or

Keymaps.

Using the Keyboard

When you move the mouse pointer over the virtual keyboard window the

arrow will change into a hand. On the status bar above you can see the

key number of the key where the hand is currently pointing.

Clicking the left mouse button on one of the keys sends this note to the

slave. Clicking the right mouse button opens a pop-up menu where you
can change the setup of the keyboard parameters.

©1999 Factor 5 LLC 08/25/99

95

UsyX Audio Tools

Testing Sound Effects

One of the virtual keyboard’s main purposes is to allow for quick tests of

sound effects.

Sound effects are mapped to the keyboards - both the virtual and the

physical one - the moment you send a SFX group over to the slave. The
method in which they are mapped is both simple and effective.

First the key number and the MIDI channel are used to calculate the ID of

the sound effect that is to be started. Once the ID is determined, the

sound effect will be started.

The first seven bits of the ID represent the key number, bits eight to

eleven the MIDI channel.

Every MIDI channel consists of 128 IDs, meaning that 128 different sound
effects can be played at once. Since there is a total of 16 MIDI channels,

you can directly test 2048 sound effects.

Limitations in Comparison to a Real Keyboard

The disadvantage of a virtual keyboard is that the user cannot play real

music. Since only one key at a time can be pressed, there is no
polyphony.

In addition, no controllers are available and the virtual keyboard cannot
send MIDI commands to a sequencer.

08/25/99

96

The Network Master Window

The Network Master Window

What can be Controlled Using this Window?
The Network Master Window is used as a remote and displays status

information about the Slave.

The Buttons and Fields:

Connect Establishes a connection and resets the Slave

Panic Resets all “hanging” voices on the Slave if needed
Disconnect Break the connection to the Slave

Voices Sets the maximum amount of Voices the Slave should

play at once.

What Kind of Information is Displayed?

On the left side of the window, information about memory is displayed.

You are informed about the available memory on the Slave system, about

the space used by all sent objects and about remaining free memory
space.

©1999 Factor 5 LLC

97
08/25/99

Data Conversion

Data Conversion

General

MusyK stores its data in a platform-independent and easy-to-work-with set

of files. This format is not suitable to be used at runtime on the target

platform. This is the reason why the data has to be converted before it can
be used in the game application.

©1999 Factor 5 LLC

99
08/25/99

What the Musician has to do to Prepare the Data

The first step is to export the current project structure in a form that the

command-line-based converter tools can understand. The so-called “script

file” must be generated by the musician before handing the whole project's

data structure over to the programmer.

Select the “Generate script file for export” item from the “Project” pull down
menu.

A dialog box will appear that lets you select the name for the script file. If

no extension is specified, .TXT will be added.

You are now ready to hand the whole project directory over to the

programmer.

At the same time the musician should specify to the programmer which

groups should be used at what time in the game application.

08/25/99

100

Data Conversion

The Actual Data Conversion

There are two tools needed to convert the data.

GM2SONG.EXE is used to convert MIDI-1 files to the song file format

used on the target platform.

MUCONV.EXE is used to convert all other data. This program even calls

GM2SONG.EXE. Because of this we will have a closer look at

MUCONV.EXE, only. GM2SONG.EXE must be in a location where it can

be executed, but the user of MusyK will never come into direct contact

with it.

In addition to a so-called description file (see below for details) and the

export scripts defining the projects to be used as source, the tool can
accept the following options.

MUCONV will generate an include file for easy reference to all IDs

generated by the conversion process. By default the file will be written

using C-syntax. You may use the -a option to write the file in assembler
syntax instead.

This option switches between little endian and big endian number
representation. By default big endian is used (N64).

-p <path>
If the tool is not invoked from the project directory itself you may use this

option to specify a search path for referencing all files from the project.

This may be useful if you specify more than one project to be jointly

converted. This option may be used multiple times and will add a search
path to the search path list each time.

-t <sys>
This switch selects the target system for which the data should be
converted. Be aware that this option does not set the appropriate endian
mode on its own. Supported values for <sys> currently are either N64 or

GB.

©1999 Factor 5 LLC

101

08/25/99

M usyM Audio Tools

-s

Use this switch to disable the sample conversion step. If your project

contains a lot of samples converting them may take a little while. You can

avoid this by skipping this conversion step. You have to make sure

though, that none of the samples have changed since you did the last

complete conversion.

-d

Some platforms (e.g. N64) support different compression schemes. This

switch causes MUCONV.EXE to always use the default sample format no
matter what the musician specified in the tool.

Tip:

On the N64, there are two formats supported: 16-Bit RAW and ADPCM
compressed. The latter is the default format and should be used most of

the time since the quality is usually very high and it imposes less

performance overhead on the system.

Enables the verbose mode. You’ll get detailed information about every

conversion step.

Example:

For a simple N64 project to be converted you may specify a command line

like this:

MUCONV -b -t N64 script.txt your.desc

You may specify multiple export scripts and search paths as source. All

specified projects will be joined together and converted as one big project.

The description file may reference groups from all projects as if they were
inside a single project. Be careful to avoid identical names across projects,

though. This will cause the linking process to fail.

This feature can be used to allow a musician and a sound effects designer
to work separately and still use both data sets as one big project in the

game application.

08/25/99

102

Data Conversion

The Description File

An important part of the information needed to do the data conversion

comes from the “desc” or “description” file. This file specifies all

parameters needed in addition to the project data to generate the final

output files.

The file is divided into sections. A title line that looks like this marks each
section: [section name]

Each line within the section specifies one parameter. Some sections just

accept one parameter, some accept multiple parameters. The following is

a list of sections and their parameters.

[project]

This section contains a case-sensitive list of all group names that should
be included into the proj file.

[pool]

This section contains a case-sensitive list of all group names that should
be included into the pool file.

[sampledir]

This section contains a case-sensitive list of all group names that should
be included into the sdir file.

[samples]

This section contains a case-sensitive list of all group names that should
be included into the samp file.

[outdir]

This section just contains one parameter. It specifies the output directory

where all files produced by the tool will be stored.

©1999 Factor 5 LLC

103
08/25/99

JWllSyX Audio Tools

[basename]
The base name, specified in this section, will be used to store all files

except the song files and the include file. The section only contains one
parameter.

[include]

The parameter of this section specifies the complete name of the include

file to be written. The file will be stored in the output directory.

[stack]

This section contains the names of all the groups that should be taken into

consideration for being in the “sound stack”, while considering which data

is to be included in the various files (please see Programmer’s
Reference).

It is necessary to specify the groups that are to be included in each output

file.

For example:

One could try to save memory by simply putting all groups into the project

file, while all other files just contain subsets of the data.

Together with the [stack] section it is possible to load only those files

containing the groups really needed in a certain situation. In this case the

[stack] section is used to tell the tool which groups to assume to be in the

stack and in which order.

Multiple calls to the tool with different description files can now be used to

generate all needed files.

Although this tool provides all these possibilities, in most cases you will

not be forced to go to such extremes to generate your data. The simplest

way is to include all needed groups in each output file and to skip the

[stack] section all together.

Once you have edited the description file and selected the proper options,

you are ready to start the tool.

It will produce four files that contain the project data and any number of

song files that contain the data needed by the sequencer to playback the

songs.

08/25/99

104

Data Conversion

The files in the first group of files will all have the same base name, but

different extensions. Here is a list of extensions and the type of data

contained in the files.

PROJ
This file contains all data about the structure of the project. This includes

the information concerning what belongs to which group.

POOL
The pool file contains all data except the samples. This includes, for

example, all macros needed by the specified groups.

SDIR
This file contains information about the location of all samples needed by

the specified groups. The actual data is stored separately to make it

possible to put it wherever the hardware allows. It may be stored in RAM
where the CPU can reach it, but it may also be left in the ROM.

SAMP
This file contains the actual sample data in the format needed on the

target platform.

Once you have all these files converted you are ready to use them on your
target platform.

© 1999 Factor 5 LLC

105
08/25/99

Audio Tools

Musyk Sample Program for N64

A complete Mu&tfk project can be found in the "MusyX\example"

directory. You will need to run the "Setup_Example.bat" file to copy the

necessary libraries for your development environment. Supported

environments are IRIX (5. 3/6. 2) and PC (Partner and SN 64).

The project directory is located in MusyX\Example\Data\Project.

To run the MUCONV data converter, use the makedata.bat file located in

MusyX\Example\Data.

Sample output files (.proj, .pool, .sdir, .samp) are already located in

MusyX\Example\Data\output.

08/25/99

106

N64 Musicians Reference

Appendix 1 - N64 Musicians Reference

Table of Contents:

Appendix 1.1 = N64 Macro Commands 109

END 110

Structure Macros Ill
STOP Ill

SPLITKEY 112
SPLITVEL 113
WAIT_TICKS 114
LOOP 115
GOTO 116
WAIT_MS 117
PLAYMACRO 118
SENDKEYOFF 119
SPLITMOD 120
SPLITRND 121

TRAP_KEYOFF 122
UNTRAP_KEYOFF 123
IF_EQUAL 124
IF_LESS 125

Sample Macros 126
STARTSAMPLE 126
STOPSAMPLE 127

Volume Macros 128
SETADSR 128
SCALEVOLUME 129
ENVELOPE 130
FADE-IN 131

Pitch Macros 132
PORTLAST 132
RNDNOTE 133
ADDNOTE 134
SETNOTE 135
LASTNOTE 136
VIBRATO 137
PITCHSWEEP1 138
PITCHSWEEP2 139
SETPITCH 140

©1999 Factor 5 LLC 08/25/99

Appendix 1: 107

Audio Tools

Control Macros 141

PIANOPAN 141

PANNING 142
KEYOFF 143

Special Macros 144
ADDAGECOUNT 144

SETAGECOUNT 145
SENDFLAG146

REV_LEVEL 147
SETPRIORITY 148
ADDPRIORITY149

AGECNTSPEED 150
AGECNTVEL 151

ADD_VARS 152
SUB_VARS 154
MUL_VARS ..155

DIV_VARS 156
ADDLVARS 157
SET_VAR 158

Setup Macros 159

PORTAMENTO 159

PITCHWHEELR 160
VOL_SELECT 161

PAN_SELECT 162
PitchW_SELECT 163
ModW_SELECT 164
PEDAL_SELECT 165
PORTA_SELECT 166
REVERB_SELECT 167
SPAN_SEL 168
DOPPLER_SEL 169
SETUP_LFO170

Appendix 1.2 - N64 Macro Templates 171
?_ONESHOT 172
?_LOOPED 174

08/25/99

Appendix 1: 108

N64 Musicians Reference

Appendix 1.1 - N64 IVlaero Commands

This part contains descriptions of all Macro Commands used by AU/syX.

for the Nintendo64.

© 1999 Factor 5 LLC

Appendix 1: 109
08/25/99

\V$yA Audio Tools

END
End of the Macro

$00 END
—

Description:

This is always the last macro command. It cannot be deleted from the

macro. It terminates the macro permanently.

08/25/99

Appendix 1: 110

N64 Musicians Reference

Structure Macros

STOP
Similar to END, but can be used as a return command

Type: Structure

|

Return flag
j

$01 STOP mode

Description:

If mode is set to zero, this macro command has the same functionality as

END. In contrast to END, it can be placed anywhere in the macro. If

mode is set to a non-zero value, the macro will not be terminated and
macro execution will continue from the last used GOTO command.

Parameters:

mode = Return flag
(0 = on, 1 = off

)

© 1999 Factor 5 LLC

Appendix 1: 111
08/25/99

Audio Tools

SPLITKEY
Splits the macro flow depending on the midikey

Type: Structure

Keynumber SoundMacro ID SoundMacro step

Description:

This command is used to conditionally change the flow of execution in

the current macro. The macro program will jump to the given macrostep
inside the specified macro, if the current key is higher than or equal to

the key parameter.

Parameters:

key = This parameter
(
0-127

) specifies a key number to compare
against. If the key you play is higher or the same as this key, the

macro will jump, otherwise it resumes.

macro = The ID of the macro to jump to

step = The step number inside the macro to jump to

08/25/99

Appendix 1: 112

N64 Musicians Reference

SPLITVEL

Splits the macro flow depending on the velocity

Type: Structure

Velocity SoundMacro ID SoundMacro step

$03 SPLITVEL velocity macro step

Description:

This command is used to conditionally change the flow of execution in

the current macro. The macro program will jump to the given macrostep
inside the specified macro, if the current velocity is higher than or equal

to the velocity parameter.

Parameters:

velocity Specifies the velocity to compare the current velocity against.

If the current velocity is higher or the same, the macro will

jump, otherwise it will resume.

macro = The ID of the macro to jump to

step = The step number inside the macro to jump to

©1999 Factor 5 LLC

Appendix 1: 113
08/25/99

Mu$yK Audio Tools

WAIT_TICKS
Wait, depending on different conditions

Type: Structure

Keyoff Random Sampleend ms switch Ticks/millisec.

$04 WAIT_TICKS key I random I sample I ms flag I time

___[release end

Description:

The execution of the current macro will be suspended until the given time

is elapsed. By default, the time is specified in ticks. If the ms flag is set

the time will be specified in ms. Independent from the selected time

format a value of $FFFF (65535) will cause an endless wait.

If one of the other flags is set, execution will resume as soon as one of

the corresponding conditions becomes true or the time given has

elapsed.

Key release Wait until a keyoff is sent to the macro
Sampleend Wait until the sample has reached its end
Random The time will be used as a maximum to generate a

randomized delay

Parameters:

key release = If this flag is set, the macro will resume after a keyoff is received

random = If this flag is set, the macro will resume after a random time is

elapsed. In this case the ticks/millisec. parameter defines the

maximum wait time

sampleend = If this flag is set, the macro will resume when the sample
reached its end (this works only with oneshot samples)

ms flag = This flag switches the mode of the time parameter

Ticks/Millisec. = The wait time specified in ticks or milliseconds

08/25/99

Appendix 1: 114

N64 Musicians Reference

LOOP
Loop back to a macrostep

Type: Structure

Keyoff Random Sampleend SoundMacro step Times

$05 LOOP key
release

random sample
end

step

|

times

Description:

Loop to the specified location within the current macro n-times. If one of

the flags is set, the loop may be executed fewer than the specified

number of times. A value of $FFFF (65535) will cause an endless loop.

Key release

Sampleend
Random

Loop until a keyoff is sent to the macro
Loop until the sample has reached its end
The number of loops will be used as a maximum to

generate a randomized counter

Parameters:

key release = If set to on and a keyoff is received the command will not loop

but proceed with the next step in the macro

Random =
If set to on the command will loop random times, where the times

parameter specifies the maximal count of loops

sampleend =
If set to on the command will not loop when the sample reached
its end (this works only with oneshot samples)

step = This defines the macrostep, to which the command loops

times = The number of loops to be performed. A times value of 65535
will cause an endless loop, if none of the other conditions apply.

int: Loops cannot be nested!

© 1999 Factor 5 LLC

Appendix 1: 115
08/25/99

Audio Tools

GOTO
Jump to another macro

Type: Structure

SoundMacro ID SoundMacro step !

$06 GOTO Macro Step

Description:

Performs an unconditional jump to the specified location. Note that

command $01 STOP, has the option to jump back to the position after

the GOTO command. This can be used to create a sub-macro.

Parameters:

macro = The macro ID to jump to

step = The step inside the specified macro to jump to

08/25/99

Appendix 1: 116

N64 Musicians Reference

WAIT_MS
Wait, depending on various conditions

Type: Structure

Keyoff Random Sampleend Millisec. i

$07 WAIT_MS key
release

random sample
end

ms

Description:

The execution of the current macro will be suspended until the given time

has elapsed. By default, the time is specified in ms. A value of $FFFF
(65535) will cause an endless wait.

If one of the other flags is set, execution will resume as soon as one of

the corresponding conditions becomes true or the time given has
elapsed.

Key Release Wait until a keyoff is send to the macro
Sampleend Wait until the sample has reached its end
Random The time will be used as a maximum to generate a

randomized delay

Parameters:

key release

random

sampleend

ms.

If this flag is set, the macro will resume after a keyoff is received

If this flag is set, the macro will resume after a random time has
elapsed. In this case the ticks/millisec. parameter defines the

maximum wait time

If this flag is set, the macro will resume when the sample
reached its end (this works only with oneshot samples)

The wait time specified in milliseconds

©1999 Factor 5 LLC

Appendix 1: 117
08/25/99

MiMfM Audio Tools

PLAYMACRO
Starts another macro

Type: Structure

j
Addnote SoundMacro ID SoundMacro step Priority Max Voices 1

$08 PLAYMACRO addnote macro step priority maxVoc.

Description:

Starts another macro in parallel to the current one. Since it will be started

like any other macro, the normal delays etc. apply. The macro will be
passed the priority and the maxVoc. value specified. The key is

calculated by adding addnote to the original key of the macro starting the

new one. The new macro may be started at any macrostep, using the

step parameter. See also command $09 SENDKEYOFF.

Parameters:

addnote

macro

step

priority

maxVoc.

A keyshift or transpose value (-128 to 127) can be added
to start the new voice with a different note.

The ID of the new macro to start

The step inside the new macro to start

Defines the priority of the new voice

The maximum count of voices that this new macro can allocate.

08/25/99

Appendix 1: 118

N64 Musicians Reference

SENDKEYOFF
Send a keyoff to the specified macro

Type: Structure

Addnote SoundMacro ID
j

$09 SENDKEYOFF addnote macro

Description:

Send a keyoff to the specified macro. Since the macro is only identified

by its ID and the key value, which is calculated by adding the parameter
addnote to the original key of the current macro, multiple macros may be

found. In this case, the keyoff is sent to all macros encountered. This

command is mainly used to signal a midi-keyoff to other previously

started macros by the PLAYMACRO command.

Parameters:

addnote = Please see the description of the PLAYMACRO command

macro = The ID of the macro that will receive the keyoff

©1999 Factor 5 LLC

Appendix 1: 119
08/25/99

MtJSyX Audio Tools

SPLITMOD
Splits the macro flow depending on modwheel

Type: Structure

r- Mod value SoundMacro ID SoundMacro step 1

$0A SPLITMOD mod. macro step

Description:

This command is used to conditionally change the flow of execution in

the current macro. The macro program will jump to the given macrostep

inside the specified macro, if the current modulation value is higher than

or equal to the mod. parameter.

Parameters:

mod. = This defines the point where the split occurs (0-127)

macro = The ID of the macro to jump to

step = The step number inside the macro to jump to

08/25/99

Appendix 1: 120

N64 Musicians Reference

SPLITRND
Splits the macro flow depending on a generated random value

Type: Structure

RND value SoundMacro ID SoundMacro step

$13 SPLITRND rnd macro step

Description:

This command is used to conditionally change the flow of execution in

the current macro. The macro program will jump to the given macrostep
inside the specified macro, if the generated random value is higher than

or equal to the rnd parameter.

Parameters:

rnd = The higher this value is, the less is the chance that the jump will

be performed

macro = The ID of the macro to branch to

step = The step number inside the macro to branch to

©1999 Factor 5 LLC

Appendix 1: 121

08/25/99

MusyX Audio Tools

TRAP_KEYOFF
Registers a jump destination in a macro if a keyoff occurs

Type: Structure

Description:

Registers a jump destination in a macro if a keyoff occurs.

Parameters:

macro = The macro ID to jump to

step = The step inside the specified macro to jump to

08/25/99

Appendix 1: 122

N64 Musicians Reference

UNTRAP_KEYOFF
Remove a keyoff trap

Type: Structure

Description:

Removes a previously registered keyoff trap.

©1999 Factor 5 LLC

Appendix 1: 123
08/25/99

My$y2‘ Aucjjo Tools

IF_EQUAL

Goto MacroStep if condition is true

Type: Structure

Ctrl ’J|§= Ctrl B Not Sound Macro Step

$70 IF_EQUAL VarICtrl A VarICtrl B Not MacroStep

Description:

If the condition is TRUE, the execution of the SMaL program will be
continued at MacroStep. A jump outside the current macro is not

possible. The condition evaluated is a simple comparison of the values of

variables A and B. If the Not field is “Off’, the condition is TRUE as soon
as both values are identical. If Not is set to “On”, the condition is TRUE if

both values are not equal.

For details about variables see ADD_VARS.

Parameters:

Var/Ctrl

A

Var/Ctrl

B

Not

MacroStep

Controller A switch (OFF = Variable, ON = extended controller)

Variable / Controller A

Controller B switch (OFF = Variable, ON = extended controller)

Variable / Controller B

logical not

MacroStep number to jump to inside the current macro

08/25/99

Appendix 1: 124

N64 Musicians Reference

IF_LESS

Goto MacroStep if condition is true

Type: Structure

Ctrl A< Ctrl B Not Sound Macro Step lj

$71 IF_LESS Var/Ctrl A Var/Ctrl B Not MacroStep

Description:

If the condition is TRUE, the execution of the SMaL program will be
continued at MacroStep. A jump outside the current macro is not

possible. The condition evaluated is a simple comparison of the values of

variables A and B. If the Not field is “Off”, the condition is TRUE as soon
as A < B is satisfied. If Not is set to “On”, the condition is TRUE if A >= B
is satisfied.

For details about variables see ADD_VARS.

Parameters:

Var/Ctrl

A

Var/Ctrl

B

Not

MacroStep

Controller A switch (OFF = Variable, ON = extended controller)

Variable / Controller A

Controller B switch (OFF = Variable, ON = extended controller)

Variable / Controller B

logical not

MacroStep number to jump to inside the current macro

©1999 Factor 5 LLC

Appendix 1: 125
08/25/99

- Audio Fools

Sample Macros

STARTSAMPLE
Start a sample

Type: Sample

Sample-ID Vel. Scale Sample Start Offset

$10 STARTSMP smpID Mode Offset

Description:

Starts the sample playback of the sample specified by smpID. An offset

inside the sample may be specified, but is not supported on all hardware
platforms. (Startsample playing from offset is not supported under Game
Boy.) If it is supported, it is always specified in samples, not bytes. If no

ADSR was previously specified, a standard ADSR will be used, that

avoids click-sounds as much as possible but starts & stops the sample
almost immediately.

Parameters:

smpID = The ID of the Sample to be started

mode = 0=apply offset directly,

1=scale offset with negative velocity (higher velocity results in

smaller offset),

2=scale offset with positive velocity (higher velocity results in

higher offset)

offset = The offset in sample-units. If mode = 1 or 2 the offset defines the

maximal range

Hint: Use an ADSR with at least 1 ms fade-in time or the FADE1N command
with 18ms fade time to avoid clicking if you use the offset function!

08/25/99

Appendix 1: 126

N64 Musicians Reference

STOPSAMPLE
Stops the sample playback immediately

Type: Sample

$11 STOPSAMPLE

Description:

Stops the sample playback immediately by sending a keyoff and setting

the ADSR to a very short release time. Click-sounds will be avoided as
much as possible.

© 1999 Factor 5 LLC

Appendix 1: 127
08/25/99

MlVSfjl Audio Tools

Volume Macros

SETADSR
Hardware ADSR Envelope

Type: Volume

I
Table-ID (ADSR)

$0C SETADSR Table

Description:

The data from the specified table will be used to define an ADSR to be

used with the voice. The editor presents a graphical edit dialog to define

tables containing the needed data.

Parameters:

table = This references the ID of the table that contains the ADSR

08/25/99

Appendix 1: 128

N64 Musicians Reference

SCALEVOLUME
Scales the velocity passed to the macro by the sequencer or the effect

handler to calculate a new volume for the current voice

Type: Volume

$0D SCALEVOLUME Scale Add
Table-ID (Curve) Org Vol.

curve org. vet

Description:

Calculates a new volume for the current voice by scaling the velocity.

The velocity is either passed to the macro by the sequencer (via midi) or

the effect handler. A scale of 127 equals 100%. Smaller values scale

down and larger scale up. In addition to the simple scale, an offset can
be specified in the ‘add’ parameter. The result of this calculation can be
passed through a curve that will act as a translation table. A value of

zero in the curve parameter will disable this feature. The new volume is

calculated either using the current velocity (Org.Vel = 0) or the original

velocity (Org.Vol = 1).

Parameters:

scale — The scaling factor of the velocity

add = A fixed offset can be added to the volume

curve = This is a table ID of a volume translation curve (CMinear)

org.vel =
If this switch is set to on the original velocity (when the macro
was started) is used instead of the current velocity/voiume

©1999 Factor 5 LLC

Appendix 1: 129
08/25/99

Audio Tools

ENVELOPE
Starts a software envelope

Type: Volume

Scale Add Table-ID (Curve) ms switch Ticks/Millisec.

Description:

Starts a software envelope. The velocity of the current macro will be
faded to the new one, in the time specified by the ticks/ms parameter. If

the ms flag is set, ms will be used instead of ticks. The new volume is

calculated just as described in SCALEVOLUME. The volume sweep may
be of lower quality than the hardware ADSR.

Parameters:

scale = The scaling factor of the velocity

add = A fixed offset can be added to the velocity. Clipping is applied if

the result exceeds 127

curve = This is a table ID of a volume translation curve (0=linear)

ms flag = This switches the following parameter from ticks to milliseconds

ticks/ms = Specifies fade time in either ticks or milliseconds

08/25/99

Appendix 1: 130

N64 Musicians Reference

FADE-IN

Starts a software fade-in envelope

Type: Volume

Description:

Starts a software fade-in envelope. The velocity of the current macro will

be faded from zero to the new one in the time specified by the ticks/ms

parameter. If the ms flag is set, ms will be used instead of ticks. The new
volume is calculated just as described in SCALEVOLUME. The volume
sweep may be of lower quality than the hardware ADSR.

Parameters:

scale = The scaling factor of the velocity

add = A fixed offset can be added to the velocity. Clipping is applied if

the result exceeds 127

table = This is a table ID of a volume translation curve (CMinear)

ms flag = This switches the following parameter from ticks to milliseconds

ticks/ms = Specifies fade time in either ticks or milliseconds

©1999 Factor 5 LLC

Appendix 1: 131

08/25/99

\3Zy^ Audio Tools

Pitch Macros

PORTLAST
Not implemented yet

Type: Pitch

Add Detune ms switch Ticks/Millisec. 8

|

$1 6 PORTLAST — — —

Description:

Not implemented yet.

Parameters:

08/25/99

Appendix 1: 132

N64 Musicians Reference

RNDNOTE
Sets random pitch

Type: Pitch

Note Lo Detune Note Hi Fixed/Free

$17 RNDNOTE note-lo detune note-hi fix/free

Description:

Sets random pitch. Note-lo is the lower end of the range, note-hi the

upper end. The detune value will be added after the random pitch is

calculated. It is specified in cents. If the fix/free flag is set, the pitch will

be generated freely inside the range without respect to any key steps. If

rel/abs is set, the note-lo parameter specifies how many keys below the

current key the range should start, while note-hi defines the size of the

upper range.

Parameters:

note-lo

detune

note-hi

fix/free

Lower end of the range

Applies a detune after the note is calculated

Upper end of the range

OFF = the random pitch is quantized to note values

ON = the pitch is calculated freely within the range

©1999 Factor 5 LLC

Appendix 1: 133
08/25/99

mvsyj. Audio Tools

ADDNOTE
Recalculates the current pitch by adding keysteps to the current key

Type: Pitch

Add Detune Org Key ms switch Ticks/Millisec. i

$18 ADDNOTE add detune org.key ms flag ticks/ms

Description:

Recalculates the current pitch by adding add keysteps to the current key

(or original key, if the Original Key flag is set to on) and applying the

detune value in cents. The add parameter is a signed value. The last two

parameters are zero by default. If they are a non-zero value they will be

used as in WAIT, to suspend the execution of the current macro for a

given time interval.

Parameters:

add =

detune =

org.key =

ms flag =

Ticks/Millisec. =

This can be used to transpose the midi-key to a new note

A detune of +/-99 cent can be applied

If set to on the original midi-key is used to calculate the new pitch

This flag switches the mode of the time parameter

A wait time specified in ticks or milliseconds. If 0 the macro
proceeds directly to the next step

08/25/99

Appendix 1: 134

N64 Musicians Reference

SETNOTE
Sets note by a fixed key

Type: Pitch

Key Detune ms switch Ticks/Millisec. 1

|

$1 9 SETNOTE key Detune ms flag tickslms

Description:

Calculating a new pitch by setting the current key to the new value

specified by key. After this, the detune specified in cents will be applied.

The last two parameters are zero by default. If they are a non-zero value,

they will be used as in WAIT, to suspend the execution of the current

macro for a given time interval.

Parameters:

key =

detune =

ms flag =

Ticks/Millisec. =

A fixed key in the normal midi key range (0-127)

A detune of +/-99 cent can be applied

This flag switches the mode of the time parameter

A wait time specified in ticks or milliseconds. If 0 the macro
proceeds directly to the next step

©1999 Factor 5 LLC

Appendix 1: 135
08/25/99

Audio Tools

LASTNOTE
Adds note to last note on current channel

Type: Pitch

Add Detune ms switch Ticks/Millisec. |

$1A LASTNOTE add detune ms flag ticks/ms

Description:

Recalculates the current pitch/key by adding add keysteps to the last key

played on this MIDI (!) channel and applying the detune value in cents.

The add parameter is a signed value. The last two parameters are zero

by default. If they are a non-zero value they will be used as in WAIT, to

suspend the execution of the current macro for a given time interval.

Parameters:

add =

detune =

ms flag =

Ticks/Millisec. =

This can be used to transpose the midi-key to a new note

A detune of +/-99 cent can be applied

This flag switches the mode of the time parameter

A wait time specified in ticks or milliseconds. If 0 the macro
proceeds directly to the next step

08/25/99

Appendix 1: 136

N64 Musicians Reference

VIBRATO
Adds a vibrato to the voice currently used to play the macro

Type: Pitch

Level note Level fine Modwheel flag ms switch Ticks/Millisec. |

$1C VIBRATO Level levelfine mod. ms flag tickslms

Description:

Adds a vibrato to the voice currently used to play the macro. Vibrato

means that the pitch is modulated by a triangular waveform with a period

specified by ticks. If the ticks/ms flag is set, the period is given in ms
instead of ticks. A period of zero will disable the vibrato. The number of

keysteps that it should go up or down gives the amplitude of the

waveform. The level parameter is a signed value. If it is negative the

pitch offset will go down first. If it is positive the offset will go up first.

levelfine is specified in cents. If the mod. flag is set to on, the values from
the modulation wheel will be used to scale the vibrato. "Off' disables any
scaling by controllers.

Parameters:

level — This is the level in note-steps (+/-12)

levelfine = The fine level (+/-99 cents
)

mod. = On = Scale the level with the modwheel controller

ms flag = This switches the following parameter from ticks to milliseconds

ticks/ms = Specifies period time in either ticks or milliseconds

© 1999 Factor 5 LLC

Appendix 1: 137
08/25/99

MusyJ Audio Tools

PITCHSWEEP1
Add a sweep to the pitch

Type: Pitch

1 Times Add ms switch Ticks/Millisec. S

$1D PitchSWEEPI Times Add-value ms flag tickslms

Description:

Adds the add-value n-times to the current pitch. After this, the action

starts again at the original pitch. To stop the effect, set add to zero. The
last two parameters are zero by default. If they are a non-zero value,

they will be used as in WAIT, to suspend the execution of the current

macro for a given time interval. There are actually two commands of this

kind (PITCHSWEEP1 & PITCHSWEEP2). They work independently from
each other and combine to perform very nice effects, if used
simultaneously.

Parameters:

Times =

Add-value =

ms flag =

Ticks/Millisec. =

This defines how many frames the add-value will be applied

The value to be added to the pitch per frame

This flag switches the mode of the time parameter

A wait time specified in ticks or milliseconds. If 0 the macro
proceeds directly to the next step

08/25/99

Appendix 1: 138

N64 Musicians Reference

PITCHSWEEP2
Add a sweep to the pitch

Type: Pitch

|
Times Add ms switch Ticks/Millisec. 1

$1E PitchSWEEP2 Times Add-value ms flag tickslms

Description:

Adds the add-value n-times to the current pitch. After this, the action

starts again at the original pitch. To stop the effect, set add to zero. The
last two parameters are zero by default. If they are a non-zero value,

they will be used as in WAIT, to suspend the execution of the current

macro for a given time interval. There are actually two commands of this

kind (PITCHSWEEP1 & PITCHSWEEP2). They work independently from

each other and combine to perform very nice effects, if used
simultaneously.

Parameters:

Times =

Add-value =

ms flag =

Ticks/Millisec. =

This defines how many frames the add-value will be applied

The value to be added to the pitch per frame

This flag switches the mode of the time parameter

A wait time specified in ticks or milliseconds. If 0 the macro
proceeds directly to the next step

©1999 Factor 5 LLC

Appendix 1: 139
08/25/99

MwSfA Audio Tools

SETPITCH
Sets the pitch directly

Type: Pitch

Frequency in Hz Fine i

$1 F SETPITCH Hz(24bit) (fine)

Description:

Sets the frequency to be used to playback a sample, directly. The fine

parameter is not supported by all platforms, since most platforms do not

have a fine resolution in selecting the playback frequency (10Hz steps

are common).

Parameters:

Hz = The coarse frequency in Hz (0-88200)

fine = A fine resolution parameter (0-65535)

08/25/99

Appendix 1: 140

N64 Musicians Reference

Control Macros

PIANOPAN
Piano stereo panning

Type: Control

Scale Centerkey Centerpan j

$0B PIANOPAN scale cen.key cen.pan

Description:

This macro command is especially designed to give instruments like a

piano a naturalistic stereo behavior. The current key will be used to

calculate a panning position. First, the key is converted to an offset by
subtracting the cen.key. Next, the scale is applied. A scale of 127 will

give you the full range, while a scale of 0 will eliminate any offset. Finally,

the cen.pan is added. This last value can be viewed as the position of

the instrument in the room. Since the final values may exceed the normal

panning range, illegal values are clipped. A negative scale will invert the

stereo panorama.

Parameters:

scale = This scales the range of the panning

cen.key = This defines the middle key of the panning

cen.pan = An offset of the panning range

©1999 Factors LLC

Appendix 1: 141

08/25/99

knj$yJ. Audio Tools

PANNING
Sets the panning to be used with the macro

Type: Control

Pan position Time ms Width ii

$0E PANNING pan.pos Time width

Description:

Sets the panning to be used with the macro. If no panning is specified,

the default center panning will be used. The pan.pos parameter specifies

the position (0=Left, 64=Center, 127=Right). The time and width

parameters enable an automated pan-sweep. The panning will move
from the current location to the new one specified by the signed offset

within time ms. If these parameters are zero, the new panning will be set

immediately.

Parameters:

pan.pos = like midi-panning (0-127), where 0 is totally left, 64 is center and
127 is totally right

time = Auto panning slide time

width = An offset to the pan position to which the auto panning slides to

08/25/99

Appendix 1: 142

N64 Musicians Reference

KEYOFF
Sends a keyoff to the currently used voice

Type: Control

$12 KEYOFF r-= rn
Description:

Sends a keyoff to the currently used voice, but does not change the

ADSR. This command should be used instead of STOPSAMPLE, to

finish sample playback if any ADSR has been set.

©1999 Factor 5 LLC

Appendix 1: 143
08/25/99

Mut/~ Audio Tools

Special Macros

ADDAGECOUNT
Add a value to the age-counter

Type: Special

ADDAGECOUNT add
— —

Description:

Adds a signed number to the age-counter of the current voice. This

allows customized priority handling.

Parameters:

add = Signed value to be added to the age-counter. In order to make a

voice “older” a negative value has to be added (-32768 to 32767)

08/25/99

Appendix 1: 144

N64 Musicians Reference

SETAGECOUNT
Set age-counter

Type: Special

Counter
j

$31 SETAGECOUNT counter

Description:

Directly sets the age-counter of the current voice. This allows customized
priority handling.

Parameters:

counter = This sets the age value (0-65535). The lower the value, the older

the voice

©1999 Factor 5 LLC

Appendix 1: 145
08/25/99

Mvsfd Audio Tools

SENDFLAG
Sends a flag to the game program

Type: Special

Flag-ID Value

$32 SENDFLAG num value

Description:

Sends a flag to the game program. This feature is used mainly to signal

certain events to the game program. After startup, the values are all

zero. There are 16 values.

Parameters:

num = The flag ID (0-15)

value = The number to be set (0-255)

08/25/99

Appendix 1: 146

N64 Musicians Reference

REV_LEVEL
Set reverb level

Type: Special

Scale Add

$34 _

i

LU>LLI
_l>'LU scale add

Description:

Sets or scales the reverb level for the current voice. If the reverb effect

engine is enabled, all voices are passed through this engine with a send
level defined by midi controller 91 (Effectl Depth) or as predefined by the

reverb setting in the midi-setup of each MusyX-song. The scale and add
parameter can be used to change or override those settings. This is

especially useful for drum kits, where each drum may need a different

reverb level. If both values are 0, the reverb engine is bypassed for the

voice currently used so that, e.g. a base drum can be kept "dry".

Parameters:

scale = Scales the reverb level of the current midi channel

add = Adds a fixed value to the scaled reverb level

©1999 Factor 5 LLC

Appendix 1: 147
08/25/99

Jiil®pX Audio Tools

SETPRIORITY
Directly sets the priority

Type: Special

Priority

$36 SETPRIORITY prio

Description:

Directly sets the priority. This allows customized priority handling.

Parameters:

prio = Sets the priority of the current macro

08/25/99

Appendix 1: 148

N64 Musicians Reference

ADDPRIORITY
Adds a value to priority

Type: Special

Add

$37 ADDPRIORITY add

Description:

Adds a signed number to the priority. This allows customized priority

handling.

Parameters:

add = A signed number to be added to the current priority

© 1999 Factor 5 LLC

Appendix 1: 149
08/25/99

AflusyX Audio Tools

AGECNTSPEED
Sets age-counter speed

Type: Special

Time until Zero

$38 AGECNTSPEED Time

Description:

Changes the speed by which the age-counter is decremented. By default

the counter will reach zero after about 18 minutes. The time value sets

the time in milliseconds the counter will need to decrement to zero from

its current value. If Time is set to zero, the priority counter will not be
changed over time at all.

Parameters:

time = The time (0-1080000) in milliseconds to reach 0

08/25/99

Appendix 1: 150

N64 Musicians Reference

AGECNTVEL
Sets the age-counter using velocity

Type: Special

j
Age Base Age Scae

$39 AGECNTVEL AGE Base AGE Scale

Description:

Sets the age-counter of the current voice, calculated from a base number
and the midi velocity. This allows customized priority handling.

Parameters:

AGE Base = The age base value (0-65535)

AGE Scale = The scaling factor for the velocity (0-65535) to be added

©1999 Factor 5 LLC

Appendix 1: 151

08/25/99

Audio Tools

ADD_VARS
Add variables

Type: Special

Ctrl A= Ctrl B+ an o S

$60 ADD_VARS Var/Ctrl A Var/Ctrl B Var/Ctrl C

Description:

The current values of variable B and C are added together and stored in

variable A. The Var/Ctrl switches select whether a variable or a controller

should be accessed. If the switch is set to “On”, the corresponding value

index is used as an extended controller number.

Parameters:

Var/Ctrl =

A

Var/Ctrl

B

Var/Ctrl

C

About variables:

All variable-handling commands can work with extended MIDI controllers

and variables. Variables are referenced by specifying a number that

identifies the variable to be used. There are local and global variables.

While local variables are just accessible from the current macro and are

initialized to zero each time the macro is started, global variables can be
accessed by all macros and even the application program. They are just

initialized to zero when the system is initialized.

Local variables are identified by indices 0 to 15, while indices 16 to 31

specify global variables.

All types of variables - including controllers - are handled as 16-bit

signed values. All operations are saturated, meaning that results of

mathematical operations are clipped against the maximum and minimum
values.

Controller A switch (OFF = Variable, ON = extended controller)

Variable / Controller A

Controller B switch (OFF = Variable, ON = extended controller)

Variable / Controller B

Controller C switch (OFF = Variable, ON = extended controller)

Variable / Controller C

08/25/99

Appendix 1: 152

N64 Musicians Reference

When writing to or reading from controllers, one must be aware that all

controllers are handled as 14-bit values, even if they are just 8-bits in

size. For example, a MIDI volume of 127 would be represented as 16256
(127*128). This is done so that generalized routines can be written

without having to watch out for all the different MIDI controller sizes.

The 14-bit value is always used as an unsigned quantity. E.g. a neutral

pitchbend position would be 8192, not zero.

All extended MIDI controllers with the exception of the two LFOs may be
written to, external MIDI data may overwrite these values at any time,

though.

©1999 Factor 5 LLC

Appendix 1: 153
08/25/99

Mu$yX Audio Tools

SUB_VARS
Subtract variables

Type: Special

Description:

The current value of variable C is subtracted from variable B and the

result is stored in variable A. The Var/Ctrl switches select whether a

variable or a controller should be accessed. If the switch is set to “On”

the corresponding value index is used as an extended controller number.

For details about variables see ADD_VARS.

Parameters:

Var/Ctrl = Controller A switch (OFF = Variable, ON = extended controller)

A = Variable / Controller A

Var/Ctrl = Controller B switch (OFF = Variable, ON = extended controller)

B = Variable / Controller B

Var/Ctrl = Controller C switch (OFF = Variable, ON = extended controller)

C = Variable / Controller C

08/25/99

Appendix 1: 154

N64 Musicians Reference

MUL_VARS
Multiply variables

Type: Special

Ctrl A= Ctrl B Ctrl c i

|

$62 VAR_MUL Var/Ctrl A Var/Ctrl B VarICtrl c

Description:

The current values of variable B and C are multiplied and the result is

stored in variable A. The Var/Ctrl switches select whether a variable or a

controller should be accessed. If the switch is set to “On”, the

corresponding value index is used as an extended controller number.

For details about variables see ADD_VARS.

Parameters:

Var/Ctrl — Controller A switch (OFF = Variable, ON = extended controller)

A = Variable / Controller A

Var/Ctrl = Controller B switch (OFF = Variable, ON = extended controller)

B = Variable / Controller B

Var/Ctrl = Controller C switch (OFF = Variable, ON = extended controller)

C = Variable / Controller C

©1999 Factor 5 LLC

Appendix 1: 155
08/25/99

Mu$y/* Audio Tools

DIV_VARS
Divide variables

Type: Special

Description:

The current value of variable B is divided by the value of variable C and
the result is stored in variable A. The Var/Ctrl switches select whether a

variable or a controller should be accessed. If the switch is set to “On”,

the corresponding value index is used as an extended controller number.

For details about variables see ADDJVARS.

Parameters:

Var/Ctrl = Controller A switch (OFF = Variable, ON = extended controller)

A = Variable / Controller A

Var/Ctrl = Controller B switch (OFF = Variable, ON = extended controller)

B = Variable / Controller B

Var/Ctrl = Controller C switch (OFF = Variable, ON = extended controller)

C = Variable / Controller C

08/25/99

Appendix 1: 156

N64 Musicians Reference

ADDLVARS
Add immediate value

Type: Special

Ctrl A= Ctrl B+ Imm

$64 ADDLVARS VarICtrl A Var/Ctrl B Immediate

Description:

The immediate value is added to the value of variable B and the result is

stored in variable A. The Var/Ctrl switches select whether a variable or a
controller should be accessed. If the switch is set to “On”, the

corresponding value index is used as an extended controller number.

For details about variables see ADD_VARS.

Parameters:

Var/Ctrl

A

Var/Ctrl

B

Immediate

Controller A switch (OFF = Variable, ON = extended controller)

Variable / Controller A

Controller B switch (OFF = Variable, ON = extended controller)

Variable / Controller B

Immediate value to add to B

©1999 Factor 5 LLC

Appendix 1: 157
08/25/99

A*l/sy>. Audio Tools

SET_VAR
Set variable to immediate value

Type: Special

$65 SET_VAR Var/Ctrl

Jem
\A Immediate

Description:

The current value of variable A is replaced with the specified immediate

value. The Var/Ctrl switch selects whether a variable or a controller

should be accessed. If the switch is set to “On”, the value index is used
as an extended controller number.

For details about variables see ADD_VARS.

Parameters:

Var/Ctrl = Controller A switch (OFF = Variable, ON = extended controller)

A = Variable / Controller A

Immediate = 16 bit value (0-65535) to be stored in A

08/25/99

Appendix 1: 158

N84 Musicians Reference

Setup Macros

PORTAMENTO
Sets portamento mode and time

Type: Setup

| Port. State Port. Type ms switch Ticks/Millisec. t

$1B PORTAMENT. state type ms flag ticks/ms

Description:

Setup the mode for portamento operation. If state equals zero,

portamento will be disabled, while 1 enables it. A value of 2 keeps the

state unchanged. By default, portamento is controlled by the MIDI

portamento controller (65). The time parameter controls the time needed
to reach the current key. By default, this is 500ms. Type defines the type

of portamento function desired. Zero performs portamento only if the last

key is still depressed, while 1 performs it all the time. A legato function

can be achieved by setting the time parameter to zero.

Parameters:

mode state =

type

ms flag =

ticks/ms =

0=off, 1=on, 2=midi controller 65 controls off/on

0=enable portamento when the last key is held, and while the

new key is pressed. 1=portamento is always active.

This switches the following parameter from ticks to milliseconds

Specifies portamento time in either ticks or milliseconds

©1999 Factor 5 LLC

Appendix 1: 159
08/25/99

*' * v -
* Audio Tools

PITCHWHEELR
Sets the number of keysteps used to calculate the pitchwheel range

Type: Setup

Range up Range down
j

$33 PITCHWEELR rng up rng dwn

Description:

Sets the number of keysteps used to calculate the pitchwheel range. The
size of the lower and the upper range can be selected separately. The
default value is two keysteps for both ranges.

Parameters:

mg up = The positive range in key steps

mg dwn = The negative range in key steps

08/25/99

Appendix 1: 160

N64 Musicians Reference

VOL_SELECT
Adds a volume calculation component

Type: Setup

MIDI Contr. Scale Percentage Combine uCode
[

$40 VOL_SELECT Ctrl scale comb

Description:

Selects an additional component for the volume calculation. The first use
of this command resets the default values to empty and adds the new
component. All further calls add additional components. A comb value of

0 sets the value, 1 adds the value and 2 multiplies the old and the new
values.

Parameters:

Ctrl = The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

Ctrl = 0 = set value from defined controller, 1 = add value to current

controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the

following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)

129 Aftertouch (since there is no controller in the MIDI standard)

130 LFOI (see SETUP_LFO macro command)
131 LF02 (see SETUP_LFO macro command)
132 Surround Panning (0- front, 127=surround)

©1999 Factor 5 LLC

Appendix 1: 161

08/25/99

.

- Audio Tools

PAN_SELECT
Adds a panning calculation component

Type: Setup

MIDI Contr. Scale Percentage Combine uCode
{

$41 PANLSELECT Ctrl Scale comb

Description:

Selects an additional component for the panning calculation. The first

use of this command resets the default values to empty and adds the

new component. All further calls add additional components. A comb
value of 0 sets the value, 1 adds the value and 2 multiplies the old and

the new values.

Parameters:

Ctrl The MIDI controller number

scale = A signed scaling factor (-1 0000 to 1 0000)

Ctrl = 0 = set value from defined controller, 1 = add value to current

controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the

following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)

129 Aftertouch (since there is no controller in the MIDI standard)

130 LFOI (see SETUP_LFQ macro command)
131 LF02 (see SETUP_LFO macro command)
132 Surround Panning (0= front, 127=surround)

08/25/99

Appendix 1: 162

N64 Musicians Reference

PitchW_SELECT

Adds a pitchwheel calculation component

Type: Setup

MIDI Contr. Scale Percentage Combine uCode

$42 PitchW_SELECT Ctrl Scale comb

Description:

Selects an additional component for the pitchwheel calculation. The first

use of this command resets the default values to empty and adds the

new component. All further calls add additional components. A comb
value of 0 sets the value, 1 adds the value and 2 multiplies the old and
the new values.

Parameters:

Ctrl = The MIDI controller number

scale = A signed scaling factor (-1 0000 to 1 0000)

Ctrl = 0 = set value from defined controller, 1 = add value to current

controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the

following extensions have been defined:

1 ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)

129 Aftertouch (since there is no controller in the MIDI standard)

130 LFOI (see SETUP_LFO macro command)
131 LF02 (see SETUP_LFO macro command)
132 Surround Panning (0= front, 127=surround)

©1999 Factor 5 LLC

Appendix 1: 163
08/25/99

MusyK Audio Tools

ModW_SELECT
Adds a modulation wheel calculation component

Type: Setup

MIDI Contr. Scale Percentage Combine uCode

$43 ModW_SELECT Ctrl Scale comb

Description:

Selects an additional component for the modulation wheel calculation.

The first use of this command resets the default values to empty and
adds the new component. All further calls add additional components. A
comb value of 0 sets the value, 1 adds the value and 2 multiplies the old

and the new values.

Parameters:

Ctrl = The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

Ctrl = 0 = set value from defined controller, 1 = add value to current

controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the

following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)

129 Aftertouch (since there is no controller in the MIDI standard)

130 LFOI (see SETUP_LFO macro command)
131 LF02 (see SETUP_LFO macro command)
132 Surround Panning (0- front, f27-surround)

08/25/99

Appendix 1: 164

N64 Musicians Reference

PEDAL_SELECT
Adds a pedal calculation component

Type: Setup

MIDI Contr. Scale Percentage Combine uCode 1

$44
l—

o111
—

1

LUmi_i<QLUQ. Ctrl Scale comb

Description:

Selects an additional component for the pedal calculation. The first use
of this command resets the default values to empty and adds the new
component. All further calls add additional components. A comb value of

0 sets the value, 1 adds the value and 2 multiplies the old and the new
values.

Parameters:

Ctrl = The MIDI controller number

scale = A signed scaling factor (-1 0000 to 1 0000)

Ctrl = 0 = set value from defined controller, 1 = add value to current

controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the

following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)

129 Aftertouch (since there is no controller in the MIDI standard)

130 LFOI (see SETUP_LFO macro command)
131 LF02 (see SETUP LFQ macro command)
132 Surround Panning (0= front, 127=surround)

© 1999 Factor 5 LLC

Appendix 1: 165
08/25/99

i my.’. Audio Tools

PORTA_SELECT
Adds a portamento calculation component

Type: Setup

MIDI Contr. Scale Percentage Combine uCode
j

$45 PORTA_SELECT Ctrl Scale comb

Description:

Selects an additional component for the portamento calculation. The first

use of this command resets the default values to empty and adds the

new component. All further calls add additional components. A comb
value of 0 sets the value, 1 adds the value and 2 multiplies the old and
the new values.

Parameters:

Ctrl — The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

Ctrl = 0 = set value from defined controller, 1 = add value to current

controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the

following extensions have been defined:

1 ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)

129 Aftertouch (since there is no controller in the MIDI standard)

130 LFOI (see SETUP LFO macro command)
131 LF02 (see SETUP_LFO macro command)
132 Surround Panning (0= front, 127=surround)

08/25/99

Appendix 1: 166

N64 Musicians Reference

REVERB_SELECT
Adds a reverb calculation component

Type: Setup

MIDI Contr. Scale Percentage Combine uCode
j

$46 REVERB_SELECT Ctrl Scale comb

Description:

Selects an additional component for the reverb calculation. The first use
of this command resets the default values to empty and adds the new
component. All further calls add additional components. A comb value of

0 sets the value, 1 adds the value and 2 multiplies the old and the new
values.

Parameters:

Ctrl — The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

Ctrl = 0 = set value from defined controller, 1 = add value to current

controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the

following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)

129 Aftertouch (since there is no controller in the MIDI standard)

130 LFOI (see SETUP_LFO macro command)
131 LF02 (see SETUP LFO macro command)
132 Surround Panning (0= front, 127=surround)

©1999 Factor 5 LLC

Appendix 1: 167
08/25/99

MusyX Audio Tools

SPAN_SEL
Adds a surround panning calculation component

Type: Setup

1 MIDI Contr. Scale Percentage Combine Mode 1

$47 SPAN_SEL Ctrl Scale comb

Description:

Selects an additional component for the surround panning calculation.

The first use of this command resets the default values to empty and
adds the new component. All further calls add additional components. A
comb value of 0 sets the value, 1 adds the value and 2 multiplies the old

and the new values.

Parameters:

Ctrl = The MIDI controller number

scale = A signed scaling factor (-10000 to 10000)

Ctrl = 0 = set value from defined controller, 1 = add value to current

controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the

following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)

129 Aftertouch (since there is no controller in the MIDI standard)

130 LFOI (see SETUP LFO macro command)
131 LF02 (see SETUP_LFO macro command)
132 Surround Panning (0- front, 127=surround)

08/25/99

Appendix 1: 168

N64 Musicians Reference

DOPPLEFLSEL
Adds a reverb calculation component

Type: Setup

MIDI Contr. Scale Percentage Combine Mode
\

$48 DOPPLER_SEL Ctrl Scale comb

Description:

Selects an additional component for the doppler calculation. The first use
of this command resets the default values to empty, and adds the new
component. All further calls add additional components. A comb value of

0 sets the value, 1 adds the value and 2 multiplies the old and the new
values.

Parameters:

Ctrl = The MIDI controller number

scale = A signed scaling factor (-1 0000 to 1 0000)

Ctrl = 0 = set value from defined controller, 1 = add value to current

controller assignment, 2 = multiply the old and the new controller

You may use all standard MIDI controller numbers. In addition, the

following extensions have been defined:

ExCTRL Function

128 Pitchbend (since there is no controller in the MIDI standard)

129 Aftertouch (since there is no controller in the MIDI standard)

130 LFOI (see SETUP_LFO macro command)
131 LF02 (see SETUP_LFO macro command)
132 Surround Panning (0= front, 127-surround)

©1999 Factor 5 LLC

Appendix 1: 169
08/25/99

iBtyX Audio Tools

SETUP_LFO
Sets up LFO characteristics

Type: Setup

LFO Nr. Period in ms I

$50 SETUP_LFO num period

Description:

Enables or disables the specified LFO. A value of zero as period will

disable the LFO. From that point on it will continue to produce the last

value as a constant. The LFO always starts at center level, unless it

already was active. Num specifies which LFO should be setup. Currently

two LFOs (0,1) are supported.

The LFOs always swing through the full amplitude. Use the scale

parameter when combining them, using the x_SELECT macro
commands to control the amplitude.

Parameters:

num = The LFO number to be set (0 or 1)

period = The period time of one LFO cycle in milliseconds

The following table shows how the two LFOs can be accessed in

combination with any of the x__SELECT macro commands

ExCTRL Function

LFOI
131 LF02

08/25/99

Appendix 1: 170

N64 Musicians Reference

Appendix 1.2 - N64 Macro Templates

This part contains descriptions of the Macro templates used by MusyVL
for the Nintendo64. The descriptions for the templates are based upon
the content of the first template. So, to understand the various aspects of

programming in SMal, you should read the descriptions in order.

©1999 Factor 5 LLC

Appendix 1: 171

08/25/99

•fK Audio Tools

?_ONESHOT
Template for starting a simple oneshot sample

%. Soundmacroeditoi — 2. snare. drum_oneshot mxm HIm
•-V, i : T • fs im'ywsimm : ’"T- ;

ilMWKS&3- ISMIlWimm—iHI
H.i-

-v s
'

:

-,y :
. V Ml

ij®SllS
'Sample-IC vej —

3

ST
T

(

. ' J ‘Jig
1Si—y:

:

.yMS ipSSIlS
W>Smto SanHUNS

Wxh -jBplM
ti". ^ ai— 1

_

Mfi p—&S——

—

mimes
m torinBi

' EE 1 ill ^ .—lfeL£i—rr-wsm.^

B il

I-
’

I

iBBItn1 — —H

Description:

This short SoundMacro is an example of how to get a simple oneshot

sample working. It may also work even with just 2 commands:
STARTSAMPLE and END. But one has to understand the underlying

priority and voice allocation scheme in order to build a correct

SoundMacro.

The dynamic-voice-allocation of MusyK is a very important part of the

system and understanding how it works help to produce better results. A
voice in MusyH uses a priority from 0-255 and the so-called age counter

(0-65535) to determine their importance. Please refer to “Dynamic Voice

Allocation", on page 14 of the MusyA Manual, for a detailed description.

Step by Step:

Assume that this SoundMacro is properly set to the desired midichannel

and ready to play. If the slave now receives a midi-on command (a note

is played from a connected midikeyboard or a midi-sequencer), the slave

searches for a (free) voice and execution of the SoundMacro starts at

step 0.

However, before the first command is executed, there are some basic

settings made by the init-routine. The frequency of the voice will be set to

the note received by midi. The volume of the voice will be calculated

using the midi-velocity and the channel volume. The priority will be set as
defined in the Soundlist and the age-counter will be set to 60000
(decimal).

08/25/99

Appendix 1: 172

N64 Musicians Reference

Step 0:

The first command to be executed is STARTSAMPLE, which is of course

used to start the sample. The first parameter of this command is the

Sample-ID referencing our desired sample (in this case a snare drum).

The “Vel scale" and “offset" offer a nice option to start the sample with an
offset (measured in samples), which can be scaled to the beginning of

the sample using the velocity. This can provide instruments of different

attack styles depending on the velocity and helps to give some sounds a

more natural feel. If the offset is 0, this option is disabled. Since

STARTSAMPLE has no wait parameter, the execution continues

‘virtually’ in real-time.

Step 1

:

The second command (WAIT) is a part of the priority and voice allocation

scheme mentioned earlier. The “Millisec." parameter regularly defines in

milliseconds how long the execution of the macro is to be stopped. If set

to the highest possible value 65535 (hex $FFFF), the sample will play

continuously.

Flowever, the execution of the SoundMacro will continue when one of the

condition parameters (keyoff, random or sample-end) becomes ‘true’. In

this case the command waits until the sample is finished. This is very

important, because of the two following commands.

Step 2:

The next command (SETAGECOUNT) is used to set or reset the age-

counter of the voice. Since the sample has played to the end and there

are no other things to do in this SoundMacro, we can reset the age
counter to 0 (oldest). Thus, a new midi-note can use this voice as soon
as possible. This command also proceeds directly to the next and last

command in our SoundMacro.

Step 3:

The END command is the last command in all SoundMacros and also

resets the priority of the voice to 0. In this case, the voice is now totally

free and can be used by any new midi-note, even one with a lower

priority.

Reset the age counter at the end of every SoundMacro and keep an eye
on the voice bars appearing in the slave window.

© 1999 Factor 5 LLC

Appendix 1: 173
08/25/99

J
-If

Audio Tools

?_LOOPED
Template for playing a looped sample

Description:

This is an example for a looped instrument. (The following explanation of

the steps is based on the description of the first macro-template

“?_ONESHOT” which you should have already read.)

Step 0:

The first command is, again, a STARTSAMPLE command. Since we
have a looped sample (trumpet.aif) here it would play forever, so we
have to take care of what to do after the midi-key is released.

Step 1

:

The WAIT_MS command this time is set to wait until the midikey is

released. After the keyup is received, we want to stop the sample. But to

get a more musical result, we decide to fade out smoothly before we stop

the sample.

Step 2:

During the fade out we also want to give the voice more “age”, because it

is not so important compared to voices that are still held. To do this we
use the ADDAGECOUNT command, but with a negative value (-30000)

because the lower the counter the older is the voice.

08/25/99

Appendix 1: 174

N64 Musicians Reference

Step 3:

This command (Envelope) fades the volume of the voice to a new one,

calculated from the midi-velocity using the “scale” and “add” parameter.

Since both values are 0, the voice will be faded to 0 in the time given by

the milliseconds parameter (1000ms or one second).

Step 4:

Here we have, again, a WAIT, but this time no condition is given and the

milliseconds parameter is set to the same time like in the envelope
command, before. So we can make sure that the next command will be
executed just when the envelope fade is completed.

Step 5:

The volume is now 0 and the sample cannot be heard anymore.
However the sample is still playing, so we should switch it off if we want
to end this soundmacro. It is also recommended to do this because the

mixing routine will be unburdened.

Step 6:

The same procedure as in our last macro. We set the age to 0 so that

the voice is free.

Step 7:

End our macro.

©1999 Factor 5 LLC 08/25/99

Appendix 1: 175

Game Boy Musicians Reference

APPENDIX 2-
Game Boy Musicians Reference

Table of Contents:

An Introduction to Sound on the Nintendo Game Boy 179

Appendix 2.1 - Game Boy Slave 183
What is this Slave? 183
Starting the Slave 184
Working with the Slave 187
Testing your Project with the Slave 191

Exiting the Slave 192

Appendix 2.2 - SlaveROMGenerator 193
Creating a Slave ROM 195

Appendix 2.3 - Game Boy Macro Commands 197

END 198

Structure Macros .199
STOP 199
SPLITKEY 200
SPLITVEL 201
LOOP 202
GOTO 203
WAIT 204
PLAYMACRO 205
KEYOFF 206
SPLITRND 207
TRAP_KEYOFF 208
UNTRAP_KEYOFF 209

©1999 Factor 5 LLC 08/25/99

Appendix 2: 177

tisyJC Audjo T00 |S

Voice/Sample Macros 21

0

PLAYKEYSAMPLE 210
SETVOICE 211

STARTSAMPLE 212
VOICEJDFF 213
VOICE_ON 214
SETNOISE 215
PWM.START 216
PWM_UPDATE 217
PWM_FIXED 218
PWM_VELOCITY 219
WAVE_ON.. 220

Volume/Pan Macros221

SETADSR221

SETVOLUME 222
PANNING 223
ENVELOPE ..224

HARDENVELOPE 225

Pitch Macros .226

RESET.MOD 226
STOP_MOD 227
PORTLAST 228
RNDNOTE 229
ADDNOTE 230
SETNOTE 231

LASTNOTE 232
PORTAMENTO 233
VIBRATO 234
PITCHSWEEP 235

Special Macros........ 236
SENDFLAG 236
SAMPLEMAP 237
CURRENTVOL 238
ADD_SET_PRIO. 239

Appendix 2.4 - Performance Issues 241

Appendix 2.5 - Troubleshooting Guide.. 243

08/25/99

Appendix 2: 178

Game Boy Musicians Reference

An Introduction to Sound on the Nintendo
Game Boy

Since the Game Boy hardware is already ten years old, it can be
considered rather old fashioned by today’s standards. Nevertheless it is

possible to create surprisingly good sounds, if the sound artist is fully

aware of the possibilities and the limitations of the Game Boy sound
hardware.

This appendix is meant to introduce you to what the Game Boy has to

offer (and what not to expect).

First, there is need to mention that the Game Boy and Game Boy Color

sound hardware are identical. No improvements have been made to the

Game Boy Color with respect to sound.

Having stated this, we will refer to any kind of Game Boy hardware
(including the traditional Game Boy, the Game Boy pocket and the Game
Boy Color) as Game Boy.

Note: Musy& for Game Boy does not provide support for the extended
sound capabilities offered by Super Game Boy hardware.

Game Boy sound hardware is comprised of 4 individual sound
generators of three different kinds. Two of those four generators are

identical in function with the exception of one special feature on one of

them.

The Game Boy programming manual calls the sound generators
Soundl, Sound2, Sound3 and Sound4. To prevent confusion with the

general understanding of what a sound is, we will continue to call them
Voicel through Voice4.

The three different kinds of sound generators are as follows:

Voicel and Voice2 use rectangular wave patterns to create a sound.
Voice3 uses a 32 4-bit sample long wave pattern to create sound.
Voice4 uses a polynomial counter to create random noise.

All four voices have a volume control that can, with the exception of

Voice3, be set in 16 steps from mute (0) to maximum (15). Voice3 does
not have the full range of volume control. It can be set only in 4 steps
from mute (0) to 25%, 50% and 100% (3). There is also an envelope
available in hardware for all but Voice3. Musy& however offers a more
flexible envelope for all 4 voices in software.

©1989 Factor 5 LLC 08/25/99

Appendix 2: 179

Audio Tools

All voices, with the exception of Voice4, have a frequency setting that

allows for sounds to be produced from 64Hz to 131kHz. Since Voice4 is

a noise generator, it does not have such a setting. It can produce

different kinds of frequencies by modifying the parameters of the

polynomial clock.

For Voicel and Voice2 you may choose from hardwired pulse widths for

the rectangular wave pattern. It offers pulse widths of 12.5%, 25%, 50%
and 75%. The latter is the equivalent of the 25% pulse width, but it is

phase inverted.

Voicel also offers a very limited pitchsweep function, which is NOT
supported by MusyX.. Instead we offer 2 sophisticated pitchsweeps for

each Voicel through Voice3 in software.

Finally, each voice can be assigned to the left, right or both sound
outputs individually. This selection allows for a wide stereo spectrum only

(the sound is played back entirely on the left, right or on both). Smooth
panning changes are not possible.

The Game Boy sound hardware has just two flaws that are important to

know and that unfortunately cannot be circumvented.

Whenever a voice is started or stopped a clicking sound is produced.

The intensity of it varies depending on the signal being output at the

moment of the start or stop.

Whenever a change in volume on a playing voice is requested, the voice

needs to be restarted. This usually creates a slight clicking sound as
well.

MusyK. extends on the capabilities of the Game Boy and adds a few new
features like extended sample playback and pulse-width modulation.

Extended features fall into the categories of pitch and volume changes.

To modify pitch for instance, MusyK adds features like vibrato,

portamento, pitch sweeps, fixed pitches and random pitches for Voicel,

Voice2 and Voices.

Enhancements for volume controls are ADSR curves, envelopes, fade-

ins and fixed volumes for all 4 voices.

08/25/99

Appendix 2: 180

Game Boy Musicians Reference

New features are:

> Velocity dependent selection of the rectangular wave pattern for

Voicel and Voice2.

> Pulse-width modulation of a rectangular wave pattern for Voice3
> Velocity dependent creation of a rectangular wave pattern for Voice3
> Playback of samples in two quality settings (normal and low) for

Voice3 as music instruments or sound effects

> Playback of samples in high quality using full CPU performance for

introductory voice or music.

In addition, the SMaL programming language offers control of the sound
while it is playing in numerous ways with control commands like: wait,

loop, goto, trap, split and more.

To experience the possibilities of Musy&, listen to the provided example
and see how each sound is achieved by examining its corresponding
SMaL macro.

© 1999 Factor 5 LLC

Appendix 2: 181

08/25/99

08/25/99

Appendix 2: 182

Game Boy Musicians Reference

Appendix 2.1 - Game Boy Slave

What is this Slave?

The slave program running on the PC communicates with the MusyK
editor and the Game Boy slave running on Game Boy Color.

It also receives MIDI data from a connected MIDI keyboard or the virtual

MIDI keyboard in the MusyK editor.

The slave is responsible for relaying all the data it receives to Game Boy,

which will in turn produce sound.

To do this you will need to connect a standard Game Boy Color to the

PC running the slave program, via the supplied customized link cable.

This cable plugs into the link port of Game Boy Color and any available

printer port of the PC.

The slave receives data from the AU/syX. editor using a network

connection known as TCP/IP. This virtually enables any machine in your
Local Area Network or even any machine on the globe, to serve as your

sound slave. If you are planning to use the same machine to run both the

slave and the editor, you still need to have TCP/IP installed and have
both the editor and the slave refer to the same IP address.

The slave receives MIDI data through a Windows MIDI device, usually a
sound card with a built-in MIDI port. If you plan on using the same
machine for the slave and your favorite sequencer program, you will

need to connect a loopback plug to your soundcard's midiport, or install a

so-called loopback device driver, which serves as a MIDI device to

Windows. More on this later.

©1999 Factor 5 LLC

Appendix 2: 183
08/25/99

isyM Audio Tools

Starting the Slave

The slave program is a Windows GUI executable, which has been

installed on your system along with the MusyK editor.

When you start the program, you will see a window similar to this:

MusyX Win95/98-Slave

Program version

llusyX Win95/98 U0.63 - GameBoy (10:45:27 Mar 2 1999)
(0)1996-99 Factor 5, LLC
Written by Thomas Engel & Jens Petersam
iFound 4 MIDI ini

List of available

MIDI devices^
degice(s)

#0 : "Greatiue Labs Sound 81.

#1 : "MIDI Yoke NT: 1"

92 : "MIDI Voke NT: 2"

#3 : "MIDI Yoke NT: 3"
./ i

- - \'A opened.
IWinSocket initialized: <WinSi

Liste.n i.ng....f

e

cti on a

:

;ri27’. Q.0.1 <katie> : 7 08.'.....::

MIDI device used

to receive data

TCP/IP address,

machine name &
port number of

this slave PC

Link speed, available ROM samples & size of flash cart SRAM

: "Greatiue _abs Sound Blaster 1.5"!

: "MIDI Voke NT: 1"

: "MIDI Voke NT: 2"

: "MIDI Yoke NT: 3"

Note that the main window is divided into three sections: the main log,

the Link status and the MIDI data.

The Main Log
This window holds all the information about the data received from the

MusflL editor while you are working. Right after the start of the program,

it will display system information, as seen above.

Program Version:

This displays the type and version of the slave you are currently

running. Your version and build numbers are likely to be different

from the example above.

Available MIDI Devices:

These lines enumerate all MIDI devices that can be used for input.

The number of devices depends on your Windows installation and
the MIDI devices you have installed on your system.

08/25/99

Appendix 2: 184

Game Boy Musicians Reference

Used MIDI Device:

This line tells you which MIDI device number, from the presented list

of available devices, you are now using for input. This should be the

setting you made in the slave configuration program. If you need to

use a different input device, you must reconfigure the slave with the

configuration program.

TCPIIP Network Info

This tells you the local IP and port address the slave program uses

to communicate with the MusyX. editor. It also shows you the name
of the machine on which you are running the slave.

The IP and port numbers are the ones that you need to enter in the

editors network options to have it communicate with this slave.

The Link Status

This window contains information about the current data link between the

slave PC and the connected Game Boy Color. Initially it will display

system information, as seen on the previous page.

Link Speed:
If the communication to the Game Boy Color can be established

successfully, you can see here how fast the communication is taking

place. This speed can drop, if during the course of transmitting data

errors cause packets to be retried. Should the speed drop to below
70% of the initial value shown here and the slave is idle for more
than 30 seconds, it will try to reconnect to the Game Boy Color at a
higher speed.

Number ofROM Samples:
Here, the number of samples that are registered in the Game Boy
Color slave ROM is displayed. ROM samples become important

when the internal RAM of Game Boy Color cannot hold all the

samples your project requires. Please refer to "Data Conversion
Tools" in the Programmers Reference, for more details about ROM
samples.

SRAM Size:

This states how much SRAM is installed in the flash ROM that holds

the Game Boy Color slave program. This number can be anything

between OK and 128K in 16K increments.

©1999 Factor 5 LLC 08/25/99

Appendix 2: 185

Audio Tools

If you see the following error message instead of a successful

connection message...

j

Link status

Connecting to Game Boy... FAILED! —

4
| | T'i /;<:

... then the slave was not able to establish a link with Game Boy Color. In

this case, please refer to the troubleshooting section at the end of this

appendix.

The MIDI Data Window
This window shows ail incoming MIDI data from the MIDI device in their

form, as 3 byte data packets.

08/25/99

Appendix 2: 186

Game Boy Musicians Reference

Working with the Slave

When you create your sounds, the moment will come when you want to

test them on Game Boy. Before you can do this, you need to send your

sound project to the slave program, which will process it and in turn

transfer the data to the Game Boy itself.

You initiate this process by highlighting the sound group (song group or

sound effect group) you wish to test and choose "Send to slave" from the

context sensitive pop-up menu:

S' G

- _J C

_j

The slave program will now receive all of this group's data and print it out

in the main log.

As soon as the slave program has received all data from the group, it will

download it to Game Boy Color. This may take some time, depending on
the established communication speed and the size of your project.

You will see the line "Downloading project..." during the download phase,
at the end of which a "done!" is appended if everything worked fine.

©1999 Factor 5 LLC

Appendix 2: 187
08/25/99

Audio Tools

Here is an example of what it looks like when you transfer the supplied

demo to the slave.

Listening for a connection as
127.0.0.1 <katie> : 700...
Connection accepted.
Clearing all data.
Clearing all data.
Receiuing current MIDI setup.
Receiuing 8 bytes of macro data on id 5.

Receiuing 64 bytes of macro data on id 18.
Receiuing 40 bytes of macro data on id 19.
Receiuing 80 bytes of macro data on id 6.

Receiuing 88 bytes of macro data on id 20.
Receiuing 24 bytes of macro data on id 16.
Receiuing 40 bytes of macro data on id 17.
Receiuing 32 bytes of macro data on id 15.
Receiuing 56 bytes of macro data on id 7.

Receiuing 120 bytes of macro data on id 11.
Receiuing 80 bytes of sample data on id 11.
Receiuing 80 bytes of sample data on id 10.
Receiuing 784 bytes of sample data on id 7.

Receiuing 1016 bytes of sample data on id 8.

Receiuing 730 bytes of sample data on id 9.
Receiuing 1480 bytes of sample data on id 6.
Receiuing 8150 bytes of sample data on id 2.

Receiuing 7190 bytes of sample data on id 4.

Receiuing 8048 bytes of sample data on id 3.

Receiuing 8162 bytes of sample data on id 1.

Receiuing 8488 bytes of sample data on id 5.

Receiuing song group data for id 9.

Receiuing project name.
Sending status information.
Free project mem: 7039 bytes
Free sample mem: 144560 bytes

While the slave program is downloading data into Game Boy Color, a

rotating transfer indicator on Game Boy signals you that a download is in

progress.

08/25/99

Appendix 2: 188

Game Boy Musicians Reference

The available size of memory will be displayed in two separate units in

the main log (see the screenshot on the previous page).

First, we have the available project memory. This is a fixed size chunk of

memory, unaffected by any SRAM in the flash ROM, of 7424 bytes.

It holds all the sound macros and ADSR tables.

Second, we have an area of variable size, between 24 KB and 152 KB,

depending on the amount of SRAM on the flash ROM that holds the

Game Boy slave program. This area stores sound samples and is the

one most likely to run out first.

The usage of the sample RAM is also displayed in the Musy*. editor’s

Network Master window:

1 Network: Master

Information about soundslave:

Name value
i

State Sonq-Group

Memory total 1 55648

Memory used 11088

Memory tree 144580

M axvoices 0

Connected

33
R eset

Panic

Di connect

Maxvoices:

When you are running out of sample RAM, you need to move some or all

of your samples into ROM to clear some space. Your project can still use
samples that have been moved to ROM. The difference is that they do
not consume any RAM space, so you can continue to add more samples
here.

Please refer to, "Data Conversion Tools" in the Programmers Reference,
for details on how to move samples to ROM.

© 1999 Factor 5 LLC

Appendix 2: 189
08/25/99

Audio Tools

When you are sending a project to the slave repeatedly, you will see a

line displayed in the Link status window like this.

Link status

Connecting to Game Bog OK! (1181 bytes/sec)
Querying ROM sample list... OK! (0 ROM Samples found)
Determining SRRM size... OK! (128 KB installed)
Downloading project . . . done!—

-

Downloading project..:, no change! 'j

To preserve time, the slave program keeps an internal backup of what it

knows is already located in Game Boy. If it determines that the data is

accurate it will not download anything to Game Boy.

You are most likely to encounter this when you are actively working on a

macro while trying out your changes. Some parameters of a macro
command have a limited resolution in Game Boy, so sometimes a

change you make will actually have no effect.

The WAIT command is a good example. Its resolution is limited to 16.67

milliseconds inside Game Boy, although you can enter any number you

like. Because of this, values like 4,10 and 1 3 milliseconds will be

rounded up to 16.67 and, even though you made a change to the macro,

it does not make any difference to Game Boy. Since there is no change

to download, you will be prompted with the above line, "no change!”.

08/25/99

Appendix 2: 190

Game Boy Musicians Reference

Testing your Project with the Slave

Once you have successfully downloaded a valid project into Game Boy,

you can use your MIDI keyboard, sequencer program or the Musyfc
virtual MIDI keyboard to test your sounds.

Whenever the slave program receives either kind of MIDI data, it

displays them in either the MIDI data window or the Main log, depending
on the type of MIDI data (data from the virtual keyboard or from the

sequencer).

Mm da.fe trsri

tm mrmi MIDI

liftecjfiwifig nrfc-liiai Hill %h 74. -i 92 l#tl "1.

Receiyimt net-nail i m wi If . 64 56 31

Inif net-MIi! m $2 74 , %2 UK Sri

m 2f 7f * §2.
K (‘ CFMJiJI »| Set-tsIBI"m~zf If , ny tte

imk-ma i m 14 . 82 (Hi 153

net—whip I mi 7? i tit w*> 3D
nctr-Him m tt 74

.

S3 ?t* 44
v Fteceisiiiiij net “Min I m 26 f t *: 83 24 *e

imk-foiiil $8 i*,Kf W- £3 ?H
azt-nmi f.fL4T 7f

.

SO 24 3 b
ffpceiy I.ni| t v ji m If * 74 Sr

IIBE'Cr&iSiing; m 2s ?f. t2 07 sm
Hr.nineeti im. r m 74 4b

so

JT h mpi; j
' it Jj 80 24 4e—““““ " —- • '

ft?. 3 dtSSI —

1

SO' 24 31}

:\ jmj to licmt* ttuy . .

.

U¥, T f 11311 iHft t» tS/5.t*C) A'f 83 ?6 4b
(kerumq Hurt sample list. Dili flOll Sanpies found) m 26 5e
&*? t r>rpii n ittij XKfiM % izi/. . . M* 1 *ot I ns-t Jilt'd) £6
Dounlo jiliny project.... do t&l 4D

=

MIDI data receive

by 'Alndcvj

As you feed MIDI data to the slave program it sends it to Game Boy,

where it will be processed and a sound is created.

When Game Boy receives MIDI data, the transfer indicator will rotate

next to the line "Receiving MIDI" on the Game Boy display.

Since MIDI data is very short compared to project data you download
into the Game Boy, the transfer indicator will stay on screen longer for

MIDI data than it does for project data, to give you a better visual

feedback.

NOTE:
The slave program can only transfer one kind of data at a time. While
project data is being downloaded, all incoming MIDI data is discarded.

Downloading project data also takes precedence over MIDI data so,

whenever you modify your project while your sequencer is sending MIDI
to the slave, sound output will stop for the time of the project download.
This is normal.

© 1999 Factor 5 LLC

Appendix 2: 191
08/25/99

MvwyX Audio Tools

Exiting the Slave

To close the slave program, click on the Windows X symbol in the upper

right hand corner of the programs window.

When you still have the AfwsyK editor running while closing the slave

program, a window will pop up telling you that the slave program is no

longer running.

Soundslave has been disconnected!

OK

This can also occur when the link between Game Boy Color and the PC
is severed. Possible causes are removing the link cable or switching off

Game Boy.

Another occurrence for this is bad communication between the PC and
Game Boy. If too many errors occur in a short period of time and they

can not be error-corrected, the slave program terminates itself.

Errors usually occur due to line noise caused by radio interference in the

link cable or by weak batteries in Game Boy.

We recommend using an AC adapter rather than batteries to

operate Game Boy Color, since the batteries are quickly exhausted
when flash ROM is used (according to Nintendo, use of the new
flash ROM with built-in Rumble Pak can cause batteries to be
drained in as little as 1 hour). Using the serial link also increases

the required current.

08/25/99

Appendix 2: 192

Game Boy Musicians Reference

Appendix 2.2 - SlaveROMGenerator

While creating music and sound effects for an application, there is

always the possibility that Game Boy, which is used to preview the work,

will run out of free memory.

Usually this happens because the musician makes extensive use of

samples.

The other possibility is that the entire sound project data exceeds the

available project memory, which is only 7.25KB in size.

Should the latter occur, the only solution is for the musician to try and
optimize his project, since the project cannot exceed this size restriction.

The former problem can be remedied by "swapping out" the samples into

ROM, which can hold many more times the samples than the internal

RAM of a Game Boy Color, or by using a flash ROM with added built-in

RAM. Flash ROM can provide up to an additional 128 KBytes of

memory. The total of 152 Kbytes (128 extension together with the built-in

Game Boy Color RAM) is now available for samples.

Although using a flash ROM with RAM seems to be the most convenient
way to work, moving samples into ROM offers the benefit of not needing
to download them into Game Boy via the serial link. This can save you a

lot of time.

Moving samples into ROM is easy, too. We are providing a Windows
GUI driven tool that allows the musician to take his project, as it is, and
put all samples therein into ROM.

After a couple of mouse clicks a new Game Boy slave ROM is created

that contains the samples and only needs to be flashed on the existing

flash ROM.

Once installed in the Game Boy, the PC slave program will determine if a
sample it received is already stored in Game Boy ROM. If it is, the newly
received one will not be transferred. This identification process takes the

length of the sample and a 32-bit CRC checksum into consideration.

Thus the possibility that any new sample added to the project is

accidentally believed to be in ROM (and therefore would not be
transferred) is minimized.

©1999 Factor 5 LLC 08/25/99

Appendix 2: 193

Audio Tools

Sometimes a single sample exceeds the above mentioned 152KByte
(usually the flash ROM available today have only 32 KByte on them,

limiting the size of any one sample to 56 KByte). Locating a sample in

ROM is then the only way for the musician to actually listen to the

sample

08/25/99

Appendix 2: 194

Game Boy Musicians Reference

Creating a Slave ROM
To create a new slave ROM with the samples currently in the sound
project, you will need to create an export file from within the MusyX
editor. This is the same procedure you would use if you wanted to

convert your project for being built into the application.

From the Project-menu choose "Generate scriptfile for export", enter a
file name for the exported script and click the 'save' button.

Now you need to start the SlaveROMGenerator tool (which has been
installed in the same location as the MusyX editor).

Lists ail groups in the

exported project and

allows for manual

ex-inclusion of them

Name of the export

script file -

Name of the new'

slave ROM image

| MusyX ROM Generator

S^l«+TfrTOp54qi export

nnm
Open

Asks for tie source

export script

X

0 GroupseO \

0 Songgroup J

Writes the new
slave ROM image

File Info;--

Project: CAgameboy'-.project txt

.
Rom Image: C:\gameboy\new_rlave.con-i

- Exits the program

This is what it looks like.

Initially, there will be nothing displayed in the large white area and the

"Save ROM" button will be disabled.

What you need to do is click on the "Open" button and navigate, in the

file dialog box that appears, to the export script you just created from the

Mus/& editor.

If the script file is correct, in the large group area you will be shown a list

of all groups defined in the MusyK editor. In the above example, the

project contains 2 groups.

For your reference the name of the project script is shown at the bottom
in the "File Info" box.

©1999 Factor 5 LLC

Appendix 2: 195
08/25/99

Audio Tools

All groups are pre-selected to be included in the new ROM image. If you
do not want the samples of a particular group to be included, click on the

groups corresponding checkbox to disable it.

For the "Save ROM" button to become enabled, at least one group must
be selected.

After you have selected the groups you want to include, click on the

"Save ROM" button to bring up a dialog box prompting you for a filename

for the resulting ROM image.

Note:

• The file extension for a binary ROM image to be written with the

Game Boy development system unfortunately is .COM, which is not

to be confused with an MSDOS executable, even though the

Windows explorer will call it as such.

If for some reason the ROM file could not be successfully created, a

popup dialog box will inform you.

The name of the new ROM image will also be shown in the "File Info"

box for your reference.

Now you need to remove the flash ROM from your Game Boy. Flash the

new ROM you just created on it and put it back in. You're all set.

Note:

• The next time you start the PC slave program, it will tell you how
many ROM samples are installed in your flash ROM.

• If you edit a sample that is located in ROM it will be downloaded into

RAM again, since it has changed, and the ROM version will not be

used. This ensures that you are always listening to the correct

sample.

08/25/99

Appendix 2: 196

Game Boy Musicians Reference

Appendix 2.3 - Game Boy Macro Commands

On the following pages you will find a description of all Macro
Commands used by MusyK for Game Boy and Game Boy Color.

© 1999 Factors LLC

Appendix 2: 197
08/25/99

Audio Tools

END
End of the Macro

Type: Structure

$00 END
——— ' —

Description:

This is always the last macro command. It can not be deleted from the

macro. It terminates the macro permanently.

08/25/99

Appendix 2: 198

Game Boy Musicians Reference

Structure Macros

STOP
Similar to end

Type: Structure

$01 STOP
— “ —

Description:

This macro command serves the same function as END, but in contrast

to END it can be placed anywhere in the macro.

©1999 Factor 5 LLC

Appendix 2: 199
08/25/99

Audio Tools

SPLITKEY
Splits the macro flow depending on the midikey

Type: Structure

Key Nr. SoundMacro ID SoundMacro step 1

$02 SPLITKEY key macro step

Description:

This command is used to conditionally change the flow of execution in

the current macro. The macro program will jump to the given macrostep

inside the specified macro, if the current key is higher or the same as the

key specified in the parameter.

Parameters:

key

macro

step

This parameter specifies a key number to compare against. If the

key you play is higher or the same as this key, the macro will

branch, otherwise it resumes.

The ID of the macro to branch to

The step number inside the macro to branch to

08/25/99

Appendix 2: 200

Game Boy Musicians Reference

SPLITVEL

Splits the macro flow depending on the velocity

Type: Structure

1 1 mmm .
. Velocity SoundMacro ID SoundMacro step

r

$03 SPLITVEL velocity macro step

Description:

This command is used to conditionally change the flow of execution in

the current macro. The macro program will jump to the given macrostep
inside the specified macro, if the current velocity is higher or the same as

the velocity parameter.

Parameters:

velocity

macro

step

Specifies the velocity to compare the current velocity against.

If the current velocity is higher or the same, the macro will

branch, otherwise it will resume.

The ID of the macro to branch to

The step number inside the macro to branch to

©1999 Factor 5 LLC

Appendix 2: 201
08/25/99

AAlfSyX Audio Tools

LOOP
Loops back to a macrostep

Type: Structure

Description:

Loops to the specified location within the current macro n-times.

Parameters:

step = The step number inside the current macro to loop back to

times = Number of times to loop back (0=infinite)

08/25/99

Appendix 2: 202

Game Boy Musicians Reference

GOTO
Jumps to another macro

Type: Structure

Description:

Performs an unconditional jump to the specified location.

Parameters:

macro = The ID of the macro to jump into

step = The step number inside the target macro to jump to

©1999 Factor 5 LLC

Appendix 2: 203
08/25/99

Mjy3l Audio Tools

WAIT
Suspends macro execution for some time

Type: Structure

Keyoff Random Time Milliseconds !

$07 WAIT key
release

random Ms

Description:

The execution of the current macro will be suspended until the specified

time has elapsed or a keyoff occurs.

Parameters:

key release

random

ms

If this flag is set to ON, the macro will resume when it receives

a keyoff regardless of the specified wait time

If this flag is set, the macro will resume after a random time has
elapsed. In this case the ticks/millisec. parameter defines the

maximum wait time

Specifies, in milliseconds, the time to delay macro execution

A value of 65535 will cause the wait to be endless

08/25/99

Appendix 2: 204

Game Boy Musicians Reference

PLAYMACRO
Start a macro on another voice

Type: Structure

Voice Nr. SoundMacro ID Don’t reset i

$08 PLAYMACRO Voice macro Rst.flag

Description:

Starts another macro on the specified voice. Can be used to start 2 or

more macros at the same time from a single note.

Parameters:

Voice Nr.

Macro ID

Don’t reset

Identifies the voice to be associated with the macro to be started.

(0=Voice1 ,..., 3=Voice4)

The ID of the macro to start

If this flag is set to ON the voice specified will not be reset

This is useful to take over the voice as it is at this point.

© 1999 Factor 5 LLC

Appendix 2: 205
08/25/99

wSfM Audio Tools

KEYOFF
Sends keyoff to voice

Type: Control

j

Voice Nr.
|

$12 KEYOFF Voice

Description:

Sends a keyoff to the specified voice. Specify 255 to send a keyoff to the

current voice.

Parameters:

Voice = Specifies the voice to send a keyoff to (0-3). Enter 255 to send a

keyoff to this voice.

08/25/99

Appendix 2: 206

Game Boy Musicians Reference

SPLITRND
Splits the macro flow depending on a random number

Type: Structure

RND SoundMacro ID SoundMacro step
|

$13 SPLITRND rnd macro step

Description:

This command is used to conditionally change the flow of execution in

the current macro. The macro program will jump to the given macrostep
inside the specified macro, if the generated random value is higher or the

same as the rnd parameter.

Parameters:

rnd = Value to compare the random number against.

macro = The ID of the macro to branch to

step = The step number inside the specified macro to branch to

©1999 Factor 5 LLC

Appendix 2: 207
08/25/99

Audio Tools

TRAP_KEYOFF
Sets a trap on reception of a keyoff

Type: Structure

SoundMacro ID SoundMacro step

$28 TRAP_KEYOFF macrolD step

Description:

This command sets a so-called trap for a keyoff. This means that as

soon as the macro receives a keyoff by either the MIDI sequencer or the

KEYOFF command, the macro will jump to the macrostep where the trap

was set. As long as no keyoff is received the macro proceeds its

execution in normal fashion.

This command is used to escape an infinite loop or wait.

Parameters:

macro = ID of the macro to jump to as soon as a keyoff is received

step = Step number in the macro to jump into as soon as a keyoff is

received

08/25/99

Appendix 2: 208

Game Boy Musicians Reference

UNTRAP_KEYOFF
Removes a trap set for keyoff

Type: Structure

Description:

Remove a previously set TRAP_KEYOFF.

© 1999 Factor 5 LLC

Appendix 2: 209
08/25/99

MusyK Audio Tools

Voice/Sample Macros

PLAYKEYSAMPLE
Starts a sample on key index

Type: Voice/Sample

$09 PLAYKEYSAMPLE
—

Description:

Starts a sample on voice 3, using the midikey as an index, into an index

table called “sample-map”. This index table must be defined with one
single macro using the SAMPLEMAP command. This “sample-map”

macro must be placed in the Songgroup on the first Drumlist entry. There

can be only one index table per project.

See also SAMPLEMAP.

08/25/99

Appendix 2: 210

Game Boy Musicians Reference

SETVOICE
Selects a voice for this macro

Type: Voice/Sample

Description:

Selects a new voice channel for the current macro. This command
overrides any selections by the MIDI channel.

This command *must* be the first one in the macro.

Parameters:

Voice = Specifies the voice number to use (0-3). A value of 255 keeps
the voice chosen by the MIDI sequence

Rst.Flag = If this flag is set to ON the voice selected will not be reset. This is

useful to take control over the voice in its present state.

Toggle Flag = If this flag is set to ON and the voice selected by the MIDI

sequencer is voice 1 or 2, the voice really used to play the sound
will toggle between voice 1 and 2 on every key played.

This is very effective to create echos.

©1999 Factor 5 LLC

Appendix 2: 211
08/25/99

Mlmy./. Audio Tools

STARTSAMPLE
Plays a sample

Type: Voice!Sample

Sample-ID

$1 0 STARTSAMPLE Sample ID

Description:

Plays back the specified sample.

Parameters:

Sample ID = The ID of the sample to play back.

08/25/99

Appendix 2: 212

Game Boy Musicians Reference

VOICE_OFF
Stops sound

Type: Voice/Sample

Description:

Stops the sound on the current voice.

©1999 Factor 5 LLC

Appendix 2: 213
08/25/99

IMyX. Audio Tools

VOICE_ON
Starts sound

Type: Voice/Sample

Duty cycle

$14 VOICE_ON Duty Cycle

Description:

This command starts the sound after all initial setups (if the initialization

phase was not overridden by a SET_VOICE command). The DutyCycle
parameter is used for the rectangular wave oscillator (voice 1/2), with

values from 0-3 representing 12.5, 25, 50 and 75 percent pulse-width. A
duty-cycle of 255 can be used to have the velocity influence the pulse-

width.

For voice 3 use the WAVE_ON command.
For voice 4 the parameter is unimportant.

Parameters:

DutyCycle = Specify the duty cycle to use (see above). Enter 255 to have the

velocity modify the duty cycle (0-31=12.5%, 32-63=25%,
64-95=50%, 96-127=75%)

08/25/99

Appendix 2: 214

Game Boy Musicians Reference

SETNOISE
Sets parameters for the noise generator

Type: Voice/Sample

Poly.clock Poly.Step Freq. ratio

$15 SETNOISE Clock Step Freq.

Description:

Sets up the polynomial clock counter for the white noise generator (voice

4).

Parameters:

Clock

Step

Freq.

Values from 0-13 select the ratio of frequencies

If 0 selects 15 steps for the counter, 1 selects 7 steps

Values from 0-7 select the frequency ratio

©1999 Factor 5 LLC

Appendix 2: 215
08/25/99

Mmyii Audi0 Tools

PWM_START
Starts the Pulse-Width-Modulation effect on voice 3

Type: Voice/Sample

Low limit High limit Speed
|

$1F PWIVLSTART LimitLo LimitHi ms

Description:

Starts a software generated pulse-width effect on voice 3. The width of

the pulse will change over time (in a ping-pong-like fashion) between the

specified low and high limits.

Parameters:

LimitLo

LimitHi

ms

Low limit of the pulse width (0-15)

High limit of the pulse width (0-1 5)

Time in milliseconds it takes to complete one puise cycle

08/25/99

Appendix 2: 216

Game Boy Musicians Reference

PWM_UPDATE
Updates the Pulse-Width-Modulation effect on voice 3

Type: Voice/Sample

Low limit High limit Speed

$20 PWM_UPDATE LimitLo LimitHi ms

Description:

This is basically the same as the PWM_START command. It modifies the

pulse width limits and the pulse cycle time, without restarting the effect.

Parameters:

LimitLo = Low limit of the pulse width (0-15)

LimitHi = High limit of the pulse width (0-15)

ms = Time in milliseconds it takes to complete one pulse cycle

©1999 Factor 5 LLC

Appendix 2: 217
08/25/99

Audjo Tools

PWM_FIXED
Starts a generated pulse wave of fixed width

Type: Voice/Sample

Duty i

$21 PWM_FIXED Duty

Description:

Starts a fixed generated rectangular pulse wave on voice 3. The duty

parameter specifies the pulse-width from 0-15, which is equivalent to a
0-50% duty cycle.

Parameters:

Duty = Width of the rectangular pulse (0-15)

08/25/99

Appendix 2: 218

Game Boy Musicians Reference

PWM_VELOCITY
Starts a generated pulse wave of velocity-dependent width

Type: Voice/Sample

$22 >-h-oo_JUJ>is§Q-

m

Description:

Starts a fixed generated puise wave on voice 3. The pulse-width is set

according to the current key velocity.

©1999 Factor 5 LLC

Appendix 2: 219
08/25/99

ItfSpI Audio Tools

WAVE_ON
Loads a looping wave into voice 3 and starts it

Type: Voice/Sample

|

1 Block SMPID

$26 WAVE.ON Sample ID

Description:

This command loads a short, 32 sample long looping waveform into the

WaveRAM and starts voice 3 after all initial setups (if the initialization

phase was not overridden by a SET_VOICE command).

Parameters:

SamplelD = ID of the sample to load into Wave RAM. If the ID is 0 no new
sample will be loaded and the contents of the Wave RAM remain
unchanged.

08/25/99

Appendix 2: 220

Game Boy Musicians Reference

Volume/Pan Macros

SETADSR
Uses a software ADSR envelope on the current voice

Type: Volume/Panning

Table-ID (ADSR)

$0C SETADSR Table

Description:

The data from the specified ADSR table will be used to perform an
ADSR envelope on the current voice.

Parameters:

Table = The ID of the ADSR table to use

©1999 Factor 5 LLC

Appendix 2: 221
08/25/99

Mu$yK Audio Tools

SETVOLUME
Sets an absolute volume

Type: Volume/Panning

|

Volume
j

$0D SETVOLUME Volume

Description:

Sets a fixed volume on the current channel.

Parameters:

volume = Specifies an absolute volume for the current channel (0-1 27).

08/25/99

Appendix 2: 222

Game Boy Musicians Reference

PANNING
Sets the panning to be used with the macro

Type: Volume/Panning

|

Pan position
j

$0E PANNING pan.pos

Description:

Sets the position for the current voice channel. Game Boy hardware only

allows for absolute left, absolute right and center positions.

Parameters:

pan.pos = 0-41 designates left output, 42-83 center and 84-127 right

©1999 Factor 5 LLC

Appendix 2: 223
08/25/99

iv% USyK Auc|i0 Tools

ENVELOPE
Starts a software envelope

Type: Volume/Panning

Envelope/Fade-in Milliseconds
|

$0F ENVELOPE Flag ms

Description:

Starts a software envelope. The volume will be faded out/in to mute level

or full volume in the time specified. Due to Game Boy hardware
restrictions, this may be of lower quality than the hardware envelope.

Parameters:

Flag = If OFF, fades out to mute level, if ON fades in to maximum level

ms = Time to fade out to zero in milliseconds

08/25/99

Appendix 2: 224

Game Boy Musicians Reference

HARDENVELOPE
Starts hardware envelope

Type: Volume/Panning

Description:

Starts a hardware envelope. The volume will be faded out/in in the

specified time, which cannot be longer than 1640ms and is dependent on
the current volume. By employing the hardware feature for the envelope,

the sound might be slightly less distorted in comparison with the software
envelope. The software envelope, however, can span longer fading

times and also works on voice 3.

Parameters:

Flag = If OFF, fades the voice down to mute level. If ON, fades the

voice in from the current volume to maximum.

ms = Time in milliseconds (highly approximate!) for the fade to

complete. Due to hardware restrictions this value cannot be
larger than 1 640 ms for a fade from maximum volume.

©1999 Factor 5 LLC

Appendix 2: 225
08/25/99

JWlliyX Audio Tools

Pitch Macros

RESET_MOD
Reset all pitch modulations

Type: Pitch

$04 RESET_MOD
—

Description:

This command will stop and reset any active pitch modulation on the

current voice channel.

08/25/99

Appendix 2: 226

Game Boy Musicians Reference

STOP_MOD
Stops any pitch modulation

Type: Pitch

$0A STOP_MOD
— —

Description:

Stops any pitch modulation on the current voice channel, but does not

reset the current values.

©1999 Factor 5 LLC

Appendix 2: 227
08/25/99

MVMfK Audio Tools

PORTLAST
Portamento from the last note

Type: Pitch

Transpose Detune Milliseconds
J

$16 PORTLAST Keys Cents Ms

Description:

The pitch will slide from the last known value to the pitch of the current

key, plus the keys and cents parameters, in the specified time.

Parameters:

Keys Transposes the current key by this value (-127 ~ 127)

Cents

ms

Transposes the current key by a fraction of one key (-99 ~ 99)

Can be used together with the whole key transposed

A time in milliseconds for the portamento to be finished

08/25/99

Appendix 2: 228

Game Boy Musicians Reference

RNDNOTE
Creates a random pitch

Type: Pitch

Note Lo Detune Note Hi Fixed/Free Abs/Rel 3

$17 RNDNOTE note-lo detune note-hi fixlfree Rel/abs

Description:

Sets random pitch. Note lo is the lower end of the range, note hi the

upper end. The detune value will be added after the random pitch is

calculated and is specified in positive cents. If the free flag is set, the

pitch will be generated freely inside the range. Otherwise, a random key
from this range will be generated. If the abs flag is set, the specified

range is absolute. Otherwise it is relative to the current key.

Parameters:

note-lo = Specifies the low key for the random range

detune = Specifies a fraction of a key (0-99) to be added to the random
result in the end

note-hi = Specifies the top key for the random range

fix/free =
If OFF, a random key will be generated inside the specified

range. If ON a random pitch inside the permissable range is

generated without respect to any keys.

rel/abs =
If OFF, the range is relative to the current key. If ON the range is

fixed by the specified keys

© 1999 Factor 5 LLC

Appendix 2: 229
08/25/99

Audio Tools

ADDNOTE
Modifies the current key by offset values

Type: Pitch

Add Detune Org Key J

$18 ADDNOTE add detune org.key
|

Description:

Transposes the current key by a number of keys and a cent fraction.

The result is temporary when the org.key flag is set, so that further

ADDNOTE commands will again take the MIDI key as base. If the flag is

OFF, the result of this command will be considered to be the new base.

Parameters:

add

detune

org.key

Value (-127 - 127) to transpose the current key by

Key fraction (-99 - 99) to transpose the current key by

If set to OFF the result will form a new base key. If set to ON the

result is temporary until the next ADDNOTE command.

08/25/99

Appendix 2: 230

Game Boy Musicians Reference

SETNOTE
Sets pitch to a fixed note

Type: Pitch

Kev Detune

Description:

Sets the pitch to a fixed note and detune in cents.

Parameters:

key = The key number to set the pitch to (0-127)

detune = The fraction of a key (-99 - 99) to add to the pitch

©1999 Factor 5 LLC

Appendix 2: 231
03/25/99

musyK Audio Tools

LASTNOTE
Retrieves the last note of the current voice

Type: Pitch

Description:

Recalculates the current key by transposing the last key played on this

voice.

Parameters:

add = Number of keys to transpose the last key by (-127 - 127)

detune = The fraction of a key to transpose the last key by (-99 - 99)

08/25/99

Appendix 2: 232

Game Boy Musicians Reference

PORTAMENTO
Starts a portamento

$1 B PORTAMENT.
Range Note Range Detune Abs/Rel Milliseconds

Description:

Slides the pitch from the current pitch to a target pitch specified in the

given time.

Parameters:

Keys Transpose value for the current key to yield the target key of the

portamento (-127 ~ 127)

Cents = Transpose value in fractions of a key to yield the target key of

the portamento (-99 ~ 99)

Flag —
If OFF, the key and cents specified form the target of the

portamento. If ON, the key and cents are added to the current

key (relative mode) to yield the target of the portamento.

ms = A time in milliseconds for the portamento to be finished

© 1999 Factor 5 LLC

Appendix 2: 233
08/25/99

msyM. Audio Tools

VIBRATO
Starts a vibrato effect

Type: Pitch

i ci Level note Level fine Milliseconds J

$1C VIBRATO Keys Cents ms

Description:

Adds a vibrato effect to the current voice. The intensity of the vibrato is

specified by a displacement of the current key by a number of keys and
cents. When the keys parameter is negative, the effect will start to

decrease in frequency. Otherwise, the frequency will first increase.

Parameters:

Keys

Cents

ms

Intensity of the vibrato in keys relative to the current key

Intesity of the vibrato in fractions of a key relative to the current

key. This value is added to the Keys parameter.

Time in milliseconds for a full frequency cycle to complete.

08/25/99

Appendix 2: 234

Game Boy Musicians Reference

PITCHSWEEP
Adds a sweep effect to the pitch

Type: Pitch

I Note Limit Cent Limit Sweep 0/1 Milliseconds 1

$1D PITCHSWEEP Limit Limit fine Select Ms

Description:

Adds a sliding effect to the current pitch. After reaching the iimit, the pitch

wraps back and the slide starts again. There are 2 independent

modulators that can be selected by the select parameter. If the Limit is

negative the sweep goes downwards, otherwise upwards.

Parameters:

Limit = Specifies the number of keys to slide up or down relative to the

current key.

Limit fine = Specifies the fraction of a key in addition to the full keys to slide

up or down to.

Select

ms

If 0 selects sweep effect 1 ,
if 1 selects sweep effect 2. Two

independent sweep effects which may work against each other

can be started.

Time for one sweep cycle to complete in milliseconds

©1999 Factor 5 LLC

Appendix 2: 235
08/25/99

pAu$yX Audio Tools

Special Macros

SENDFLAG
Raises a flag the application can evaluate

Type: Special

Flag Bit

$23 SENDFLAG Num

Description:

Raises one of 8 user flags the game application can evaluate.

This feature is mainly used to signal certain events to the game program.

A raised flag remains raised until the application has read its status, at

which point the flag will be cleared again.

Parameters:

num = Number of the flag to raise (0-7)

08/25/99

Appendix 2: 236

Game Boy Musicians Reference

SAMPLEMAP
Builds the sample map macro

Type: Voice/Sample

SMP ID

$24 SAMPLEMAP Sample ID

Description:

This command can be used multiple times inside a single macro, for the

entire project to define the order of the samples that can be used with the

PLAYKEYSAMPLE command. Each such macrostep references a

sample that will be assigned to the keynumber that is equivalent to the

macro step number.

Parameters:

Sample ID = ID of the sample to assign to the midikey equivalent to the macro
step number

©1999 Factor 5 LLC

Appendix 2: 237
08/25/99

Mvsy'K Audio Tools

CURRENTVOL
Fakes the internal volume

Type: Special

i
Volume

$25 CURRENTVOL Volume

Description:

This command is used to change the internal volume in the sound
system, only. The real voice volume remains unaffected. This is

necessary after the HARDENVELOPE command has been used which,

due to hardware limitations, leaves the sound system uninformed about

the real hardware volume.

Use this command in conjunction with carefully timed macros, to tell the

soundsystem your idea of the current hardware volume (usually after a

full fade-in or fade-out).

Parameters:

volume = MIDI volume (0-127) to set as a fake value in the sound system

08/25/99

Appendix 2: 238

Game Boy Musicians Reference

ADD_SET_PRIO
Changes the priority of a sound effect

Type: Special

Description:

Modifies the current priority of a sound effect. Depending on the state of

Flag, the Value is either set directly or added to the current priority.

Parameters:

Flag = If OFF, adds the Value parameter to the current priority. If ON,
sets the Value parameter immediately as the new priority.

Value = Ranges from -128 to 127. If the Flag parameter is OFF, it will be
added to the current priority. If the Flag parameter is ON, this

value will be set as an absolute priority (using the 2's

complement of the value. So -1 becomes 255 and -128
becomes 128).

©1999 Factor 5 LLC

Appendix 2: 239
08/25/99

08/25/99

Appendix 2: 240

Game Boy Musicians Reference

Appendix 2.4 - Peiformance Issues

Because of the age and nature of the Game Boy architechture, some
macro commands require more CPU performance than others.

This means that the musician has, to some extent, direct influence on the

overall performance of the game application.

If the game logic is simple enough, as for instance in a puzzle game like

Tetris, performance might not be much of an issue. More complex
games, like action shooters on the other hand, could suffer if the music is

using a lot of special features. This would require more performance to

be spent on the music.

The table on the following page puts all commands in categories, from 1

through 5, with 1 being the category that requires the most performance.

All commands that do something just once might sometimes require

more time than other commands, just because what they are doing is

more complex.

©1999 Factor 5 LLC

Appendix 2: 241
08/25/99

- 1 udio Tools

Category Command(s)
1 PORTAMENTO

PORTLAST
2 VIBRATO

PITCHSWEEP
PWM_START, PWM_UPDATE
PWM_FIXED, PWM VELOCITY
PLAYKEYSAMPLE, START_SAMPLE
SETADSR
ENVELOPE

3 RNDNOTE
PLAYMACRO
SPLITRND
VOICE_ON
WAVE_ON

4 VOICE_OFF
ADDNOTE, SETNOTE, LASTNOTE
SETVOLUME
SPLITKEY, SPLITVELOCITY
WAIT
LOOP
KEYOFF
SETVOICE

5 RESETMOD
STOPMOD
PANNING
SETNOISE
GOTO
HARDENVELOPE
SENDFLAG
ADDSETPRIO
TRAPKEYOFF, UNTRAPKEYOFF
CURRENTVOL
ENDMACRO, STOP
SAMPLEMAP

08/25/99

Appendix 2: 242

Game Boy Musicians Reference

Appendix 2.5 - Troubleshooting Guide

This section is intended to provide answers to potential problems you
might encounter.

I start the slave program but it fails to connect to

Game Boy

There are a number of possibilities. Please read through every one of

them to find out which one applies to your situation.

• Is the link cable securely connected to your PC's parallel port on the

one end and securely to the Game Boy Color on the other end?

• Is Game Boy Color switched on?

• Does the Game Boy Color have a fresh set of batteries, if you are not

using an AC adapter?

• Try using a fresh set of batteries instead of an AC adapter. Some
adapters may cause too much interference for the serial link.

• Is the slave cartridge properly inserted into the Game Pak slot? When
you turn on the Game Boy, you should see a screen similar to this.

EGom e Boy Co 1 r Slave!

IEMMZ80 : 16® KByte OKI
Serial daenon . . . DK 1

I mer daenon
jflusyX in it . .

Ha iting tor host

Uo Tune Macro
Si:
S2:
S3: ::::::

S4:

• Did you use an MBC-5 Flash ROM when you flashed the slave

program for Game Boy Color?

©1999 Factor 5 LLC

Appendix 2: 243
08/25/99

Audio Tools

Windows 95I9B:

• Have you specified to correct parallel port in the configuration

program of the slave?

Windows NT 4.0

• Have you installed the device driver?

• Have you specified the correct parallel port address in the registry?

• Have you disabled the parport device driver?

• If you are using an on-board parallel port of your PC’s mainboard, is it

set from the BIOS to be a standard parallel port (no ECP/EPP mode
with DMA)?

• If you are using an on-board parallel port of your PC’s mainboard, is it

accidentally disabled from the BIOS?

08/25/99

Appendix 2: 244

Game Boy Musicians Reference

I get the Game Boy to recognize a connection but it

seems to get stuck immediately

Once the Game Boy Color acknowledges a connection to the slave

program, the display of the Game Boy will look like this.

If you do not get out of the negotiating phase, check for the following.

• Does the Game Boy Color have a fresh set of batteries, if you are not

using an AC adapter?

• Try using a fresh set of batteries instead of an AC adapter. Some
adapters may cause too much interference for the serial link.

• Did you use an MBC5 Flash ROM when you flashed the slave

program for Game Boy Color?

• If you are using an on-board parallel port of your PCs mainboard, is it

set from the BIOS to be a standard parallel port (no ECP/EPP mode
with DMA)?

Once you are out of the negotiation phase the Game Boy screen should
look like this.

©1999 Factors LLC

Appendix 2: 245
08/25/99

Audio Tools

If you are getting errors in the slave program Link status window like this,

Connecting to Gone Boy OK? (1181 bytes/sec)
Querying ROM sample list... FAILED*

OR

Connecting to Game Boy... OK* (1181 bytes/sec)
Querying ROM sample list... OK* (0 ROM Samples found)
Determining SRAM size... FAILED*

check the following.

• Does the Game Boy Color have a fresh set of batteries, if you are not

using an AC adapter?

• Try using a fresh set of batteries instead of an AC adapter. Some
adapters may cause too much interference for the serial link.

• Did you use an MBC5 Flash ROM when you flashed the slave

program for Game Boy Color?

• If you are using an on-board parallel port of your PCs mainboard, is it

set from the BIOS to be a standard parallel port (no ECP/EPP mode
with DMA)?

08/25/99

Appendix 2: 246

Game Boy Musicians Reference

I send a project to the slave but it does not download
any data

This is most likely caused by an error in your project.

All references in all sound macros, for instance, need to be resolved

before a project that is suitable for the Game Boy can be created and
downloaded by the slave program.

Typical project errors are:

• Another macro referenced in a sound macro that does not yet exist,

or no longer exists. The editor will have assigned the reserved ID 0

(zero) for it.

• An ADSR curve referenced in a sound macro that does not yet exist,

or no longer exists. The editor will have assigned the reserved ID 0

(zero) for it.

• A sample referenced from a sound macro that does not exist. Here
the reserved ID 0 (zero) will also have been assigned.

• SETVOICE command inside a macro is not step 0.

• A soundeffect macro contains no SETVOICE instruction.

• More than 256 macros used.

• More than 256 ADSR curves used.

• More than 256 samples used.

• Out of project memory.
• Out of sample memory.
® More than one (1) keymap macro in the project.

• A loop command in a macro that does not loop back above the

command itself.

I made changes to my project but the slave tells me
there are none

This is caused by accuracy problems in the Game Boy target format.

Sometimes Game Boy can not exactly represent values you specify. For
instance, a wait time can be specified in milliseconds, but the millisecond

resolution on Game Boy is a raster of 16.67ms. Hence the values 5, 10
and 16 would all be treated like 16.67ms by the Game Boy hardware and
effectively cause no change in the project data.

©1999 Factor 5 LLC

Appendix 2: 247
08/25/99

M JSyX Audio Tools

While I'm working the sound slave disconnects itself

The slave program verifies the connection to the Game Boy hardware

every second. During this phase, it also determines if the highest

possible transfer rate can still be obtained.

If the slave program detects that the link to Game Boy has been severed

or too many data transmission errors occur, which can not be corrected,

it will terminate the connection and close itself. In these cases this popup
window will be displayed.

|
MusyX Soundtool

MBill
:|||-. v:

:

- :

:

:

'i

; w : •«t

The most common causes for too many transmission errors are:

• The Game Boy is running on batteries rather than an AC adapter and
the batteries are too weak to supply the power for the serial port.

• The link cable is intertwined with other cables or is routed alongside a

monitor or other electrical devices, which causes interference in the

link cable.

• A 'noisy' AC-adapter is used to supply power to the Game Boy. Use
only a stabilized adapter that does not introduce any artifacts like

humming sound or noise in the Game Boy (can usually be quickly

verified by connecting a headset to the Game Boy and listening

closely for any disturbances).

08/25/99

Appendix 2: 248

Game Boy Musicians Reference

i send MIDI data but I do not hear anything

First, you need to make sure that the project data was ail valid. If you
send the project to the slave program but nothing is downloaded to

Game Boy, please refer to the previous section in this trouble-shooting

guide titled, " I send a project to the slave but it does not download any
data

Step #1

:

Assuming that your project has been downloaded to Game Boy, we must
first verify that the slave program receives MIDI data. To do this, keep an
eye on the 'MIDI data' window in the slave program, while pressing a key
on your MIDI keyboard. Is the received MIDI data printed out in the

slave's MIDI data window?

If yes, please skip right to step #2.

Otherwise:

• Verify that your MIDI cabling between your keyboard (or whatever

MIDI device you are sending the MIDI data from) and the PC running

the slave program is correct.

• Verify that the slave program is using the correct MIDI device for its

data. A list of all accessible devices appears in the main log when
you start the slave. Right after this list, it tells you which device

number corresponding to the list was opened. If this is the wrong
device, please reconfigure the slave using the configuration program.

• If you are using a single machine setup with multiple MIDI input and
output devices and you are sending MIDI data from your PC to an
output device (which you have also opened for input in the slave),

verify that a hardware loopback device is installed to send the MIDI
data back into the PC. This can be circumvented by using a MIDI

loopback device (software based) like "MIDI Yoke" or "HuBi" or a two
machine setup with a dedicated MIDI input device.

• Verify that the hardware port used for MIDI data input is operational.

The best way to do so is to monitor the MIDI input signal indicators on
your sequencer program (like CuBase).

When you have found the problem please fix it and try again.

©1999 Factor 5 LLC

Appendix 2: 249
08/25/99

Audio Tools

Step #2:

Now that the slave program is receiving MIDI data, does the Game Boy
itself receive it?

Examine the line "Receiving MIDI" on the Game Boy screen. Does a

rotating indicator appear while you are sending MIDI data?

If yes skip ahead to Step #3.

Otherwise:

• Are you currently downloading anything into Game Boy? While a

project is being downloaded to Game Boy all incoming MIDI data is

discarded. This is normal.

• Are you sending data on a MIDI channel >4? Only the first four MIDI

channels can be used.

08/25/99

Appendix 2: 250

Game Boy Musicians Reference

Step #3:

The reception of MIDI data by Game Boy suggests that there is a fault in

either the MIDI setup or the sound macro itself.

• Verify that the correct MIDI program for the MIDI channel being used

is set in the MIDI setup for your sound group in the MusyK editor.

• Verify that the correct sound macro has been assigned to the

program number that you have assigned to the MIDI channel on
which you send data. Refer to the screen shot below.

(follow the path of the arrows above, in determining these settings)

• Verify that the macro contains either a VOICE_ON (for voices 1 ,
2

and 4) or WAVE_ON, STARTSAMPLE, PLAYKEYSAMPLE,
PWM_START, PWM_FIXED or PWM_VELOCITY (for voice 3)

instruction.

• Verify that the macro does not contain a SETVOLUME 0 instruction.

• Verify that the velocity of the key you are sending is not 0.

In addition, you need to make sure that you did not assign a macro,
created for instance for voice 3, to another voice. Although this will not

be harmful to the system, mixing macros and their implicitly associated
voices will rarely produce desirable results. The only occasion where this

does not make a difference is the usage on either voice 1 and 2, since

these are of identical design.

©1999 Factor 5 LLC

Appendix 2: 251
08/25/9S

MuzyA Audio Tools

You may always override any implicit voice selection (made by MIDI

channels 1-4 which map to voices 1-4) with the macro instruction

SETVOICE. This must appear as the very first instruction inside a macro.

In doing so, you can reroute any macro to any voice you want. This

requires careful design of your sound sequence. Using the SETVOICE
command in a song macro is usually discouraged, unless used to select

the Voicel/2 toggle option.

The SETVOICE command, however, is required for every sound effect

macro, since they have no default voice assignment.

When I play a sample I hear a humming sound
The Game Boy hardware was originally not intended to play back music

or sound which contains more than 32 samples. To reproduce samples
which are longer, Game Boy needs to be fed the samples in parts

containing 32 samples each. While feeding it these parts, sound output

needs to be stopped temporarily (due to hardware restrictions) and then

restarted. This stopping/restarting causes an audible distortion.

Depending on the quality of the sample (either 1920Hz or 8192Hz), this

distortion changes frequency as well, due to the fact that the voice needs

to be fed those 32 sample chunks at a different rate.

At a sample rate of 1920Hz, the distortion has a frequency of 60Hz and
256Hz at a sample rate of 8192Hz.

Also, this distortion is always of a fixed volume, regardless of the volume
setting of voice 3. Therefore, it becomes much more audible when the

sample is not played back at full volume. We recommend playing back
samples at the highest possible volume to minimize notable distortions.

This problem does not arise when you use looping music or sound of

only 32 samples in length, since no further reloads are necessary.

08/25/99

Appendix 2: 252

Game Boy Musicians Reference

There seem to be timing problems with regard to the

start and length of notes

The shortest note Game Boy can handle is 1/1

6

th
. This is due to internal

timing resolutions of the Game Boy hardware vs. acceptable CPU
performance. Because of this, the length of a note should always be a

multiple of 1/1

6

th
.

We suggest that you quantize your arrangement to 1/1

6

th
to minimize

any timing artifacts.

You may still experience timing problems with a 1/1

6

th
note limit when

you play your song from your MIDI sequencer. These problems will

vanish once the song is integrated in the game application and played

back solely by Game Boy.

The reason for this lies in the fact that the PC and Game Boy, in the

master/slave setup, are not synchronized while creating a song.
Whenever a note is to be played back *during* this Game Boy internal

1/1

6

th
raster, the note will be delayed in its keyon until the next

scheduled point in this raster.

To slightly compensate for this, a keyoff is sent to a note immediately.

This does not necessarily cause anything to happen right away. But
should the keyoff be received while servicing the voice or before, while

already being in the raster, the voice will react to the keyoff. If the time

frame for the corresponding voice has elapsed, the keyoff will be delayed
until the next scheduled time within the raster.

Once implemented in the application this no longer applies, since the

Game Boy synthesizer is of course in sync with its own sequencer.

Further timing problems while working on the song which are beyond any
control are:

• Windows MIDI device delays.

• Windows preempting a task.

• Network delays in multiple machine setups.

• Recurring communication errors with Game Boy.

©1999 Factors LLC 08/25/99

Appendix 2: 253

08/25/99

Appendix 2: 254

N64 Programmers Reference

APPENDIX 3 - N64 Programmers Reference

Table of Contents:

MusyK Basic Architecture 257

Musy¥x and MORT Voice Compression 260

Performance Impact on the Game Application.... 261

Requirements for Services Provided to MusyX. 264

Reverb Effect Engine - REE 266

Volume Control.... 266

IDs 267

3D API...... 267

Function Section: SOUND 269
SNDJNIT 269
SND_QUIT 271
SND_SHUTDOWN 272
SND_GET_PLAYBACKINFO 273
SND_RE!NIT 274
SND_VOLUME 276
SND_MASTER.VOLUME 277
SND_MONO 278
SND_PLAY 279
SND_STOP 282
SND_PAUSE 283
SND_SILENCE 284
SNDJSJDLE 285
SND_CROSSFADE 286
SND_CROSSFADE_DONE 289
SND_CONTINUE 290
SND_MUTE 291
SND_SPEED 292
SND_SEQLOOP 293
SND_GET_SEQLOOPCNT 294
SND_GET_SEQVALID ..295

©1999 Factor 5 LLC 08/25/99

Appendix 3: 255

MusyX Audio Tools

Function Section: SOUND (Continued)

SND.SEQ.VOLUME 296
SND_GET_SEQVOLGROUP 297
SND_ASSIGN_VGROUP2TRACK 298
SND_FXSTART 299
SND_FXKEYOFF 300
SND_FXCHECK 301

SND_FXPANNING ..302

SND_FXSURROUNDPANNING 303
SND_FXVOLUME 304
SND_FXPITCHBEND 305
SND_FXMODULATION 306
SND_FXPEDAL 307
SND_FXDOPPLER 308
SND_FXREVERB309

SND_PUSHGROUP 310
SND.POPGROUP 311

SND_READFLAG 312
SND.WRITEFLAG 313
SND_ALLOC_STREAM 314
SND_STREAM_ALLOCLENGTH 316
SND_STREAM_MIXPARAMETER 31

7

SND__FREE_STREAM 31

8

SND_ACTIVATE_REVERB 319
SND_DEACTIVATE_REVERB 321

SND_ADD_LISTENER 322
SND_UPDATE_LISTENER 324
SND_REMOVE_LISTENER 325
SND_ADD_EMITTEREX 326
SND_ADD_EMITTER 329
SND_UPDATE_EMITTER 330
SND_REMOVE_EMITTER 331

SND_CHECK_EMITTER 332
SND_EMITTER_FXID 333

Function Section: VoiceLib MORT Interface 334
VOICEJNIT 334
VOICE_EXIT ...335

VOICE_SET_DIRECTORY 336
VOICE_START 337
VOICE_STOP 339
VOICE_CHECKACTIVE 340
VOICE.PARAMETERS 341

VOICE_GET_TIME 342
VOICE_SYNC_IDLE 343

08/25/99

Appendix 3: 256

N64 Programmers Reference

Musy& Basic Architecture

Every sound system has one central element, the instrument or sound
effect, depending on whether you are speaking about music or effects.

Sometimes they are handled separately from each other, sometimes the

only difference is the way they are started. MusyX. follows the latter

approach. According to the unified way these two entities are handled,

we will use just one name, Sound.

A sound is the central element in MusyK. Although the name suggests

that the sound really is nothing more than a sample and a few

parameters, things are quite different within MmyiL

In MusyX a sound actually represents a little program that is executed in

a tokenized form at run time. This allows the music / sound designer

more control over the produced sound.

From a programmer’s point of view, these details are quite well hidden.

The only time a programmer gets in contact with the macro program is

when data is exchanged between the sound and application program.

As mentioned before, there are two basic types of any kind of sound
reproduction within Musyfc. Instruments are used in the context of a

piece of music, called a song. Each song has its very own ID, to identify

which song is to be started once the application decides to do so.

Songs always use a MIDI-like, but much more powerful, proprietary

representation. Sequenced music reproduction was chosen over

streamed audio, since it offers much more flexibility.

Streamed audio is supported, but the application programmer will have
to take care of the actual streaming process. Af<ft>Xjust offers buffers

for streaming data.

Sound effects are directly accessed using an automatically generated,

unique sound effect ID. The sound designer has the possibility of

accessing multiple sounds using just one ID, but this detail is totally

hidden from the programmer.

Both sound effects and songs are grouped together to form units called

Groups. Groups are the basic data element that the programmer has to

deal with. Groups are used to build small units of data that can be more
easily managed than the whole project. On CD based systems or other

systems that cannot access their mass storage device in real time,

saving ROM space is always an issue. This way of structuring the data is

meant to help with that.

© 1999 Factor 5 LLC 08/25/99

Appendix 3: 257

Audio Tools

For example, the musician and the programmer could agree on setting

up a group containing all basic sound effects, and yet another one that

contains all basic jingles needed during normal game play.

These groups probably would be present all the time, while groups
containing special boss songs and sound effects could be loaded as

needed. MusyK takes care of all data that is defined multiple times, so

that every item is stored just as often as needed.

To manage the groups, MusyX uses a stack structure. We will make
references to it as "soundstack". Groups are pushed onto the stack and
can be removed by just popping them off the top of the stack. This is

done to prevent memory fragmentation in internal structures of the sound
system and to simplify the data management used to prevent multiple

data storage.

Data is not actually copied when it‘s pushed onto the stack. The
programmer has to keep most of the data around as long as the

references remain on the stack. There are several types of data that the

programmer has to deal with. The data is saved in separate files to allow

for more flexible data management.

Project Data

Project data is one of two data types, which are not pushed
onto the soundstack. It is actually used to represent the

logical structure of the project the musician hands over to the

programmer, and to enable the programmer (and the

system) to access all the other data easily.

Pool Data

This set of data contains macros and all data that is

referenced by these, with the exception of samples. The
musician uses macros to describe the kind of sounds the

synthesizer is to produce. Since this data is necessary to

reproduce the sound, it has to be present in RAM all the

time. The size of this data block is often quite small.

08/25/99

Appendix 3: 258

N64 Programmers Reference

Sample Data

This data contains all the samples to be used. It therefore,

can be quite large. This type of data sometimes can be
discarded after it has been pushed onto the soundstack.

This will be the case if the system features a separate sound
RAM.

Some systems even allow specifying a ROM location, so

that the samples do not have to be present in RAM. So does
the N64.

Some platforms, like Game Boy, don’t need sample data at

all or just in a very limited way (Game Boy).

Sequencer Data

All the data about the song(s) is stored here. The size very

much depends on the complexity and length of the song(s)

contained within. Just the currently played or paused songs
need to be loaded. The sequencer data itself is not pushed
onto the stack, but is just specified as a reference while

pushing a group containing song data onto the stack.

The pool, sample, and sequencer data sections are always used
together with the Project Data. There may be multiple sets of these data
sets in one project file. This is because the data may be split up into

multiple sections, to limit the amount of memory used at one time.

© 1999 Factor 5 LLC

Appendix 3: 259
08/25/99

MusyA Audio Tools

MusfA and MORT Voice Compression

MORT is currently not included with Musya. Nevertheless, to integrate

MORT as easily as possible into Musya, the “voicelib” library has been

implemented. It uses Musya's standard streaming interface to pass the

decompressed MORT data into Musya’s system. The functions are

simply a wrapper, to hide the details of the implementation from the

game application and thereby make things easier for the game
programmers.

The voice library introduces a new way to store MORT compressed
samples. To make the data easier to handle, all MORT compressed
sample files are joined in one large “MORT directory file”. The tool

generating this file will also write a header file containing defines, that

make it possible to reference the MORT samples contained in the

directory file by their name.

Each running MORT data stream will need about 5% of the total CPU
power. The overhead produced by passing the data through Musya is

minor. The RSP workload for a MORT voice will be less than for a

standard ADPCM sample, since the decompression takes place on the

host CPU.

08/25/99

Appendix 3: 260

N64 Programmers Reference

Performance Impact on the Game Application

Musya has been designed to offer a maximum of flexibility at a minimum
of CPU and RSP performance impact. Nevertheless, there are a couple
of things that one has to keep in mind to yield better results.

On the average, Musya will use about 0.7% to 0.9% of the CPU's and
about 0.7% to 0.8% of the RSP's calculation time per active voice in an
ideal setup. The impact the system has on ROM transfer or RDP
performance is hard to profile. There are just too many variables in the

equation. Nevertheless, there are a couple of basic thoughts that may
help evaluate the situation.

Musya uses a cache system to optimize ROM transfers of samples. This

cache is very efficient even at small sizes. A sample set of 3Mb may
work very well with a cache area of just about 90Kb. The size of the

cache rarely needs to be larger, but as always this largely depends on
what is going on in the system. A larger cache may be helpful if you use
a lot of different and long samples, or your application needs to transfer

extreme amounts of data over the PI bus.

The impact on the RDP from the sound generation on the RSP is also

hard to evaluate. The microcode designed for Musya has been
optimized to use the RSP's time as little as possible. If your game is

limited by RDP fill rate, the RSP performance hit for MusyX should not

affect the RDP too much, since the RSP will be waiting for the RDP to

finish drawing anyway. The worst situation for the RSP is reached when
it has a lot of very small triangles to draw. The RSP is very much
involved in the triangle setup during drawing and will almost never wait

for the RDP, if the FIFO is large enough. This will cause any RSP
performance hit to effect the RDP in a very pronounced way. Yet again,

it’s obvious that one has to evaluate the specific needs of the application.

Generally, one can say that reducing the amount of voices processed
tends to have a larger impact on the performance than reducing the

mixing rate. Musya’s priority system offers a lot of ways to control the

use of a very small number of voices. Tests have shown that about 20
voices at 22KFIz are a good compromise, and still allow for big orchestral

scores if needed.

Reverb is another element that can cost quite a bit of RSP time. The
CPU is only indirectly impacted by the increase of DMA traffic to the

RSP. This impact will usually be very small.

©1999 Factor 5 LLC 08/25/99

Appendix 3: 261

MusyX Audio Tools

An average reverb setup while filtering the output will cost about as much
as a voice on the RSP. Generally, one can say that the reverb

calculations take more time when more DMA is needed. The worst case
would obviously be if all 8 reflections are used, and are spread out over a

very wide range in the reverb buffer.

All issues up to now have been primarily of importance to the

programmer, but the musicians have influence on the performance, too.

Here are some things to think about.

The SMaL language has been designed with performance in mind. When
you design macro programs, you’ll notice that these programs are most
often waiting for something. This “idle” state is obviously the least

performance eating state. But one can write macros that handle a lot of

commands in a row, which will lead to a larger performance hit. Common
sense presents a good rule of thumb. Do what you have to do, but only

use the features you really need for a specific task.

The MIDI controller-mapping feature offers a lot of flexibility.

Nevertheless, one has to keep in mind that the controller data is needed
every frame, whether new macro commands are handled or not. So, the

more complex the combinations which are used simultaneously, the

more calculation time is needed.

Pitching up samples can cost calculation time. If samples are pitched up
so far that their required playback frequency is above the mixing rate, the

system has to provide more data to the resampler than will be output.

Normally this will have little impact, but in extreme situations it may be
necessary to consider this. (Keep in mind that, due to memory limitations

in the RSP, the system cannot handle playback frequencies above twice

the mixing frequency.)

08/25/99

Appendix 3: 262

N64 Programmers Reference

Memory is another resource of which one never has enough. It may be
useful to know that pitchbend and modulation wheel controllers are

specially optimized to use up very little memory in song files. All other

controllers are stored in a simpler, more RAM consuming way. So if you
are going to use a lot of controller data over time, you should consider

mapping the input that you want to control to these controllers.

Each running MORT data stream will need about 5% of the total CPU
power. The overhead produced by passing the data through MusyK is

minor. The RSP workload for a MORT voice will be less than the RSP
workload for a standard sample, since the decompression takes places

on the host CPU.

©1999 Factor 5 LLC

Appendix 3: 263
08/25/99

- Audio Tools

Requirements for Services Provided to Musyk

MusyX needs a couple of services provided by the game application.

Here’s a list of these services and the requirements that MusyX. imposes

on them.

VBL Hooks
MusyK requires two functions from the application to install and remove

a VBL handler. Musy^i will only use these functions during system

initialization and shutdown. The VBL handler needs to be called at 50 to

60Hz. All internal structures and lists are optimized for a minimum calling

frequency of about 50Hz. A lower frequency would make the system's

timing far too slow to guarantee proper playback of music, and would

concentrate the performance hit in a very unsymmetrical fashion.

IVSemory Allocation

MusyjC requires basic memory allocation services. These services will

only be used during system initialization and shutdown, to avoid

unnecessary memory fragmentation. In addition to the required size of

the memory block, MusyX. will tell the service routine if the memory block

will be needed for a long time or if it will be freed shortly using a flag field.

All memory blocks allocated must be aligned to 16 byte boundaries

(cache boundaries).

RSP Yielding

The system needs a function to start an audio task on the RSP, and one
to wait for the task to be finished. The function starting the audio task

should return immediately and leave the "potential waiting for the RSP’s
yield" to a separate thread. The function should then start the task as

soon as possible. The wait function will be called by MusyX one frame

after the audio task start has been issued to the RSP scheduler to be

implemented by the application. This is done to support the rare instance

when the RSP can not finish audio processing within one frame. The
game application should try to ensure that this is a rare exception.

Nevertheless, the application has total freedom to delay the RSP’s audio

task start as it sees fit, as long as the audio task is finished within one
frame.

08/25/99

Appendix 3: 264

N64 Programmers Reference

DMA Services

Once a frame, MusyX will issue a list of ROM data blocks to be
transferred to the game application. This is done during the VBL handler.

MusyX expects these data packages to be transferred to the specified

RAM addresses within one frame. How the application takes care of this

task, is totally up to the game programmer. As with yielding the RSP,
Musyt only expects that the application handles the request in a

separate thread. The function called by MusyK should be returned as

fast as possible.

One possible way to handle DMA transfers would be to subdivide any
DMA transfer by the game applications into smaller blocks, so that the

sound system’s requests can be handled in time, even if a very large

data block is downloaded by the application. Musyx uses a cache
system to minimize the amount of data to be transferred.

M.O.R.T. Services

The voice library uses the services provided to MusyX. by the game
application, to allocate buffers and initiate DMA transfers (see

initialization routines for details). In some modes, the voice library will

expect to be able to allocate and free memory at run-time. The library

uses no additional VBL hooks, but installs hooks internally within MrnfA.

©1999 Factor 5 LLC

Appendix 3: 265
08/25/99

Audio Tools

Reverb Effect Engine - REE
Like most hardware platforms, the N64 System supports a reverb engine

to add some hall, echo or delay to the output signal. The architectures

and possibilities vary greatly from platform to platform. Please refer to

Appendix 5 for details on the implementation.

Volume Control

AhrsyX uses an elaborate scheme to control the volume of both music
and sound effects. Besides all local volume control, either through MIDI

velocities or direct specification of a volume to be used for sound effect

playback, there are a large number of so called "volume groups
11

which
take care of the master volume control.

During the development of Musytk, a limited number of master volumes
(e.g. just separated for music and sound effects) proved to be far too

limited in today’s complex game environments. By default just one
volume group is defined. It is used to control the master volume for all

sound effects. Each time a song is started, a new volume group that

controls the master volume for that specific song is created.

In addition to this default behavior, the application programmer may
define new volume groups for single sound effects or a set of sound
effects, as well as defining new volume groups to control single tracks

within a song separately from the rest of the song. Just think of it as a

large mixer that can be completely software controlled.

Each volume group actually contains two faders. This is done so that

crossfades can be performed, while the secondary fader is still available

for overall volume control. (Crossfades are directly controlled by the main
fader of each volume group. So, if this fader is manipulated during a

crossfade, the crossfade may fail.)

Two master faders, scaling all sound effect volume groups and music
volume groups respectively, are also implemented.

08/25/99

Appendix 3: 266

N64 Programmers Reference

IDs

Musya uses IDs to reference sound effects, songs and groups. These
IDs are automatically generated during the data conversion process. To
make them easily accessible from the programmer’s side, a header file is

generated automatically (either in C or assembler syntax) that contains

symbolic constants for these IDs. Their names are generated using the

names for these entities, given to them by the musician.

In this way, we ensure that both the musician and the programmer have
a common basis to reference IDs - their names - and that changes in

the project do not change anything on the programmer’s side of things.

3D API

Musya features a complete 3D API. It handles all parameters of SFXs
that change overtime in a 3D environment. Volume, panning - including

surround panning - and Doppler effects are calculated in real time. The
API does not feature any kind of culling mechanism. While SFXs that are

not audible will not use any voices, they will still be calculated - in case
they become audible again. The application has to take care of any form
of scene culling to limit the amount of handled SFXs via the 3D API.

It specifies SFX as "emitters". These emitters are structures that the

application has to allocate space for, and that are made known to the

system using snd_add_ermitter(). The position and orientation of the

"listeners" is specified using another structure made known to the system
using snd_add_listener(). There may be more than one listener. Using
more than one listener makes it impossible for the system to generate a
Doppler effect, though. For a detailed description of the functions and
structures see the following Function Section.

MusyHi uses a standard right-handed coordinate system.

©1999 Factor 5 LLC

Appendix 3: 267
08/25/99

N64 Programmers Reference

Function Section: SOUND

SNDJNIT

int snd_init (ULONG playfrq, UBYTE voices,
UBYTE music, UBYTE sfx, UWORD maxdelay, ULONG flags)

;

Purpose:

This function initializes the sound system. It must be called once before

any other routines of the system are used. This includes the interrupt

handlers, if they are installed by the application program. Whether or not

that is the case, depends upon the platform on which you are running.

See Musician’s Reference for details.

The system will come up initially, with no voices active and the main
volume for music and FX down.

Input:

ULONG mixfrq

Specifies the frequency in Hz used to mix all voices. This frequency will

be the actual playback frequency used with the sound hardware. Invalid

values will be clipped. See each platform appendix for supported values

with the various platforms. Be aware that some platforms impose limits

on how far samples may be pitched up or down. Some playback
frequencies may be incompatible with the music and or sound effects

that you try to play back. See Musician’s Reference for details.

UBYTE voices

Specifies the maximum number of voices to be mixed at a time. The
maximum number of voices allowed varies from platform to platform. See
Musician’s Reference for details.

UBYTE music

Specifies the maximum number of voices, of the total amount of voices,

that can be used by the synthesizer to playback instruments.

UBYTE sfx

Specifies the maximum number of voices, of the total amount of voices,

that can be used by the synthesizer to playback sound effects.

©1999 Factor 5 LLC

Appendix 3: 269
08/25/99

Mti$y'X Audio Tools

UWORD maxdelay
Maximum delay size of the reverb engine. On most platforms, the delay

buffer will be allocated before the actual game is started up, to avoid

memory fragmentation. The reverb processing is not activated, even if

values different from zero are specified.

ULONG flags

These flags are used to trigger specific behaviors of the sound system.

Most flags are platform specific and can be found in the Musician’s

Reference. A few, however, are platform independent.

SND_FLAGS_DEFAULT
Default settings are used.

SND__FLAGS_STEREOONLY
Any surround processing or multi channel output is disabled. This may
save calculation time on some platforms. Some platforms may ignore

this flag.

SND_FLAGS_NOINTERPOLATION
Any interpolation will be switched off. This may save calculation time on
some platforms. Some platforms may ignore this flag.

Output:

The function returns a value of 0, if successful.

08/25/99

Appendix 3: 270

N64 Programmers Reference

SND_QUIT

void snd_quit (void)

Purpose:

This function exits the sound system and frees all allocated resources.

IRQ handlers should not be called after this function has been executed,

if any were manually installed.

Input:

None.

Output:

None.

©1999 Factor 5 LLC

Appendix 3: 271
08/25/99

iOSfM Audio Tools

SND SHUTDOWN

void snd shutdown (void)

Purpose:

This function exits the sound system in preparation for a reinitialization of

the system. IRQ handlers should not be called after this function has

been executed.

input:

None.

Output:

None.

08/25/99

Appendix 3: 272

N64 Programmers Reference

SND_GET_PLAYBACKINFO

SND_PLAYBACKINFO (* SNDCALL) snd_get_playbackinfo (void)

Purpose:

This function returns information about the version of the sound system.

Input:

None.

Output:

A pointer to the following initialized structure is returned.

typedef struct _snd_playbackinfo {

ULONG frq; // frequency used to
output audio

BYTE stereo

;

// TRUE if output is
stereo

UBYTE bits ; // Number of bits per
sample

char devname [256] ; // ASCII name of device
char version text [256] ; // ASCII driver name &

version

}
SND_PLAYBACKINFO

;

©1999 Factor 5 LLC

Appendix 3: 273
08/25/99

MusyJC Auc|jo Tools

SND_REINIT

reint SNDCALL snd_reinit (ULONG playfrq,
UBYTE voices, UBYTE music, UBYTE sfx,
UWORD maxdelay, ULONG flags)

;

Purpose:

This function reinitializes the sound system. It must be called once
before any other routines of the system are used after a temporary

shutdown. This includes the interrupt handlers, if they are installed by the

application program. Whether that is the case, depends on the platform

you are running on. See Musician’s Reference for details.

The system will initialize with no voices active and the main volume for

music and FX down.

Input:

ULONG mixfrq

Specifies the frequency in Hz used to mix all voices. This frequency will

be the actual playback frequency used with the sound hardware. Invalid

values will be clipped. See each platform appendix for supported values

with the various platforms. Be aware that some platforms impose limits

on how far samples may be pitched up or down. Some playback

frequencies may be incompatible with the music and or sound effects

that you try to play back. See Musician’s Reference for details.

UBYTE voices

Specifies the maximum number of voices to be mixed at a time. The
maximum number of voices allowed varies from platform to platform. See
Musician’s Reference for details.

UBYTE music

Specifies the maximum number of voices, of the total amount of voices,

that can be used by the synthesizer to playback instruments.

UBYTE sfx

Specifies the maximum number of voices, of the total amount of voices,

that can be used by the synthesizer to playback sound effects.

08/25/99

Appendix 3: 274

N64 Programmers Reference

UWORD maxdelay
Maximum delay size of the reverb engine. On most platforms, the delay

buffer will be allocated before the actual game is started up, to avoid

memory fragmentation. The reverb processing is not activated, even if

values different from zero are specified.

ULONG flags

These flags are used to trigger specific behaviors of the sound system.

Most flags are platform specific and can be found in the Musician’s

Reference. A few, however, are platform independent.

SND_FLAGS_DEFAULT
Default settings are used.

SND_FLAGS_STEREOONLY
Any surround processing or multi channel output is disabled. This may
save calculation time on some platforms. Some platforms may ignore

this flag.

SND_FLAGS_NOINTERPOLATION
Any interpolation will be switched off. This may save calculation time on
some platforms. Some platforms may ignore this flag.

Output:

None.

©1999 Factor 5 LLC

Appendix 3: 275
08/25/99

U$yJk Audio Tools

SND_VOLUME

void snd_volume (UBYTE volume, UWORD time,
UBYTE volgroup)

Purpose:

This function sets the current volume for any volume groups. The volume
may be set at once or may be faded to the new setting. A fade does not

need to be finished before a new one can be started.

Input:

UBYTE volume

Specifies the volume to be used for set / fade. 0=Silence, 127=100%.

UWORD time

Specifies the time in ms to fade to the new volume. If zero is specified,

the volume will be set immediately. This may result in clicking sounds.

UBYTE volgroup

Specifies which volume group is to be changed. You may also specify

one of the constants below to modify a set of volume groups at one time,

while only using only one call.

SNDJJSERMUS I C_VOLGROUPS
SND_USERFX_VOLGROUPS
SND_USERALL_VOLGROUPS

Set a new volume for all music, sfx or both volume groups, defined by
the user.

SND_MUS I C_VOLGROUPSS
SND_FX_VOLGROUPS
SND_ALL_VOLGROUPS

Set a new volume for all music, sfx or both volume groups, predefined or

defined by the user.

Output:

None.

08/25/99

Appendix 3: 276

N64 Programmers Reference

SND_MASTER_VOLUME

void snd_master_volume (UBYTE volume, UWORD time,
UBYTE music, UBYTE fx)

Purpose:

This function sets the current volume for the master faders of music or

sfx. The volume may be set at once or may be faded to the new setting.

A fade does not need to be finished before a new one can be started.

Input:

UBYTE volume

Specifies the volume to be used for set / fade. 0=SiIence, 127=100%.

UWORD time

Specifies the time in ms to fade to the new volume. If zero is specified,

the volume will be set immediately. This may result in clicking sounds.

UBYTE music

Set to TRUE if music master fader should be affected.

UBYTE sfx

Set to TRUE if sfx master fader should be affected.

Output:

None.

© 1999 Factor 5 LLC

Appendix 3: 277
08/25/99

/yus/>. Audio Tools

SND_MONO

void snd mono (UBYTE mono)

Purpose:

Set the system to mono or stereo mode.

Input:

UBYTE mono
If TRUE, all output will be mono. FALSE selects stereo mode. The
default mode is FALSE.

Output:

None.

08/25/99

Appendix 3: 278

N64 Programmers Reference

SND_PLAY

ULONG snd_play (UWORD sgid, UWORD sid,
void *arrfile, SND_PLAYPARA *para)

Purpose:

This function starts the playback of a song contained within a song
group.

Input:

UWORD sgid

Specifies the ID of the song group to be used as a source.

UWORD sid

ID that specifies which sequencer file in the specified song group is to be
used.

ULONG *arrfile

Pointer to memory containing sequencer data. Certain alignment

requirements may apply for certain platforms.

SND__PLAYPARA *para

Pointer to a structure containing various parameters for starting the song.

This pointer may be set to NULL. In this case, the song will be started

immediately, and no volume will be set (by default the volume is down).

©1999 Factor 5 LLC

Appendix 3: 279
08/25/99

MwsfM Audio Tools

typedef struct snd playpara
{

ULONG flags

;

// Enable features by
using these flags

ULONG trackmute [2]

;

// Initial mute settings
UWORD speed; // Initial speed factor

(0x100 = 1:1)
struct

{ // Start volume
information

UWORD time;
UBYTE target;

}
volume;

UBYTE num seqvoldef; // Number of non-
standard volume group
tracks

SND_SEQVOLDEF *seqvoldef; // List of tracks and
volume groups

UBYTE num faded; // Number of entries to
the fade list

UBYTE * faded;

}
SND_PLAYPARA;

The flags field defines which subset of parameters is active at any given

time. The following values are defined.

SND_PLAYPARA__DEFAULT

No parameters are valid.

SND_PLAYPARA_TRACKMUTE

The trackmute fields are active. Each cleared bit in these two ULONGs
defines a track to be muted.

SND_PLAYPARA_SPEED

The speed field is active. A value of 0x100 selects normal speed. Lower
values slow the song down. Higher levels speed it up.

SND_PLAYPARA_VOLUME

This flag turns on the basic volume control. The time and target values

become active. Target specifies the volume level at the end of the fade,

while time specifies the time in milliseconds that fade should take. A
value of zero will simply set the new volume immediately.

SND_PLAYPARA SEQVOLDEF

08/25/99

Appendix 3: 280

N64 Programmers Reference

Each track in an arrangement may be controlled by its very own volume
group. This flag enables one to control this feature in detail. If the flag is

set, the following fields have to be initialized.

Num_seqvoldef has to be initialized with the number of tracks to which
the non default settings should be applied. The seqvoldef field is a

pointer to an array of SND_SEQVOLDEF structures that define all

parameters for the specific tracks.

typedef struct _snd_seqvoldef
{

UBYTE track; //
UBYTE vo 1group; //

}
SND_SEQVOLDEF

;

Target track (0-63)
Volume group to
assign / use

Num_faded contains the number of tracks that should be faded. One
may enable or disable fading for each track, to enable the programmer to

fade in and out separate tracks without having to setup all volume groups

manually. The faded field contains a pointer to a list of track numbers.

SND PLAYPARA PAUSE

The song will be "started" in pause mode. No audio from the song will be
audible until you restart it.

Output:

The function returns a 32-bit sequencer ID if successful, if not it returns

SND SEQ ERROR ID.

©1999 Factor 5 LLC

Appendix 3: 281
08/25/99

Muzyji Audio Tools

SND_STOP

void snd_stop (ULONG seqid)

Purpose:

Stops the song currently playing with the specified ID. If the song is not

playing anymore, nothing happens.

Input:

ULONG seqid

ID that specifies which sequencer is to be stopped.

Output:

None.

08/25/99

Appendix 3: 282

N64 Programmers Reference

SND_PAUSE

void snd_pause (ULONG seqid)

Purpose:

Pauses the song currently playing with the specified ID. If the song is not

playing anymore, nothing happens.

Input:

ULONG seqid

ID that specifies which sequencer is to be paused.

Output:

None.

© 1999 Factor 5 LLC

Appendix 3: 283
08/25/99

Audio Tools

SND_SILENCE

void snd silence (void)

Purpose:

All voices (Music & FX) will be stopped immediately.

Input:

None.

Output:

None.

08/25/99

Appendix 3: 284

N64 Programmers Reference

SND SS IDLE

UBYTE snd is idle (void)

Purpose:

Checks to see if all activity in the sound system has ended.

Input:

None.

Output:

The function returns TRUE if there is no activity left in the sound system
and it’s ready to be shut down. It returns FALSE otherwise.

©1999 Factors LLC

Appendix 3: 285
08/25/99

Audio Tools

SND_CR0SSFADE

void snd_crossfade (SND_CROSSFADE *ci,
ULONG *new_seq_id)

;

Purpose:

Initiates a crossfade between two pieces of music.

Input:

SND_CROSSFADE *ci

Pointer to a structure containing all necessary information to perform the

crossfade.

typedef struct _snd_crossfade
{

ULONG seq_idl;
UWORD timel;

ULONG seq_id2

;

UWORD time 2;
void *arr2

;

UWORD gid2

;

UWORD sid2;
UBYTE vol2

;

ULONG trackmute2 [2]

;

UWORD speed2

;

UBYTE flags;

}
SND_CROSSFADE

;

The song specified by the ID passed in seqjdl will be faded down in the

time specified by timel. Flags defines what is to be done to it at this

moment.

SND_CROSSFADE_STOP
Stop song after fade down is finished.

SND_CROS SFADE_PAUSE
Pause song after fade down is finished.

// Mute bits (see

snd_mute ()

)

// Initial speed
(of new song)

08/25/99

Appendix 3: 286

N64 Programmers Reference

SND_CROS SFADE_MUTE
Mute song after fade down (no voices will be allocated), but continue

handling (playing) it.

A couple of other flags define how the new song is to be faded up.

SND_CROS S FADE_CONTINUE
The new song is in paused state. Continue playback from that position.

The ID of that song must be specified in seq_id2, which is otherwise

unused.

SND_CROSSFADE_PAUSENEW
The new song will be started, but immediately put into paused state.

SND_CROSSFADE_TRACKMUTE
The trackmute fields will be used to setup the track muting of the new
song.

SND_CROSS FADE_SPEED
The new song will be started with a playback speed specified in the

speed2 field.

SND_CROS SFADEJMUTENEW
Start new song, but mute it completely, immediately after its start.

In all cases where a completely new song is started the arr2 field must
be initialized with a pointer to the arrangement data. Gid must contain

the ID of the group which contains the settings for the new song. Sid
contains the ID of the song itself.

The volume at end of fade in the time time2 is always to be specified in

vo!2.

©1999 Factor 5 LLC 08/25/99

Appendix 3: 287

MusyX Audio Tools

Crossfades can be synchronized to certain points in a song. The
musician can place special controllers into the MIDI data representing

the song. If the flag,

SND_CROS SFADE_SYNC

is set, the crossfade will be delayed until the next controller of that type is

detected.

Crossfades are controlled directly by the faders. If you reuse a fader

while a crossfade is in progress, the crossfade may not succeed. This

should rarely be necessary, though. On the one hand the system's

master faders can still be used and, on the other hand, each volume

group has two faders. A standard fader and a so-called "pause" fader.

The later can be freely used, even if a crossfade is in progress.

ULONG *new_seq_id
Pointer to a ULONG that will be assigned the new sequencer ID as soon

as it is available. A temporary ID will be assigned immediately, while the

real ID will be assigned at some point during the crossfade. This variable

must be present during the crossfade for that reason. The temporary ID

can be used for most control purposes, as long as no real ID is

generated.

Output:

None.

08/25/99

Appendix 3: 288

N64 Programmers Reference

SND_CROSSFADE_DONE

UBYTE snd_crossfade_done (ULONG seqid)

Purpose:

Check if a crossfade has finished.

Input:

ULONG seqid

ID that specifies which sequencer is to be checked. The ID specified is

the one of the new song, not the old one.

Output:

The function returns TRUE if the crossfade is complete, otherwise

FALSE is returned.

©1999 Factors LLC

Appendix 3: 289
08/25/99

JlilJSpC Audio Tools

SND CONTINUE

void snd_continue (ULONG seqid)

Purpose:

Resumes playback of a paused song.

Input:

ULONG seqjd
ID of the song / sequencer to be continued.

Output:

None.

08/25/99

Appendix 3: 290

N64 Programmers Reference

SND_MUTE

void snd_mute (ULONG seqid, ULONG maskl, ULONG mask2)

Purpose:

This function mutes / turns on volume for single tracks from the

sequencer file. The 64 tracks are represented by 32 Bits in 2 ULONGs.

Input:

ULONG seqid

ID of sequencer to be affected.

ULONG maskl
Mute mask for lower 32 tracks. A 0 mutes the corresponding channel.

ULONG mask2
Mute mask for upper 32 tracks. A 0 mutes the corresponding channel.

Output:

None.

©1999 Factor 5 LLC

Appendix 3: 291
08/25/99

Audio Tools

SND_SPEED

void snd_mute (ULONG seqid, UWORD speed)

Purpose:

This function changes the playback speed of the specified sequencer.

Input:

ULONG seqid

ID of sequencer to be affected.

UWORD speed
Speed to be set. A value of 0x100 will reset the speed to normal. Lower
values will slow down the playback, higher values will speed it up.

Output:

None.

08/25/99

Appendix 3: 292

N64 Programmers Reference

SND_SEQLOOP

void snd_seqloop (ULONG seqid, UBYTE on)

Purpose:

This function allows the looping of songs to be disabled. By default

looping is enabled, if the musician defined loop locators. Disabling

looping may be useful if e.g. a song is meant to loop a couple of times
before finally coming to an end.

Input:

ULONG seqid

ID of sequencer to be affected.

UBYTE on
A value of TRUE will enable looping (default), FALSE will disable it.

Output:

The function will return TRUE on success, FALSE otherwise.

©1999 Factor 5 LLC

Appendix 3: 293
08/25/99

SND_GET SEQLOOPCNT

UWORD snd_get_seqloopcnt (ULONG seqid)

Purpose:

This function retrieves how often the playing song has looped.

Input:

ULONG seqid

ID of sequencer to report.

Output:

Returns the number of loops taken by the song.

08/25/99

Appendix 3: 294

N64 Programmers Reference

SND_GET_SEQVALID

UBYTE snd_get_seqvalid (ULONG seqid)

Purpose:

This function is used to determine if the song is actually playing or still in

a temporary state. Songs may be in a temporary state immediately after

or during crossfades

input:

ULONG seqid

ID of song / sequencer to report.

Output:

Returns TRUE if the sequencer actually is playing the song specified by

the ID. FALSE is returned if the ID is temporary.

©1999 Factor 5 LLC

Appendix 3: 295
08/25/99

MvWfM Audio Tools

SND_SEQ_VOLUME

void snd_seq_volume (UBYTE volume, UWORD time, ULONG
seq_id, UBYTE mode)

;

Purpose:

This function is used to set / fade the volume of the specified sequencer /

song.

Input:

UBYTE volume

Specifies the volume to be used for set / fade. 0=Silence, 127=100%.

UWORD time

Specifies the time in ms to fade to the new volume. If zero is specified,

the volume will be set immediately. This may result in clicking sounds.

ULONG seqid

ID of sequencer to be affected.

UBYTE mode
Mode of fade operation. The following modes are defined:

SND__SEQVOL_CONTINUE
Continue playback of the current song when fade is finished.

SND_SEQVOL_STOP
Stop current song when fade is finished.

SND_SEQVOL_PAUSE
Pause song when fade is finished.

SND_SEQVOL_MUTE
Mute all tracks of the current song when fade ends. The song will

continue playing although muted.

Output:

None.

08/25/99

Appendix 3: 296

N64 Programmers Reference

SND_GET_SEQVOLGROUP

UBYTE snd_get_seqvolgroup (ULONG seqid)

Purpose:

This function is used to determine the volume group used to control the

referenced song / sequencer. If non default groups have been assign by

the user, the default one will be returned.

Input:

ULONG seqid

ID of song / sequencer to report.

Output:

The volume group used to control the default song / sequencer volume.

© 1999 Factor 5 LLC

Appendix 3: 297
08/25/99

Audio Tools

SND_ASSIGN_VGROUP2TRACK

void snd_assign_vgroup2 track (ULONG seq_id,
UBYTE track, UBYTE vgroup)

;

Purpose:

Assign a non standard volume group to the specified track of the given

song / sequencer.

Input:

ULONG seqid

ID of song / sequencer to affect.

UBYTE track

Track to be affected.

UBYTE vgroup

Volume group to assign to track.

Output:

None.

08/25/99

Appendix 3: 298

N64 Programmers Reference

SND_FXSTART

ULONG snd_fxstart (UWORD fid, UBYTE vol. UBYTE pan)

Purpose:

Starts a sound effect.

Input:

UWORD fid

Specifies the ID of the sound effect to be used.

UBYTE vol

Specifies the default volume to be used with this sound effect. This value

may or may not be used by the sound effect. (0=Silence, 127=100%,
0xFF=Use default volume)

UBYTE pan
Specifies the default panning to be used with this sound effect. This

value may or may not be used by the sound effect. (0=Left, 64=Center,

127=Right, 128=Surround, 0xFF=Use default panning)

Output:

Returns snd_id_error if failed, a 32-bit voice ID if successful.

©1999 Factor 5 LLC

Appendix 3: 299
08/25/99

Musy.^ Audio Tools

SND_FXKEYOFF

int snd_fxkeyof f (ULONG vid)

Purpose:

Send a "KeyOff" to the sound effect with the specified voice ID. A "Key
off" is used to signal the sound effect to go into its final phase. In most
cases it will be used to stop the sound effect.

Input:

ULONG vid

The voice ID obtained through snd_fxstart().

Output:

Returns 0 if successful.

08/25/99

Appendix 3: 300

N64 Programmers Reference

SND_FXCHECK

UBYTE snd fxcheck (ULONG vid)

Purpose:

Test if the given sound effect is currently processed by the sound
system.

Input:

ULONG vid

The voice ID obtained through snd_fxstart().

Output:

Returns the ID passed to it if sound effect is currently active,

SND_ID_ERROR otherwise.

©1999 Factor 5 LLC

Appendix 3: 301
08/25/99

'
: : - - udio Tools

SND_FXPANNING

int snd_fxpanning (ULONG vid, UBYTE pan)

Purpose:

Set new panning offset for the specified sound effect. The default

panning offset after start is 64. (0=Left, 64=Center, 127=Right,

128=Surround) A value of 128 should no longer be used. It’s still

supported for now to maintain compatibility with older versions.

Input:

ULONG vid

The voice ID obtained through snd_fxstart().

UBYTE pan
The new panning value to be applied to the effect.

Output:

Returns 0 if successful.

08/25/99

Appendix 3: 302

N64 Programmers Reference

SND_FXSURROUNDPANNING

int snd_fxsurroundpanning (ULONG vid, UBYTE pan)

Purpose:

Set new surround panning offset for the specified sound effect. The
default panning offset after start is 0. (0=Front, 64=Center, 127=Back)

Input:

ULONG vid

The voice ID obtained through snd_fxstart().

UBYTE pan
The new surround panning value to be applied to the effect.

Output:

Returns 0 if successful.

© 1999 Factor 5 LLC

Appendix 3: 303
08/25/99

: llSyX Audio Tools

SND_FXVOLUME

int snd fxvolume (ULONG vid, UBYTE vol)

Purpose:

Set new volume for the specified soundeffect. The default volume set

after start is 127. (0=Silence, 127=100%)

Input:

ULONG vid

The voice ID obtained through snd_fxstart().

UBYTE vol

The new volume value to be applied to the effect.

Output:

Returns 0 if successful.

08/25/99

Appendix 3: 304

N64 Programmers Reference

SND FXPITCHBEND

int snd_fxpitchbend (ULONG vid, UWORD pb)

Purpose:

Set new pitchbend value for the specified sound effect. The default

pitchbend value set after start is $2000. ($2000=No Pitch offset, lower

values pitch down, higher up).

Input:

ULONG vid

The voice ID obtained through snd_fxstart().

UWORD pb
The new pitchbend value to be applied to the effect.

Output:

Returns 0 if successful.

© 1999 Factor 5 LLC

Appendix 3: 305
08/25/99

MwsyA Audio Tools

SND_FXMODULATION

int snd_fxmodulat ion (ULONG vid, UWORD mod)

Purpose:

Set new modulation value for the specified sound effect. The default

modulation value set after start is 0. (0=l_owest, 16383=Highest)

Input:

ULONG vid

The voice ID obtained through snd_fxstart().

UWORD mod
The new modulation value to be applied to the effect.

Output:

Returns 0 if successful.

08/25/99

Appendix 3: 306

N64 Programmers Reference

SND FXPEDAL

int snd_fxpedal (ULONG vid, UBYTE pedal)

Purpose:

Set new pedal state for the specified sound effect.

Input:

ULONG vid

The voice ID obtained through snd_fxstart().

UBYTE pedal

The new pedal state. If the pedal controller is still mapped to the pedal

input of the synthesizer (see Musicians Reference), a value lower than

0x3F will clear the pedal state, while a larger value will set it.

Output:

Returns 0 if successful.

©1999 Factor 5 LLC

Appendix 3: 307
08/25/99

MvSfA Audio Tools

SND_FXDOPPLER

int snd_fxpitchbend (ULONG vid, UWORD doppler)

Purpose:

Set new Doppler value for the specified sound effect. The default

Doppler value set after start is $2000. ($2000=No Pitch offset, lower

values pitch down, higher up). In contrast to the pitchbend, the Doppler

effect is applied by scaling the frequency, rather than offsetting the pitch

by offsetting the current key.

input:

ULONG vid

The voice ID obtained through snd_fxstart().

UWORD doppler

The new Doppler value to be applied to the effect.

Output:

Returns 0 if successful.

08/25/99

Appendix 3: 308

N64 Programmers Reference

SND_FXREVERB

int snd_fxreverb (ULONG vid, UBYTE rvol)

Purpose:

Set new reverb volume for the specified sound effect.

Input:

ULONG vid

The voice ID obtained through snd_fxstart().

UBYTE rvol

The new reverb volume to set.

Output:

Returns 0 if successful.

©1999 Factor 5 LLC

Appendix 3: 309
08/25/99

MwsyJk Audio Tools

SND_PUSHGROUP

UBYTE snd_pushgroup (void *prj_data, UWORD gid,
void *samples, void *sampdir, void *pool)

;

Purpose:

Push group data onto soundstack. See general information section for

details.

Input:

void *prjdata

Pointer to project data.

UWORD gid

ID of the group to be pushed.

void *samples

Pointer to sample data / ID to reference data.

void *sampdir

Pointer to sample directory containing data to locate samples within the

sample data.

void *pool

Pointer to pool data.

Output:

Returns TRUE if successful.

08/25/99

Appendix 3: 310

N64 Programmers Reference

SND_POPGROUP

UBYTE snd_popgroup (void)

Purpose:

Pop group from soundstack. See general information section for details.

Input:

None.

Output:

Returns TRUE if successful.

© 1999 Factor 5 LLC

Appendix 3: 311
08/25/99

Audio Tools

SND_READFLAG

SWORD snd_readf lag (UBYTE num)

Purpose:

Read flag value from synthesizer. Flags may be used to signal certain

conditions of the synthesizer to the main program. There are 16 flags.

Input:

UBYTE num
Number of flag to read from.

Output:

Returns value obtained from flag. Default after startup is zero.

08/25/99

Appendix 3: 312

N64 Programmers Reference

SND_WRITEFLAG

void. snd_writef lag (UBYTE num, SWORD value)

Purpose:

Writes flag value to synthesizer. Flags may be used to signal certain

conditions of the synthesizer to the main program. There are 16 flags.

Input:

UBYTE num
Number of flag to write to.

SWORD value

Value to write to specified flag.

Output:

None.

©1999 Factor 5 LLC

Appendix 3: 313
08/25/99

MitsyA. Audio Tools

SND_ALLOC_STREAM

ULONG snd_alloc__stream (UBYTE prio, void *buffer,
ULONG size, ULONG frq, UBYTE vol, UBYTE pan,
UBYTE span, UBYTE fxvol,
UBYTE (*update_function) (SWORD *bufferl,
ULONG lenl , SWORD *buffer2, ULONG len2,
ULONG user) , ULONG user)

Purpose:

Allocates a voice for stream playback. The allocated voice will no longer

be available to the synthesizer for playing instruments or sound effects

until it’s explicitly freed.

Input:

UBYTE prio

Priority for allocating the voice to be used for playing the stream. To
guarantee allocation, the priority should be set as high as possible.

void *buffer

Pointer to buffer used to stream the data into the voice. The buffer is

used as a simple ring buffer.

ULONG size

Size of the ring buffer in samples.

ULONG frq

Frequency to be used for playback.

UBYTE vol

Volume used for playback (0-127).

UBYTE pan
Panning used for playback (0-127).

UBYTE span
Surround panning used for playback (0-127).

08/25/99

Appendix 3: 314

UBYTE fxvol

Reverb volume used for playback (0-127).

N64 Programmers Reference

UBYTE (*update_function)(SWORD *buffer1,ULONG lenl,SWORD
*buffer2,ULONG len2,ULONG user)

Pointer to a function that will be called by Musy^ each time that the

buffer has to be updated. Bufferl and lenl define the 1
st
area to be

updated, while buffer2 and Ien2 define the 2
nd

area. Two areas are

necessary, since the buffer is used as a ring buffer, and the area to be
updated may therefore wrap around. Len2 will be zero if no second area
is needed. User is a value specified by the application, see below).

ULONG user

Value to be passed to the update function. E.g. it can be used to identify

different instances of streams to the update function.

Output:

The function returns a handle to the stream if successful and
SND ID ERROR if not.

©1999 Factor 5 LLC

Appendix 3: 315
08/25/99

JSyM Auc|j0 Tools

SND_STREAM_ALLOCLENGTH

ULONG snd_stream_alloclength(ULONG num)

Purpose:

Return the number of bytes to be allocated for a stream buffer,

containing the specified number of samples. This may or may not be

identical to the number of samples multiplied by the number of bytes per

sample. The reason for this is that some platforms need a couple of extra

samples that are managed automatically to ensure proper looping.

Input:

ULONG num
Number of samples in the buffer.

Output:

Size of the buffer that has to be allocated in bytes.

08/25/99

Appendix 3: 316

N64 Programmers Reference

SND STREAM MIXPARAMETER

void snd_stream_mixparameter (ULONG stid,
UBYTE vol, UBYTE pan, UBYTE span, UBYTE fxvol)

Purpose:

Change stream playback parameters during playback.

input:

ULONG stid

Handle of stream to be manipulated.

UBYTE vol

New volume to be set.

UBYTE pan
New panning to be set.

UBYTE span
New surround panning to be set.

UBYTE fxvol

New reverb volume to be set.

Output:

None.

© 1999 Factor 5 LLC

Appendix 3: 317
08/25/99

Audio Tools

SND_FREE_STREAM

void snd free stream (ULONG stid)

Purpose:

Free an allocated stream. The voice will be made accessible to the

synthesizer, again.

Input:

ULONG stid

Handle of stream to be freed.

Output:

None.

08/25/99

Appendix 3: 318

N64 Programmers Reference

SND_ACTIVATE_REVERB

void snd_activate_reverb (SND_REVERB *rev)

;

Purpose:

Activate reverb engine with the given parameters. Only signals on the

reverb or "auxiliary
11

bus are put through the engine.

Input:

SND_REVERB *rev

Pointer to a structure describing the desired reverb effect.

typedef struct _snd__reverb
{

UWORD buf size;
UWORD ref_of f [SND_MAX__REFLECTIONS]

;

UBYTE ref_vol [SND_MAX__REFLECTIONS]

;

UBYTE ref num;
UBYTE fb vol

;

UBYTE filter;
SWORD filter coef [4] ;

}
SND _REVERB

;

Buf_size specifies the total size of the reverb delay buffer in milliseconds.

This size must be smaller or equal to the maximum size specified at

system initialization.

Ref_num must be set to the number of reflections to be used. The
maximum number of reflections in current implementations is 8.

Fb_vol specifies the volume of the feedback into the buffer. The buffer

output is continuously fed back into the buffer together with new input. If

this volume is specified too high, there is the danger of a so-called

"resonant catastrophe
11

.

A FIR filter may be used to filter the output signal. Filter can be set to

snd_filter_on to enable the filter or snd_filter_off to disable it.

If it is enabled, one must specify the filter coefficients to be used. These
values are passed in the filter_coef[

]

array. The values are specified as
integers in SI 5 format. A value of OxFFFF equals about 1 .0.

Reflections are specified using two arrays. Each pair of array elements
specifies one reflection. The ref_off[

]

array contains the amount of delay
for each reflection in milliseconds. The ref_vol[

]

array contains the

volume of each reflection. A value of 127 specifies full volume. A volume
of zero is possible, but should be avoided for performance reasons.

© 1999 Factor 5 LLC

Appendix 3: 319
08/25/99

Mmyj.. Audio Tools

Generally one can say, that the more reflections used and the more
these reflections are spread out over the buffer, the bigger the

performance hit will be.

Output:

None.

08/25/99

Appendix 3: 320

N64 Programmers Reference

SND_DEACTIVATE_REVERB

void snd_deact ivate_reverb (void)

;

Purpose:

Stop reverb processing.

Input:

None.

Output:

None.

©1999 Factor 5 LLC

Appendix 3: 321
08/25/99

hitJSyM. Audio Tools

SND_ADD_LISTENER

void snd_add_listener (SND_LISTENER *li,
SND_FVECTOR *pos, SND_FVECTOR *dir,
SND_FVECTOR *heading, SND_FVECTOR *up,
float front_sur, float back_sur,
float soundspeed, ULONG flags, UBYTE vol) ;

Purpose:

Add a listener structure to the list of listeners.

Input:

SND_LISTENER *//

Pointer to a structure defining the parameters of the listener to be
added.

typedef struct _snd_listener
{

struct snd listener *next

;

struct snd listener *prev;

ULONG flags

;

SND_FVECTOR POS;
SND_FVECTOR dir ;

SND_FVECTOR heading;
SND_FVECTOR right

;

SND_FVECTOR down ;

SND_FMATRIX mat ;

float surround dis front
float surround dis back;
float soundspeed;
float vol

;

}
SND_LISTENER

;

All values are initialized by the called function. The structure is not

copied by the function. It has to be kept around as long as the listener is

active.

SND_FVECTOR *pos

Pointer to a vector containing the initial position of the listener.

SND_FVECTOR *dir

Pointer to a vector containing the initial movement direction of the

listener.

08/25/99

Appendix 3: 322

N64 Programmers Reference

SND_FVECTOR heading
Pointer to a vector containing the initial normalized viewing direction of

the listener.

SND_FVECTOR *up

Pointer to a vector containing the initial normalized up vector of the

listener.

Float front_sur

Distance at which an emitter will only be audible on the front channels.

Float back_sur

Distance at which an emitter will only be audible on the surround

channel.

ULONG flags

Flags contains one or more of the following flags:

SND__L I STENER_DE FAULT
No Doppler effect is calculated. The speed of sound does not need to be
set, anymore. This mode should be chosen if more than one listener is

specified.

SND_LISTENER_DOPPLERFX
Doppler effects are calculated.

Float soundspeed
Defines the speed of sound for use in Doppler effects. It’s specified in

“units” per second, and will depend on the game's world coordinate

system. Float soundspeed must be set to "less than" the speed of sound
(in game world coordinates).

UBYTE vol

Overall volume value to be applied to all emitters that are audible to this

listener.

Output:

None.

©1999 Factor 5 LLC

Appendix 3: 323
08/25/99

Audio Tools

SND_UPDATE_LISTENER

void snd_update_listener (SND_LISTENER *li,
SND_FVECTOR *pos, SND_FVECTOR *dir,
SND_FVECTOR *heading, SND_FVECTOR *up, UBYTE vol)

;

Purpose:

Update a listener structure.

Input:

SND_LISTENER *//

Pointer to a structure containing the current settings of the listener.

SND_FVECTOR *pos

Pointer to a vector containing the new position of the listener.

SND_FVECTOR *dir

Pointer to a vector containing the new movement direction of the listener.

SND_FVECTOR *heading

Pointer to a vector containing the new normalized viewing direction of the

listener.

SND_FVECTOR *up

Pointer to a vector containing the new normalized up vector of the

listener.

UBYTE vol

Overall volume value to be applied to all emitters that are audible to this

listener.

Output:

None.

08/25/99

Appendix 3: 324

N64 Programmers Reference

SND_REMOVE_LISTENER

void snd_remove_listener (SND_LISTENER *li) ;

Purpose:

Remove a listener structure from the sound systems list. The structure

may be discarded after calling this function.

input:

SND_LISTENER *li

Pointer to a structure containing the current settings of the listener.

Output:

None.

© 1999 Factor 5 LLC

Appendix 3: 325
08/25/99

JitfSyX Audio Tools

SND_ADD_EMITTEREX

ULONG add_emitterex (SND_EMITTER *em,
SND_FVECTOR *pos , SND_FVECTOR *dir,
float max_dis, float comp, ULONG flags,
UWORD fxid, UWORD groupid, UBYTE maxvol

,

UBYTE minvol) ;

Purpose:

Add an emitter structure to the list of emitters.

Input:

SND_EMITTER *em
Pointer to a structure defining the parameters of the emitter to be added.

typedef struct _snd_emitter
{

struct _snd_emitter *next

;

struct _snd emitter *prev;

ULONG
SND_FVECTOR
SND_FVECTOR
float
float
float
float
ULONG
ULONG
UWORD

UWORD
float

}
SND_EMITTER;

All values are initialized by the called function. The structure is not

copied by the function. It has to be kept around as long as the emitter is

active.

SND_FVECTOR *pos

Pointer to a vector containing the initial position of the emitter.

SND_FVECTOR *dir

Pointer to a vector containing the initial movement direction of the

emitter.

flags

;

pos;
dir;
max_dis

;

maxvol

;

minvol

;

volpush;
vid;
group

;

fxid;

vollevel_ cnt

;

fade ;

08/25/99

Appendix 3: 326

N64 Programmers Reference

float max_dis
Maximum distance at which the emitter will still be audible.

float comp
Normally the volume will be lowered linearly over distance. At times it

may be desirable to keep the volume up for some time and later fade it

down faster. MusyX. offers both methods. This value allows fading

between both extremes. A value of zero will use only the linear method.
Higher values will switch more and more toward the “compressed” form.

A value of 1 uses only the “compressed” method.

ULONG flags

The following flags are defined to influence the behavior of the emitter.

SND_EMITTER_DEFAULT
No special features are activated.

SND_EM ITTER_CONTINOUS
Update all parameters continuously. If this is not set, the volume,
panning and Doppler values will just be calculated at the start of the

emitter. This may be used to save calculation time with short time SFX.

SND_EMITTER_RESTARTABLE
The SFX handled by the emitter may be restarted after being stopped for

any reason. This can be used to reactivate e.g. an engine hum after an
explosion has interrupted it for a short time.

SND_EMITTER_PAUSABLE
If the emitter is no longer in the audible range it may be stopped. If this

flag is not set, the SFX will remain active although its volume is all the

way down. This costs valuable voices, but may be necessary to run long

term sound effects.

SND_EMITTER_DOPPLERFX
If this flag is set, the emitter will be included into the Doppler effect

calculations of all listeners having Doppler calculations enabled.

SND_EMITTER_HARDSTART
Continues emitters are by default faded in over a short period of time.

This is done to avoid any popping artifact and similar effects. This flag

disables the default effect. The feature is currently not implemented.

©1999 Factor 5 LLC 08/25/99

Appendix 3: 327

iWlfSyJC Audio Tools

UWORD fxid

ID of the SFX to be used by the emitter.

UWORD groupid

A value used to group emitters together. Emitters that share the same
group are all fighting for the available voices on the basis of their volume
and time being audible. The group ID specified here has nothing to do
with the groups used to store data. It is simply an integer between 0 and
65535 that is chosen by the game application to identify such an emitter

group.

Emitters of different groups just use the normal priority system.

UBYTE maxvol
Volume to be used at maximum audible range.

UBYTE minvol

Volume to be used at the position of the listener.

Output:

The function returns a handle to the SFX started by the emitter. This

value may be SND_ID_ERROR without any failure. Continuous emitters

are not immediately started sometimes.

08/25/99

Appendix 3: 328

N64 Programmers Reference

SND_ADD_EMITTER

ULONG snd_add_emitter (SND_EMITTER *em,
SND_FVECTOR *pos, SND_FVECTOR *dir,
float max_dis, float comp, ULONG flags,
UWORD fxid, UBYTE maxvol

, UBYTE minvol);

Purpose:

Add an emitter structure to the list of emitters.

Input:

All parameters are the same as the ones listed for

snd_add_emitterex. The groupid parameter of this function is

internally set, so that each SFX forms its own emitter group.

Output:

The function returns a handle to the SFX started by the emitter. This

value may be SND_ID_ERROR without any failure. Sometimes
continuous emitters are not started immediately.

©1999 Factor 5 LLC

Appendix 3: 329
08/25/99

's>* Audio Tools

SND_UPOATE_EMITTER

UBYTE snd_update_emitter (SND_EMITTER *em,
SND_FVECTOR *pos, SND_FVECTOR *dir, UBYTE maxvol)

;

Purpose:

Update an emitter structure.

input:

SND_EMITTER *em
Pointer to a structure containing the current settings of the emitter.

SND_FVECTOR *pos

Pointer to a vector containing the new position of the emitter.

SND_FVECTOR *dir

Pointer to a vector containing the new movement direction of the emitter.

UBYTE maxvol

Volume to be used at position of listener for this emitter.

Output:

Returns TRUE if successful, FALSE otherwise.

08/25/99

Appendix 3: 330

N64 Programmers Reference

SND_REMOVE_EMITTER

UBYTE snd_remove_emitter (SND_EMITTER *em)

;

Purpose:

Remove an emitter structure from the sound systems list. The structure

may be discarded after calling this function.

Input:

SND_EMITTER *em
Pointer to a structure containing the current settings of the emitter.

Output:

Returns TRUE if successful, FALSE otherwise.

©1999 Factor 5 LLC

Appendix 3: 331
08/25/99

Audio Tools

SND_CHECK_EMITTER

UBYTE snd_check_emitter (SND_EMITTER *em) ;

Purpose:

Check if the specified emitter is currently active or not.

Input:

SND_EMITTER *em
Pointer to a structure containing the current settings of the emitter.

Output:

Returns TRUE if emitter is active, FALSE otherwise.

08/25/99

Appendix 3: 332

N64 Programmers Reference

SND_EMITTEFt_FXID

ULONG snd_emitter_fxid (SND_EMITTER *em)

;

Purpose:

Get the handle of the SFX handled by the emitter specified.

Input:

SND_EMITTER *em
Pointer to a structure containing the current settings of the emitter.

Output:

If the SFX is active, the function will return its handle. If not

SND_ID_ERROR will be returned. Even the latter value may be passed
to all SFX functions without any negative side effects.

©1999 Factor 5 LLC

Appendix 3: 333
08/25/99

Mu$yX Audio Tools

Function Section: Voicelib MORT Interface

VOICE_INIT

void voice_in.it (ULONG flags)

;

Purpose:

This function initializes the voice library and MORT. It must be called

once, before any other routines of the library are used. MusyK must be
fully initialized before this function is called.

Input:

ULONG flags

These flags are used to trigger specific behaviors of the voice library.

VOICE_FLAGS_DEFAULT

Default settings are used. Buffers for streaming MORT data will be
allocated at run-time (during the call to voice_start()) and will be freed at

run-time. This, depending on the implementation of the memory
allocation system, may lead to memory fragmentation.

VOICE_FLAGS_PREALLOCATE_BUFFERS

All buffers needed to stream MORT data are allocated during

initialization and stay allocated until the library is shutdown using

voice_exit().

Output:

None.

08/25/99

Appendix 3: 334

N64 Programmers Reference

VOICE EXIT

void voice exit (void)

Purpose:

This function exits the voice library and frees all allocated resources.

Voices still active will be stopped.

Input:

None.

Output:

None.

©1999 Factor 5 LLC

Appendix 3: 335
08/25/99

MittyX Audio Tools

VOICE_SET_DIRECTORY

UBYTE voice_set_directory (void *vdir, void *vdata)

Purpose:

This function tells the voice library where the MORT directory data file

can be found.

Both vdir and vdata can be RAM addresses or ROM offsets. If vdir is a

ROM offset, the function assumes that all data of the MORT directory is

still in ROM. It will use the MusyX. DMA services to download the MORT
directory data table, without the actual compressed sample data section,

into an allocated RAM area. (This may take as much as 2 frames, due to

the nature of the MusyX. DMA services.) In this configuration the second
parameter is ignored and should be left at NULL.

If vdir specifies a RAM address, it’s assumed that the MORT directory

table is already downloaded into RAM. (It’s always located at the very

beginning of the data and its size is defined using the

MORTDIR_DIRECTORY_LENGTH constant generated by

MORTDIR.EXE.) Whether or not the actual MORT sample data is still in

ROM is determined by examining the second parameter. If vdata

specifies the same RAM location as vdir, it’s assumed that all data is in

RAM. If vdata specifies the “original” ROM offset of the whole MORT
directory file, it’s assumed that the table part has been downloaded to

RAM but the samples are still in ROM.

Both addresses / offsets are passed through the MusyX. address

translation hook to enable the user to abstract data location via handles,

if desired.

Input:

void *vdir

Pointer to the logical table part of the MORT directory file.

void *vdata

Pointer to the MORT directory file. (Used only if vdir specifies a RAM
address. Keep it printing to NULL otherwise.)

Output:

The function returns TRUE if successful or FALSE otherwise.

08/25/99

Appendix 3: 336

N64 Programmers Reference

VOICE_START
ULONG voice_start (ULONG dir_index, ULONG frq,
UBYTE prio, UBYTE vol, UBYTE pan, UBYTE span,
UBYTE fxvol)

Purpose:

This function starts a MORT compressed sample on a MusyK voice. The
voice will be registered as an SFX voice. The current implementation

allows two voices to be used simultaneously.

Input:

ULONG dirjndex

Index of the MORT sample within the MORT directory file to be played. A
header file containing these indices, in symbolic form, is generated by

MORTDIR.EXE.

ULONG frq

Specifies the frequency to be used to playback the MORT sample. If you
specify VOICE_DEFAULT_FRQ, the frequency stored within the MORT
directory file will be used (only 8 or 16 kFIz are supported). Sample rates

above 22KFIz may cause clicking artifacts, due to the limited size of the

stream buffers.

UBYTE prio

Priority to be used to allocate the voice into which the data will be
streamed. To “guarantee” a successful allocation, you should specify a

priority of 255. Lower values mean a lower priority.

UBYTE vol

Volume to be used to play the MORT sample. (0-127, 127 = 100%)

UBYTE pan
Panning to be used to play the MORT sample. (0-127, left->right)

UBYTE span
Surround panning to be used to play the MORT sample.

(0-127, front->back)

UBYTE fxvol

FX (or AUX) Volume to be used to play the MORT sample (0-127, 127 =

100%). In the current implementation, this is the “reverb volume”.

©1999 Factor 5 LLC 08/25/99

Appendix 3: 337

Audio Tools

Output:

The function returns a 32-bit handle if successful or VOICE_ERROR if

not.

08/25/99

Appendix 3: 338

N64 Programmers Reference

VOICE_STOP

UBYTE voice_stop (ULONG handle)

Purpose:

Stop a MORT sample which is playing.

Input:

ULONG handle

Handle of the MORT sample voice to be stopped.

Output:

Returns TRUE if successful, FALSE otherwise.

©1999 Factor 5 LLC

Appendix 3: 339
08/25/99

Audio Tools

VOICE_CHECKACTIVE

UBYTE voice checkactive (ULONG handle)

Purpose:

This function checks if the specified handle still refers to an active voice.

The voice will be active a couple of frames before and after audio is

audible.

Input:

ULONG handle

Specifies the voice to be checked.

Output:

The function returns TRUE if the voice is active and FALSE otherwise

.

08/25/99

Appendix 3: 340

N64 Programmers Reference

VOICE_PARAMETERS

UBYTE voice_parameters (ULONG handle, UBYTE vol,
UBYTE pan, UBYTE span, UBYTE fxvol)

Purpose:

This function changes the mixing parameters for the specified voice.

Input:

ULONG handle

Handle that specifies which voice is to be influenced.

UBYTE vol

New volume to be used.

UBYTE pan
New panning to be used.

UBYTE span
New surround panning to be used.

UBYTE fxvol

New FX (AUX) volume to be used.

Output:

Returns TRUE if the parameters were set successfully, FALSE
otherwise.

©1999 Factor 5 LLC

Appendix 3: 341
08/25/99

Mu$yK Audio Tools

VOICE_GET_TIME

float voice_get__t ime (ULONG handle, float *total time)

Purpose:

Returns information on both, total playing time and current time into

playback of the MORT sample playing on the specified voice. This

information can be used to synchronize other events to the MORT
sample’s playback (e.g. subtitles).

Input:

ULONG handle

Handle that specifies which voice’s info structure is to be accessed.

float *total_time

Pointer to a float that will receive the total playing time of the MORT
sample active on this voice, in seconds.

Output:

The function returns the current duration of the sample playback on the

specified voice in seconds or zero if not successful.

08/25/99

Appendix 3: 342

N64 Programmers Reference

VOICE_SYNC_IDLE

void voice_sync__idle (void)

Purpose:

Stalls until all activity in the voice library and MORT has ended. No
voices will be stopped explicitly.

Input:

None.

Output:

None.

©1999 Factor 5 LLC

Appendix 3: 343
08/25/99

Game Boy Programmers Reference

APPENDIX 4 - Game Boy
Programmers Reference

Table of Contents:

tAusyX's Basic Architecture 347

Performance impact on the Game Application. 348

Memory impact on the Game Application 349

Requirements for the Game Application. 350

LinkingMmyX Object Files to YourApplication. 357

APPENDIX 4.7 - Game BoyData Conversion Tools. ...353
What is Data Conversion? 353
MUCONV.EXE 354
GM2S0NG.EXE 359

APPENDIX 4.2 - Function Section. 360
sndjnit 361
snd_Exit 362
snd_Silence 363
snd_Handle 364
snd_StartSong 365
snd_StopSong 366
snd_PauseSong 367
snd_ResumeSong 368
snd_SongActive 369
snd_ChangeSongSpeed 370
snd_SetSongVolume 371
snd_GetStateSize 372
snd_SaveState ..,.373

snd_RestoreState 374
snd_StartSFX 375
snd_StopSFX 376
snd_SetSFXVolume 377
snd_StartSample 378
snd_StopSample 379
snd_DoSample 380
snd_PlaySample. 381
snd_CheckFlag 382
snd_SetMasterVolume 383

©1999 Factor 5 LLC 08/25/99

Appendix 4: 345

M JSyX Aucjj0 Tools

Appendix 4.3 - Mini-MORTSamples, 384

08/25/99

Appendix 4: 346

Game Boy Programmers Reference

Musyas Basic Architecture

In every sound system there is but one central element, the instrument or

sound effect (depending upon whether you are talking music or effects).

MusyK does not really differentiate between the two, so we will use the

general term Sound throughout this manual.

In MusyK a sound actually represents a small, tokenized program that is

executed at run time. This allows the sound designer more control over

the produced sound.

As mentioned before there are two basic types of any kind of sound

reproduction within Musyk. Instruments are used in the context of a

piece of music, called a song. Each song has its own unique ID

associated with it, which identifies the song when the programmer
decides to start it.

Sound effects are also accessed using an automatically generated

unique sound effect ID.

All IDs are hidden behind symbolic names so no changes to the program
are required if an ID has changed.

All data, songs and sounds are collected into one larger project file,

which needs to be included in the application.

©1999 Factor 5 LLC 08/25/99

Appendix 4: 347

Audio Tools

Performance Impact on the Game Application

Musya has been designed to offer a maximum of flexibility, at an

acceptable CPU performance impact.

This impact varies depending on the features the musician utilizes in his

or her small sound programs, since some features are slightly more
complex than others.

It is also a question of whether or not it is possible to use Musya's built-

in capabilities for sample playback in music. Samples for use in music
come in two flavors, low and normal quality. Their difference is sampling

rate. Low quality samples play back at 1920Hz and normal quality at

8192Hz. To make use of the normal quality, the game application must
not make use of the timer interrupt. This interrupt will be used solely by

Musya, should you allow for samples of normal quality.

If you cannot spare the timer interrupt, the musician will need to resort to

the low quality samples. These are still good enough for most drums.

You will need to coordinate this issue with the musician beforehand.

Finally, performance is naturally better when you write your game in

dedicated Game Boy Color format, since it offers twice the speed of the

conventional Game Boy.

08/25/99

Appendix 4: 348

Game Boy Programmers Reference

Memory Impact on the Game Application

MusyA requires exactly 256 bytes of memory for operation.

There is no requirement concerning placement or alignment, but for

simplicity we have decided to let it take the last 256 bytes ranging from
SdfOO-Sdfff.

This will allow you to get the most out of the internal RAM on Game Boy
Color, since it is permissable to have the RAM area in the bank switching

RAM area of Game Boy Color. Before making any calls to Mu$/&
however, you will need to make sure that the correct RAM bank has
been selected.

For regular Game Boy applications, the top of RAM is also a good
choice. It normally requires little change in your program, since most
programmers keep their stack there, and this is easily moved from $dfff

to $deff.

©1999 Factor 5 LLC

Appendix 4: 349
08/25/99

fJtiSj/A Audio Tools

Requirements for the Game Application

Musya assumes that its core routines have been linked into their own
bank at an offset of $4000 (start of the switchable bank).

Musya assumes that it will be called once from within every vertical

blank interrupt, to process all its handling and updating tasks.

Musya assumes that all calls to its API are made from within the

vertical blank interrupt, or with interrupts disabled.

To guarantee the best possible timing, you should call the service

function right after any updates to the Video RAM and before any game
logic.

If normal quality samples are used in any song, the game will have to

provide a timer interrupt handler that calls a second service function of

Musya on every timer interrupt. Also, the game needs to allow for

interrupt nesting to service the timer interrupts immediately, when they

occur. Failure to do so will impact the quality of the samples.

After a timer interrupt, the game cannot assume that the ROM bank is

configured as it was prior to the interrupt. It is the responsibility of the

application to restore its own bank configuration. (This is because

Musya cannot determine the current bank configurations.)

If normal quality samples are used in any song, the game is not allowed

to switch between single and double speed mode on Game Boy Color.

It will need to select one speed to generally run in and then not switch

back and forth as long as a song or effect is playing. This will render the

HALT instruction inoperable when running in double speed mode, but

there is no alternative. (This is because the timer interrupt is curiously

affected by the CPU speed as well.) Failure to do so will impact the

quality of the samples.

Before calling any Musya function, the game needs to setup the correct

ROM and RAM banks.

08/25/99

Appendix 4: 350

Game Boy Programmers Reference

Linking Musy& Object Files to Your Application

Before you can make use of MusyK in your application, you need to link

the supplied object files to it. The object files are in the ISAS object

format and can be linked only with ISLK (which are used by the official

Nintendo development system for each product).

Since both ISAS and ISLK are a bit inflexible when it comes to assigning

addresses and the link order of modules, we have provided the object file

containing code for Bank 0 in two different versions.

After installing the example from the MusyK package, there will be three

object files.

musyx.o

This contains the main code of the Mus/X synthesizer and
sequencer. It needs to be linked into an otherwise empty code
bank. To define the bank and the offset (preferably $4000) for

this module, you enter the following to your linker call:

-G MUSYX=$BBXXXX musyx.o

where B specifies the bank number and XXXX the offset

(i.e., $104000)

musyxbO.o

This file contains service code for Musy& which needs to be
located in the common ROM Bank 0. The group name for this

module is MUSYXB0 and you need to manually assign an ORG
address for it on the command line (see musyx.o). Because this is

not an easy task for Bank 0 we have provided an alternate service

code file.

musyxbankOO.o
This is essentially the same as musyxbO.o, but the group name for

this module is BANK00, which we figure is the same name as what
you will be calling your bank 0. Because of this, you do not need to

supply an absolute ORG address for this module on the linker

command line. It will be located somewhere in bank 0 at a yet

unused address.

©1999 Factor 5 LLC

Appendix 4: 351
08/25/99

JVIUSyX Audio Tools

(Please note that all three object files also exist in a subdirectory named
'CapsOff'. If you are using case-sensitive symbols in your application,

you might want to use the object files in the 'CapsOff' directory.)

The current version of the service module, which you need to link to

bank 0 requires $550 (or 1360 bytes) of free space. If you do not have
enough room in bank 0 to accommodate the service module, we suggest

moving some of your code from bank 0 to another bank.

You will also need to specify a target address for the MUSYX_DATA
group which will contain the actual converted project data. The
MUSYX_DATA group must be assigned the next bank after the MUSYX
group with an offset of $4000. Otherwise, it is very likely that any call to

MusyK will cause a crash.

Here's an example of how to do this.

(We assume that the source code created during the data conversion

process, which includes the binary project data, was called sounddata.s

(and therefore assembled to sounddata.o)).

islk -G MUSYX=$44000 musyx.o -G MUSYX_DATA=$54000
sounddata.o -G MUSYXB0=$03ab0 musyxbO.o

Note that the command line in the above example uses the musyxbO.o
module and assigns the address $3ab0 to it, which is the highest

possible address in bank 0 which will hold the $550 byte long service

module. If you will be using musyxbO.o instead of musyxbankOO.o, we
recommend using this technique, as it will relieve you of keeping track of

'the next best' bank 0 address.

Please refer to the supplied sample code for further information.

If you are using OPUS make and MKMF, you can actually use the

supplied make file after you have made the appropriate changes for the

path names at the top of it.

We have also supplied the GNU make utility and a suitable GNU
makefile (invoked by the make.bat batch file).

If you're not using makefiles at all, please refer to the makeme.bat batch

file.

08/25/99

Appendix 4: 352

Game Boy Programmers Reference

APPENDIX 4.1 - Game Boy
Data Conversion Tools

What is Data Conversion?

Data conversion, is the process in which the sound project created with

the Musyk editor is processed into a suitable format for the target

machine. This process involves converting the actual MusyK project

itself, all related samples and the MIDI sequences.

There are two different processes of converting the project data,

depending upon whether data is needed for the game application itself,

or as sample data for the sound slave.

Data suitable for implementation into the game application is usually

converted from the MusyX. project into the final target format by the

application programmer, since he needs to import this data into the

application.

Sample data to be used as add-on ROM samples for the sound slave,

during creation of the sound, can be created by the musician himself

using a simple GUI driven tool. The data this tool creates needs to be
programmed onto a flash ROM. if you have no access to a Flash ROM
Gang Writer, this will be the only time where the application programmer
might need to be involved, to kindly flash the ROM using his

development system.

To convert a MusyK project into either kind of data, a number of

command line based tools are employed. This also applies to Windows
GUI applications, which will invoke those tools to get the job done.

Naturally, this requires that those tools are installed on your machine by
the installation program (which is the default).

The following pages describe the purpose and use of all tools needed to

produce all necessary data files.

©1999 Factor 5 LLC

Appendix 4: 353
08/25/99

MiJSyJl. Audio Tools

MUCONV.EXE

MUConv is a command line driven tool which will convert a MusyK
project into a final target platform data file. During its conversion process,

MUConv will, in turn, call GM2SONG a number of times to convert the

MIDI sequences into the target format. You need to make sure that

MUConv can locate GM2SONG, otherwise the conversion process will

fail.

The output created by MUConv consists of a number of files, three of

which are to be included in the game application. More on this later.

Command Line Parameters

MUCONV.EXE expects the following command line.

MUCONV [Options] <Export script> <Descript ion>

Export Script:

This is the filename of the export script the musician created from within

the Musy& editor (Menu: Project->Generate scriptfile for export). This file

describes the MusyK project in a manner MUConv can understand.

Actually, you may specify more than one export script here, separated by
spaces. These will be merged together. For Game Boy development
however, we do not suspect that you will ever need to do this.

Description:

This is a file the application programmer has to provide. The contents of

this file list which groups contained in the MusyX. project need to be
included in the final data file. It also provides information concerning
where the final data files should be created. See below for details.

Options:

-a

This option tells MUConv to create an include file suitable for assembly
language, rather than C. When Game Boy is specified as the target

platform, this will be the default.

08/25/99

Appendix 4: 354

Game Boy Programmers Reference

-b

This option will create a data file suitable for systems using big endian
byte order, rather than little endian (the default). For the Game Boy
platform this option has no effect.

-p <path>
If the tool is not invoked from the project directory itself, you may use this

option to specify a search path for referencing all files from the project.

This may be useful if you specify more than one project to be jointly

converted. This option may be used multiple times, to add a search path

to the search path list.

-t <system>
This option will select the target platform for which to convert the project.

Possible systems are:

N64
Game Boy

-s

This option disables the processing of samples, to speed up the

conversion process, when the samples have not changed.
This option has no effect for Game Boy.

-d

This option will force all samples to be converted to the default format for

the target platform, overriding the musician's specifications.

This option has no effect for Game Boy.

-v

This option enables the verbose mode.

©1999 Factor 5 LLC 08/25/99

Appendix 4: 355

Audio Tools

Description File

The description file is a text file containing several sections that tell

MUConv what portions of the MusyK project to include in the target data

file. It also tells MUConv the location and base name of the data files to

create, and what to call the automatically created include file for all

assigned IDs.

A general description file has the following layout.

[Pool]

[Samples]

[Pro j ect

]

[OutputDirectory]

[Name]

[Include]

Before you can successfully convert a project, you need to fill in the

blanks.

[Pool]

This section lists all group names (case sensitive!), which contribute their

macros to the final project data. List one group per line.

[Samples]

This section lists all group names (case sensitive!), from which
referenced samples will be taken into the final project data. List one
group per line.

[Project]

This section lists all group names (case sensitive!), from which
information about MIDI sequences and MIDI setups are taken into the

final project data. List one group per line here, as well.

08/25/99

Appendix 4: 356

Game Boy Programmers Reference

[OutputDirectory]

This section contains only one entry, which is the name of the directory

into which all final data files will be written. The directory must exist in

advance, otherwise MUConv will fail.

[Name]
This section contains only one entry, which is the base name (without

extension) for all final data files in the output directory. All created output

files share the same base name, but different extensions will be
appended, according to the type of data written.

[Include]

This final section specifies the file name (with extension) of the include

file to be written, which will contain all IDs for the songs and sound
effects. For assembly type output, the extension for this name is usually

.i (for C-type output .h).

/ For Game Boy projects, you should list the same groups in every

section (see example below).

Description File Example
[Pool]

Songgroup
SFX
[Samples]
Songgroup
SFX
[Pro j ect

]

Songgroup
SFX
[OutputDirectory]
output
[Name]

GameSound
[Include]
SoundIDs .

i

© 1 999 Factor 5 LLC 08/25/99

Appendix 4: 357

Audio Tools

Output Files

After a successful conversion process, MUConv will have created a

number of files in the specified output directory.

Three files will be named according to the base name you specified in

the description file with added suffixes. The include file containing all IDs,

will have been created under the full name you gave in the description

file.

Taking the above example, MUConv will have created the following 4

files.

output \GameSound
.
pool

output \GameSound
.
pro

j

output \GameSound .

s

output \SoundIDs .

i

.pool files

The data in these files contain all converted samples and MIDI

sequences. It needs to be included in your application, starting in the

ROM bank right after the MusyK sound routine.

.proj files

These files contain converted project data, such as sound macros and
ADSR curves. This file needs to be included in your application, in the

same bank as the MusVA sound routine.

.s files

This file is source code that you can add to your application, to include

both the. pool and .proj files more easily.

include files

This file is source code that contains symbolic names for all sound

effects and songs in the MusyX. project. Since the numeric

representation of these are likely to change when changes to the sound
project are made, you should always reference an object by its symbolic

name. This requires that you set up a dependency to this file in all your

application source codes that deal with sound.

08/25/99

Appendix 4: 358

Game Boy Programmers Reference

Please refer to the supplied example application, for a detailed

demonstration which illustrates how to include the data files into your

own application.

GM2SONG.EXE

GM2SONG.EXE is a command line based tool, which converts a

MIDI-1 sequencer file into a proprietary file format, used by the runtime

library of MusyK.

Since this tool is invoked by MUCONV.EXE, we will not explain it's

stand-alone usage here.

You need to make sure, however, that GM2SONG.EXE can be found by
MUCONV.EXE. You can ensure this by either placing it in your search

path, or by having it in the same directory that you are in when you start

MUCONV.EXE.
~

©1999 Factor 5 LLC

Appendix 4: 359
08/25/99

Audio Tools

APPENDIX 4.2 - Function Section

The Musyk API consists of several functions that the application can call

to do things like starting/pausing/resuming a song, starting sound effects

and similar services.

The following pages contain a description for every API function,

including what they do, what parameters they expect and what they

return.

08/25/99

Appendix 4: 360

Game Boy Programmers Reference

snd Init

Purpose:

This function needs to be called once, during the initialization phase of

your application. It will setup all internal structures and variables of

Musya. You must call this function to make sound.

Inputs:

A Bit 0: Set when running on Game Boy Color. Clear if not.

Bit 7: Set when the flash ROM is for Game Boy Color

Output:

None.

Remarks:

There are two distinctions you need to make before calling this routine.

• Are you currently running on Game Boy Color?

» Is the flash ROM enabling Game Boy Color?

For instance, you could be writing a program that does not require the

Game Boy Color features, at all. In this case you would not have the

CGB compatibility flag set in the ROM registration area, and Game Boy
Color would behave like a conventional Game Boy. So all Game Boy
Color features, such as double speed mode, do not function. But still this

flash ROM can be plugged into Game Boy Color. This needs to be

communicated to Musya.

So:

A = $81

A = $80

A = $01

A = $00

Running a Game Boy Color game on Game Boy Color

Running a Game Boy Color game on Game Boy
(not permissable)

Running a conventional game on Game Boy Color

Running a conventional game on Game Boy

©1999 Factor 5 LLC

Appendix 4: 361
08/25/99

Audio Tools

snd_Exit

Purpose:

This function immediately stops all sounds and disables Atit/syK.

Inputs:

None.

Output:

None.

Remarks:
After calling snd_Exit, you will need to call sndjnit aqain, prior to any
other API call.

See also:

snd Silence

08/25/99

Appendix 4: 362

Game Boy Programmers Reference

snd_Silence

Purpose:

This function will immediately stop all sounds and any active song, but

will leave MusyX in an active state.

Inputs:

None.

Output:

None.

Remarks:

See also:

snd_Exit

©1999 Factor 5 LLC

Appendix 4: 363
08/25/99

MW0M Audio Tools

snd_Handle

Purpose:

This function needs to be called once every vertical blank interrupt.

Inputs:

None.

Output:

None.

Remarks:
To ensure the best possible timing for samples and songs, call this

function as soon as possible in vertical blank. This assumes that all tasks

you do before calling this function will take approximately the same time,

every interrupt.

You will also need to allow interrupt nesting (see Game Boy
Development Manual, Revision G, "CPU Control Register") right before

calling this function, if you are utilizing normal quality samples.

08/25/99

Appendix 4: 364

Game Boy Programmers Reference

snd_StartSong

Purpose:

This function will start song playback.

Inputs:

A ID of the song to start

Output:

None.

Remarks:
The ID you need to pass to this function was created by MUCONV.exe
when you converted the project. Please use only the symbolic names
assigned by MUCONV, as the numeric values behind them are likely to

change when you convert the project again.

See also:

snd_StopSong, snd_PauseSong, snd_ResumeSong,
snd_ChangeSongSpeed, snd_SetSongVolume

© 1999 Factor 5 LLC

Appendix 4: 365
08/25/99

MitSyX Audio Tools

snd_StopSong

Purpose:
This function will stop any song that is currently playing.

Inputs:

None.

Output:

None.

Remarks:
The song is stopped immediately, and cannot be resumed. It will need to

be started again by calling snd_StartSong.

See also:

snd_StartSong, snd_PauseSong, snd_ResumeSong,
snd_ChangeSongSpeed, snd_SetSongVolume

08/25/99

Appendix 4: 366

Game Boy Programmers Reference

snd_PauseSong

Purpose:
This function will pause a song that is currently playing. It can be
resumed at a later time, by calling snd_ResumeSong. You can also save
the state of a paused song into a user supplied buffer and play another
song. Then, restore the buffered state and resume the first song (to play

a jingle for instance), by calling the state functions snd_GetStateSize,

snd_SaveState and snd_RestoreState.

Inputs:

None.

Output:

None.

Remarks:

See also:

snd_StartSong, snd_StopSong, snd_ResumeSong,
snd_ChangeSongSpeed, snd_SetSongVolume,
snd_GetStateSize, snd_SaveState and snd_RestoreState

© 1999 Factor 5 LLC

Appendix 4: 367
08/25/99

Audio Tools

snd_ResumeSong

Purpose:

This function will resume a song that was paused. You can also save the

state of a paused song into a user supplied buffer and play another song.

Then, restore the buffered state and resume the first song (to play a

jingle for instance), by calling the state functions snd_GetStateSize,

snd_SaveState and snd_RestoreState.

Inputs:

None.

Output:

None.

Remarks:

See also:

snd_StartSong, snd_StopSong, snd_PauseSong,
snd_ChangeSongSpeed, snd_SetSongVolume
snd_GetStateSize, snd_SaveState and snd_RestoreState

08/25/99

Appendix 4: 368

Game Boy Programmers Reference

snd_SongAetive

Purpose:

This function will return whether or not a song is currently playing.

The main use of this function, is to determine the end of a 'one-shot'

song, like a jingle.

Inputs:

None.

Output:

A 0 = Not playing, 1 = playing

ZF 0 = Playing, 1 = not playing

Remarks:
The song itself, is certain to be at its end, when this function tells you that

no song is playing. This does not necessarily mean that no further sound
can be heard, since the sound macro has control over the sound. If a

note is fading out, the song will have been finished, and you could

prematurely end the sound synthesis. The musician should make sure

that, in case of a 'one-shot' song, the last note is not a note, but a

dummy program change that allows all notes sufficient time to really fade

out.

See also:

snd_StartSong, snd_StopSong, snd_PauseSong, snd_ResumeSong

©1999 Factor 5 LLC

Appendix 4: 369
08/25/99

- Audio Tools

snd_ChangeSongSpeed

Purpose:

This function will change the play back speed of the currently playing

song. This can be used for instance, in a game to indicate that time is

running out.

inputs:

BC Speed scale factor based on $0100 being 1.0.

If zero is passed, the song's default speed is restored.

Output:

None.

Remarks:
To speed the song up by 50%, set BC to $0180. To undo the 50% speed
increase, set BC to $00ab (not $0080).

Example:

• current speed = $0100
© snd_ChangeSongSpeed with $0180 yields $0180 as new speed
• snd_ChangeSongSpeed with $0080 would yield $00c0, which is half

of $0180. To get back to $0100, you need to specify

($0100/$0180)«8, or $00ab for this example.

See also:

snd_StartSong, snd_StopSong, snd_PauseSong,
snd_ResumeSong, snd_SetSongVolume

08/25/99

Appendix 4: 370

Game Boy Programmers Reference

snd_SetSongVolume

Purpose:

This function sets a new master volume for the playback of a song.

Sound effects are not affected.

Inputs:

A New master volume (0-15)

Output:

A Previous master volume

Remarks:

See also:

snd_StartSong, snd_StopSong, snd__PauseSong,

snd_ResumeSong, snd_ChangeSongSpeed

©1999 Factor 5 LLC

Appendix 4: 371
08/25/99

MusyX Audio Tools

snd GetStateSize

Purpose:

This function returns the size of the buffer you need, to provide in calls to

the functions snd_SaveState and snd_RestoreState.

Inputs:

None.

Output:

A Size, in bytes, of the state buffer

Remarks:
Call this function just once, during the course of your game development.

Once you have determined the size of the buffer for this particular

version of you do not need to do it again.

See also:

snd_SaveState, snd_RestoreState

08/25/99

Appendix 4: 372

Game Boy Programmers Reference

snd SaveState

Purpose:

This function will backup the current state of the sequencer, for a paused
song. After the state is secured, you can play another song (i.e., a jingle),

then restore the state and resume the original song.

Inputs:

C Size of the user state buffer (for verification purposes)

HL Address of the user state buffer to store the state in

Output:

None.

Remarks:

See also:

snd GetStateSize, snd RestoreState

©1999 Factor 5 LLC

Appendix 4: 373
08/25/99

Audio Tools

snd RestoreState

Purpose:

This function will restore a previously buffered sequencer song state.

Inputs:

C Size of the user state buffer (for verification purposes)

HL Address of the user state buffer to restore the state from

Output:

None.

Remarks:

See also:

snd_GetStateSize, snd_SaveState

08/25/99

Appendix 4: 374

Game Boy Programmers Reference

snd StartSFX

Purpose:

This function will start a sound effect.

Inputs:

A I D of the effect to start

B Volume (0-15, or 255 for default)

C Position (0=left, 1=center, 2=right)

Output:

A Active ID, or 0 if effect could not be started

Remarks:

The ID returned by this function, if not zero, is a handle for this sound
effect. You need to keep it for a later call to snd_StopSFX.

See also:

snd_StopSFX, snd_SetSFXVolume

© 1999 Factor 5 LLC

Appendix 4: 375
08/25/99

hsiJSyJ* Audio Tools

snd_StopSFX

Purpose:

This function will stop a sound effect, previously started by

snd_StartSFX.

Inputs:

A Active ID returned by snd_StartSFX

Output:

None.

Remarks:
The ID returned by snd_StartSFX, will remain unique, as long as no

other sound effect cancels this one due to a higher priority. In this

particular case the ID you kept will become invalid, and might cancel

another soundeffect that has received this ID assignment, in the

meantime.

For one-shot sound effects, this is not a problem, since you need not

stop them, explicitly. For permanent effects however, this could be an
issue, which is best solved by having the sound designer assign

appropriate priorities to the sound effects, to minimize these

occurrences.

See also:

snd_StartSFX, snd_SetSFXVolume

08/25/99

Appendix 4: 376

Game Boy Programmers Reference

snd SetSFXVolume

Purpose:

This function sets a new master volume for the sound effects.

The volume of a song remains unaffected.

Inputs:

A New master volume (0-15)

Output:

A Previous master volume

Remarks:

See also:

snd_StartSFX, snd_StopSFX

©1999 Factor 5 LLC

Appendix 4: 377
08/25/99

NkMfJL Audio Tools

snd_StartSample

Purpose:

This function will start the playback of a normal quality sample.

Inputs:

A ROM bank number of the sample to play back
HL ROM address of the sample to play back

BC Length of the sample / 16

DE BankO address of a callback to call when sample ends

Output:

None.

Remarks:
The sample cannot be longer than 1 MByte. This function requires the

availability of the timer interrupt. The sample address needs to be
aligned to 16 byte boundaries.

See also:

snd_StopSample, snd_PlaySample, snd_DoSample

08/25/99

Appendix 4: 378

Game Boy Programmers Reference

snd_StopSample

Purpose:

This function will stop a sample being played back.

Inputs:

None.

Output:

None.

Remarks:

See also:

snd_StartSample, snd_PlaySample, snd_DoSample

©1999 Factor 5 LLC

Appendix 4: 379
08/25/99

MusyX Audio Tools

sncl_DoSample

Purpose:

This function needs to be called, when the timer interrupt occurs.

inputs:

None.

Output:

None.

Remarks:
To insure good quality of the sample, you need to respond to the

occurrence of the timer interrupt the moment it occurs. To do this, you
will need to allow for interrupt nesting. Please refer to the Game Boy
Development Manual, "CPU Control Register" for details.

See also:

snd_StartSample, snd_StopSample, snd_PlaySample

08/25/99

Appendix 4: 380

Game Boy Programmers Reference

snd_PlaySample

Purpose:

This function suspends MusyK, stops all sound output, then plays back a

high quality sample using all CPU power. When playback is completed, it

resumes MusyA and your application program.

Inputs:

A ROM bank number of the sample to play back
HL ROM address of the sample to play back
BC Length of the sample / 16

E Bit mask for the buttons A, B,SELECT and START.

Output:

None.

Remarks:
The bitmask you supply, identifies one or more buttons that can cancel

playback of the sample. This is required, because no interrupts occur
during playback, and your application is suspended, as well.

The sample cannot be longer than 1 MByte.

The sample start address needs to be aligned on a 16 byte boundary.

See also:

snd_StartSample, snd_StopSample, snd_DoSample

©1999 Factor 5 LLC

Appendix 4: 381
08/25/99

Audio Tools

snd_CheckFlag

Purpose:

Checks if a user flag, triggered by a sound, is set. This enables limited

signaling capabilities from AU/syK to your application program. When a

flag is set, it remains set until this function is called. It's state will be

returned, and the flag will then be cleared.

Inputs:

A Flag number to test for (0-7)

Output:

A State of the flag

ZF State of the flag (zero or not zero)

Remarks:

08/25/99

Appendix 4: 382

Game Boy Programmers Reference

snd_SetMasterVolume

Purpose:

This function is used to set a new master volume in the final mixing

circuit. It does affect both sound effects and music.

Inputs:

A New master volume (0-7)

Output:

Previous master volume.

Remarks:
This setting works together with the snd_SetSFXVolume and
snd_SetSongVolume. It acts as a final volume scaler.

See also:

snd_SetSFXVolume, snd_SetSongVolume

©1999 Factor 5 LLC

Appendix 4: 383
08/25/99

Audio Tools

Appendix 4.3 - Mini-MORT Samples

The samples you can play back, using the functions 'snd_PlaySample'

and 'snd_StartSample', are "Mini-MORT" samples.

MORT is our proprietary compressed sample format, and the 'Mini'

derivative of it is used for small platforms, like Game Boy.

You can create Mini-MORT samples with the supplied Mini-MORT
editing tools, from 16 bit mono samples in WAV or AIFF format.

The only sampling rate supported by Game Boy is 8192 Hz, so your

input samples should be sampled at this rate. No resampling is done in

the Mini-MORT editor, so converting a sample of a different rate is likely

to yield an undesirable result when played back on the actual Game Boy.

A sample written by the Mini-MORT editor cannot be imported into Game
Boy directly. You will need to remove the header of this file, manually,

when you build your data resources for Game Boy.

This file header, as of version 1 MORT files, is 44 (or $2e) bytes in size.

To verify that the file you are processing is a MORT file, verify the

contents of the first 8 bytes of the header and compare to the values

listed below.

0x00: DB "MORT"
0x04: DW 0

0x06: DW Version (little endian)

To verify that the file is in Mini-MORT format, check the bytes at offset 8

in the header.

0x08: DW 1 (little endian)

If this 1 6 bit value does not contain the value 1 ,
then this file is not in

Mini-MORT format and therefore cannot be used on Game Boy.

08/25/99

Appendix 4: 384

Slave Reverb Control (N64)

APPENDIX 5 - Slave Reverb Control (N64)

Table of Contents:

The Reverb Effects Engine (REE) on the N64 387
REE Structure 387
Performance Issues 388
How to Use the Reverb Panel 389

©1999 Factor 5 LLC 08/25/99

Appendix 5: 385

08/25/99

Appendix 5: 386

Slave Reverb Control (N64)

The Reverb Effects Engine (REE) on the N64

REE Structure

The schematic below, is a structural overview of the N64 reverb effects

engine.

In

Out

The incoming data is written into the delay buffer at the current write

position. Next, up to eight reflections are processed by accumulating the

data from the different offsets in the delay buffer, after scaling the

different reflections with their specific volumes.

The accumulated signal is then mixed into the dry part of the output

signal. At the same time, it is passed through a 4 point FIR filter, scaled

with the feedback volume and added to the input signal, written earlier to

the current delay buffer write position.

©1999 Factor 5 LLC

Appendix 5: 387
08/25/99

Audio Tools

Performance issues

The N64 implementation of REE supports up to eight reflections. When
using the engine, keep in mind that resources on the N64 are limited.

While great care as been taken to keep the performance hit as small as

possible on the implementation side of things, there are some “rules” that

can be used to minimize the impact, by the way the system is used.

• Each reflection produces additional work for the RSP. It’s generally a

good idea to use the smallest possible number of reflections to

achieve a certain effect.

• When reflections are spread out over a wide range of delay times,

this will have a larger impact on the overall performance, than the

same number of reflections within a smaller range.

• Do not set the feedback volume to large values. The REE engine

does not protect you against feedback signal amplitudes that are too

high. These can cause the output signal to be distorted.

• The delay buffer will cost main RAM space. At 22.05 KHz 1000ms of

buffer space will cost about 43 Kbytes of RAM.

• REE will align the specified delay buffer size to the next higher

number of samples that can be divided by 192. So, you may not be
able to specify the exact buffer length you want.

08/25/99

Appendix 5: 388

Slave Reverb Control (N64

How to Use the Reverb Panel

The parameters that can be influenced using the reverb control panel,

are directly mapped to the parameters in the reverb schematic from the

last section. This is described in the following paragraphs.

Retlectioi

Feedback volume

To use the parameters, adjust the values as you see fit and press the

update button. Keep in mind that you will have to do this each time you
change any values, otherwise the old values will still be used. This is true

for all settings, including the enable switch and the selection of different

setup sets.

You may define up to 16 different setup sets at any one time. This limit is

only imposed by the slave program. At runtime, the number of different

settings that can be used is not limited at all by the system. These setup
sets are only introduced to allow the musician and/or SFX designer to

test different REE setups quickly.

©1999 Factor 5 LLC 08/25/99

Appendix 5: 389

Mu$yy„ Audio Tools

The export button will bring up a file selector dialog box, that allows

specifying the name of an ASCII text file that will contain all current

parameters of the reverb panel, for easy access by the programmer.

08/25/99

Appendix 5: 390

Mini- 1 .a.R.T.
Advanced Sample Optimize Editor

© 1999 Factor 5 LLC

391

General Information

General Information

What is Mini-M.O.R.T.?

Mini-M.O.R.T. is a subset of the M.O.R.T. sample compression system,

specifically designed for smaller platforms (like Game Boy) that cannot
deal with the required computations of the large M.O.R.T. system.

Mini-M.O.R.T. has also stricter requirements for the input format of

samples, which is based on the limitations of the target platform.

The normal compression ratio is about 4:1 . This can be increased to

about 7:1 with manual adjustments.

©1999 Factor 5 LLC

393

MINI-M.O.R.T.

M.O.R.T. File Formats

Source Sample Format

The Mini-M.O.R.T. editor can load samples in WAV format. Basically any
sample processing software you use to create samples should be able to

write in this format.

However, any sample you wish to encode into a Mini-M.O.R.T. sample
needs to be a 16 bit mono audio file. If it is not in this format, the editor

will refuse to load it.

Samples should have a sample rate of either 1920 Hz or 8192 Hz. The
editor can load samples of any rate, but it bases its mode of operation on
a sample rate of 4000Hz. Any sample below this rate will be treated as

"low" quality, all others as "normal" and "high" quality.

Regardless of the sample rate you load into the editor, Game Boy can

play back only at 1920 Hz and 8192 Hz. It chooses the appropriate

frequency based on the "low" or "normal/high" setting. This means that

samples will not sound correct if they were not sampled in one of the two
supported sampling rates.

MIF (M.O.R.T. Information File)

The MIF File is written by the editor, and contains sample processing

information for the sample you edited. This file is useful if you have
already applied Mini-M.O.R.T. compression information on a sample, but

need to make changes to the original wave file.

Change the Wave File as desired and load it into the Mini-M.O.R.T.

editor. Then press the ‘Reload MIF’-button. If you saved the MIF File the

first time, you will find all your blocks optimized, after you have applied

the MIF-data to the voice-file. For this to work as intended it is a

requirement that you do not change the overall length of your sample
(like changing pitch, cutting sections from it, etc.), or otherwise you will

end up with the information stored in the MIF file at blocks where they do
not belong to.

08/25/99

394

Blocks, Curves, and Easy Optimize

Blocks, Curves and Easy Optimize

General

A Mini-M.O.R.T.-file is divided into blocks of 32 samples each.

The actual voice compression scans each block and compresses it. You
can increase the compression ratio by marking some blocks as ‘Empty’

(visualized as a green block).

If at least two consecutive blocks are marked empty, the Mini-M.O.R.T.

voice compression will disregard these blocks and insert zero-data.

To mark a block ‘empty’, it is necessary that the previous block ends on
zero and the next block starts on zero, to assure a smooth playback. To
achieve this, you can choose from three different curves that are used to

fade the previous block out and the next block in. Remember, these
curved blocks (yellow, orange and pink depending on the applied fading

curve) are not empty and cannot be used to increase the compression
ratio.

The Easy Optimize section will help you find empty blocks and mark
them empty. You can adjust the threshold (1-32767) of this ‘Noise-Gate’-

algorithm. When the Optimize-button is used, the tool will mark all those

blocks whose amplitudes stay within the threshold range as empty.

To manually mark any block as empty you need to click on it with the left

mouse button. If you want to remove this empty mark, select it with the

right mouse button and choose "Free” to restore the original data.

The Mini-M.O.R.T. editor will load samples of any rate, but it bases its

mode of operation (sample quality) at a rate of 4000Hz. Any sample with

a lower rate is considered to be of "low" quality. All other samples will

enable the "normal" and "high" quality settings.

©1999 Factor 5 LLC

395

General Functions

Open / Open New
Opens a new .WAV sample for editing. Please examine the previous

table for details on sampling rates.

Save / Save As
Saves the sample file. Because of the non-destructive nature of the Mini-

M.O.R.T. Editor, saving your source sample is not necessary. The
exception to this is when you are in the Mini-M.O.R.T preview mode, and
want to save the generated Mini-M.O.R.T. file as a demonstration.

his will play the entire voice file from the beginning of the file.

This will play the voice file from the current position.

his will stop playback of the voice file.

Original / MORI
With these functions, you can switch between the original voice file and
an encoded Mini-M.O.R.T. file for preview purposes. This shows you the

difference in sound between the Mini-M.O.R.T. file and the oriqinal wave
file.

Save MIF
Saves the MIF file (M.O.R.T. Information File).

Do MIF
Applies the MIF data to the voice file. Use this with the "Free All"

command to get an A/B comparison with the original voice file and your
optimizations.

08/25/99

396

General Functions

Free All

Sets all blocks free, so you can get the original status of the file. Use this

with the ‘Do MIF’ command, to get an A/B compare with the original

voice file and your optimizations.

Reload MIF
Loads the matching MIF file for the opened voice file. This function is not

available if you have not saved a MIF file for this voice file before.

Reload WAV
Reloads the wave file. This is a useful feature that enables you to hear
how your changes to the wave file affect the Mini-M.O.R.T. voice

compression.

Save MORT
Saves your final Mini-M.O.R.T file. After using “Save MORT”, it is not

possible to change anything in the .mort file. It can not be loaded Into

the Mini-M.O.R.T. editor again.

About
Shows the copyright Information.

Help

Not implemented.

Exit

Exits the editor.

©1999 Factor 5 LLC

397

MMI-M.O.R.T.

Statistics

Encode

This will test-encode your file and give you information about the

compressed file size and the compression factor.

The "Noise Filter" checkbox right below the "Encode" button enables a

special noise filter for Game Boy samples. It may or may not increase

the quality of normal and high quality samples.

You should try A/B comparisons of an encoded sample with this filter

turned on and off to see if the current sample sounds better with this filter

enabled.

Comp.Size

Is the file size of the compressed Mini-M.O.R.T. file in bytes.

Comp.Factor

Is the compression ratio, as compared to the original file size.

Filelength

Is the length of the original wave file in samples.

Rate

Sample Rate of the wave file.

NOTE: Either 1920 Hz or 8192 Hz are supported on the Game Boy.

Mode
Shows the amount of channels in the original wave file.

NOTE: Mini-M.O.R.T. only supports MONO files with one channel.

Bits

Shows the resolution of the original wave file.

NOTE: Mini-M.O.R.T. only supports 16 bit files.

08/25/99

398

Statistics

Position

Shows the start-position of the sample-window in blocks. You change the

start position by scrolling the scrollbar, or setting a block as the new start

position. Selecting the block with the middle mouse-key does this. This is

helpful if you want to check a specific range of a sample with the L*.

Button.

Scalefactor

This is the scaling factor you chose in the view area.

©1999 Factor 5 LLC

399

View

1:1 - Full

With these Buttons you select a scalefactor and choose how much you

want to zoom into or out of the Sample.

Redraw
Redraws the contents of the sample-window.

Grid

Switches the Grid on or off.

B-Style

Shows the sample-data in a different display style.

08/25/99

400

© 1999 Nintendo of America Inc. TM, ©and the 'N logo are trademarks of Nintendo of Amenca Inc. Factors Audio Tools is a trademark of Factor 5 LLC. Distributed by Nintendo of America Inc.

