
Chapter 29 Video Interface (VI)

1 Introduction
1
1.1 What is a Video Interface (VI)?
1
1.2 What is the VI Manager?
1
1.3 What is the Display Mode?
2
1.4 Special Video Interface Functions
5
2 Programming Techniques for PAL Format
9
2.1 Initialization Procedure
9
2.2 Special Video Mode Settings
10
3 Programming Techniques for MPAL Format
11
3.1 Initialization Procedure
11
4 Other Precautions
11
4.1 Differences in the Timing for Setting and Acquiring the VI Display Mode
11
4.2 Safe Frame
12
4.3 VI Processing with PreNMI Events
13

Through page 13

Revision History
Rev.No.
Rev. Date
Page
Description of Revision
Approved
Revised

Chapter 29 Video Interface (VI)

1 Introduction

 This chapter gives a detailed description of the video interface assembly.

　The video interface for the N64 platform provides numerous hardware functions. The purpose of this chapter is to give you a good understanding of these various functions so that you can use them appropriately as needed.

1.1 What is a Video Interface (VI)?

 The video interface performs the following functions.

· Creates signal timing when outputting to television monitor.

· Specifies resolution and depth of color frame buffer.

· Transfers from color frame buffer to video DAC (D-A converter) and specifies filters used during transfers.

· Provides current display position information.

Note: The video DAC creates analog data from digital data and outputs said data as a television video image.

1.2 What is the VI Manager?

 Usually, video output must be sent as a signal that is based on television standards. In addition, noise can appear on the television screen when the display timing suddenly changes or when the frame buffer changes during the display period. Synchronization with V-blanking (the vertical retrace interval) and adding changes usually prevents this noise. The VI Manager controls this.

 The VI Manager also manages the timer processing and uses messages to notify the application of the V-blanking timing as events.
 Separate frame buffers usually are provided for display and for rendering (drawing) to eliminate noise in the screen caused by rendering during display.

 An outline of this procedure is shown below.

1. The application renders in the frame buffer not currently being displayed.

2. After the RDP completes rendering, the application sends the address of that frame buffer over to the VI Manager.
3. The VI Manager refreshes the display frame buffer in synch with the next V-blank.

4. The application uses flags, etc. to replace the display and rendering frame buffers.

5. The procedure is repeated starting from 1.

Sample Initialization Procedure (Other initializations are actually necessary)

[image: image1.wmf]Register VI Manager

Set display mode

Set special function

modes

Assign V-blank events to

messages

Note: See “4.2.9, VI Manager” for details about the VI Manager.

1.3 What is the Display Mode?

 The display mode consists of various combinations of 5 flags: NTSC/PAL (FPAL)/MPAL format, high/low-resolution, anti-aliasing/point sampling, interlaced/non-interlaced mode, and 16/32-bit color pixel.

Table 29-1 Display Mode Flags

Flag 1
NTSC format

PAL format

MPAL format

FPAL (Full-screen PAL) format

Flag 2
H = High-resolution

L = Low-resolution

Flag 3
A = Anti-aliasing

P = Point sampling

Flag 4
Low-resolution
N = Non-interlaced

F = Interlaced

High-resolution
N = Normal interlacing

F = Deflickered interlacing

Flag 5
1 = 16-bit pixel size

2 = 32-bit pixel size

 See osViSetMode in the Function Reference for details on how to use these flags.

1.3.1 Supported Television System Formats

 The N64 libraries are compatible with NTSC, PAL, and MPAL television system formats.

 The television system format in Japan and North America, etc. is called the NTSC (National Television System Commission) format, which has 525 scan lines and a scanning frequency of 60Hz.

 The PAL (Phase Alternation by Line) format is the television system format used in Europe (except for parts of France, etc.), Australia, and parts of Southeast Asia, and has 625 scan lines and a scanning frequency of 50Hz.

 The MPAL (Phase Alternation by Line-M) format is the television system format for Brazil, and is the PAL format with 525 scan lines and a scanning frequency of 60Hz.

 Refer to the Programming Cautions, “5, Video Mode”.

Note: FPAL is an acronym for Full-screen PAL that is used in connection with the N64, and is not the name of a television system format.

1.3.2 High-resolution/Low-resolution

 With the exception of FPAL, low resolution displays at 320x240 dots (FPAL displays at 320x288 dots in low-resolution). High-resolution displays at 640x480 dots. Usually when creating games, low-resolution is used. The reasons for this are to speed up rendering (minimize the screen area that is drawn), and to reduce the amount of memory required.

 The advantages of high resolution are that jagged edges (step-like noise) are less apparent due to the finer dot array, and that extremely intricate text and video images can be displayed. Deciding which to use should be determined after considering the characteristics of the game.

1.3.3 Anti-aliasing/Point Sampling

 Point sampling was used in previous display formats. However, when polygons are displayed at low-resolution, jagged edges are obvious in the outline. Anti-aliasing can be performed with the N64 to minimize this. This function is accomplished by pre-processing on the RDP and post-processing with the video interface.

 If anti-aliasing is not performed with the video interface, the processing done with the RDP will have no effect. In addition, even if anti-aliasing is performed with the video interface, it will have no effect if it is not also done with the RDP.
1.3.4 Non-interlaced/Interlaced
 When the normal television system format is NTSC, a frame is expressed in approximately 1/30-second. In this situation, one frame is divided into odd-numbered fields and even-numbered fields, which are not displayed at the same time, but are displayed respectively in alternating 1/60-second intervals. This is referred to as interlaced display. There is a great deal of flicker when interlaced display is used. Since there are many cases in which low-resolution is used with the N64, non-interlaced display is used in which only the even-numbered fields are displayed. (However, it is possible to set the system to use interlaced display even at low-resolution.)

 Since high-resolution doubles the number of lines displayed in low-resolution, only interlaced display can be used. If deflickered interlaced mode is used, the lines are averaged and displayed, making it possible to display video with minimal flicker. However, since the data for both (odd-numbered and even-numbered) fields are needed to display one field in this situation, multiple-buffer processing is required.

Note: Due to restrictions on the memory bandwidth when deflickered interlaced mode is used, there are cases in which noise will appear in the screen when there is frequent memory access to the same memory bank (1MB units) as that of the frame buffer during display. The various frame buffers and the Z-buffer need to be situated in separate memory banks. Also make sure not to situate the buffers used for DMA transfer (audio heap, etc.) in the same memory bank as the frame buffers.

[image: image4.wmf]1

2

260

261

262

260

261

262

263

264

265

260

261

262

524

525

262.5

260

261

262

TV Screen

1

2

3

4

260

261

262

TV Screen

262

In interlaced scanning, the interval for

each field is scanned. On an actual TV,

since there is a vertical blanking period,

the number of video scan lines is

approximately 483.

In non-interlaced scanning, fields and

frames are equal and all scanning is

done at once.

Field

I

, III

Field II, IV

260

261

262

(a)Principle of interlaced scanning

(b)Principle of non-interlaced scanning

Fig. 29-1 Interlaced scanning and non-interlaced scanning
1.3.5 16/32 Pixel Size

 The expressive capacity of each pixel that displays a video image is stated as the number of bits of color in terms of pixels. 16-bit pixels use 5 bits each for the three RGB colors, while 32-bit pixels use 8 bits each. When this is expressed as gradations of white (excluding black), 16-bit pixels are capable of displaying up to 32 gradations, and 32-bit pixels are capable of displaying up to 255 gradations.

 There is a great deal of difference between the two. Mach bands (stripe noise) will appear in areas in which there are subtle color changes when 16-bit pixels are used. Mach bands are almost completely unnoticeable with 32-bit pixels, but twice the amount of memory is used as with 16-bit pixels.

 A dither filter is available with the N64 to make Mach bands less apparent with 16-bit pixels.

1.4 Special Video Interface Functions

 The N64 video interface has special features that are set with osViSetSpecialFeatures. Since these features are the final filters on the video image generated with the RDP, and have an effect on the entire screen, it is crucial that you accurately understand them.

Table 29-2 Flags for Special VI Features

Flag
Description
Default

OS_VI_GAMMA_ON
Gamma correction ON/OFF
ON

OS_VI_GAMMA_OFF

OS_VI_GAMMA_DITHER_ON
Gamma dither ON/OFF
ON

OS_VI_GAMMA_DITHER_OFF

OS_VI_DIVOT_ON
Divot ON/OFF
ON

OS_VI_DIVOT_OFF

OS_VI_DITHER_FILTER_ON
Dither filter ON/OFF
16-bit: ON

32-bit: OFF

OS_VI_DITHER_FILTER_OFF

 It is possible to use these constants as bit sums.

Note: If osViSetMode is called, these flags are reset to their default values. When the screen mode has been changed with osViSetMode, use osViSetSpecialFeatures to reset these flags.

1.4.1 Gamma Correction (GAMMA)

 Gamma correction performs corrections so that the luminance curve of the Braun tube is in a proportionate relationship with the luminance curve of the original video image. On the N64 as a default it is ON. Generally, since gamma correction is automatically added to the original video image output from CG Tools, etc., there are cases when the default is used and the image becomes entirely white due to the double correcting action. In this case, it is necessary either to not perform gamma correction on the original video image, or to turn the gamma correction OFF with osViSetSpecialFeatures.

1.4.2 Gamma Dither (GAMMA_DITHER)

 Gamma dither is the function that performs gamma correction using a dither pattern. This feature is enabled when gamma correction is ON.
1.4.3 Divot (DIVOT)

 Divot is a filter for eliminating “divots” (single-pixel holes created when multiple boundary edges overlap in one pixel) in anti-aliased pixels. Since there are cases in which one-pixel holes will appear where polygons are connected together, etc. when this is turned OFF, as a rule, it should be ON when anti-aliasing is being performed. However, this correction is not a cure-all. There are cases in which “divots” cannot be eliminated.

1.4.4 Dither Filter (DITHER_FILTER)

 Mach bands can be made less apparent on the N64 with a method of creating pseudo-intermediate gradations with the RDP (dithering). However, when this is done, a dither pattern “roughness” becomes apparent. To counter this a dither filter is used. Since the number of times that memory is accessed from the video interface increases when this filter is specified, there are cases in which the overall system performance will drop by as much as 1%.

Note: Dither filter combinations

Depending on the combination of the dither filter specified with gDPSetColorDither and the dither filter specified with osViSetSpecialFeatures, there are cases when there is an effect and some cases where there is very little.
 When G_SHADING_SMOOTH has been specified with gSPSetGeometeryMode, dithering will be effective, but there are instances in which it is better not to perform dithering when this mode has not been specified. In addition, the dithering effect will be different when the surface area of the polygon is large and when it is small. Specifically, the effects of dithering may not be noticeable when a lot of polygons with small surface area are used.

1.4.5 Serrate (serrate)

 Serrate are bits to absorb shifting between the even-numbered frames and odd-numbered frames when interlacing is performed. This is generally always ON when interlacing is used, and OFF when non-interlacing is specified. Since this setting is automatically made when the mode is selected with osVisSetMode, there is no need for the user to do it.
1.5 List of Video Interface Functions
● osCreateViManager

This creates and starts the VI Manager (VIM) system thread. Call this only once during start-up.

● osViBlack

This enables you to blackout the screen at the next V-blank. OsViSetYScale(1.0) must have been called at this time. The setting will be updated at the next V-blank.

● osViFade

This will fade the entire screen by changing the colors of the values of the first and second rows in the frame buffer using the interpolation coefficient. Fade-out processing, etc. can be performed by changing this at each V-blank. This function is enabled when the system is set for low-resolution, point sampling, and non-interlacing.

When a PreNMI occurs, osViFade will need to be disabled and osViSetYScale(1.0) called before osViBlack is used. The setting will be updated at the next V-blank.

● osViGetStatus

This returns the contents of the status register currently being displayed by the video interface. See the Function Reference for details.

● osViGetCurrentLine

This returns the current half-line number that has been sampled at each line. This function directly reads the hard register.

● osViGetCurrentMode

This returns the current display mode. Once osViSetMode has been set, these contents will not be reflected until the next V-blank.

● osViGetCurrentFramebuffer

This returns the start address of the frame buffer currently being displayed. When a frame buffer has been set with osViSwapBuffer, the address that was set by osViSwapBuffer will be returned when the next V-blank comes up.

● osViGetNextFramebuffer

This returns the start address of the frame buffer set by the immediately preceding osViSwapBuffer. The contents do not change, even when a V-blank comes up.

● osViGetCurrentField

This returns the field number currently being accessed by the video interface. This function directly reads the hardware register. A 0 (zero) will always be returned with non-interlaced video.

● osViRepeatLine

This repeatedly displays the data in the first line of the frame buffer over the entire screen. The setting is updated at the next V-blank.

● osViSetMode

This sets the video interface mode to one of 56 modes. This setting is updated at the next V-blank.

● osViSetEvent

This registers the specified message queue and message in the VI Manager. This makes it possible to receive message queues (mq) and notification messages (msg) from the VI Manager when the program is generating a V-blank. It is enabled immediately after being called, but if it is registered multiple times, only the last registered one is valid.

● osViSet[X/Y]Scale

The enlargement ratio in the horizontal direction (x-scale) and the enlargement ratio in the vertical direction (y-scale) can each be changed. With a PreNMI event or when osViBlack, etc. is used, it is necessary to set the enlargement ratio in the vertical direction to 1.0. This setting is updated at the next V-blank.

● osViSetSpecialFeatures

This sets the special video interface features, such as gamma correction and dither filter, etc. The video mode must be set with osViSetMode prior to making any of these settings. This setting is updated at the next V-blank.

● osViSwapBuffer

This registers the start address of the frame buffer being displayed. The address is updated at the next V-blank.

● osTvType

This shows the television system format supported by the N64 Control Deck. This was already determined during boot-up. This is for reference only and no alterations should be done to the program.

● osViClock

This shows the clock frequency corresponding to the television system format supported by the N64 Control Deck. It was determined when osInitialize was called and is for reference only, so no alterations should be done to the program.

2 Programming Techniques for PAL Format

 Techniques for programming for the PAL format will be described here.

 See “29.1.3.1, Supported Television System Formats” for details on system formats.

2.1 Initialization Procedure

During boot-up, the OS will identify the N64 Control Deck as being NTSC/PAL/MPAL, and will set this information in the variable osTvType. The game should be programmed so that it will not work if the contents of osTvType do not match the system format of the country for which the software was designed.

 See Programming Cautions “5, Video Mode” for details.

<Example>

if (osTvType == 0){

 osViSetMode(&osViModePalLpn1);

}else{

while(1);
/* Stop application */

}

Note: In this example, when the system format of the country for which the software was designed is not PAL, the program goes into an infinite loop and the game will not start. Also, note that the argument for osViSetMode will differ depending on the mode being used.

2.2 Special Video Mode Settings

 Since the PAL format (50Hz) has more scan lines than the NTSC format (60Hz), when an application is migrated directly from NTSC to PAL, the screen will be long and narrow, with black bands at the top and bottom of the screen. Therefore, a special video mode, FPAL, has been added as a method for expanding the display to fit the entire TV screen. Use this FPAL mode when converting NTSC format games to the PAL format.

 Before this FPAL mode is used, the mode must be set to FPAL with the osViSetMode function.

osViSetMode(&osViModeFpalLpn1);

 The FPAL mode adds 40 more scan lines than are used in the conventional PAL format to compensate for the difference in resolutions between the PAL format and the NTSC format. However, since a 320x240 frame buffer is not provided in the NTSC format, if the 320x288 of FPAL is displayed, an area will show up at the bottom of the screen that is not consistent with the NTSC format.

 The following two methods can be used to prevent this.

1. Enlarge the frame buffer

This method simply increases the resolution and is the default state in the FPAL mode. At low-resolution, a frame buffer (320x288) with 48 lines added to the standard frame buffer, and at high-resolution, a frame buffer with 96 lines added (640x576), are available, allowing rendering over the entire screen area.

With changes to the frame size, the program and graphic data must also be changed, and processing is required to accompany this.

2. Use osViSetYScale

With osViSetYScale, simple display over the entire screen is possible by extending the 240 lines (valid in NTSC) from the (top, i.e., by expanding the 320x240 screen vertically).

In the FPAL mode, display will be extended to nearly the entire screen by calling

osViSetYScale(0.833);

after executing osViSetMode. Modification from the NTSC format is simple in this case since it is unnecessary to change the frame buffer size. However, a drawback of this technique is that the screen tends to dim overall.

Additionally, when osViSetYScale is used, the y-scale must be returned to 1.0 whenever a PreNMI event occurs or when osViBlack is executed. Caution is required as the RCP will sometimes hang up on reset.

3 Programming Techniques for MPAL Format

 Techniques for programming for the MPAL format will be described here. MPAL is the television system format for Brazil. If the country the software was designed for is America, make the software compatible with not only NTSC, but MPAL as well.

 See “29.1.3.1, Supported Television System Formats” for details on system formats.

3.1 Initialization Procedure

 MPAL and NTSC will automatically be identified by osTvType, and the video interface will be set to MPAL or NTSC.

 There are no particular requirements as to the timing for this in the program. See Programming Cautions “5, View Mode” for details.

<Example>

if (osTvType == 1){

 osViSetMode(&osViModeNtscLpn1);

}else if (osTvType ==2){

osViSetMode(&osViModeMpalLpn1);

}else{

while(1);
/* Stop application */

}

Note: In this example, when the system format of the country for which the software was designed for is not MPAL or NTSC, the program goes into an infinite loop and the game will not start. Also, please note that the argument for osViSetMode will differ depending on the mode being used.

4 Other Precautions

4.1 Differences in the Timing for Setting and Acquiring the VI Display Mode

 There are functions, such as osViSetMode, etc., for setting the VI display mode, but this is enabled at the next vertical retrace interrupt. This can be said to be generally true for all osViSet-type functions.

However, when osViSetMode or osViSetSpecialFeature has been executed immediately before osViGetCurrentMode or osViGetstatus, which are osViGet-type functions for acquiring the current status, the expected value may not be returned. This is dependent on the timing. If you wish to get a value that has been set with an osViSet-type function, wait for the VI vertical retrace.

4.2 Safe Frame

 When N64 is used at low-resolution, it is 320x240 dots, but it is designed so that the effective display area of the screen becomes larger with an actual television video signal (overscan format). Due to this fact, you must pay attention to the position in which important data are displayed as the game progresses.

 The display area that can be displayed without any problems on most television screens is called the “safe frame.” The safe frame is expressed as the number of dots from the top, bottom, left, and right edges of the display area.

 The area outside of the safe frame may be visible depending on the model and capacities of the television. For this reason, rather than avoiding drawing in this area, simply be sure to render screens so that important data are not drawn there. It is impossible to define an absolutely safe frame, but some examples that have been used in our software are noted below. Game development can be done while referencing these.

4.2.1 Safe Frame Used in Mario 64

(Horizontal)
X-axis
22 dots inside the left and right edges

(Vertical)
Y-axis
16 dots inside the top and bottom edges

Fig. 29-2 Safe frame used in Mario 64

[image: image2.png]240

4.2.2 Safe Frame Used in Wave Race 64

(Horizontal)
X-axis
24 dots inside the left and right edges

(Vertical)
Y-axis
21 dots inside the top edge and 23 dots inside the bottom edge

Fig. 29-3 Safe frame used in Wave Race 64

[image: image3.png]240

4.3 VI Processing with PreNMI Events

 There are cases in which depending on how the video interface is set up, a game will not properly restart when it is reset. In order to avoid this, processing such as setting osViSetYScale to 1 when a PreNMI is received, must be performed. See “7.10, Non-maskable Interrupts (NMI) and PreNMI,” and Programming Cautions “6, Reset(NMI)” for details.

� EMBED Word.Picture.8 ���

99/08/04
Nintendo Corp.

Nintendo Corp.
99/08/04

[image: image5.wmf]1

2

260

261

262

260

261

262

263

264

265

260

261

262

524

525

262.5

260

261

262

TV Screen

1

2

3

4

260

261

262

TV Screen

262

In interlaced scanning, the interval for

each field is scanned. On an actual TV,

since there is a vertical blanking period,

the number of video scan lines is

approximately 483.

In non-interlaced scanning, fields and

frames are equal and all scanning is

done at once.

Field

I

, III

Field II, IV

260

261

262

(a)Principle of interlaced scanning

(b)Principle of non-interlaced scanning

_995705649.doc

Register VI Manager

Set display mode

Set special function modes

Assign V-blank events to messages

_995983841.doc

1

2

260

261

262

TV Screen

262

260

261

262

524

525

263

264

265

260

261

262

262.5

260

261

262

TV Screen

In non-interlaced scanning, fields and frames are equal and all scanning is done at once.

In interlaced scanning, the interval for each field is scanned. On an actual TV, since there is a vertical blanking period, the number of video scan lines is approximately 483.

1

2

3

4

260

261

262

(b)Principle of non-interlaced scanning

260

261

262

(a)Principle of interlaced scanning

260

261

262

	Field I, III

	Field II, IV

260

261

262

