
N64 TUTORIAL
DEVICE
★

[image: image1.wmf]
　

N64 TUTORIAL TABLE of CONTENTS <DEVICE>
1INTRODUCTION

Chapter 1 How to Use Devices Connected to the SI
3
1.1 Exclusive Control of the SI
3
1.2 Standard Controller
3
1.3 Introduction to the Controller Pak
8
1.4 Controller Pak Functions
8
1.5 The Rumble Pak
11
1.6 The Sample Programs
13
Chapter 2 How to Use Devices Connected to the PI
14
2.1 ROM
14
2.2 SRAM
14
2.3 64DD
15
2.4 How to Use the MFS Library
15
2.5 Exclusive Control of the PI
18
2.6 The Sample Programs
18

　

INTRODUCTION
 A number of devices connect to the N64. This tutorial explains how to use those devices that connect via the SI (Serial Interface) and via the PI (Parallel Interface).

 Devices that connect via the SI include the Standard Controller and the Controller Pak. Devices that connect via the PI include SRAM and the 64DD.

 The explanations in this tutorial concern use of the device functions of the NuSystem system library. If you use NuSystem, there is virtually no need to make direct use of the N64OS device functions.
　

Chapter 1 HOW TO USE DEVICES CONNECTED TO THE SI
 The Game Pak EEPROM, the Standard Controllers, and those devices that insert into the joyport connector of the Controller (i.e., the Controller Pak, the Rumble Pak, the 64GB Pak and the voice recognition system, etc.) are all devices that connect with the SI (Serial Interface).

 This chapter utilizes sample source to explain how to use the Standard Controller, the Controller Pak and the Rumble Pak, which are the representative SI devices.
1.1 Exclusive Control of the SI
 The SI serves as the "processing window" for devices like the Standard Controller, and usually a number of SI devices are connected at the same time.
 As a result, if two devices access the SI at nearly the same time, overlapping, it is possible for the access of the first device to fail. For example, if the SI is getting the status of Controller 1 and a read request comes from the Controller Pak of Controller 2, it may fail to get the status of Controller 1.
 Since at the level of the N64 OS there are no processes that take into consideration this kind of competitive access to the SI, some type of exclusive control is needed on the user side.

 Luckily, the programmer does not need to worry about this if they are using NuSystem, since NuSystem has a module called the SI Manager whose job it is to manage access to the SI device(exclusive control).
 Therefore, game applications built on the NuSystem can access SI devices without worrying about competitive access to the SI.

[image: image2.wmf]SI

 Manager

SI

 Event

Controller

Manager

Controller Pak

Manager

Rumble Pak

Manager

EEPROM

Manager

64GB

 Pak

Manager

Figure 1-1 Management by the SI Manager on NuSystem

1.2 Standard Controller
 If you were to directly call N64 OS functions to perform Standard Controller processes, you would need to perform a number of transactions just to read the status of the Controller. However, with the NuSystem, these low-level processes are encapsulated, thus making reading of the Controller easy.

 Below are the six representative Controller functions provided by the NuSystem:
nuContInit

Initializes the Controller and other SI devices
nuContDataGet

Gets the Controller data
nuContDataGetAll

Gets the data of all four Controllers
nuContDataGetEx

Expanded version of getting the Controller data
nuContDataGetExAll
Expanded version of getting the data of 4 Controllers
nuContQueryRead

Reads the Controller status
 In most cases, these are the only functions you will need. The NuSystem supports many other Controller functions as well, so except for some special processes you will not need to make direct use of the N64 OS Controller functions.
1.2.1 Initializing the Controller
 To perform Controller processes, the first thing you need to do is call the SI device initialization function nuContInit.
Function name: nuContInit
Syntax: u8 nuContInit(void)
Argument: None
Return value: Bit pattern of the connected Controller
 Internally, the nuContInit function initializes the SI Manager (by calling the nuSiMgrInit function) and then initializes the Controller Manager, the Controller Pak Manager and the Rumble Pak Manager (by calling the nuContMgrInit function, nuContPakInit function and nuContRmbInit function).

 The bit pattern of the connected Controller is stored in the return value from the nuContInit function. In order from the lowest bit, the return value corresponds to Controller 1, 2, 3 and 4.
 The number of valid Controllers is set in the NuSystem global variable nuContNum when the Controller Manager is initialized, so you can reference this variable when necessary to check how many Controllers are connected.

Variable name: nuContNum
Definition: u32 nuContNum
Explanation: The number of connected Controllers
 The nuContInit function is useful because it calls the representative Managers (for the Controller, Controller Pak and Rumble Pak). However, it can also be wasteful because it may perform unnecessary processes. Initializing and registering the Rumble Pak Manager even for a game that does not support the Rumble Pak is one such an example.

 In reality, nuContInit is a function for beginning N64 programmers, and once you have gained an understanding of the operation of each Manager, you should create your own initialization routines based on the source of the function.
1.2.2 Reading the Controller Data
 Once you have started up the Controller Manager, the Controller data is read in every other frame and stored in an internal buffer of NuSystem. The contents of this internal buffer can be read out to the user area by calling such a function as nuContDataGet.
 If you want to read out the status of one Controller, call the nuContDataGet function. If you want to read out the status of all Controllers, call the nuContDataGetAll function.
Function name: nuContDataGet
Syntax: void nuContDataGet(OSContPad *contpad, u32 cont_no)

Arguments: contpad
Controller data structure
 cont_no
The number of the controller to read
Return value: None
Function name: nuContDataGetAll
Syntax: void nuContDataGetAll(OSContPad *contpad)
Argument: contpad
Controller data structure
Return value: None
typedef struct

{

 u16 button;

 s8 stick_x;

 s8 stick_y;

 u8 errno;

} OSContPad;
button
Bit pattern representing whether button is ON or OFF

Check by doing a bitwise AND with the constant, CONT_A etc.

 (see <os_cont.h>)

stick_x
Horizontal tilt of the Control stick (-128 ~ 127)*1
stick_y
Vertical tilt of the Control stick (-128 ~ 127)*1
errno
Error number
*1 (Note) Since the Controllers vary, the upper-limit value that can be input is not the same. To deal with this variation, please write your programs with the following values for the actual range of use:
Horizontal direction (X axis) -61 ~ 61

Vertical direction (Y axis) -63 ~ 63

X-axis diagonal -45 ~ 45

Y-axis diagonal -47 ~ 47

 Depending on the game, you may want to get trigger data like whether OFF has changed to ON, rather than about whether a button is being pressed at the time. The NuSystem defines the NUContData structure, which is the OSContPad structure with added trigger data. You can get trigger data by using the nuContDataGetEx function, which is the expanded version of the nuContDataGet function. To get data from all Controllers, use the nuContDataExALL function.
Function name: nuContDataGetEx
Syntax: void nuContDataGetEx(NUContData *contdata, u32 padno)
Arguments: contdata
Pointer for storing the Controller data
 Padno
The pad number
Return value: None
Function name: nuContDataGetExAll

Syntax: void nuContDataGetExAll(NUContData *contdata)
Argument: contdata　
Pointer for storing the Controller data
Return value: None
typedef struct

{

 u16 button;

 s8 stick_x;

 s8 stick_y;

 u8 errno;

 u16 trigger;

} NUContData;

button
Bit pattern representing whether button is ON or OFF

Check by doing a bitwise AND with the constant, CONT_A etc.

 (see <os_cont.h>)

stick_x
Horizontal tilt of the Control stick (-128 ~ 127)*2
stick_y
Vertical tilt of the Control stick (-128 ~ 127)*2
errno
Error number
trigger
Bit pattern of the trigger data (the same order of "button")
*2 (Note) Since the Controllers vary, the upper-limit value that can be input is not the same. To deal with this variation, please write your programs with the following values for the real range of use:

 Horizontal direction (X axis) -61 ~ 61

 Vertical direction (Y axis) -63 ~ 63

 X-axis diagonal -45 ~ 45

 Y-axis diagonal -47 ~ 47

 The trigger data is calculated with a logical operation involving the contents of the "contdata" argument passed to the function, and the Controller data read at that time, so be sure to make contdata a static variable.
1.2.3 Reading the Controller Status
 When the Controller Manager is initialized, the Controller status (i.e., whether or not there is a Controller and the type) is stored in the NuSystem global variable nuContStatus.
 If you want to read out the current Controller status, call the nuContQueryRead function. This result is also stored in nuContStatus, but it takes about 2 milliseconds to get the status this way.
Variable name: nuContStatus
Definition: OSContStatus nuContStatus[NU_CONT_MAXCONTROLLERS]
Function name: nuContQueryRead
Syntax: void nuContQueryRead(void)
Argument: None
Return value: None
typedef struct

{

 u16 type;

 u8 status;

 u8 errno;

} OSContStatus;

type
The type of the Controller connected to the port

This type and the constant CONT_JOYPORT etc. (see <os.h>) are

 bit ORed for the check.

status
Controller status

For example, if the Controller Pak is connected, the CONT_CARD_ON

 bit is ON
errno　　
Error number
 To verify that the Standard Controller is inserted, mask with CONT_TYPE_MASK and then check whether equal to CONT_TYPE_NORMAL. If the Controller is not connected to the port, then the CONT_NO_RESPONSE_ERROR bit is set in errno.
1.3 Introduction to the Controller Pak
 The Controller Pak is a peripheral that connects to the Controller joyport and is used as a N64 auxiliary storage device. Think of it as a kind of removable media like a floppy disk.
 Since there is a file system structure inside the Controller Pak, the device can be used for the storage of multiple data files. However, in the N64 system these data files are not called files, but rather "game notes" (or simply notes).
 In a disk drive, data access is based on a system in which data is managed in units called sectors. In the same way, data in the Controller Pak is managed in units called "pages." The size of a page is always 256 bytes, so the size of a game note created by the programmer is always a multiple of 256.

 The pages are numbered starting from Page 0, Page 1 ... in order from the start of the memory area. The first five pages are used as the management area.

 You can create up to 16 game notes in one Controller Pak (if the Controller Pak is 256K). There is a limit to the number of game notes as well as the capacity of the Controller Pak, so when you put together the game application be sure to check whether a game note and sufficient space can be secured before the game starts. Informing a player that there is “insufficient memory” after they have obtained a high score is something that should be avoided.

 Next we'll explain game notes. To identify a game note in the Controller Pak, the following four elements are required:
 1. Company code
 (2 bytes)
 2. Game code (initial code) (4 bytes)
 3. Note name

 (16 bytes)
 4. Note extension
 (4 bytes)
 The company code and the game code (initial code) are the ASCII codes that represent the name of the developer/marketer and the name of the game title. Please use the codes issued by Nintendo.
 The note name corresponds to the file name. It is described using the N64 font code system. If the note name is smaller than 16 bytes, you must fill the remaining bytes with null characters (0x00).
 The note extension is designed so that multiple game notes can be used in a single game. For details, please see the programming manual "26.3.2.5, Multiple Notes". If you will only be using one note, you can think of the note extension as a 4-byte integer value 0.
1.4 Controller Pak Functions
 In this section, we explain specific ways of using the Controller Pak. Many other functions have been prepared for the Controller Pak in addition to the ones explained here. For information about these see the Function Manual and the Sample Programs.
1.4.1 Setting the Company Code and the Game Code
 Before accessing the Controller Pak, use the nuContPakCodeSet function to set the company code and the game code (initial code) in the Controller Manager.
Function name: nuContPakCodeSet
Syntax: void nuContPakCodeSet(u8* companyCode, u8* gameCode)
Arguments: companyCode Company code
 gameCode
 Game code (initial code)
Return value: None
These values are unique to the game, so unless you are accessing data created by other game software, you don't have to reset these values once they have been set.
1.4.2 Opening the Controller Pak Device
 To gain access to the Controller Pak, first you must open the device.
Function name: nuContPakOpen
Syntax: s32 nuContPakOpen(NUContPakFile *file, u32 cont_no)
Arguments: file
Controller Pak file structure
 cont_no 　　
The number of the Controller to open
Return value: Error
 The pointer to the NUContPakFile structure is passed to the "file" argument. If a Controller Pak is inserted, a NUContPakFile type file structure is initialized so the Controller Pak can be accessed.

 This structure contains the pointer to the N64 OS OSPfs structure and various information managed by the Controller Pak Manager.
 The return value of this function is the error value when a device is opened. At the same time, the error value is also stored in the NUContPakFile structure.
1.4.3 Opening a Game Note
 If the Controller Pak can be identified, the next thing to do is to open the game note that you want to access.
Function name: nuContPakFileOpen
Syntax: s32 nuContPakFileOpen(NUContPakFile *file, u8* noteName,

 u8* extName, u32 mode, s32 size)

Arguments: file
Controller Pak file structure
 noteName
Game note name (16 bytes in N64 font code)
 extName
Note extension (1 byte in N64 font code)
 mode
Specifies whether to create a new game note, or not if one exists.
 NU_CONT_PAK_MODE_CREATE

 Creates a game note if none exists.
 NU_CONT_PAK_MODE_NOCREATE

Does not create a game note.
 size
The size of the created game note when "mode" is

NU_CONT_PAK_MODE_CREATE. This value is invalid when

 the mode is NU_CONT_PAK_MODE_NOCREATE.
Return value: None
 When NU_CONT_PAK_MODE_CREATE is specified for "mode", a game note of the specified "size" is created if the game note does not exist. However, as mentioned above, game notes are managed in units of 256 bytes, so the size of the area actually reserved is rounded up to a multiple of 256.
 The N64 OS prescribes that the N64 font code be used for the note name and extension. However, in the NuSystem, codes are converted within functions, and functions are prepared that enable you to use ASCII code for the noteName and extName arguments. There are also functions that let you specify the opening of notes using JIS code.
Function name: nuContPakFileOpenJis
Syntax: s32 nuContPakFileOpenJis(NUContPakFile *file, u8* noteName,

 u8* extName, u32 mode, s32 size)

Arguments: file
Controller Pak file structure
 noteName
Note name (JIS)

Terminal NULL (Converted to N64 font code 16 bytes)
 extName
Extension (JIS)

Terminal NULL (Converted to N64 font code 1 byte)
 mode,size
The same as nuContPakFileOpen
Return value: None
 Be careful when converting from JIS code to N64 font code, because the number of characters may change when you convert characters of voiced sounds (daku-ten(sonant) and handaku-ten(p sound)). The two functions nuContPakJisToN64 and nuContPakN64ToJis have been prepared for converting the code.
1.4.4 Reading/Writing with Game Notes
 Once the game note can be opened without any problems, you can perform read/writes with the game note. The following functions have been prepared to read/write Controller Pak data:
Function name: nuContPakFileFread
Syntax: s32 nuContPakFileFread(NUContPakFile *file, s32 offset, s32 size, u8* buf)
Arguments: file
Controller Pak structure
 offset
Offset position
 size
Size to read
 buf
Buffer where read data is stored
Return value: Error
Function name: nuContPakFileFwrite
Syntax: s32 nuContPakFileFwrite(NUContPakFile *file, s32 offset, s32 size, u8* buf)

Arguments: file
Controller Pak structure
 offset
Offset position to write
 size
Size to write
 buf
Buffer where data to be written is stored
Return value: Error
 In the N64 OS functions for read/writes with the Controller Pak, the "offset" and "size" arguments must be specified as multiples of 32. However, there are no such restrictions in the NuSystem functions described above because the functions adjust internally to perform the reading process.
1.4.5 A Note of Caution about Controller Pak Access
 There is always the chance that the Controller Pak will be removed/inserted during game play. Thus, please be sure to perform the complete procedure from nuContPakOpen to actual reading/writing every time you access the Controller Pak, even for software that prohibits the game player from removing/inserting the Controller Pak during game play.

1.5 The Rumble Pak
 The Rumble Pak, like the Controller Pak, is a peripheral device that connects to the joyport of the Standard Controller. It vibrates the game player's Controller, producing tactile sensations of impacts as feedback during game play.

 The N64 OS has only three Rumble Pak functions: to initialize, start vibration, and end vibration. Thus, in order to express the strength of the vibrations you need to repeatedly turn the Rumble Pak on and off over a short period of time.
 This requires quite a bit of work on the part of the programmer, so in order to decrease this the NuSystem provides extra functions to specify the strength and duration of continued vibration for controlling the Rumble Pak:

nuContRmbMgrInit　　
Initializes the Rumble Pak Manager
nuContRmbCheck　　　
Checks the Rumble Pak
nuContRmbStart　　　
Starts vibrating the Rumble Pak
nuContRmbModeSet　　
Sets the operation mode of the Rumble Pak
nuContRmbForceStop　　
Forces the Rumble Pak to stop
nuContRmbForceStopEnd　　
Releases the forced stop of the Rumble Pak
nuContRmbSearchTimeSet　
Sets Rumble Pak check time
1.5.1 Initializing the Rumble Pak
 Make sure to check the Rumble Pak with the nuContRmbCheck function before operating the device. The return value for this function is the return value of the N64 OS osMotorInit function. If some device other than the Rumble Pak is inserted, PFS_ERR_DEVICE is returned.
Function name: nuContRmbCheck
Syntax: s32 nuContRmbCheck(u32 contNo)

Argument: contNo
Controller number
Return value: The value returned by osMotorInit
 In the NuSystem there is the operation mode for the Rumble Pak. To set this, use the nuContRmbModeSet function.
Function name: nuContRmbModeSet
Syntax: void nuContRmbModeSet(u32 contNo, u8 mode)
Arguments: contNo
Controller number
 mode
Rumble Pak operation mode
 NU_CONT_RMB_MODE_DISABLE　　 Disabled
 NU_CONT_RMB_MODE_ENABLE Enabled
 NU_CONT_RMB_MODE_AUTORUN　　 Auto detect
Return value: None
 When NU_CONT_RMB_MODE_DISABLE is specified, use of the Rumble Pak is prohibited. By default, the Rumble Pak is disabled for every Controller.
 When NU_CONT_RMB_MODE_AUTORUN is specified, periodic checks are made to see whether or not a Rumble Pak is inserted. If it is, it is enabled. By using this mode, you can deal with situations where the user inserts a Rumble Pak during game play, or the device stops working temporarily because of a poor connection.
 The period between checks of the Rumble Pak is set with the nuContRmbSearchTimeSet function.
Function name: nuContRmbSearchTimeSet
Syntax: void nuContRmbSearchTimeSet(u32 frame)
Argument: frame
The time between checks (in frames)
Return value: None
 The default value for this time period is set at 300 frames (5 seconds). The Rumble Pak Manager does not check all four Controllers during the same frame, so the burden of performing this check does not happen all at once.
1.5.2 Controlling the Rumble Pak
 To vibrate the Rumble Pak, you use the nuContRmbStart function.
Function name: nuContRmbStart

Syntax: void nuContRmbStart(u32 contNo, u16 freq, u16 frame)

Arguments: contNo
Controller number
 freq
 Frequency (1-256)

 1 = 1 pulse per 256 frames. 256 = Continuous operation.

 frame
Duration of vibration (the number of frames)
Return value: None
 The "freq" argument specifies the frequency of time the vibration motor is ON. For example, if freq is set to 1 the motor is ON once every 256 frames. If it is set to 128 the motor is ON once every 2 frames. If it is set to 256 the motor is in continuous motion. The larger the value set in freq the stronger the vibration felt by the player.

 The "frame" argument specifies the amount of the time that the Rumble Pak vibrates, in units of frames.

 When the mode is not set to auto detect in nuContRmbModeSet you must execute the nuContRmbCheck function before calling this function.
1.5.3 Forcing the Rumble Pak to Stop
 Since the nuContRmbStart function, which starts the Rumble Pak, also specifies how long to vibrate the device, it is normally unnecessary to stop the vibration while a game is progressing forward. However, when a pause process, reset process or a screen switch is performed you must stop the vibrations immediately as per the rules in the "Programming Cautions."
 To force the Rumble Pak to stop, use the nuContRmbForceStop function.
Function name: nuContRmbForceStop
Syntax: void nuContRmbForceStop(void)
Argument: None
Return value: None
 Once this function is executed, the Rumble Pak start function nuContRmbStart remains invalid until the nuContRmbForceStopEnd function is called to release the forced stop.

Function name: nuContRmbForceStopEnd
Syntax: void nuContRmbForceStopEnd(void)
Argument: None
Return value: None
1.6 The Sample Programs
 Next we will try running the sample programs which utilize the preceding functions.

 When you run the sample programs from \n64kit\sample\tutorial\device\64devsi, the SI Device Test main menu is displayed on the screen.
 Select a menu item with the Control Pad ((, and then press the Start button. Pressing the Start button again takes you back to the main menu from each submenu.

 Below a summary of each submenu has been provided:
Controller
 Detects which buttons have been pushed. When a Controller button is pushed, the corresponding indicator turns to red for "PRESSED", or flashes red momentarily for "TRIGGER."
Controller Pack

 Select this menu after you have inserted a Controller Pak. This is a simple sample of Save, Load and Delete with the Controller Pak. Select using ((on the Control Pad, change the value using ((on the Control Pad, and then execute with the A button. Try saving a value for H.P. and M.P. Then change the value, load, and check if the previously saved value is displayed. The value can be changed using RIGHT/LEFT on the C button unit.
 (In NuSystem versions earlier than 1.2, the "Delete" will fail because of a bug in nuContPakFileDeleteJis.)
Motor

 Remove the Controller Pak and insert the Rumble Pak into the Controller. Change the value using the Control Pad ((, and start and stop the vibrations with the A button. Vary the vibration strength by changing the value of "Frequency." The value can be set between 1 and 256, and the vibration time is 5 seconds. The A button alternately starts and stops the vibrations. If you press the A button while the Rumble Pak is vibrating the vibrations will stop.
Chapter 2 HOW TO USE DEVICES CONNECTED TO THE PI
 The ROM built into the Game Pak, SRAM and the Disk Drive (64DD) are all devices that connect via the Parallel Interface (PI). This chapter explains how to use each of these devices.
２.１　ROM

 ROM stores data that the player cannot overwrite, such as the game program and character data.
 When data is sent from ROM to RDRAM via the PI, the data is directly transferred without CPU intermediation. This is called a DMA transfer.
 When you make direct use of N64 OS functions, you need to initialize and activate the PI Manager before performing DMA transfers from ROM. However, when you use the NuSystem you do not need to call the initialization function because the PI is initialized by the NuSystem.

 To read data from ROM use the following function:
Function name: nuPiReadRom
Syntax: void nuPiReadRom(u32 rom_addr, void* buf_ptr, u32 size)
Arguments: rom_addr
Transfer origin ROM address
 buf_ptr
Pointer to transfer destination buffer
 size
Transfer size
Return value: None
 The nuPiReadRom function DMA transfers data from the ROM cartridge via the PI to RDRAM. Note that the transfer origin ROM address "rom_addr" must have 2byte alignment and the transfer destination buffer pointer "buf_ptr" must have 8byte alignment.
 In the sample program (source file "rom.c"), the voice waveform data is DMA-transferred each time the A button is pressed and then sent to the Audio Interface (AI) for playback.
 In actual game programs, comparatively large sets of data like graphics data must be DMA transferred as well. If a large set of data of this sort is DMA-transferred all at one time, the DMA transfer of the waveform data may be delayed, resulting in the generation of noise. However, with the nuPiReadRom function, audio transfers are never delayed because data is split into 16Kbyte blocks for DMA transfer.
 When accessing ROM via the nuPiReadRom function, you can use the ROM symbols _nameSegmentRomStart and _nameSegmentRomEnd to compute the ROM address.
2.2 SRAM

 N64 Game Paks can incorporate SRAM with a battery-backup to save data. Unlike EEPROM and the Controller Pak, SRAM can be managed using the PI functions just like normal Mask ROM, even though the addressing is different.
 You can utilize this during software development by connecting a SRAM board to the development equipment.
 To access SRAM from NuSystem you first need to initialize with the following function:
Function name: nuPiInitSram
Syntax: void nuPiInitSram (void)
Argument: None
Return value: None
 After initialization is completed, you can use the nuPiReadSram macro for reading from SRAM and the nuPiWriteSram macro for writing to SRAM.
Function name: nuPiReadSram
Syntax: void nuPiReadSram(u32 addr, void* buf_ptr, u32 size)
Arguments: addr
SRAM address
 buf_ptr
Buffer pointer
 size
Transfer size
Function name: nuPiWriteSram
Syntax: void nuPiWriteSram(u32 addr, void* buf_ptr, u32 size)
Arguments: addr
SRAM address
 buf_ptr
Buffer pointer

 size
Transfer size
 For both reading and writing, the SRAM address "addr" must have 2byte alignment and the buffer pointer "buf_ptr" must have 8byte alignment.
 The macros nuPiReadSram and nuPiWriteSram can be replaced with the function call to nuPiReadWriteSram.
2.3 64DD

 The 64DD disk has a large capacity of about 64 Mbytes. You can split the disk into a read-only area (ROM area) and a writable area (RAM area) with a maximum size of 38 Mbytes.
 With the 64DD system, it is possible to use a Game Pak and a disk at the same time, and media can be exchanged during game play. A system area is reserved on the disk for writing such information as the disk type and the disk ID.
 The only way to access the 64DD with the N64 OS Leo function series is at the block level using LBAs. To make this easier to use, a file system called the MultiFileSystem (abbreviated as “MFS” henceforth) has been prepared. By using the MFS you can access the 64DD in units of files.
2.4 How to Use the MFS Library
 A special library has been prepared for the management of MFS disks. The library makes it easier to write code for disk control in your programs, helping you realize more efficient and understandable disk management.
 The MFS manages files using files and directories in the same way as UNIX and DOS. You can name the files and directories, and manage them using names and numbers.
2.4.1 The MFS File System

 The MFS library locically treats the ROM area and the RAM area on the disk as different drives. The drive allocation for the ROM area and RAM area is shown below:
 ROM area A drive
 RAM area B drive
 File names and directories can be specified with their full path, which means the drive name, path name, file name and extension. The drive name and path name are separated by a colon (" :"), while the directory names are demarcated by a forward slash (" / ") and the file name and its extension are separated by a period (" . ")

 Example: A:/dir1/picture/mario1.rgb
 Most of the time you will be accessing files that are all stored under the same directory, and it would be inconvenient to have to specify the drive name and path name every time. That is why the MFS library allows you to set the current drive and the current directory. When a drive name and path name are not specified, the current drive and current directory are assumed. Relative path names are supported, but you cannot trace backwards using two periods (" .. ").
2.4.2 Initializing the Library
 The first thing you need to do is initialize the whole library. There are two initialization functions: mfsHInitDiskBoot to boot from the disk and mfsHInitCasBoot to boot from the Game Pak.
Function name: mfsHInitDiskBoot
Syntax: s32 mfsHInitDiskBoot(MfsFile handle,u8 handleNum,u8 *company,

 u8* game,u8 dest)

Arguments: handle
Pointer for the file handle structure array
 handleNum
The number of file handle structures
 company
Company code
 game
Game code
 dest
Destination code
Return value: Error
Function name: mfsHInitCasBoot

Syntax: s32 mfsHInitCasBoot(MfsFile handle,u8 handleNum,u8 *company,

 u8* game,u8 dest)

Arguments: handle
Pointer for the file handle structure array
 handleNum
The number of file handle structures
 company
Company code
 game
Game code
 dest
Destination code
Return value: Error
 The "handle" argument specifies the pointer to the file handle buffer where the application will prepare the MfsFileHandle structure array when handling files. The MfsFileHandle structure pointer is declared as type MfsFile.

 The "handleNum" argument specifies the size of the array. The number of files that the application can open at the same time is determined by the number of file handles specified here.

 The "company" and "game" arguments specify the company code and game code (initial code) issued by Nintendo.
 The "dest" argument is the destination code, which is used as disk information when the RAM area is formatted. The following values can be specified for the argument:
MFS_DESTINATION_JAPAN
0 For Japan
MFS_DESITNATION_US
1 For US
 Both of these functions initialize the low-level Leo library first. If the Leo library processes terminate normally, MFS_ERR_NO is returned. If a MFS_ERR_DEVICE error is returned, jump to the appropriate error handling sequence by referencing the global variable mfsError, where the value returned by the Leo*CreateLeoManager function is stored.

2.4.3 Opening Files
 To access a file, first you need to open the file and get its file handle with the mfsHFopen function.
Function name: mfsHFopen
Syntax: s32 mfsHFopen(MfsFile* handle, u8* path, u16 mode)

Arguments: handle
Pointer storing the file handle pointer
 path
 File path name
 mode
Open mode
Return value: Error
 The file handle is the pointer to the structure that contains the information needed for file read/writes. The file specified by "path" is opened and the file handle is set in "handle".
 The "mode" argument specifies the method of file access. Specify either or bitwise OR them to specify both:
 MFS_OPEN_READ
0x0001 Open for reading
 MFS_OPEN_WRITE
0x0002 Open for writing
 For MFS_OPEN_WRITE you can specify any of the following flags. To specify more than one flag, bitwise OR them into the "mode" argument.
 MFS_OPEN_UPDATE　0x0000　　Open in overwrite mode
 MFS_OPEN_APPEND　0x0010　　Open in append mode
 MFS_OPEN_CREATE　0x0020　　Create a file if there is no file
2.4.4 File Read/Writes
 Once a file is opened, you can use the obtained file handle to read/write that file. You read from the file using the mfsHFread function, and you write to the file using the mfsHFwrite function.

Function name: mfsHFread
Syntax: s32 mfsHFread(MfsFile handle, void* buf, s32 len)

Arguments: handle
File handle
 buf
Pointer to buffer where data is stored
 len
Size to read
Return value: The read size (Error if it is a negative value)
Function name: mfsHFwrite
Syntax: s32 mfsHFwrite(MfsFile handle, void* buf, s32 len)

Arguments: handle
File handle
 buf
Pointer to buffer where the data to be written is stored
 len
Size to write
Return value: The written size (Error if it is a negative value)
2.4.5 Closing Files
 After access to the file is finished and there is no need for the file handle anymore, you use the mfsHFclose function to release the file handle.
Function name: mfsHFclose

Syntax: s32 mfsHFclose(MfsFile handle)

Argument: handle
File handle
Return value: Error
 The MFS library also has functions for such things as browsing and finding files, deleting files and changing file names.

 All of the functions explained above are high-level library functions (mfsH*), but with MFS you can also perform lower-level operations, and a group of MFS functions that are not part of the high-level library have been prepared for that purpose.
2.4.6 Errors
 A negative number returned as the return value by an MFS library function always indicates an error. Therefore, whenever a negative value is returned from an MFS function, please check the type of error and perform the appropriate error processing.
2.5 Exclusive Control of the PI

 The instructions relating to the 64DD are designed on the assumption that other PI devices are not accessed. Thus, you must make sure for example that data is not read from ROM while the 64DD is being accessed.

 The normal audio driver DMA transfers the sound source data from ROM for use. However, if you use this method, you cannot access the 64DD while sounds are playing. For this reason, you need to use a driver that can load the sound source data into RAM and then play it, just like the library used with the N64 Sound Tools.

 If there is a possibility that access to 64DD might overlap with access to another PI device, you need to perform some exclusive processing at the user level.

 With MFS you can register a callback function to be called before an asynchronous Leo function is called and after a Leo function operation is completed. Exclusive control can be implemented relatively easily by registering a function here for exclusive control using the message system.
2.6 The Sample Programs

 Next we will try running the sample programs that make use of the preceding functions.

 When you run the sample programs from \n64kit\sample\tutorial\device\64devpi, the main menu of PI Device Test is displayed on the screen.

 Select a menu item with the Control Pad ((, and then press the Start button. Pressing the Start button again takes you back to the main menu from each submenu.

 Below a summary of each submenu has been provided:

ROM DMA

 This is the ROM DMA transfer sample. When you press the Start button, "Idle" is displayed on the screen. Pressing the A button or the B button at this point plays a different PCM waveform.
SRAM

 This is the SRAM read/write sample. Before selecting this menu item make sure to set your development tool so SRAM can be used.

 Select using ((on the Control Pad, change the value using ((on the Control Pad, and execute Save/Load with the A button. Try saving a value for H.P. and M.P. Then change the value, load, and check whether the previously saved value is displayed. The value can be changed using RIGHT/LEFT C Button.
64DD

 Next let's try running the sample for read/writes to the NUD development system disk. First, set your development tool so you can use the NUD development system, then insert a writable disk in the slot. When you load the sample, the sample file is written to the disk.
 When you run the sample program from \n64kit\sample\tutorial\device\64devpi\dd, the main menu of PI Device Test (DD) is displayed on the monitor. Select an image file name off the menu with ((on the Control Pad, and then press the A button to display the image file. You can toggle between show/hide the menu with the Start button.
 The N64 OS has a variety of other functions in addition to the ones explained in this tutorial. Once you have understood this tutorial's overview of the SI and PI devices, try out some of the more detailed capabilities of the system using the Function Reference.
PAGE

[image: image3.png]_989396589.doc
[image: image1.png]

_993390617.doc

SI Event

SI Manager

Controller

Manager

Controller Pak

Manager

Rumble Pak

Manager

EEPROM

Manager

64GB Pak

Manager

