
N64 TUTORIAL

[image: image1.wmf]
N64 TUTORIAL  Table of Contents  <AUDIO>

1Introduction

Chapter 1  Audio Playback
3
1.1  Creating  Audio
3
1.2  Data Used in Audio Playback
5
1.3  Initializing the Library
5
1.4  syn_dma_buf_size  &  syn_num_dma_bufs
9
1.5  Preparations for Audio Playback
11
1.6  Playing and Stopping Audio
12
1.7  The 64aud1 Sample Program
14
Chapter 2 Audio manipulations by the programmer
17
2.1  Adjusting the Master Volume
17
2.2  Changing Parameters during Playback
17
2.3  Playing Sound Effects with Attached Parameters
19
2.4  Using Synchronization Markers
19
2.5  Pause Functions
21
2.6  Effects (Reverb)
24
2.7  The Lookup Table
25
2.8  The 64aud2 Sample Program
26
Chapter 3 Using a number of banks
28
3.1  Using Multiple Sample Banks
28
3.2  Using Multiple Sound Effect Banks
30
3.3  Getting Information about Banks
32
3.4  The 64aud3 Sample Program
33


INTRODUCTION

     The sounds, voices and sound effects that make up the audio performance are an essential part of the production of an application.

     This tutorial covers the makeup of N64 audio and explains the use of programs that use the special library, mainly through examples with the N64 Sound Tools.

     The N64 Sound Tools comprise a tool environment featuring excellent controllability and the MUSIC Library (MUS library), a top-notch audio library.  The programmer can develop audio for the N64 very easily with this library so there is almost no need for direct use of the N64 OS audio functions.

　

CHAPTER 1  AUDIO PLAYBACK

     In this chapter we explain the creation of audio.  There are any number of different development environments for audio, but for our explanations here we will assume N64 Sound Tools (henceforth called Sound Tools) is used, the most convenient development environment for audio.  Since all of the necessary data for audio playback can be created using this tool, its use helps development proceed more efficiently.

     Sound Tools is comprised of the N64 Sequencer tool for MIDI file editing  and the N64 Waveform Editor tool for such jobs as  waveform data editing, together with the MUSIC Library (henceforth called the MUS library), which is a top-notch audio library for the N64.  These make it easy to divide the tasks of the musicians creating the music and the programmers doing the actual programming.

     For details about how to use the tool, please see the tutorial guide that comes with Sound Tools.  Here we focus on an explanation of the work carried out by the programmer creating audio.

1.1  Creating  Audio
     In this section we explain how audio is created for the N64.  All of these processes are carried out within the library, so you do not need to understand the procedures in fine detail.  However, you should have a general idea about how the audio is created.  In the N64, the CPU and the RSP both play parts in the creation of audio data.  The flow of the process is diagrammed in Figure 1-1.


[image: image2.wmf]Various Players

Synthesis Driver

Audio Synthesis

Microcode

CPU

RSP


Figure 1-1  Structure of the Audio Synthesis Program

     The synthesis driver (henceforth called the synthesizer) calls each pre-registered player and the players interpret the data.  There are some restrictions depending on the kind of synthesizer, but in general a number of players can be registered and used at the same time.  Each player ultimately creates an audio command list and passes it on to the audio synthesis microcode (henceforth called the audio microcode).  The audio microcode then conducts the actual waveform synthesis process.  If the audio microcode is different, the synthesizer will also be different.

     At the present time there are two kinds of audio microcode: the conventional microcode and the modified version (henceforth n_audio).  Each kind of microcode has its own special features, but we recommend using n_audio because it is faster.

     The MUS library is an all-purpose library that can handle numerous songs (sequences) and numerous sound effects at the same time.  Therefore, you can speed things up by modifying the library for the n_audio microcode so that only one player can be registered.

     Audio can be created as outlined above, but because noise is generated when the data being played back is interrupted, the synthesizer needs to be called regularly and the

audio data created without fluctuations.  This job falls to the Audio Manager.   The general flow of the Audio Manager is shown in Figure 1-2.


[image: image3.wmf]Initialize

Wait for retrace

DMA transfer waveform data

created in previous frame to AI

Calculate amount of waveform data

that must be created this time from

amount of data remaining from DMA

DMA transfer necessary sample data

from ROM to waveform data

Create waveform data to be

used in next frame


Figure 1-2  Audio Manager Process Flow

     The Audio Manager conducts two kinds of DMA transfers in order to create the audio data.  The first is the DMA transfer of the various sample waveform data (henceforth called the samples) from the Game Pak (ROM) to RAM prior to waveform synthesis via the PI.  The second is the DMA transfer of the synthesized data from RAM to the DAC via the AI.

     The flow is thus as follows: at every retrace the necessary samples are prepared in RAM with DMA transfers from ROM, then the audio data is synthesized by the CPU and the RSP, and finally the waveform data created in RAM is DMA transferred to the AI in order to playback audio.

1.2  Data Used in Audio Playback 
     Here we explain the data needed for audio playback.  All of the data talked about here are output as files by the tools in Sound Tools.  These are shown in the table below.

Name
Extension
Explanation

Song
bin
The data for one song (sequence)

Sound effect bank
bfx
The collection of data for sound effects

Sample wave bank
wbk
The collection of sample waveform information

Sample pointer bank
ptr
Information on the address (offset) for each waveform in the sample wave bank

     The sample wave bank data and the sample pointer bank data are always paired.  The combination of these two data sets is called the "sample bank," which contains the information for numerous audio waveforms.  Each "song" is one song's worth of data.   The sound effect bank contains the data for multiple sound effects (their mapping) to play short audio effects.

     To playback audio, the data can be combined in two ways: by combining a song with a sample bank, and by combining a sound effect bank with a sample bank.  It is OK to use just songs or just sound effect banks.  Moreover, numerous songs and sound effect banks can share the same group of sample banks.

     The data for songs, sound effect banks and sample pointer banks must all be placed into RAM.  In this tutorial, the area in RAM needed for this data is automatically secured from the audio heap.  The sample wave bank data, on the other hand, does not normally need to be placed into RAM, although it is possible to specify whether or not to do this at the time of initialization.

(()When placing the sample wave bank data in RAM you can maintain the data as an array of global variables or in some other manner, but the MUS library specifications require that the data have 32bit alignment.  For DMA transfers the data should be cache aligned (16byte alignment) for safety, even though the specs say 8byte alignment is fine.

     When exeGCC is being used, N64ALIGN is "on" for environmental variables, so arrays of 1024bytes and larger are always cache aligned.  However,  arrays that are less than 1024bytes take on 8byte alignment.  In such instances, you must clearly state cache alignment.  For details, see the exeGCC manual.

1.3  Initializing the Library
Before initializing the library you set the external Scheduler.  Like with NuSystem, when using your own Scheduler you need to call the MusSetScheduler function and register it in the MUS library.  After that you initialize the library with the MusInitialize function.  In NuSystem, there is a special initialization function called nuAuStlMgrInit, and by simply calling this function the Scheduler is registered and the library is initialized (the MusSetScheduler and MusInitialize functions are called internally, so they do not need to be explicitly called.)

Function name: MusSetScheduler

Syntax: void MusSetScheduler(musSched *sched_list)

Arguments: sched_lsit
Address of the Scheduler function list
Return value: None

Function name: MusInitialize

Syntax: s32 MusInitialize(musConfig *c)

Arguments: c
Address of the Configuration structure

Return value: Size of audio heap used by MusInitialize
Function name：nuAuStlMgrInit

Syntax: s32 nuAuStlMgrInit(musConfig *c)

Arguments: c
Address of the Configuration structure
Return value: Size of audio heap used by MusInitialize
Below is an example of the Configuration structure:
#define AUDIO_HEAP_SIZE 0x40000

musConfig init;

init.control_flag
 = 0
init.channels
 = 16;

init.sched

 = NULL;

init.thread_priority  = NU_AU_MGR_THREAD_PRI;

init.heap      
 = (u8 *)(NU_GFX_FRAMEBUFFER_ADDR-AUDIO_HEAP_SIZE);

init.heap_length
 = AUDIO_HEAP_SIZE;

init.ptr

 = NULL;

init.wbk

 = NULL;

init.default_fxbank
 = NULL;

init.fifo_length
 = 64;

init.syn_updates
 = 128;

init.syn_output_rate
 = 32000;

init.syn_rsp_cmds
 = 0x800;

init.syn_retraceCount = 1;

init.syn_num_dma_bufs = 64;

init.syn_dma_buf_size = 0x400;

nuAuStlMgrInit(&init);

Here we explain the various parameters of the Configuration structure:

control_flag  :  The library control flag

     Specifies where to place sample wave bank (wbk file).

              0                                 : DMA transfer from ROM whenever needed.

             MUSCONTROL_RAM : Put in RAM ahead of time and use without DMA transferring.

      0 is usually specified. You would specify MUSCONTROL_RAM in cases where you cannot DMA whenever needed, such as when the sample wave bank data is on a 64DD disk.  You could also use this specification when you cannot secure enough DMA time for audio because of graphics DMAs, but this requires a large amount of memory space.

     The explanations in this tutorial manual are based on the assumption that the sample wave bank data is located in ROM.

channels  : The maximum number of channels

     Specifies a maximum value for the number of channels that can be secured by the Music Player.  When songs and sound effects start, the maximum number of channels is secured for use by each.  This parameter specifies a maximum value for the total number of channels secured for both.  If the number of channels actually needed is greater than this value, then some of the sounds will not be produced.

sched  : The address of the Scheduler structure

     When the default Scheduler is used (when MusSetScheduler is not used), the address of that Scheduler is passed.  NuSystem uses a special Scheduler, so in this case this parameter is set to NULL.

thread_priority :  The priority of the Music Player thread.

     Specifies the priority of the audio task thread. In NuSystem, it is set with NU_AU_MGR_THREAD_PRI.

heap :  The address of the audio heap

     Specifies the address of the audio heap area.  With the MUS library, the synthesizers and the players are secured from this heap area.  With NuSystem, the areas for the sample pointer bank (ptr file), song (bin file) and sound effect bank (bfx file) are also secured from this audio heap.  NuSystem specifies either (u8 *)NU_AU_HEAP_ADDR or the recalculated value (u8 *)(NU_GFX_FRAMEBUFFER_ADDR  – (the size of the secured audio heap)).

heap_length :  The size of the audio heap

     Specifies the size in bytes of the audio heap area.  The required size is equal to the value returned by the nuAuStlMgrInit function plus the size explicitly set aside by the programmer for the data area.

ptr :  The default address of the sample pointer bank

     Specifies the default address of the sample pointer bank (ptr file) in RAM.  In order to make the specification in this parameter, no transfer of data to RAM must take place at this time.  The default address cannot be specified here if the data area is to be secured from the audio heap.  You can specify the address later with MusPtrBankInitialize, so this is set to NULL.

wbk : The default address of the sample wave bank

     Specifies the default address of the sample wave bank (wbk file) in ROM (or in RAM when MUSCONTROL_RAM is set in control_flag). In order to make the specification in this parameter, no transfer of the companion sample pointer bank data to RAM must take place at this time.  The default address cannot be specified here if the data area is to be secured from the audio heap.  You can specify the address later with MusPtrBankInitialize, so this is set to NULL.

default_fxbank  :  The address of the sound effect bank

     Specifies the default address of the sound effect bank (bfx file) in RAM.  In order to make the specification in this parameter, no transfer of data to RAM must take place at this time.  The default address cannot be specified here if the data area is to be secured from the audio heap.  You can specify the address later with MusPtrBankInitialize, so this is set to NULL.

fifo_length :  The size of the library's FIFO buffer

     Specifies the size of the FIFO buffer used for pausing (MusHandlePause) and for switching sound effects (MusSetFxType).  The value can be specified in the range of 64 to 1024, but 64 is normally sufficient.  You should increase the value if numerous commands are used in 1 frame.

syn_updates  :  The number of synthesizer updates

     Specifies the number of updates usable by the synthesizer.  It is used up by the volume and pan settings, etc.  In general, you should specify a value in the range of 96 to 256.

syn_output_rate :  The playback rate

     Specifies the playback frequency (Hz).  A value of 32000Hz or less is recommended.  Lower values are also fine for balance with the graphics.  Set at the same rate as the sound data created with Sound Tools.

syn_rsp_cmds  :   The number of RSP commands

     The number of RSP commands.  In other words, it is the maximum length of the audio command list.  A minimum value of around 2048( x syn_retraceCount) is required.

syn_retraceCount  :  The number of frames per retrace message

     Specifies the interval for calling the Audio Manager.  If the value is set to 1, the Audio Manager is called on every retrace.  If the value is 2, it is called on every other retrace.  The parameter is usually set to 1.

syn_num_dma_bufs  :  The number of DMA buffers

     Specifies the number of buffers to be used by the Audio Manager for DMA from ROM.  Set to be at a minimum, larger than the value of the "channels" parameter.

syn_num_dma_size  :  The length of each DMA buffer

     Specifies the size of each buffer used by the Audio Manager for DMA from ROM.  The actual buffer size is equal to (syn_num_dma_bufs x (sun_dma_buf_size  - buffer header size)).  The required size differs, depending on the values of syn_output_rate and channels.  For details, see the next section.

diskrom_handle :  Information about the hardware settings for the 64DD built-in ROM

     Specifies the value returned by osDriveRomInit when using sample waves stored in the 64DD built-in ROM. This was not set in our example of the Configuration structure.  Nothing needs to be set for this parameter when such data is not used.

1.4  syn_dma_buf_size  &  syn_num_dma_bufs

     In general, a sample workbook (wbk file) is placed in ROM and only the necessary parts are DMA transferred to RAM as needed for a given frame.  For this reason, a buffer area must be secured in RAM ahead of time.  The area secured in RAM is specified at initialization time by syn_dma_buf_size (the size of each buffer) and syn_num_dma_bufs (the number of buffers).

     The optimal values for these two parameters will differ depending on the contents of the songs and sound effects so there is no way to clearly define them, but you can use the following general measures to make approximations:

Buffer size (syn_dma_buf_size)

     First of all, we will begin by considering the buffer size needed to DMA transfer one channel's worth of data.  Since the sample data is treated as 16bit monaural sampling, each sample point  has a size of  2bytes (i.e., 1 (monaural) x 2 (16bit =2byte) ).  Therefore, to playback audio with a 32000Hz sampling rate at the same pitch as the original audio, you need 64000 bytes per second, or 1066.66.... bytes per frame.  However, this sample data is compressed to around 1/4 its size by ADPCM conversion, so you actually end up with 267 bytes (rounded up).

(Note): The PAL broadcast format has 50 frames per second, so in this case you need 320 bytes after ADPCM conversion.  Please be careful when transferring applications between NTSC (MPAL) and PAL.

     In the above example, the conditions were set to playback audio at the same pitch as the original.  This is because you would use more bytes of data to playback at a higher pitch, and less data to playback at a lower pitch.  Sound Tools can playback audio at pitches as high as 1 octave above the original audio, so the maximum amount of data needed would be double the size.

Number of buffers (syn_num_dma_bufs)
     Basically, you need one buffer for every channel.  However, not all data is DMA transferred every time; rather, data is cached temporarily in buffers in order to cut down on the total number of DMA transfers.  As a result, you need more buffers than there are channels.  With the MUS library, in order to store 1 frame's worth of data you need at the very least double the maximum number of channels (in this minimal configuration there are no channel cache hits). 

Based on the above considerations, the following formulae can be used to approximate buffer size and buffer number:

            (Buffer size)          = α (maximum sampling rate)

                                         ( β (number of frames/second NTSC(MPAL)=60, PAL=50)

                                         ( γ (maximum ratio to original pitch (approx. 2))

                                         ( 1 (monaural (fixed))

                                         ( 2 (16bit sampling (fixed))

                                         ( 4 (average compression rate due to ADPCM conversion (fixed))

          (No. of buffers)       = δ (maximum number of channels)

                                         ( ε  (maximum value of (2 - cache hit ratio))

     Although α, β and δ can be quickly determined for these calculations, deciding which values to set for γ and ε is more problematic.   We recommend setting a maximum value of 2 for γ unless you are being careful during the creation of sounds and sound effects to make sure the audio does not playback at a higher pitch than the original.  Once γ is set you can determine the size of the buffer.  As far as the number of buffers is concerned, you need to search for the optimal value by initially setting ε = 2 and then gradually lowering the value to find the minimum value for which noise is not generated.  Note that you will need to have some extra buffers, since the necessary number of buffers can change during playback as songs and sound effects are combined.

     Making the buffer size larger than the calculated value has the effect of decreasing the number of DMA transfers.  However, if the buffer size is too large, the time needed for DMA   becomes longer, and concerns about being on time for the start of waveform synthesis arise.  Consider a size of around 2 kilobytes to be the limit.  If you set the number of buffers greater than the needed number (ε > 2), the only thing that will happen is that you will waste memory.

     Note that the values obtained here are strictly a yardstick, and things are actually a bit more complicated because of the characteristics of ADPCM.  More specifically, the buffer size can in fact be reduced by around half, but if you shrink the size to the lower limit, you are going to witness a huge increase in the number of DMA transfers.  We thus recommend using the standard when deciding on your values.

(Note) All of this DMA transfer routine is brought about with the software (within the library), so it will likely undergo major changes in the future.

(Note) For the explanation in this section we simply talked about calculating a value for the buffer size, but in actuality this value must be a multiple of 16bytes.

1.5  Preparations for Audio Playback
     Once the library has been initialized all of the library functions can be used, but at this point no data has been prepared yet.  Here we make the preparations in order to make each data set usable in sequence.
     First we DMA transfer the data from ROM that needs to be placed in RAM.  The function used to secure a memory area in RAM from the audio heap is nuAuStlHeapAlloc.

Reserve memory from the audio heap

Function name: nuAuStlHeapAlloc

Syntax: void *nuAuStlHeapAlloc(s32 length)

Arguments: length     The size of memory secured from the heap

Return value:                  Pointer to the reserved heap memory  

Next we use nuPiReadRom to transfer the data to the reserved area.
Load data from ROM

Function name: nuPiReadRom

Syntax: void nuPiReadRom(u32 rom_addr, void* buf_ptr, u32 size)
Arguments: rom_addr   Transfer origin(from) ROM address

                    buf_ptr       Pointer to transfer destination(to) buffer

                    size
        Transfer size

Return value: None

(Note) Be sure that the size is an even number of bytes.

There are also two functions that can be used to find out the present state of the heap

Return the previously used sizes with audio heap

Function name: nuAuStlGetHeapUsed

Syntax: s32 nuAuStlGetHeapUsed(void)

Arguments:  None
Return value: Size of audio heap being used

Return sizes with audio heap still available 

Function name: nuAuStlGetHeapFree

Syntax: s32 nuAuStlGetHeapFree(void)

Arguments: None
Return value: Size of audio heap remaining

Next, we perform the necessary initialization of the Sound Effect Bank and Sample Bank from among the data to be used for audio playback.  The first items initialized automatically become the default banks.  For songs, all you have to do is place the data in RAM, and no initialization is necessary.

Initialize Sound Effect Bank

Function name: MusFxBankInitialize

Syntax: void MusFxBankInitialize(void *fxbank)

Arguments: fxbank
Address of sound effect bank in RAM

Return value: None

Initialize a sample bank
Function name: MusPtrBankInitialize

Syntax: void MusPtrBankInitialize(void *pbank, void *wbank)

Arguments: pbank
 Address of Sample Pointer Bank in RAM
                   wbank
 Address of Sample Wave Bank in ROM
Return value: None

1.6  Playing and stopping audio
     Songs and sound effects can be played once the preparations of the previous section have been made.  When audio is played back, the maximum number of channels for use are automatically secured.

     To playback a song, all you need to do is specify the address of that song.  When a song is played, sample bank data is used in addition to the song's data.

Start a song

Function name: MusStartSong

Syntax: musHandle MusStartSong(void *addr)

Arguments: addr  The address of the song in RAM
Return value:       The sound handle value

     The returned sound handle value is used later to specify the song that is being played back.

     To playback a sound effect, all you need to do is to specify which number sound effect in the sound effect bank to play.  When a sound effect is played, sample bank data is used in addition to the sound effect bank's data.

Start a sound effect

Function name: MusStartEffect

Syntax: musHandle MusStartEffect(s32 number)

Arguments: number    The number of the sound effect to play

Return value:                The sound handle value

     Next we explain how to stop the playback of audio.  For songs without loops and for sound effects, the channels will be released when the audio ends even if the audio has not been explicitly stopped.

     There are two kinds of functions for stopping the audio.  MusStop stops the songs or sound effects or both if such has been specified.  In contrast, MusHandleStop stops the audio using the sound handle.  With either function you can specify how many frames to go before stopping the audio.  When a non-zero frame number is specified, the audio will fade out for the specified number of frames.

Stop channels

Function name: MusStop

Syntax: void MusStop(u64 flags, s32 speed)

Arguments: flag   audio type (can be combined using “or”)
                            MUSFLAG_SONGS     All songs

                            MUSFLAG_EFFECTS
   All sound effects

                   speed
   The number of frames before stopping

Return value: None

Use sound handle to stop sound

Function name：MusHandleStop

Syntax: s32 MusHandleStop(musHandle handle, s32 speed)

Arguments: handle    Sound handle

                   speed     The number of frames before stopping

Return value:     The number of channels that are set to stop

(Note)  These two functions are the only functions in the MUS library that depend on number of frames.  You must adjust them to either PAL or NTSC (MPAL).

     There are also two functions that can be used to find out the number of channels currently being used.

Return the number of active channels

Function name：MusAsk

Syntax: s32 MusAsk(u64 flags)

Arguments: flag
 The type of audio (can be combined using “or”)

                        MUSFLAG_SONGS     All songs

                        MUSFLAG_EFFECTS   All sound effects

Return value:  The number of channels currently being used

Return active channel with the sound handle

Function name: MusHandleAsk

Syntax: s32 MusHandleAsk(musHandle handle)

Arguments: handle    Sound handle
Return value:  The number of channels currently being used

     There is also a function useful for debugging that returns how many sound effects are in the sound effect bank.  The numbers for these usable sound effects are from 0 to (the value returned by this function - 1).

Return the number of sound effects in the sound effect bank

Function name: MusFxBankNumberOfEffects

Syntax: s32 MusFxBankNumberOfEffects(void *ifxbank)

Arguments: ifxbank    Address of the initialized sound effect bank
Return value:       The number of sound effects

1.7  The 64aud1 sample program
In this section we talk about the sample program 64aud1, which uses the functions we have just explained.


[image: image4.wmf]Song number

Sound effect number

No. 

of frames to fade-out

No. of channels being used by song

No. 

of channels being used by sound effect

Total number of channels being used

Size of reserved audio heap

 (

heap_length)

Size of actually used audio heap

Size of audio heap used when library initialized

Size of audio heap used for each kind of data

N64 

SoundTools Sample 1

SONG

:     

1

SE

:     

2

F.O.

:   100

SONG CH.

SE CH.

TOTAL CH.

TOTAL

:  262144

USED

:  160528

INIT

:  151056

DATA

:      9472

 :

   

0

 :

   

0

 

:   

0

Settings

menu


Figure 1-3   Runtime screen of sample program 64aud1

     When you execute the sample program 64aud1, something like the screen shown in Figure 1-3 will display on your monitor.

     First let's give a summary and explain the Controller operations for the first three items on this display screen:

Control Pad

Use the ( ( keys to select the Settings Menu and the ( ( keys to change a value.

C Button Unit

When the F.O menu item is selected, you can change the value 10 units at a time with Right/Left on the C Button Unit.

A Button

Plays back a song or sound effect according to the values specified in the Settings menu.

Z Trigger Button

All songs and sound effects are stopped after fading out for the specified number of frames.

B Button

Stops the audio that was started last.

     Please confirm these operations by trying them out with a Standard Controller.

     Next we'll talk about the middle three items in this display screen.  These items represent the number of channels secured for songs, the number of channels secured for sound effects, and the total number of channels, respectively.  This does not refer to the number of channels secured for use in real time, but rather the maximum number of channels for use for the various songs and sound effects that are secured when playback starts and are released when playback ends.

     The bottom four items are explained below:

TOTAL: The audio heap size as specified with MusInitialize.

USED:  The audio size actually used. You can lower the TOTAL until you reach this size. 

INIT:     Determined by the size of the audio heap used when MusInitialize was initialized.

DATA:   The total size of the audio heap for the songs, sound effects and sample pointer 

             banks used in this sample program.

　

CHAPTER 2  AUDIO OPERATIONS BY THE PROGRAMMER

     All information relating to the audio can be set and embedded into the data using the Sound Tools.  However, when you want to make slight changes to audio playback due to the circumstances, you will find it more effective to add the changes yourself at audio playback time rather than dealing with all the data.  In this chapter we explain the functions that are available to the programmer to manipulate the playback of audio.

2.1  Adjusting the Master Volume
     The master volume is present in each song and sound effect.  It sets the maximum value for the volume of all audio.  A number of parameters exist that determine the size of a sound, but this master volume is applied at the final stage.  The function used to adjust the master volume is MusSetMasterVolume.  By default, the maximum value is set to 0x7fff.

Set the master volume level

Function name: MusSetMasterVolume

Syntax: void MusSetMasterVolume(u32 flags, s32 volume)

Arguments: flags   The type of audio (can be combined using “or”)

           MUSFLAG_SONGS
               All songs

           MUSFLAG_EFFECTS
All sound effects

           volume
 The master volume level (0 to 0x7fff)
Return value: None

2.2  Changing parameters during playback
     In this section we introduce functions that can be used to change some song and sound effect parameters.  The functions explained here can be used with sound handle units.

     Use MusHandleSetVolume to change the volume.  The default volume is 0x80 so you can double the volume by specifying 0x100 and halve the volume by specifying 0x40. Note that if the volume was fairly loud from the beginning, the sound may not end up being any louder than the original.

Set volume using sound handle

Function name: MusHandleSetVolume

Syntax: s32 MusHandleSetVolume(musHandle handle, s32 volume)

Arguments: handle      Sound handle
　　　     　Volume      Volume scale  (0 to 0x100)

Return value: The number of channels that have been changed.

     Use MusHandleSetTempo to change the tempo.  The default tempo is 0x80.  Like with the volume, you can double the speed of playback by specifying 0x100, and halve it by specifying 0x40.

Set the tempo value using sound handle

Function name: MusHandleSetTempo

Syntax: s32 MusHandleSetTempo(musHandle handle, s32 tempo)

Arguments: handle
Sound handle

          tempo
Tempo offset value (0 to 0x100)

Return value: The number of channels that have been changed.

     Use MusHandleSetPan to change the pan. A central pan is 0x80, while the left end is 0 and the right end is 0x100.  By using this function you can move the audio completely to the left or the right.  

Set the pan value using sound handle
Function name: MusHandleSetPan

Syntax: s32 MusHandleSetPan(musHandle handle, s32 pan)

Arguments: handle
Sound handle
        pan     
Stereo pan scale (0 to 0x100)

Return value: The number of channels that have been changed.
     In addition to these functions, you can use MusHandleSetFreqOffset to vary the pitch (frequency).  The breadth of variation is specified in an argument in units of semitones.  The limit is determined by the pitch of the original sample.  This function is mainly used with sound effects when repeating the same sample to avoid redundancy. 

Set offset value of frequency using sound handle

Function name: MusHandleSetFreqOffset

Syntax: s32 MusHandleSetFreqOffset(musHandle handle, f32 offset)

Arguments: handle
Sound handle

　　　　     offset
Frequency offset value       

Return value: The number of channels that have been changed.
2.3  Playing sound effects with attached parameters
     In the previous section we explained how to change the audio playback parameters using sound handles.  However, with sound effects, often the parameters are frequently changed.  In these cases, the parameters can be set simultaneously at the time of playback.

     By using the MusStartEffect2 function, the volume and pan can be set ahead of time.  Moreover, if a sound effect with the same number is currently being played back, a flag can be set to cancel (overwrite and playback) that sound effect, and the priority can be changed.

Start sound effect with parameters attached

Function name: MusStartEffect2

Syntax: musHandle MusStartEffect2(s32 number, s32 volume, s32 pan,

               s32 restartflag, s32 priority)

Arguments: number

Start sound effect number

        volume

Volume ((0 to 0x100)

        pan

Pan  (0 to 0x100)

        restartflag
Overwrite flag

                               0
Do not overwrite

                               non-zero     Overwrite
        priority
The priority (-1 implies no change in priority)

Return value:   Sound handle value

     Setting the volume and pan like this provides an easy way of simulating 3D sound effects.

     The "priority" argument specifies the priority of a sound effect.  When there are not enough channels, this value is used to decide whether or not to end another sound effect and begin playback of this one.  The higher the value the higher the priority.  The priority is set with the tools.  If nothing needs to be changed, set this argument to -1.

MusStartEffect(number) is the same as MusStartEffect2(number, 0x80, 0x80, 0, -1).
2.4  Using synchronization markers
     You can use Sound Tools to set synchronization markers in songs.  Synchronization markers are meant for use by the programmer, and have no effect on the songs themselves.  They make it easier to synchronize audio with events on screen in the application.  In this section we explain how to use synchronization markers.

     There are two ways of using synchronization markers.  The first is to start playback from some place within the song using MusStartSongFromMarker.  This function starts the song from an arbitrary synchronization marker.

Start song from specified synchronization marker

Function name: MusStartSongFromMarker

Syntax: musHandle MusStartSongFromMarker(void *addr, s32 marker)

Arguments: addr
   Address of song

                   Marker  The number of the marker to start from (0 to 255)

Return value:   Sound handle value

     Be careful, because the system will hang if you specify a synchronization marker that does not exist here.

     The other way of using synchronization markers is as signposts for the progress of a song, letting the programmer know where a song is and signaling that it is time to start some other program.  To utilize this method you must register a callback function with MusSetMarkerCallback.

Set a callback function for a synchronization marker

Function name: MusSetMarkerCallback

Syntax: void MusSetMarkerCallback(void *callback)

Arguments: callback
Address of the callback function

Return value: None

     Below is an example of a callback function registered for a synchronization marker:

musHandle target_handle;

s32        target_marker;

void CallBackProcess(musHandle handle, s32 marker)

{

    if(handle==target_handle)

                 target_marker = marker;

}

     Here target_handle and target_marker are global variables.  When the programmer specifies a sound handle in target_handle, the last passed synchronization marker is set in target_marker by the callback function.  The callback function is executed on an audio thread that has higher priority than the game thread, so be careful not to overlap processes. You can change the callback function by calling MusSetMarkerCallback again. You can release the callback function by calling this function with NULL set in the arguments.

2.5  Pause functions
     The MUS library has functions for temporarily stopping and restarting songs and sound effects.  You pause the audio by calling MusHandlePause, and restart the audio by calling MusHandleUnPause.

Pause using sound handle

Function name: MusHandlePause

Syntax: s32 MusHandlePause(musHandle handle)

Arguments: handle
Sound handle

Return value: 0
           Failure

                      Non-zero  Success
Release pause using sound handle
Function name: MusHandleUnPause

Syntax: s32 MusHandleUnPause(musHandle handle)

Arguments: handle
Sound handle

Return value: 0
           Failure

                      Non-zero  Success
     When 0 is returned by these functions,  please wait for a retrace message and then call the function again.

     Two points must be taken into consideration when using the pause function.  The first point is that when you pause a song, those channels are still reserved, so if you pause one song and start another song you may not have enough channels.  If the general location of pauses has been decided to some extent, we recommend using synchronization markers.  The other point is that during a pause, a playing sound will continue to play, so you should drop the volume to 0 by the frame prior to the pause.  Also, don't forget to turn the volume back up when playback resumes.

     Below is a programming example of a pause process:

// The handle of the song you want to pause is set in this variable 

musHandle set_pause_handle;

s32 PauseProcess1(void)

{

    static s32 pause_flag=0;

    static s32 fade_volume;

    static musHandle save_handle=0;

    if(set_pause_handle && !save_handle)

    {

      // set_pause_handle is copied to the local variable save_handle
      // It's okay to overwrite set_pause_handle
        save_handle = set_pause_handle;

        set_pause_handle = 0;

    }

    if(!save_handle)

        return(0);     // A pause is not processed, so this 

                         // time PauseProcess1 does nothing.

    if(!pause_flag)        // If pause starts

    {

       pause_flag++;

       fade_volume=0x80;   // When pause starts, fade_volume 
                           // is set to 0x80
    }

// If this point is reached, it means a pause is being processed

    if(fade_volume)  // If fade_volume is not 0, drop 0x20

                     // and set volume to this.

    {

        fade_volume-=0x20;

        MusHandleSetVolume(save_handle, fade_volume);

    }

    else               // Otherwise, volume has dropped to 0, so pause.

    {

        if(!MusHandlePause(save_handle))

        {

            save_handle = 0;

            pause_flag = 0;   // Pause is over, so lower  pause_flag
        }

    }

    return(0); // PauseProcess1 terminated normally this time.

}

     In the above example, the function must be called in every frame.  When you set a new song to be paused in set_pause_handle, the song fades out for 4 frames and then actually pauses.  If a non-zero value is returned in MusHandlePause the process has succeeded, so the variable is initialized.  However, if the Return value is 0, the function has failed, so it will be called in the next frame.

     There are two restrictions on the use of the function ProcessPause1 in this example.  The first is that you cannot perform a pause process on two songs at the same time. If you set things up so set_pause_handle cannot be set again when it is not 0, then you can make sure the processes are performed, albeit a few frames delayed.  The second restriction is that if the song's original volume is set to anything other than 0x80 there will be problems with the fadeout process.

     Now let's look at another example:

s32 ProcessPause2(musHandle handle, s32 volume)

{

    if(volume)

    {

        volume -=0x20;

        if(volume<0)

            volume = 0;


// Make volume at least 0
        MusHandleSetVolume(handle, volume); 
// Drop volume

        return(volume);


// Return current volume 

    }

  // By this point volume should be 0, so perform pause process
    if(MusHandlePause(handle))

        return(-1);     // Pause failed (non-zero value returned)

    else

        return(0);      // Pause succeeded (0 returned)
}

     In this example, the function is called when it is time to pause a song, and if it is called in every frame until the Return value is -1, the song will fade out for a number of frames and then pause.  The first time the function is called, "volume" gets the volume set in that "handle" at that time (or 0x80 if nothing is set).  For the second and subsequent calls, "volume" gets the value returned by the function.  Compared to the previous example, you need to be careful about how you call the function, but there are no restrictions like with ProcessPause1 so it can be put to general use.

     Next we look at a programming example for restarting a paused song:

s32 ProcessUnPause(musHandle handle, s32 volume)

{

    if(!MusHandleUnPause(handle))

    return(0)

    MusHandleSetVolume(handle, volume);

    return(volume);

}

     This is the simplest program example, restarting the song with no fade-in.  You need to set the volume for after restart and call the function, calling it in every frame until the Return value is non-zero.

     These are just a few examples, so try making your own functions for pausing and restarting songs based on the situation.

2.6  Effects (Reverb)
     Effect, also known as reverb, is the sound effect applied at the end of the audio process.  The 6 following effect settings are preset:

Effect name 
Effect No.
Macro name

None
0
AL_FX_NONE

Small Room
1
AL_FX_SMALLROOM

Big Room (default)
2
AL_FX_BIGROOM

Chorus
3
AL_FX_CHORUS

Flange
4
AL_FX_FLANGE

Echo
5
AL_FX_ECHO

     In the MUS library, Big Room is set as the initial value, but the programmer is free to change the type of effect using MusSetFxType.

Set the library effect type

Function name: MusSetFxType

Syntax: s32 MusSetFxType(s32 fxtype)

Arguments: fxtype
  Effect type

                            AL_FX_NONE

                            AL_FX_SMALLROOM

                            AL_FX_BIGROOM

                            AL_FX_CHORUS

                            AL_FX_FLANGE

                            AL_FX_ECHO

Return value:  0  
Failure
               Non-zero    Success
      If the Return value is 0, please wait for a retrace message and call the function again.

     The programmer can not only change effect types, but also embed them into songs using the tools.   Using MusSetSongFxChange, the programmer can enable and disable the effect settings embedded in a song.  When disabled, the effect becomes the type it was the last time MusSetFxType was called (if never called, then the effect becomes Big Room).

Set the library's change song effect flag

Function name: MusSetSongFxChange

Syntax: s32 MusSetSongFxChange(musBool onoff)

Arguments: onoff
 Flag

                     
MUSBOOL_ON　　Enable
                              MUSBOOL_OFF  Disable
Return value: 0
             Failure

                       Non-zero   Success

     If the Return value is 0, please wait for a retrace message and call the function again.

     The extent to which the effect is applied is called the wet/dry value (reverb level).  This value is set in both songs and sound effects, and the programmer can change it using a sound handle.

     A wet/dry value of 0 is completely dry (the effect is not applied), while a value of 0x80 is completely wet (the effect is applied).

Set the reverb value using a sound handle
Function name: MusHandleSetReverb

Syntax: s32 MusHandleSetReverb(musHandle handle, s32 reverb)

Arguments: handle     Sound handle

         reverb     wet/dry base value (0 to 0x7f)

Return value: The number of channels that have been changed

     By changing the wet/dry base value (minimum value) with this function, you can "raise the bar" so to speak for all levels of reverb.  For example, when the base value is set to 0x40, a wet/dry value of 0 becomes 0x40 and a value of 0x40 becomes 0x80.  In order to give the programmer complete control, it is best to set original data to 0.

 (Note)  The changes made with this function will take effect from the next sound that is generated.

2.7  The Lookup Table
     The lookup table, which is part of the header of the song or sound effect, is the list of sample waveform data types used by those sounds.  You can determine the address of the lookup table with MusHandleWaveAddress and the size of the lookup table (the number of listed samples) with MusHandleWaveCount.

Return the address of the lookup table

Function name: MusHandleWaveAddress

Syntax: u16 *MusHandleWaveAddress(musHandle handle)

Arguments: handle
Sound handle

Return value:  Address of lookup table

Return the size of the lookup table
Function name: MusHandleWaveCount

Syntax: s32 MusHandleWaveCount(musHandle handle)

Arguments: handle
Sound handle

Return value:  Size of lookup table (number of entries)

     The following example demonstrates how these functions can be used.

  void swap_sample(musHandle handle, s32 swap1, s32 swap2)

  {

    s32 count;

    u16 *lookup, swap;

    count = MusHandleWaveCount(handle);　 // Get size of lookup table

    lookup = MusHandleWaveAddress(handle); // Get lookup table pointer

    // If swap1 and swap2 are valid indexes of table
    if(count>=swap1 && count>=swap2)

    {

      // Store pointer corresponding to swap1 

      swap = lookup[swap1];　

      // Overwrite swap1 pointer with pointer corresponding to swap2

      lookup[swap1] = lookup[swap2];

      // Overwrite swap2 pointer with pointer corresponding to swap1
      lookup[swap2] = swap;

    }

  }

     In this program, the samples numbered swap1 and swap2 in the specified sound handle are switched.  

     This can be used in a two-instrument duet to swap parts based on specific timing.

(Note) Be careful because the order can change when the data is edited.

2.8  The 64aud2 Sample Program
     The 64aud2 Sample Program makes use of the functions we have explained in this chapter.  See "Section 1.7, The 64aud1 Sample Program" for details about the basic ways to operate the Controller.

     Here we explain each menu sample:

SONG1

     This sample concerns reverb, as explained in "Section 2.6, Effects (Reverb)."  When the settings are changed, the specified reverb takes effect at that time.  To get a real feel for the reverb effect, move the pan to the left and then playback.

SONG2

     This sample plays back a song in which synchronization markers have been set.  The background color changes when a marker is reached.

SE1

     In this sample, the sound effect's volume and pan can be changed by moving the Control Stick while the sound effect is playing.  Generate the sound effect by selecting SE1 and pressing the A button, and then try moving the Control Stick around and see what happens. 

SE2
     In this sample, you select SE2 and press the A button to playback the specified sound effect with MusStartEffect.  The specified sound effects have been set with the "random option" function on Sound Tools to have changing pan and volume.

SE3

     Select SE3 and press the A button to hear engine sounds.  Change the engine revolutions by moving the Control Stick ( (.  When the revolutions drop below 2000 the sound effect changes to an engine stall.

CHAPTER 3  USING MULTIPLE BANKS

     Up until now, all the explanations we have given have involved the use of only one Sound Effect Bank and Sample Bank.  However, in actual practice, sometimes sample banks are divided into files for songs and files for sound effects, and sometimes sound-effect banks are switched depending on the circumstances.  In this chapter we explain several ways to use bank files.

3.1  Using Multiple Sample Banks

     In this section we explain how to use a number of sample banks.

     As explained in "Section 1.5, Preparations for Audio Playback," all of the sample banks must be initialized ahead of time.  It does not matter how many sample banks are going to be initialized with MusPtrBankInitialize.  At the time of initialization, the sample bank specified the first time by MusPtrBankInitialize is automatically set as the default sample bank.  Sample banks initialized on the second and subsequent times are not set as the default, but this can be changed and one of these sample banks can be set as the default using MusPtrBankSetCurrent.  When a bank is set as the default, any song or sound effect started after that point will make use of that bank.

Set initialized sample bank as the default

Function name: MusPtrBankSetCurrent

Syntax: void MusPtrBankSetCurrent(void *ipbank)

Arguments: ipbank
Address of the initialized sample bank

Return value: None

     You can make use of a number of sample banks with just MusPtrBankSetCurrent, but there is another function with different characteristics called, MusPtrBankSetSingle, that you can also use.  This function sets an override that is different from the default.  The override has higher priority than the default, but it is cleared after one use.  Thus, you can utilize this function to make temporary use of a different sample bank when the need arises.
Temporarily set the next sample bank to use

Function name: MusPtrBankSetSingle

Syntax: void MusPtrBankSetSingle(void *ipbank)

Arguments: ipbank     Address of an initialized sample pointer bank
Return value: None

     The following is an example of how these two functions can be combined to make use of multiple sample banks.

  MusPtrBankInitialize(A_ptr,A_wbk);   // Initialize A and set as default
  MusPtrBankInitialize(B_ptr,B_wbk);   // Initialize B

  MusPtrBankInitialize(C_ptr,C_wbk);   // Initialize C

  MusStartSong(song1);    // Use the default, A  (there is no override)

  MusPtrBankSetCurrent(B_ptr);  // Change the default to B

  MusStartSong(song2);     // Use the default, B (there is no override)
  MusPtrBankSetSingle(C_ptr);   // Set the override to C

  MusStartSong(song3);    // Use the override, C (override gets cleared)
  MusStartSong(song4);      // Use the default, B (there is no override)
     There is one point you need to be careful about, as the next example demonstrates:

  MusPtrBankInitialize(A_ptr,A_wbk);   // Initialize A and set as default
  MusPtrBankInitialize(B_ptr,B_wbk);   // Initialize B

  MusPtrBankInitialize(C_ptr,C_wbk);   // Initialize C

  MusStartSong(song1);      // Use the default, A (there is no override)
  MusPtrBankSetSingle(C_ptr);       // Set the override to C 

  MusPtrBankSetCurrent(B_ptr);     // Change the default to B
  MusStartSong(song2);    // Use the override, C (override gets cleared)
     The override is released when the song or sound effect begins, but not if the only function that is executed is MusPtrBankSetCurrent.  For this reason, you should execute MusPtrBankSetSingle immediately before starting the song or sound effect.  You can forcefully clear the override by setting NULL in the argument of MusPtrBankSetSingle.

3.2  Using Multiple Sound Effect Banks
     In this section we explain how to use a number of sound effect banks.  As already explained, the first thing that needs to be done is to initialize all of the sound effect banks. It does not matter how many sound effect banks are going to be initialized with MusFxBankInitialize.  At the time of initialization, the sound effect bank specified the first time by MusFxBankInitialize is automatically set as the default sound effect bank.  Sound effect banks initialized on the second and subsequent times are not set as the default, but this can be changed and one of these sound effect banks can be set as the default using MusFxBankSetCurrent.  When a bank is set as the default, any sound effect started after that point will make use of that bank.

Set initialized sound effect bank as the default

Function name: MusFxBankSetCurrent

Syntax: void MusFxBankSetCurrent(void *ifxbank)

Arguments: ifxbank     Address of the initialized sound effect bank
Return value: None

     You can make use of a number of sound effect banks with just MusFxBankSetCurrent, but there is another function with different characteristics called, MusFxBankSetSingle, that you can also use.  This function sets an override that is different from the default.  The override has higher priority than the default, but it is cleared after one use.  Thus, you can utilize this function to make temporary use of a different sound effect bank when the need arises.

Temporarily set the next sound effect bank to use
Function name: MusFxBankSetSingle

Syntax: void MusFxBankSetSingle(void *ifxbank)

Arguments: ifxbank     Address of the initialized sound effect bank
Return value: None

The following is an example of how these two functions can be combined to make use of a number of sound effect banks.
  MusFxBankInitialize(A_bfx);   // Initialize A and set as default
  MusFxBankInitialize(B_bfx);   // Initialize B

  MusFxBankInitialize(C_bfx);   // Initialize C

  MusStartEffect(0);         // Play the 0th effect of default bank A 

                            //      (there is no override)

  MusFxBankSetCurrent(B_bfx);   // Change the default to B

  MusStartEffect(1);            // Play the 1st effect of default bank B 

                               //      (there is no override)

  MusFxBankSetSingle(C_bfx);    // Set the override to C

  MusStartEffect(2);           // Play the 2nd effect of override bank C

                               //       (override is cleared)

  MusStartEffect(3);          // Play the 3rd effect of default bank B 

                              //      (there is no override)

     There is one point you need to be careful about, as the next example demonstrates:
  MusFxBankInitialize(A_bfx);   // Initialize A and set as default
  MusFxBankInitialize(B_bfx);   // Initialize B

  MusFxBankInitialize(C_bfx);   // Initialize C

  MusStartEffect(0);          // Play the 0th effect of default A

                              //   (there is no override) 

  MusFxBankSetSingle(C_bfx);   // Set the override to C

  MusFxBankSetCurrent(B_bfx); // Change the default to B

  MusStartEffect(1);    // Play the 1st effect of override C 

                        //   (override is cleared)

     In other words, the override is cleared at the time when the sound effect starts, and not when the only thing that has been executed is MusFxBankSetCurrent. For this reason, you should execute MusFxBankSetSingle immediately before starting the sound effect.  You can forcefully clear the override by setting NULL in the argument of MusFxBankSetSingle.

     You've no doubt noticed that all of the sample banks have been the same in the explanations up until now.  However, when multiple sample banks and multiple sound-effect banks are being used, sound effects and songs can get mixed up, and controlling them all can become a difficult task.  Control becomes a much easier task if you use MusFxBankSetPtrBank to set a certain default sample bank in the sound effect bank, since when this is done the default value set in MusPtrBankSetCurrent will only be used for songs.  The order of priority of sample banks, from highest to lowest, is MusPtrBankSetSingle > MusFxBankSetPtrBank > MusPtrBankSetCurrent.

Set the sound effect bank's sample bank

Function name: MusFxBankSetPtrBank

Syntax: void MusFxBankSetPtrBank(void *ifxbank, void *ipbank)

Arguments: ifxbank
Address of an initialized sound effect bank
                   ipbank

Address of an initialized sample bank

Return value: None

3.3  Getting information about banks

     In this section we explain the functions that can be used to obtain organizational information when you are handling a number of sample banks and sound effect banks.

     The function you use to get the address of the current default sample bank is MusPtrBankGetCurrent.   Note that this function is not affected by any override.

Get the default sample bank

Function name: MusPtrBankGetCurrent

Syntax: void *MusPtrBankGetCurrent(void)

Arguments:  None
Return value:  Address of sample bank 

     The function you use to get the address of the current default sound-effect bank is MusFxBankGetCurrent.  Note that this function is not affected by any override.

Get the default sound effect bank

Function name: MusFxBankGetCurrent

Syntax: void *MusFxBankGetCurrent(void)

Arguments: None
Return value: Address of sound effect bank
     The function you use to get the address of the default sample bank that is set in the sound effect bank is MusFxBankGetPtrBank. Note that this function is not effected by any override.

Get the sound-effect bank's default sample bank

Function name: MusFxBankGetPtrBank

Syntax: void *MusFxBankGetPtrBank(void *ifxbank)

Arguments: ifxbank
Address of an initialized sound effect bank
Return value: Address of sample bank

     The function used to get the address of the sample bank being used by the currently playing songs or sound effects is MusHandleGetPtrBank.

Get the address of currently playing sample bank

Function name: MusHandleGetPtrBank

Syntax: void *MusHandleGetPtrBank(musHandle handle)

Arguments: handle
Sound handle
Return value:  Address of sample bank

3.4  The 64aud3 Sample Program
     The 64aud3 is a sample program which uses a number of sample banks to playback songs and sound effects.  The audio is played back by switching bank files, as shown in Figure 3-1.


[image: image5.wmf]Sample bank

A

Sample bank

B

Sample bank

E

Sample bank

D

Sample bank 

C

Song 

A

Song 

B

Song 

C

SE

 bank 

D

SE

 bank 

E

Stage 

0

Stage 

1

Buffer name

pbank1

pbank2

pbank3

song1

song2

sebank

Audio heap

area


Figure 3-1  Memory map of audio heap used in the 64aud3 sample program 
     When you execute the program, the audio is played back while switching between the stage 1 and stage 2 screens and sounds.  You cannot stop this sample with the Z Trigger button.

Stage 0
     Select START GAME with ( ( on the Control Pad and then press the A Button to change to stage 1.  Select OPTION and then press the A Button to display the L/R menu.  Play the different sound effects by pressing the L Button and R Button.

Stage 1

     Select RESTART GAME with ( ( on the Control Pad and then press the A Button to change to stage 0.  Select EFFECTS, select a value with ( ( on the Control Pad and then press the A Button to playback the sound effect of the specified value.

     With the explanations provided in this tutorial you can actualize almost all of the functionality related to audio.  Unless you are going to do something special, there is really no need to understand the N64 OS al functions.

PAGE  

[image: image6.png]_995722875.doc


Various Players





Synthesis Driver





Audio Synthesis Microcode





CPU





RSP









_995723122.doc


Initialize





Wait for retrace





DMA transfer waveform data created in previous frame to AI





Calculate amount of waveform data that must be created this time from amount of data remaining from DMA





DMA transfer necessary sample data from ROM to waveform data





Create waveform data to be used in next frame









_993990562.doc























Settings menu





 :   0 


 :   0


 :   0





TOTAL	:  262144


USED	:  160528


INIT	:  151056


DATA	:      9472





SONG CH. 


SE CH.	  


TOTAL CH.





SONG	:     1


SE	:     2


F.O.	:   100





Song number





Sound effect number





No. of frames to fade-out





No. of channels being used by song





No. of channels being used by sound effect





Total number of channels being used





Size of reserved audio heap (heap_length)





Size of actually used audio heap





Size of audio heap used when library initialized





Size of audio heap used for each kind of data





N64 SoundTools Sample 1









_994155309.doc


Sample bank A





Sample bank B





Sample bank E





Sample bank D





Sample bank C





Song A





Song B





Stage 0





Song C











SE bank D





SE bank E





Stage 1





Buffer name





pbank1





pbank2





pbank3





song1





song2





sebank





Audio heap area









_989396517.doc
[image: image1.png]


