
R4300 RISC Processor Specification

Revision 2.2

July, 1995

MIPS Technologies Inc.
2011 N. Shoreline Blvd.

Mountain View, Ca. 94039-7311
http://www.mips.com

MTI CONFIDENTIAL

This document contains information that is proprietary to MIPS Technologies Inc. and is authorized only to employees
of MIPS Technologies Inc. and to those persons specifically designated by MIPS Technologies Inc.

The information in this document is preliminary and is subject to change without notice.

MIPS Technologies Inc. reserves the right to change any products described herein to improve function or design. MIPS
does not assume any liability arising out of the application or use of any product or circuit described herein; neither does
it convey any license under patent rights nor imply the rights of others.

Copyright 1991 - 1995 by MIPS Technologies Inc. No part of this document may be copied by any means without writ-
ten permission of MIPS Technologies Inc.

A subsidiary of Silicon Graphics Inc.
MIPS Technologies Inc.

mips

R4300 RISC Processor Specification v2.2
Table Of Contents

1.0 Introduction ...1
1.1 Reference Documents ...1
1.2 Data Formats and Addressing ...1
1.3 Registers..1
1.4 Spec Objectives ...2

2.0 Overview...3

3.0 Operation Fundamentals ..6
3.1 Power management...6
3.2 Processor Pipeline ...6

3.2.1 Pipeline Overview...6
3.2.2 Pipeline Interlocks and Exceptions...7
3.2.3 Pipeline Operation..10

3.2.3.1 Add ADD rd,rs,rt..10
3.2.3.2 Jump and Link Register JALR rd,rs ..10
3.2.3.3 Branch on Equal BEQ rs,rt,offset..10
3.2.3.4 Trap if Less Than TLT rs,rt ...11
3.2.3.5 Load Word LW rt,offset(base)...11
3.2.3.6 Store Word SW rt,offset(base)..11

4.0 Execution Unit...13
4.1 Goals..13
4.2 Overview..13
4.3 Functional Description ...14

4.3.1 Instruction latencies..14
4.3.2 Unit Organization..17

4.3.2.1 Integer/Mantissa Data Path ..17
4.3.2.2 Operand Bypass Network...18
4.3.2.3 Register File..18
4.3.2.4 Floating-Point Instruction Execution ...18
4.3.2.5 Instruction Address Unit..19

5.0 Data and Instruction Caches ..21
5.1 Cache Organization ...21
5.2 Cache States ...21

5.2.1 Instruction Cache ...21
5.2.2 Data Cache ..22

5.2.2.1 Data Cache State transition ..22
5.2.3 Cache state change during processor execution ...22
5.2.4 Manipulation of the Caches by an External Agent ...22
5.2.5 Cache Line ...22
5.2.6 Instruction Cache line replacement ..22
5.2.7 Data Cache line replacement ...22

5.3 Cache Access Time...23
5.4 Cache Miss Handling...23
5.5 Cache Operations ..23
5.6 Reset Effects..24
5.7 Flush Buffer..25

6.0 Cache Test Mode. ..27
July, 1995 – 1 – MTI Confidential

R4300 RISC Processor Specification v2.2
6.1 Cache Memory Description..27
6.2 Test Mode Description ...27
6.3 Test Mode Commands ..28
6.4 Cache Memory Address ..28
6.5 Cache Read ...29
6.6 Cache Write ...30
6.7 Cache Organization ...33

7.0 System Control Coprocessor (CP0) ...35
7.1 R4300 Control Coprocessor Registers ..35

7.1.1 Index Register (0)...36
7.1.2 Random Register (1) ..36
7.1.3 EntryLo0 Register (2) ...36
7.1.4 EntryLo1 Register (3) ...37
7.1.5 Context Register (4) ...37
7.1.6 PageMask Register (5)...38
7.1.7 Wired Register (6) ..39
7.1.8 BadVAddr Register (8) ...39
7.1.9 Count Register (9) ..39
7.1.10 EntryHi Register (10)..40
7.1.11 Compare Register (11)...40
7.1.12 Status Register (12) ...40
7.1.13 Cause Register (13) ...41
7.1.14 EPC (14)...42
7.1.15 Processor Revision Identifier (15) ..43
7.1.16 Configuration Register (16) ..43
7.1.17 Load Linked Address (LLAddr) Register (17)...44
7.1.18 WatchLo (18)..44
7.1.19 WatchHi (19) ..45
7.1.20 XContext Register (20)...45
7.1.21 PErr Register (26) ..46
7.1.22 CacheErr Register (27) ..46
7.1.23 TagLo (28) and TagHi (29)...46
7.1.24 ErrorEPC (30)...47

7.2 CP0 Instructions...47
7.2.1 CACHE - Cache Operations...48

7.3 R4300 32 bit Virtual Address Space..49
7.4 R4300 64 bit Virtual Address Space..49
7.5 Translation Lookaside Buffer ...52

7.5.1 Instruction Micro TLB ...53
7.6 R4300 Processor Modes ...54

7.6.1 Reduced Power Mode RP (bit 27 in Status Register) ..54
7.6.2 Floating-Point Registers FR (bit 26 in Status Register)..54
7.6.3 Data Rate EP (bits 27..24 in Configuration Register)...54
7.6.4 System Endianness BE (bit 15 in Configuration Register) ...54
7.6.5 Reverse Endianness RE (bit 25 in Status Register)...54
7.6.6 Instruction Trace Support Mode ITS (bit 24 in Status Register)...55
7.6.7 Bootstrap Exception Vector BEV (bit 22 in Status Register) ..55
7.6.8 Kernel eXtended addressing KX (bit 7 in Status Register)...55
7.6.9 Supervisor eXtended addressing SX (bit 6 in Status Register) ..55
7.6.10 User eXtended addressing UX (bit 5 in Status Register) ...55
7.6.11 Interrupt Enable IE (bit 0 in Status Register)..55
MTI Confidential – 2 – July, 1995

R4300 RISC Processor Specification v2.2
7.7 Processor Interrupts ..55
7.8 Coprocessor 0 Hazards ...56

7.8.1 R4000 Hazards ..56
7.8.2 R4300 Specific Hazards...58

8.0 System Interface...59
8.1 Sequences ...59

8.1.1 Fetch miss ..59
8.1.2 Load Miss ...60
8.1.3 Store Miss ..60
8.1.4 Uncached Load or Store ..60
8.1.5 Cache Instructions..60

8.2 Byte Order..60
8.3 Signal Descriptions ..60
8.4 Signal timing ...62

8.4.1 Timing Summary ..62
8.4.2 Arbitration ...67
8.4.3 Issuing Commands...69
8.4.4 Processor Write Request ...69
8.4.5 Processor Read Request ...71
8.4.6 External Write Request ..73
8.4.7 External Read Response ...74
8.4.8 Flow Control ...76
8.4.9 Data Rate Control...77
8.4.10 Consecutive SysAD Bus Transactions...78
8.4.11 Starvation and Deadlock Avoidance. ...80

8.5 Multiple Drivers on the SysAD Bus ..80
8.6 Signal codes ..81
8.7 Physical Addresses ...83
8.8 Processor Reset and Initialization ...83

8.8.1 Cold Reset..83
8.8.2 Warm Reset (also known as Soft Reset) ...84
8.8.3 Non Maskable Interrupt (NMI) ..84
8.8.4 General Reset Information ...84

9.0 Exception Handling...85
9.1 Exception operation ...85
9.2 Precision of Exceptions ...85
9.3 Exception Types ..86
9.4 Exception vectors...87
9.5 Priority of Exceptions ...87

9.5.1 Reset ..88
9.5.2 Soft Reset...88
9.5.3 Non-maskable Interrupt..89
9.5.4 TLB Refill and Extended addressing TLB Refill ...90
9.5.5 TLB Invalid ...91
9.5.6 TLB Modified ..91
9.5.7 Bus Error ..92
9.5.8 Address Error ...93
9.5.9 Integer overflow..93
9.5.10 Trap ..94
9.5.11 System Call ..94
9.5.12 Breakpoint ..95
July, 1995 – 3 – MTI Confidential

R4300 RISC Processor Specification v2.2
9.5.13 Reserved Instruction ..96
9.5.14 Coprocessor Unusable...96
9.5.15 Interrupt ..97
9.5.16 Watch ...98
9.5.17 Floating Point ...98

10.0 Clocks ...99
10.1 PClock..99
10.2 SClock..99
10.3 TClock..99
10.4 Phase Locked Loop ...99
10.5 SyncIn/SyncOut ...99
10.6 Reduced Power Mode ...99

11.0 JTAG Interface..100
11.1 JTAG Signals ...100
11.2 JTAG Functionality...100

11.2.1 TAP Controller ..100
11.2.2 Instruction Register ..100
11.2.3 Bypass Register ...100
11.2.4 Boundary Scan Register ..100

12.0 Specifications..102
12.1 Electrical Characteristics ...102

12.1.1 LVCMOS ..102
12.1.2 DC Characteristics ...102

12.1.2.1 Maximum Ratings ..102
12.1.2.2 Operating Parameters ..103

12.1.3 AC Characteristics..104
12.1.3.1 MasterClock and Clock Parameters ...104
12.1.3.2 System Interface Parameters ...105
12.1.3.3 Capacitive Load Deration..105

12.1.4 Timing Diagrams ..106
12.2 PLL Passive Components. ..108
12.3 Pin Descriptions ...109
12.4 Pin Specifications...111

12.4.1 120-pin PQFP Pin-out ..111
12.4.2 120 Pin PQFP Physical Pin Location ...112
12.4.3 179-pin PGA Pin-out ..113
12.4.4 179-Pin PGA Physical Pin Location ...114

Appendix A. Differences from the R4000 .. 115
A.1 Software visible differences...115

A.1.1 Cache Ops ..115
A.1.2 Cache Parity...115
A.1.3 Status Register...115
A.1.4 Configuration Register...116
A.1.5 Unimplemented Operation Exception and other cause bits ..116
A.1.6 Integer Divide-by-Zero ..116
A.1.7 Cache Parity Error exception ...116

A.2 System Design differences...116
A.2.1 Processor Initialization...116
A.2.2 System Interface..116
A.2.3 RP Bit Effect on System Interface ...117
MTI Confidential – 4 – July, 1995

R4300 RISC Processor Specification v2.2
A.3 Other Differences ..117
A.3.1 I and D Cache ..117
A.3.2 TLB..117

A.3.2.1 TLB entries ...117
A.3.2.2 Interactions between ITM & TLB Ops ..117

A.3.3 Floating Point Coprocessor ...118
A.3.3.1 Floating-point Datapath ..118
A.3.3.2 Variable latencies ...118
A.3.3.3 Cvt.[s,d].l instruction ...118

A.3.4 RP Bit Effect on PClock ..118
A.3.5 Pipeline...118
A.3.6 Interrupts ...118
A.3.7 Kernel Physical Address Segment Organization ...118
A.3.8 JTAG ...119

Appendix B. Differences from the R4200 ... 121
B.1 Software visible differences ...122
B.2 System Interface...122
B.3 Other Differences...123

Appendix C. Glossary ... 124
July, 1995 – 5 – MTI Confidential

R4300 RISC Processor Specification v2.2

July, 1995 – 6 – MTI Confidential

List of Tables

Table 1: Summary of Spec Objectives .. 2

Table 2: Integer instruction latencies ... 14

Table 3: Instruction Latencies/Execution Rate on Floating-Point Data Movement 15

Table 4: Floating-point Instruction Latencies1 ...16

Table 5: Cache Operations ... 24

Table 6: System Control Coprocessor CP0 register list ... 35

Table 7: CP0 Instructions ... 48

Table 8: Encoding of system interface commands SysCmd(4) .. 81

Table 9: Encoding of SysCmd(3) & SysCmd(2) for Address Cycle ... 82

Table 10: Encoding of SysCmd(1:0) for block address requests .. 82

Table 11: Encoding of SysCmd(1:0) for single address requests.. 82

Table 12: Encoding of SysCmd(3:0) for processor data identifiers.. 82

Table 13: Encoding of SysCmd(3:0) for external data identifiers... 83

Table 14: Exception Types ... 86

Table 15: Exception Vectors... 87

Table 16: Maximum Ratings.. 102

Table 17: Operating Parameters.. 103

Table 18: MasterClock and Clock Parameters .. 104

Table 19: System Interface Parameters .. 105

Table 20: Capacitive Load Deration ... 105

R4300 RISC Processor Specification v2.2
List of Figures

Figure 1: Processor block diagram...4

Figure 2: Pipeline Activities ..7

Figure 3: Pipeline Interlocks and Exceptions ...9

Figure 4: Format of Instruction Cache line ...21

Figure 5: Format of Data Cache line ..21

Figure 6: Data Cache State Transition ...22

Figure 7: Flush Buffer format..25

Figure 8: DCData and ICData Read Timing...29

Figure 9: DCTag and ICTag Read Timing..30

Figure 10: DCData and ICData Write Timing ...31

Figure 11: DCTag Write Timing..31

Figure 12: ICTag Write ...32

Figure 13: Instruction and Data Cache Back-to-Back Data/Tag Write Timing ...32

Figure 14: Cache RAM Topological View...34

Figure 15: R4300 32-bit Address Space ..49

Figure 16: R4300 64-bit Address Space ..50

Figure 15: R4300 xkphys region detail...51

Figure 17: PMaster* Timing: Processor to ExtAgent..62

Figure 18: PMaster* Timing: ExtAgent to Processor..63

Figure 19: PMaster* Timing: Processor Read Request ...63

Figure 20: EValid*, PValid* Timing...64

Figure 21: Multi-cycle EValid*, PValid* Timing...64

Figure 22: EOK* Timing ..65

Figure 23: EOK* Timing: Killed Processor Write ..65

Figure 24: EOK* Timing: Killed Processor Read..66

Figure 25: EReq* Timing: Bus Request ...66

Figure 26: EReq* Timing: Bus Release..67

Figure 27: External Request Arbitration ...68

Figure 28: Processor request for bus arbitration and external agent release ..69

Figure 29: Processor block write request with D data rate...70

Figure 30: Processor single write request followed by a killed and retried write request70

Figure 31: Killed and retried write request with intervening external request...71

Figure 32: Processor read request...72

Figure 33: Killed and retried processor read request ...72

Figure 34: Killed and retried read request with intervening external request ...73

Figure 35: External write request ...73

Figure 36: Single read request followed by read response ..74

Figure 37: Block read response, system interface already in slave state ..75
July, 1995 – 7 – MTI Confidential

R4300 RISC Processor Specification v2.2
Figure 38: Single read request followed by external write request (external agent keeps bus)75

Figure 39: External write followed by external read response, system interface in slave state76

Figure 40: Delayed processor read request ...76

Figure 41: Two processor write requests, second write delayed ...77

Figure 42: Processor block write request with Dxx data rate ...78

Figure 43: Processor single word read followed by block write request...78

Figure 44: Consecutive processor single word write requests with D data rate...79

Figure 45: Consecutive processor single word write requests with Dxx data rate79

Figure 46: Consecutive processor write requests followed by external write request................................79

Figure 47: External Agent Gives Up Bus for One Processor Request ...80

Figure 48: MasterClock ..106

Figure 49: TClock ...106

Figure 50: Clock Jitter ..106

Figure 51: Processor clock, PClock to SClock divisor of 2...107

Figure 52: System Interface Edge Timing Relationships ...108

Figure 53: External PLL Passive Components. ...109
MTI Confidential – 8 – July, 1995

R4300 RISC Processor Specification v2.2 Introduction
1.0 Introduction

This document contains the specification of the R4300 processor chip. The description of the
internals of R4300 is not intended to reflect the details of R4300 implementation, but rather to give
a general idea about the main features of the chip microarchitecture. The description of the R4300
external system interface is detailed enough to enable system designers to design systems based
on the R4300 processor.

R4300 is a low cost, low power processor that is compatible with the MIPS-I, MIPS-II and MIPS-
III Instruction Set Architecture (ISA) as defined in the “MIPS R-Series Architecture” specification.
The terms R4300 and “the processor” are used interchangeably throughout this document.

The chip does not support external secondary caches, nor multiprocessing. The floating point
operations are fully supported by an on-chip FPU implementation.

1.1 Reference Documents

MIPS R-Series Architecture Specification.
IEEE-754/1985 IEEE Standard for Binary Floating-Point Arithmetic
IEEE Std.1149.1/D6; IEEE JTAG Document
IEEE Std.8 sec.2 Interface Standard for Low Voltage CMOS (LVCMOS)
MIPS R4000 Microprocessor User’s Manual (MIPS part number M8-00040)
(Appendix A notes some of the differences between R4300 and the R4000)

1.2 Data Formats and Addressing

R4300 supports all of the data formats defined by the architecture specification (byte, halfword,
word, and double word). Unaligned accesses are supported through the explicit instructions, such
as LWR, LWL, LDR, LDL, and etc. The byte ordering is configurable into either big-endian or little-
endian alignment via the Configuration register (BE) bit. Additionally, reverse endian (RE) is
supported for user code. The machine uses byte addressing with alignment constraints for
halfword, word, and doubleword accesses.

1.3 Registers

There are 32 general registers. Each register is a doubleword (64 bits). These registers are
essentially equivalent except for r0, which is hardwired to a zero value, and r31, which is used as
an implicit link register for jump and link instructions.

The R4300 processor supports the special registers Program Counter (PC), Multiply/Divide higher
word register (HI), and Multiply/Divide lower word register (LO).

The floating point coprocessor contains 32 floating-point registers which are 64 bits wide. These
registers support the single and double precision operand format. The floating point registers may
be configured for MIPS II or MIPS III compatibility.

The on-chip system control coprocessor (CP0) uses 25 registers. These registers are 32 bits wide
except for EntryHi, XContext, EPC, and ErrorPC, which are 64 bits wide.
July, 1995 – 1 – MTI Confidential

Introduction R4300 RISC Processor Specification v2.2
1.4 Spec Objectives

Table 1: Summary of Spec Objectives

ISA compatibility MIPS-I, MIPS-II and MIPS-III
Clock frequency 10Mhz min / 62.5MHz max
Pipeline clock 10Mhz min / 100MHz max
System interface clock 62.5MHz
Supply voltage min 3.0V typ 3.3V max 3.6V
(internal and I/O) (for 100MHz operation)
Power dissipation typ 1.8W for 100MHz

@3.3V, max operating freq
Die area 43.0 mm2

using 0.35um CMOS technology
with 3 metal and 2 poly layers.

Package 120 pin p-QFP
Junction temperature min 0 degC max 125 degC
Caches On-chip, direct mapped, 16kBi, 8kBd
TLB 32 double entries

page size: 4kB to 16MB, in 4x increment
VSIZE=40
PSIZE=32

System interface 32-bit Address/Data bus
Performance (est.) 60 SPECint

45 SPECfp
(assumes a system with memory latency
 of 175ns and D fill pattern.)
MTI Confidential – 2 – July, 1995

R4300 RISC Processor Specification v2.2 Overview
2.0 Overview

The R4300 processor has a five-stage execution pipeline. Each pipeline stage takes one pcycle
(pclock runs at a multiple frequency of MasterClock set by the DivMode(1:0) pins). The execution
of each instruction thus has a latency of at least five pcycles. An instruction might take longer; for
example, the pipeline must stall when the required data is not in the cache and must be retrieved
from main memory. Once the pipeline has been completely filled, five instructions are always
being executed simultaneously. When the pipeline is not stalled, the processor has a throughput
of one instruction per cycle.

The five stages of the R4300 pipeline are:

1. Instruction Fetch IC
2. Decode, file read, branch/jump RF
3. Execution EX
4. Data cache read DC
5. File or data cache write WB

The pipeline includes one pclock delay slot for branch type instructions. There is a hardware
interlock supported for load type instructions.
July, 1995 – 3 – MTI Confidential

Overview R4300 RISC Processor Specification v2.2
Figure 1: Processor block diagram

The Processor block diagram shows the main components of the R4300 chip. They include:

1. Execution unit
2. Coprocessor 0
3. Pipeline control
4. Instruction address
5. Instruction cache
6. Data cache
7. System interface
8. Clock generation

System Interface Clock Generator

Instruction
Cache

Data
Cache

Co-Processor
0

Execution
Unit

Instruction
Address

Pipeline
Control

Addr/Data Controls
MTI Confidential – 4 – July, 1995

R4300 RISC Processor Specification v2.2 Overview
The execution unit contains the hardware resources necessary to execute all of the MIPS integer
and floating point instructions. It contains a 64-bit wide register file, a 64-bit wide integer/Mantissa
data path, and a 12-bit wide exponent data path.

Coprocessor 0 contains the memory management unit and the exception processing unit. The
memory management unit is responsible for effective address translation from virtual to physical,
and for performing memory access checks between different memory segments (kernel,
supervisor, user).

The translation lookaside buffer (TLB) technique is used to provide translation of virtual address
to physical. R4300 chip supports VSIZE=40, and PSIZE=32. R4300 (like R4000 / R4400) supports
seven different page sizes of 4 KBytes, 16 KBytes, 64 KBytes, 256 KBytes, 1 MBytes, 4 MBytes
& 16 MBytes. The TLB contains 32 entries, each entry mapping to an odd/even pair of page frame
numbers.

The exception processing unit contains all of the system control coprocessor registers. The format
of data in these registers is described in detail in section 6 of this spec.

Pipeline control assures that the R4300 instruction pipeline operates properly when conditions
such as: cache misses, flush buffer full, multicycle instructions, or system exceptions occur.

Instruction address calculates the effective address of the next instruction to be fetched. It
contains the PC incrementer, branch address adder, and the conditional branch address selector.

Instruction cache is a directly mapped, virtually indexed, physically tagged cache. Each cache line
includes 8 instructions, 21 tag bits, and 1 line valid bit. The cache data interface is 64 bits wide.
Cache parity is not supported.

Data cache is a directly mapped, virtually indexed, physically tagged, write back cache. Each
cache line includes 4 words of data, 21 tag bits, 1 line dirty bit, and 1 line valid bit. The cache read
operation takes 1 cycle, but a store operation keeps the D-cache busy for 2 cycles. Cache parity
is not supported.

System interface allows the processor access to external resources required to satisfy internal
requirements. It contains a 32-bit wide, multiplexed address and data bus, clock signals,
interrupts, and a number of control signals.

Clock generator multiplies the input clock frequency (MasterClock) to produce the pipeline clock.
The ratio of PClock (pipeline clock) to MasterClock is set by DivMode(1:0) pins of the chip. The
DivMode values of 0, 1, 2 and 3 define PClock to MasterClock ratios of 1:1, 1.5:1, 2:1, and 3:1
respectively. The system interface clock runs at the same frequency as the MasterClock. Using
the Reduced Power (RP) bit of the Status Register, both pipeline and interface clocks can be
switched to run at quarter speed. To minimize the skew between the input clock and the internal
clocks, the chip uses phase lock loop (PLL) technology.
July, 1995 – 5 – MTI Confidential

R4300 RISC Processor Specification v2.2 Operation Fundamentals
3.0 Operation Fundamentals

3.1 Power management

One of the objectives of the design of the R4300 chip is to minimize the power dissipation in order
to make this chip suitable for use in battery operated systems, as well as in an environment where
low power consumption/heat dissipation is desirable. Several architectural choices were made to
achieve this objective. They include:

 • Write back cache which reduces the system bus store traffic.
 • Segmented direct mapped I-cache which reduces power consumption in the I-cache by enabling

only the segment which contains the requested address.
 • Doubleword read from the I-cache into a buffer. During typical sequential cache accesses the next

instruction can be found in this buffer reducing the frequency of I-cache access.
 • Integrating the fpu and integer units into a single execution unit with shared resources reduces the

size of the chip, thus reducing overall interconnect capacitance.
 • Using a 5 stage pipeline results in reduced logic, interconnect and overall smaller device sizes.

Also particular attention was paid to circuit and logic design to lower the power consumption of the
chip.

The chip supports both normal and reduced power operation modes. Transitions from one of these
modes to the other is caused by the software setting or resetting the RP bit in the CP0 Status
Register. Setting the reduced power mode (RP=1) results in the chip reducing the pipeline clock
frequency and the system interface clock frequency by a factor of 4.

To further reduce the power consumption, the system may want to turn the power off for some of
the system components. The R4300 chip supports this requirement by allowing the software easy
access to all of the registers including GPR, FPR, and all CP0 registers. Thus, the state can be
restored via the software reloading all of these registers after the power is restored. The cache
content will not be saved, and therefore the cache should be invalidated during the power up
routine and flushed during the power down routine. The R4300 chip supports all of the relevant
cache and TLB operation instructions which will allow the invalidating all of cache and TLB
locations. At power up/reset, when the Reset signal at the pin is deasserted, execution begins at
the reset vector (0xbfc00000) in BigEndian mode. This vector is located within the unmapped and
uncached address space so that the cache and TLB need not be initialized to handle this
exception. As in the R4000, the contents of all registers are undefined when this exception occurs,
except for the Random register which is initialized to TLBENTRIES-1, the Wired register which is
initialized to 0, and the Status register which has SR and TS bits equal to 0 and ERL and BEV
which are equal to 1. The other bits of the Status register are undefined. Upon ColdReset Config
register bits BE is initialized to 1 for BigEndian mode and the EP field is initialized to 0 for "D" data
rate. These bits can be written by software and are unaffected by Soft Reset or NMI.

3.2 Processor Pipeline

3.2.1 Pipeline Overview
The R4300 processor has a five-stage execution pipeline. That is, each instruction takes five
clocks to complete and a new instruction can start on each clock. The pipeline clock, PClock, is a
multiple of the frequency of the external system clock. The following figure illustrates the activities
happening within each pipe stage as the function of each instruction type.
July, 1995 – 6 – MTI Confidential

Operation Fundamentals R4300 RISC Processor Specification v2.2
Figure 2: Pipeline Activities

3.2.2 Pipeline Interlocks and Exceptions
The processor has a simple pipe which allows the overlap of instruction execution across the five
pipe stages. The pipeline does in-order issue, in-order execution, and in-order completion, the
same order as in the instruction stream.

1 2

IC RF EX DC WB

PClock

Phase

Cycle

Activities
Instr Fetch

Computational

Load/Store

Branch

ITC

ICF

ITLB

RFR

IDEC

BCMP

DVA

DCR

DTCDTLB

RFW

DCW

IVA

Cycle Phase Mnemonic Descriptions
IC 1

2 ICF Instruction Cache Fetch

ITLB Instruction micro-TLB read

RF 1 ITC Instruction cache Tag Check

2 RFR Register File Read

IDEC Instruction DECode

IVA Instruction Virtual Address calculation

EX 1 BCMP Branch Compare

1,2 ALU Arithmetic Logic operation

DVA Data Virtual Address calculation

DC 1 DCR Data Cache Read

DTLB Data joint-TLB read

2 LA Load data Alignment

DTC Data cache Tag Check

WB 1 DCW Data Cache Write

RFW Register File Write

ALU

1 2 1 2 1 2 1 2

LA
MTI Confidential – 7 – July, 1995

R4300 RISC Processor Specification v2.2 Operation Fundamentals
Pipeline flow is interrupted when an interlock condition is detected or when an exception occurs.
The Interlock condition is resolved by stalling the whole pipe, while an exception aborts the
relevant instruction as well as all those that follow and calls an exception handler from a pre-
defined address.

The following figure illustrates the various interlock conditions and the different types of
exceptions, at their predefined pipe stages.

For cases of simultaneous interlocks and exceptions from different pipeline stages, the interlocks
and exceptions from the later pipeline stages will be processed before those from earlier pipeline
stages i.e. exception from DC stage takes precedence to a coincident exception from the RF
stage.

For simultaneous interlocks and exceptions from the same pipeline stage, the following figure lists
different interlocks and exceptions in decreasing order of priority with the highest priority listed
first.
July, 1995 – 8 – MTI Confidential

Operation Fundamentals R4300 RISC Processor Specification v2.2
Figure 3: Pipeline Interlocks and Exceptions

Interlocks
ITM Instruction TLB Miss
ICB Instruction Cache Busy
LDI Load Data Interlock
MCI Multi-cycle Interlock
CPI Coprocessor 2 Interlock
DCM Data Cache Miss
DCB Data Cache Busy
COp Cache Op
CP0I CP0 Bypass Interlock

IC RF EX DC WB

PClock

Stalls

ITM

ICB

COp

MCI

DCM

DCB

IC RF EX DC WBExceptions

ITLB

DTLB

CPE

DBE

TRAP

INTR

Exceptions
IADE Instruction Address Error
ITLB Instruction TLB exception
IBE Instruction Bus Error
SYSC SYSCALL instruction
BRPT Breakpoint Instruction
CPU Coprocessor Unusable
RSVD Reserved Instruction
RST External reset exception
NMI External NMI exception
OVFL integer overflow
TRAP TRAP instruction exception
FPE Floating Point exceptions
CPE Coprocessor 2 Exception
DADE Data Address Error
DTLB Data TLB exception
WAT Reference to Watch Address
DBE Data Bus Error
INTR External Interrupt signals

LDI

CPI

IADE

IBE

SYSC

BRPT

CPU

RSVD

DADE

WAT

OVFL

FPE

RST
NMI

CP0I
MTI Confidential – 9 – July, 1995

R4300 RISC Processor Specification v2.2 Operation Fundamentals
3.2.3 Pipeline Operation
The pipeline operation can best be illustrated by a few examples that show how certain typical
instructions are executed. The instructions used in these examples are: ADD, JALR, BEQ, TLT,
LW, and SW. Note that the floating point instructions are executed in the pipeline just like
multicycle integer instructions.

Interlocks
ITM Instruction TLB Miss

ICM Instruction Cache Miss

MCI Multi-cycle Interlock

LDI Load Interlock

CPI Coprocessor Interlock1

DCM Data Cache Miss

DCB Data Cache Busy

COp Cache Op

IC RF EX DC WB

PClock

Stalls

ITM
ICM

DCMMCI
DCB
COp

IC RF EX DC WBExceptions

ITLB
IBE

DTLBCPE
DBETrap

INTR

Exceptions
ITLB Instruction TLB invalid/refill

IBE Instruction Bus Error

CPE Coprocessor Exception1

Trap Instruction Exceptions:
syscall, breakpoint, trap,
reserved instruction,

coprocessor unusable,
overflow, FP exceptions.

INTR Interrupt, NMI, Reset

DTLB Data TLB invalid/modified/refill

WAT Reference to Watch Address

F1 F2Phase F1 F2 F1 F2 F1 F2 F1 F2

Notes

1. Coprocessor Interlock stall CPI and Coprocessor Exception CPE are defined to

LDI
CPI

WAT
INTR
July, 1995 – 10 – MTI Confidential

Operation Fundamentals R4300 RISC Processor Specification v2.2
3.2.3.1 Add ADD rd,rs,rt

IC stage. In phase 2, the fourteen least significant bits (LSBs) of the virtual address are used to
address the I-cache. The two most significant bits of these are used to select one of four
I-cache banks. The remaining LSBs are used to address the selected bank and the
cache line physical page frame number (PPFN) tag. The micro-TLB translates the
virtual page frame number (VPFN) to the PPFN. Late in phase 1 of the next pipe stage
RF, the PPFN is compared with the PPFN tag from the cache and the cache hit/miss
signal is produced. The virtual PC is incremented by 4 so that in the following cycle the
next sequential instruction can be fetched.

RF stage. During phase 2, the 2-port register file is addressed with the rs and rt fields and the
register’s data becomes valid at the register file’s output. Meanwhile, the bypass muxes
select inputs from the EX or DC stage output depending on the need for an operand
bypass.

EX stage. The ALU controls are set to do an A+B operation, the operands flow into the ALU inputs,
and the ALU operation is started. The results of the ALU is latched into the ALU output
latch during phase 2.

DC stage. A no_op stage for this instruction. The data from the output of the EX (ALU) is moved
into the output latch of the DC.

WB stage. During phase 1, the WB latch feeds the data to the input of the register file. The file is
addressed with the rd field and the file write strobe is enabled. By the end of phase 1,
the data is written into the register file.

3.2.3.2 Jump and Link Register JALR rd,rs

IC stage. Please refer to the ADD instruction.

RF stage. During phase 2, the register addressed by the rs field is read out of the register file.

EX stage. During phase 1, the value of register rs is clocked into the virtual PC latch, which will
then be used in phase 2 to fetch the next instruction.

The value of the virtual PC incremented during the RF stage is incremented again to
produce the link address PC+8 where PC is the address of the JALR instruction. The
resulting value is the PC to which the program will eventually return. This value is placed
in the Link output latch of the Instruction Address unit.

DC stage. The PC+8 value is moved from the Link output latch to the output latch of the DC
pipeline stage.

WB stage. Refer to the ADD instruction. Note that if no value is explicitly provided for rd then
register 31 is used as the default. If rd is explicitly specified, it cannot be the same
register addressed by rs; otherwise, the result of executing such an instruction is
undefined, as stated in the MIPS R-Series Architecture manual.

3.2.3.3 Branch on Equal BEQ rs,rt,offset

IC stage. Refer to the ADD instruction.

RF stage. During phase 2, the register file is addressed with the rs and rt fields and the contents
of these registers are placed in the register file output latch.

EX stage. During phase 1, a check is performed to determine if each corresponding bit position of
these two operands has equal values. If they are equal, the next PC will be set to
PC+target, where target is the sign extended offset field. If they are not equal, the next
PC will be set to PC+4. The next PC resulted from the branch comparison is valid at the
beginning of phase 2 for instruction fetch.

DC stage. no_op
MTI Confidential – 11 – July, 1995

R4300 RISC Processor Specification v2.2 Operation Fundamentals
WB stage. no_op

3.2.3.4 Trap if Less Than TLT rs,rt

IC stage. Refer to the ADD instruction.

RF stage. Refer to the ADD instruction.

EX stage. The ALU controls are set to do an A-B operation, the operands flow into the ALU inputs,
and the ALU operation is started. The results of the ALU is latched into the ALU output
latch during phase 2.

DC stage. The sign bits of operands and of the ALU output latch are checked to determine whether
the “Less_Than” condition is met. If it is met, the next PC is loaded with the value of the
exception vector. The instructions in the previous pipeline stages are killed. The EXL bit
of the CP0 Status Register is checked. If the "Less_Than" condition is not met then the
PC continues incremented and sequential instruction flow is executed.

WB stage. The CP0 EPC Register is loaded with the value of the PC for the trap instruction if the
“Less_Than” condition was met and the EXL bit was not set in the DC stage.

3.2.3.5 Load Word LW rt,offset(base)

IC stage. Refer to the ADD instruction.

RF stage. Refer to the ADD instruction. Note that the base field is in the same place as the rs field.

EX stage. Refer to the ADD instruction. For this instruction, the inputs to the ALU come from the
GPR[base] and from the sign extended offset field. The result of the ALU operation
latched into the ALU output latch in phase 2 represents the effective virtual address of
the operand.

DC stage. The D-cache is accessed in parallel with the TLB. The cache index field is compared
with the Physical Frame Number (PFN) field of the TLB entry. After passing through the
load aligner, the aligned data is placed in the DC output latch during phase 2.

WB stage. During phase 1, the cache read data is written into the file addressed by the rt field.

3.2.3.6 Store Word SW rt,offset(base)

IC stage. Refer to the ADD instruction.

RF stage. Refer to the LW instruction.

EX stage. Refer to the LW instruction for the effective address calculation. From the RF output
latch the GPR[rt] is sent through the bypass mux and into the main shifter. The shifter
performs the byte align operation for the operand. The results of the ALU and the shift
operations are latched in the output latches during phase 2.

DC stage. Refer to the LW instruction for the cache access. Additionally, the merged data from the
load aligner is moved into the store data output latch during phase 2.

WB stage. If there was a cache hit, the content of the store data output latch is written into the D-
cache at the appropriate word location.

Note that all store class of instructions use the Data Cache for two consecutive pipeline
clock cycles. If the following instruction requires to use the Data Cache, the pipeline will
be stalled by one pcycle, to complete the writing of an aligned store data.
July, 1995 – 12 – MTI Confidential

R4300 RISC Processor Specification v2.2 Execution Unit
4.0 Execution Unit

4.1 Goals

The execution unit is designed to reduce power consumption and simplify the hardware
requirements while providing an adequate level of performance by maximizing usage of each
functional element. For R4300’s target applications, floating point performance is less critical than
integer performance.

4.2 Overview

The instruction execution unit is tightly coupled to the on-chip cache memory system, I/DCache,
and the on-chip memory management unit, CP0. The unit has a multifunction pipe and is
responsible for the execution of:

 • Integer arithmetic and logic instructions
 • Floating-point Coprocessor CP1 instructions
 • Branch/Jump instructions
 • Load/Store instructions
 • Exception instructions
 • Special instructions

All floating-point instructions, as defined in the MIPS ISA for the floating-point co-processor CP1,
are processed by the same hardware as for the integer instructions. That is to say, there is no
separate floating point coprocessor. However, the execution of floating-point instructions can still
be disabled via the coprocessor usability CU bit defined in the CP0 Status Register.

The pipelined execution unit performs different functions at different times, depending on the
instruction stream. Multi-cycle operations such as floating-point addition require a more elaborate
control sequence than single-cycle operations such as integer addition. Since simplicity is the key
to achieving low-cost and low-power in this design, multi-cycle instructions are not allowed to
overlap with the execution of any other instructions. That is, the pipeline will stall until the current
instruction in the EX stage completes its multi-cycle execution sequence. Because of this, the
pipeline control is simple, the precise exception is easily maintained and the requirement for a dual
write-port register file is eliminated.

In order to support system power down mode, all internal state information vital to restart the
processor from the point of power cut off is read and write accessible. Prior to power off, all this
information must have been read and saved off chip into the non-volatile memory. Also, it is the
system’s responsibility to power off the chip when the system is in idle state. Note that the Load
Link LLbit bit is not required to be saved since it would be cleared by the cache invalidation during
the power up routine.

Pipeline control within the execution unit is specified with a simple coprocessor interface protocol.
This makes it easy to support future enhancements such as a graphic accelerator or other special
purpose coprocessor.

The execution unit uses a modular design approach to further reduce dynamic power
consumption. Control logic is partitioned into small independent blocks responsible for a set of
instructions. When relevant instructions are not in the instruction stream, the corresponding
control blocks are inactive. Also, when functional elements in the data path are idle, they operate
on a constant selected to minimize power dissipation, instead of on data from the bus.
July, 1995 – 13 – MTI Confidential

Execution Unit R4300 RISC Processor Specification v2.2
4.3 Functional Description

The instruction execution unit is designed to process the MIPS-III instruction set efficiently and
cost effectively, while still maintaining downward compatibility with the MIPS-I and MIPS-II ISA.

Even though this processor does not support a multiprocessor operating environment, the
synchronization support instructions as defined in MIPS-II/-III ISA -- load linked and store
conditional, are still processed correctly, in order to be compatible with R4000. The load link (LLbit)
is emulated -- set by the LL instruction, cleared by an ERET or cache miss, and tested by the SC
instruction. The only operation to the LLbit that is excluded is reset due to a cache invalidation by
an external agent.

Note that the SYNC instruction is executed as a NOP instruction since all load/store instructions
in this processor are executed in program order.

4.3.1 Instruction latencies
Here is the latency for integer instructions, measured in processor pipeline clock cycles:

Table 2: Integer instruction latencies

Notes:

1. The taken branch instruction is fetched in the EX stage of the branch instruction. The branch
comparison and the target address calculation are done in phase 1 of the EX stage. The MIPS
architecturally defined branch delay slot of one cycle is still required. Similarly, the jump
instruction also requires one delay slot.

2. To be compatible with MIPS-II instruction set, hardware will interlock if the result of a load is to
be used by the immediately following instruction.

All data movement between the floating-point and memory is accomplished by coprocessor load
and store operations. Data may be directly moved between the floating-point coprocessor and the
integer processor by move to and move from coprocessor instructions:

Instruction Types Pipeline Clock Cycles

Mult 5

MultU 5

DMult 8

DMultU 8

Div, DivU 37

DDiv, DDivU 69

Branch instr1 1

Jump instr1 1

Load instr2 1

Store instr 1
MTI Confidential – 14 – July, 1995

R4300 RISC Processor Specification v2.2 Execution Unit
Table 3: Instruction Latencies/Execution Rate on Floating-Point Data Movement

Notes:

1. The hardware will interlock for one cycle if the load result is used by the instruction in the load
delay slot.

To obtain the optimum performance at the given power and cost goals, the R4300 pipeline does
not perform an EX to RF bypass for the floating-point result of a convert, computational, LWC1 or
LDC1 instruction. If the subsequent FP instruction in RF stage depends on the result of the current
EX-stage FP instruction, the current EX-stage FP instruction will complete. Its EX-stage result will
be registered into the DC stage. Meanwhile, the RF-stage FP instruction will advance into the EX-
stage. It is then stalled for one pipeline clock to wait for the result to be bypassed from DC-to-EX,
before it begins the execution.

Note that this EX-to-RF bypass limitation does not apply to integer operations nor to floating-point
data movement instructions (except LWC1 and LDC1).

Note the extra clock latency for the LWC1 and LDC1 instructions is due to the one clock Load Data
Interlock stall for bypassing the data from the DC stage into the EX stage.

The R4300 execution unit incorporates variable latency for most floating-point operations, to
provide some (modest) boost in performance, and in some cases to reduce the complexity of the
design. The variable latency design is as simple as possible. Thus if during a multi-cycle an
exception can be detected by early examining the source operands (i.e. a source exception), the
instruction takes only two cycles in EX. Likewise, if the non-exceptional result of zero or infinity can
be determined by just examining the operands, then the result is also be returned in two cycles
(e.g. infinity times a non-zero number). FP exceptions, other than source exceptions do not
terminate an instruction until it has completed as if there were no exception. In other words, result
exceptions are not reported as they are found, instead they are reported at the end of normal
execution.

Floating point add and subtract terminates on the second cycle if a source exception occurs or if
at least one operand is zero or infinity. The instruction completes on the third cycle in all other
cases.

Floating point multiply finishes in two cycles if a source exception is detected, or if, during the first
cycle, the result can be determined to be zero or infinity. It finishes in the second cycle if at least
one of the operands is a power of 2. In all other cases it takes the full number (i.e. the maximum
specified for the format) of cycles to complete. Thus, multiply does not finish as soon as the
remaining bits are zero. Also, since multiply uses the whole EX stage of the datapath on every
iteration, there can be no overlap between multiply and add.

Instruction Pipeline clock cycles

LWC11 2/1

SWC1 1/1

LDC11 2/1

SDC1 1/1

MTC1 1/1

MFC1 1/1

DMTC1 1/1

DMFC1 1/1

CTC1 1/1
July, 1995 – 15 – MTI Confidential

Execution Unit R4300 RISC Processor Specification v2.2
Floating Point Divide and Square Root finish in the second cycle on either a source exception or
if the result can be determined to be zero or infinity. Otherwise they continue to take the maximum
amount of cycles. Integer divide's variable latencies are like floating point divide's except that
integer divide never returns an answer on the first cycle and it can't cause any exceptions. Thus,
integer divide always takes the maximum number of cycles.

Floating-point convert instructions also complete in the second cycle for various trivial cases.

Execution latencies of a floating-point instruction without data dependency are shown in the
following table:

Table 4: Floating-point Instruction Latencies1

Notes:

1. If the FP register result of a FP instruction (except Mov.fmt) is needed by the subsequent
instruction, an additional one pipeline clock is required for the result to be bypassed from DC to
EX stage.

2. Architecturally defined branch delay slot of one also applies to all branch instructions on floating
point coprocessor condition.

3. The trivial cases for the multicycle FP instructions take two pipeline clocks to complete.

All CPU/FPU instructions that are not mentioned in the above tables have a latency of one pipeline
clock cycle.

Pipeline clock cycles3

Instruction.Format S D W L

Add.fmt 3 3 - -

Sub.fmt 3 3 - -

Mul.fmt 5 8 - -

Div.fmt 29 58 - -

Sqrt.fmt 29 58 - -

Abs.fmt 1 1 - -

Mov.fmt 1 1 - -

Neg.fmt 1 1 - -

Round.W.fmt 5 5 - -

Trunc.W.fmt 5 5 - -

Ceil.W.fmt 5 5 - -

Floor.W.fmt 5 5 - -

Round.L.fmt 5 5 - -

Trunc.L.fmt 5 5 - -

Ceil.L.fmt 5 5 - -

Floor.L.fmt 5 5 - -

Cvt.s.fmt - 2 5 5

Cvt.d.fmt 1 - 5 5

Cvt.W.fmt 5 5 - -

Cvt.L.fmt 5 5 - -

C.cond.fmt 1 1 - -

BC1T2 1
MTI Confidential – 16 – July, 1995

R4300 RISC Processor Specification v2.2 Execution Unit
4.3.2 Unit Organization
The execution unit’s data path consists of:

 • A 64-bit Integer/Mantissa Data Path
 • An Operand Bypass Network
 • 32 64-bit Integer Registers
 • 32 64-bit Floating-point Registers
 • A 12-bit Exponent Data Path
 • A 64-bit Instruction Virtual Address Generator

The execution control logic comprises of:

 • An Instruction Decoder
 • A Pipeline Run/Stall state machine
 • An Integer multiply/divide sequencer
 • A Floating-point instruction sequencer
 • An Operand Bypass control
 • An Exception detector/generator

4.3.2.1 Integer/Mantissa Data Path
The integer/mantissa data path is 64 bits wide and is compatible with both 32-bit and 64-bit
operands for integer and floating-point numbers. Proper sign-extension or zero-fill is performed on
the operands prior to any computations. Correspondingly, sign-extension or zero-fill is performed
on intermediate results when required. Exception testing such as integer overflow is done with
proper bit extraction.

The data path handles partial-word read or write operations for load and store instructions in both
big- or little-endian mode. This mode is specified by the combination of the big-endian memory
system mode bit as set by the BigEndian BE bit in CP0 Configuration Register and ReverseEndian
RE mode bit in CP0 Status Register.

For the store class of instructions, the main bi-directional shifter performs an alignment shift on the
register read data. No concatenation of register read data with original memory data is necessary
since the Data Cache has byte-wide write enable controls.

For the load class of instructions, it is necessary from the performance point of view to maintain a
load delay of one clock cycle. Due to the timing requirements imposed by this load delay goal, a
dedicated byte-wide shifter (Load Aligner) is needed to shift the memory read data in bytes,
halfwords and words in the right or left direction.

The integer/mantissa data path has only one carry-propagate adder, one multiplier, and one bi-
directional shifter for all integer and floating-point computation instructions. The adder is also used
to compute data virtual address for load and store, and to compare two operands in trap
instructions. The multiplier is used for both integer and floating-point multiplication, in single or
double precision. The shifter has built-in guard/round/sticky collection logic for an FP pre-
alignment shift. The shifter is also responsible for FP post-normalization, integer variable shift, and
store alignment shift.

The data path has one Leading Zero Counter for floating-point normalization shift calculation, one
Boolean Logic functional unit for integer logic operations, and a floating-point unpacker and a
repacker. The unpacker breaks down single- and double-precision formatted operands into sign,
exponent and mantissa fields, while the Repacker does the reverse process.
July, 1995 – 17 – MTI Confidential

Execution Unit R4300 RISC Processor Specification v2.2
4.3.2.2 Operand Bypass Network
For performance reasons, it is necessary for the results in the instruction execution EX stage and
the data cache access DC stage to be available to subsequent instructions waiting for it in the
following EX stage as the source operands rs and/or rt. Thus, the Operand Bypass Network is built
into the data path to allow feedback of results registered from the EX and DC stages to the input
of EX stage.

Similarly, to maintain the minimum branch delay slot of one pipeline clock cycle for all branch
instructions on the floating-point co-processor condition, the result from the preceding floating
point compare instruction in the EX, DC, or WB stage will be fed back for the branch condition
testing in the RF stage.

In cases where the result of a particular instruction (Load) is not available until the DC stage but
is required by the next instruction in its EX stage then the hardware will cause Load Data Interlock
stall. The Load Data Interlock stalls the pipeline for one clock while the data from the DC stage is
bypassed into the EX input registers for use during the next clock cycle.

4.3.2.3 Register File
The register file has total of sixty-four 64-bit wide registers to accommodate the MIPS-III ISA
requirement of 32 general-purpose GPR registers and 32 floating-point FGR registers. The register
file is a two read-port one write-port design.

Of the many user selectable operating modes, two modes affect the accessibility of this register
file. The UX mode bit in the CP0 Status Register selects between the 32- or 64-bit user addressing
and operating modes. When operating in the 32-bit user mode, the most-significant 32 bits of the
GPR registers contains the sign-extended value of the register bit 31. The FR mode bit selects
between 16 or 32 floating-point registers. When operating with 16 floating-point registers, all odd
physically addressed registers are inaccessible.

In addition to the integer and floating-point general-purpose registers, GPR and FGR, six special
registers are included in the MIPS-III ISA:

 • A 64-bit Program Counter PC
 • A 64-bit Integer Multiply/Divide Register higher result Hi
 • A 64-bit Integer Multiply/Divide Register lower result Lo
 • A 1-bit Load/Link Register LLbit
 • A 32-bit Floating-point Implementation/Revision Register FCR0
 • A 32-bit Floating-point Control/Status Register FCR31

Among all these special registers, registers Hi, Lo and FCR31 are read and write accessible to
system software to allow retrieval and restoration of the processor states during the system power
up and down routines.

4.3.2.4 Floating-Point Instruction Execution
In conjunction with system software, execution of single and double-precision floating-point
instructions conform to the ANSI IEEE-754/1985 standard for binary floating-point arithmetic. The
MIPS-II/III ISA specifies that the extended and quad data formats are not implemented in
hardware, thus, the unimplemented operation exception is initiated for these formats.

Floating-point exceptions are logically precise. These include five IEEE-specified exceptions:
underflow U, overflow O, divide-by-zero Z, invalid V and inexact I, plus the MIPS-defined
unimplemented operation E. This last exception is not maskable in the R4300 implementation.
MTI Confidential – 18 – July, 1995

R4300 RISC Processor Specification v2.2 Execution Unit
The hardware implementation cost is significant for processing denormalized DEN input operands,
except for compare instructions. Thus, the unimplemented operation exception is initiated, and
software emulation takes over when a denorm is encountered. For un-normalized results a
properly signed zero or minimum norm is returned if the Flush-to-Zero mode FS bit is set in the
Floating-point Status FCR31 register. If the FS bit is not set, an unimplemented operation
exception is taken.

For IEEE-specified invalid operations, with the trap disabled, the default quiet Not-a-Number
QNaN is generated.

The exponent data path is a 12-bit dual carry-select adder, which is used for exponent subtraction,
pre-alignment shift calculation, and exponent addition for post-normalization final exponent
update.

4.3.2.5 Instruction Address Unit
The Instruction Address unit is responsible for the generation of 64-bit instruction virtual addresses
to be used by TLB, ICache and CP0. The unit has its own incrementor to calculate the next
sequential PC address. To maintain a branch latency of 1 pipeline clock cycle, it has its own
equality comparator and a separate ripple-carry adder to generate the branch target address.

In addition, the Address unit has Exception Vector Generation logic to decode the type of
exception and then present the appropriate vector as the next PC address. It also has the
Exception PC EPC register pipe chain to maintain a history of PC addresses for each pipe stage
so that the PC address associated with the exception causing instruction can be loaded into the
EPC or ErrorEPC register. Note that Exception Handling is done in the CP0 unit.

Sources for instruction execution exceptions include:

 • Integer Overflows
 • Traps
 • System Calls
 • Breakpoints
 • Reserved Instructions
 • Coprocessor Unusable Exceptions
 • Floating-point Exceptions
July, 1995 – 19 – MTI Confidential

Execution Unit R4300 RISC Processor Specification v2.2
MTI Confidential – 20 – July, 1995

R4300 RISC Processor Specification v2.2 Data and Instruction Caches
5.0 Data and Instruction Caches

R4300 contains on-chip instruction and data caches. Both the data cache and the instruction
cache are direct mapped. The data cache implements a Write-Back write policy. R4300 has an
instruction cache size of 16 kilobytes and a data cache size of 8 kilobytes. Since both instruction
and data caches are larger than TLB page size (4 KBytes), software should exercise caution to
avoid the “aliasing problem”. This “aliasing problem” arises when two different virtual addresses
map to the same physical page.

5.1 Cache Organization

The format of an instruction cache line is shown below. Cache parity is not supported on R4300.

Figure 4: Format of Instruction Cache line

The format of a data cache line is shown below.

Figure 5: Format of Data Cache line

5.2 Cache States

5.2.1 Instruction Cache
The Instruction cache maintains two cache states:

 • Invalid
 • Valid

A cache line in an Invalid state does not contain valid information. A cache line in a Valid state
contains valid information.

PTag V

1

Data

256

PTag
V
Data

Physical tag (bits 31:12 of physical address)
Valid bit
Cache data

20

 PTag
1

Data

128

PTag
V
Data

Physical tag (bits 31:12 of physical address)
Valid bit
Cache data

 201

V D

Dirty bitD
July, 1995 – 21 – MTI Confidential

Data and Instruction Caches R4300 RISC Processor Specification v2.2
5.2.2 Data Cache
The Data cache maintains three cache states:

 • Invalid
 • Valid Clean
 • Valid Dirty

A cache line in an Invalid state does not contain valid information. A cache line in a Valid Clean
state contains valid information and consistent with main memory. A cache line in Valid Dirty state,
has valid data but it is not consistent with main memory.

5.2.2.1 Data Cache State transition
The following diagram illustrates the data cache state transition sequence.

Figure 6: Data Cache State Transition

5.2.3 Cache state change during processor execution
The state of a valid cache line may be modified due to the processor executing a cache operation.
These operations are discussed later in this document.

5.2.4 Manipulation of the Caches by an External Agent
R4300 does not provide any mechanisms for an external agent to examine and manipulate the
state and contents of the caches.

5.2.5 Cache Line
The line size for the instruction cache is 8 Words (32 Bytes). The line size for the data cache is 4
Words (16 Bytes).

5.2.6 Instruction Cache line replacement
During an instruction cache miss, a memory read is issued. After the requested line has returned
from memory, it will be written to the instruction cache. At that time the pipeline will resume
execution, and the instruction cache will be re-accessed.

5.2.7 Data Cache line replacement
Since data cache is Write-Back, a cache line load will be issued to main memory on a load or store
miss. Details are described below.

Data load miss:

Invalid

Clean
Valid
Dirty

Valid

Read

Write Read

 Read Miss

Write

 Read Hit,
 Write.

Cache-opCache-op

Cache-op
MTI Confidential – 22 – July, 1995

R4300 RISC Processor Specification v2.2 Data and Instruction Caches
 • If the cache block is not dirty, it will be replaced with the requested line.
 • If the cache block is dirty, its contents will be moved to the flush buffer, the requested line will be

loaded into the cache block, and data in the flush buffer will be written to memory.

Data Store miss:

 • If the cache block is not dirty, the requested line will be merged with the store data and written to
cache.

 • If the cache block is dirty, its contents will be moved to the flush buffer, the requested line will be
merged with the store data and written to cache, and data in the flush buffer will be written to
memory.

After the data from memory is written to the data cache, the pipe will resume execution.

5.3 Cache Access Time

The instruction and data caches can be accessed for reads in one processor cycle.

Data writes are pipelined and effectively terminate in one processor cycle. In the first cycle, the tag
is checked and the second cycle the data is written into the data RAM.

5.4 Cache Miss Handling

For an instruction cache miss, the sequence is:

(1) Move the instruction physical address to the pads.
(2) Wait for a pipeline clock PClock, aligned with the system clock SClock boundary.
(3) Read memory.
(4) Move memory data to the instruction cache array.
(5) Write memory data into the instruction cache array.
(6) Restart the processor pipe.

The instruction cache miss penalty in number of PClocks is: 4 + (Clock Alignment) + (Memory
Access & Transfer Time for Entire Cache Line) + 1.

For a data cache miss, the sequence is based on a “Critical Data Word First” scheme. The
processor will restart its pipe as soon as the memory supplies the desired word in the first
doubleword of a block transfer. The sequence is summarized as following:

(1) Move the data physical address to pads. At the same time, move the dirty victim cache
line to the flush buffer if needed.

(2) Wait for a pipeline clock PClock, aligned with system clock SClock boundary.
(3) Read memory.
(4) Receive the desired doubleword.
(5) Receive other doubleword. Meanwhile, move the desired data to the processor pipe.

Interlock the data cache from being accessed by a subsequent instruction.
(6) Move memory data to the data cache array. Continue to interlock the data cache.
(7) Write memory data into the data cache array. Continue to interlock the data cache.

The data cache miss penalty in number of PClocks is: 3 + (Clock ALignment) + (Memory Access
& Transfer Time for Critical Doubleword) + 1.

5.5 Cache Operations

R4300 supports all Mips R4000PC / R4200 / R4400PC processor cache operations. Cache
operation instructions are part of MIPS-III ISA and are described in greater detail in the Mips R-
Series Architecture manual. A list of cache operations are provided in the following table.
July, 1995 – 23 – MTI Confidential

Data and Instruction Caches R4300 RISC Processor Specification v2.2
Table 5: Cache Operations

5.6 Reset Effects

Cold or Warm reset will not set the cache states to invalid. The invalidation of caches is left to
software.

Sets the cache state of cache block to
invalid.

Examines cache state, if Valid Dirty,
then that block is written back to main
memory. Then the cache block is set
to invalid.

Read the tag for the cache block at
the specified index and place it into
TagLo.

Write the tag for the cache block at
the specified index from the TagLo
register.

If the cache does not contain the
specified address, and the block is
Valid Dirty the block will be written
back to main memory. Then the tag
will be set to the specified physical
address and will be marked valid.

If the cache block contains the
specified address, cache block will be
marked invalid.

If the cache block contains the
specified address, and it is Valid
Dirty, the data will be written back to
main memory. Then, the cache block
is marked invalid.

Fill the Instruction cache block from
main memory.

If the cache block contains the
specified address, and it is marked
Valid Dirty, the block will be written
back to main memory, and marked
Valid Clean.

If the cache block contains the
specified address, the block will be
written back to main memory
unconditionally.

OperationName Caches

Index Invalidate

Index WriteBack
Invalidate

Instruction

 Data

Index Load Tag

Index Store Tag

Instruction & Data

Instruction & Data

Create Dirty Data

Instruction & Data

 Data

Hit Invalidate

Hit WriteBack
Invalidate

 Data

 Instruction

Hit WriteBack

Hit WriteBack

Fill Instruction

Exclusive
MTI Confidential – 24 – July, 1995

R4300 RISC Processor Specification v2.2 Data and Instruction Caches
5.7 Flush Buffer

R4300 contains an on-chip flush buffer. This buffer is used as temporary data storage for outgoing
data and is organized as a 4 deep fifo; that is it can buffer 4 addresses with 4 double word data.
For uncached write operations, flush buffer can accept any combination of single or doubleword
data until it is full, with each write occupying one entry in the buffer. For data cache block write
operations, the flush buffer accepts 2 double words with 1 address, occupying two entries in the
buffer. It is able to take two block reference at a time. Instruction cache block writes use 4
doublewords with 1 address. Instruction cache block writes occupy the entire flush buffer. The
flush buffer is able to take one read memory reference at a time. The format of the flush buffer is
shown in the figure below.

Figure 7: Flush Buffer format

Address is a 32-bit physical address, and size indicates the size of data to be transferred out.

During an uncached store, data will be stored in this buffer until it is taken by the external interface.
While data awaits in this area, processor pipeline continues to execute.

During a load miss or a store miss to a cache line in the dirty state, a read request for the missing
cache line is sent to the external interface. The dirty data is then stored in this buffer until the
requested data is returned from external interface. At this time the processor pipeline will continue
to run while the flush buffer writes the dirty data to the external interface.

If this buffer is full and the processor attempts a load or a store which requires external resources,
the processor pipeline will stall until this buffer is no longer full.

Data

DataSize

4

64

Data

Data

Address

Address

32

Address

AddressSize

Size

Size

R/W

1

R/W

R/W

R/W
July, 1995 – 25 – MTI Confidential

Data and Instruction Caches R4300 RISC Processor Specification v2.2
MTI Confidential – 26 – July, 1995

R4300 RISC Processor Specification v2.2 Cache Test Mode.
6.0 Cache Test Mode.

This mode allows an I.C. tester or external test circuit to read and write the internal instruction and
data cache memories directly via the use of a few pins.

6.1 Cache Memory Description

The R4300 caches have four functional parts: Data Cache Data (DCData), Data Cache Tag
(DCTag), Instruction Cache Data (ICData) and Instruction Cache Tag (ICTag).

DCData is composed of two banks of static RAM. Each bank is 256 rows deep. Each of these rows
contains two 64-bit words. This gives a total of 128 columns per row. A 2:1 multiplexor is used to
connect the double-bit columns to a 64 bit bus.

DCTag is composed of a 44 bit wide by 256 bit deep static RAM. Each 44-bit row consists of two
22 bit tags. Each tag contains a 20 bit physical page address, a valid bit, and a dirty bit.

ICData is composed of four banks of static RAM. Each bank is 256 rows deep. Each of these rows
contains two 64-bit words. This gives a total of 128 columns per row. A 2:1 multiplexor is used to
connect the double-bit columns to a 64-bit staging register, which in turn is multiplexed onto a 32-
bit instruction bus.

ICTag is composed of a 42 bit wide by 256 bit deep static RAM. A 2:1 multiplexor connects the
double-bit columns to a 21 bit tag bus. The 21 bits include 20 bits of physical page address, plus
a valid bit.

6.2 Test Mode Description

Cache Test Mode uses the existing data path to move data between the caches and the I/O pins.
Access of the instruction and data caches can be pipelined. Since the internal datapath of the
processor are 64 bits and the system interface bus is 32 bits, data is transferred on the bus in two
consecutive system clock cycles, but is written to and read from the cache internally in one
processor clock cycle. Cache Test Mode requires the external clock to processor clock ratio to be
2:1 (DivMode(1:0) pins should have the value “10”). Since the caches are written with 64-bit data,
the index must be aligned to double word addresses (i.e. SysAD<2..0> = 000), and tag indexes
must be aligned to block addresses, which is 16 bytes for data cache and 32 bytes for instruction
cache (i.e. SysAD<3..0> = 0000 for dcache, SysAD<4..0> = 00000 for instruction cache).

For both reads and writes, the addressed double word data will be presented on the bus in little
endian order, the least significant bits <31..0> will be Data0 and the most significant bits <63..32>
will be Data1.

For reads, address and command are clocked in, and three cycles later data is clocked out of the
processor for both data and tag portions of instruction and data caches. For writes, DCData,
DCTag portions and ICData portion behave similarly, the index is followed by the write data and
writes can be issued back-to-back; however ICTag writes require one dead cycle between
successive writes.

A timing diagram is given in the following sections illustrating read and write transactions.

Note that before test mode can function, the internal and external clock must be stable. For more
information see R4300 processor external specification on power up procedure.

To enable the Cache Test Mode on R4300, JTAG commands are utilized to set the internal Cache
Test Mode Sticky bit. Upon power up the following sequence of events enable Cache Test Mode:

DivMode(1..0) set to “10” (divide by two mode)

ColdResetB asserted (low)
July, 1995 – 27 – MTI Confidential

Cache Test Mode. R4300 RISC Processor Specification v2.2
ResetB asserted (low)

ColdResetB deasserted (high) after the clocks are stable

Shift in “110” into JTAGIR register (this sets the Cache Test Mode Sticky register)

To enable the cache test mode on the PGA packaged R4300 which has an external TestModeB
pin, the following signals must be asserted. This is the normal R4300 power up sequence, but with
the TestModeB pin asserted.

TestModeB asserted (low) while ColdResetB is asserted (low)

DivMode(1..0) set to “10” (divide by two mode)

ResetB asserted (low)

ColdResetB deasserted (high) after the clocks are stable

In this state most internal control logic is reset, and the processor pipeline is stalled. During cache
test, all unused input only pins must be driven and held to a stable logic level. While in cache test
mode the processor will only drive the SysAD bus in the fourth (and fifth for Data1) cycle of a read
command. At all other times these inputs must be driven by the Tester to a valid logic level to
prevent damage to the input buffers of the processor.

6.3 Test Mode Commands

The IntB pins are used as a command bus for cache test mode. The following is a list of available
commands in cache test mode.

 • IntB[2..0] = 000 DCData array Read.
 • IntB[2..0] = 001 DCTag array Read.
 • IntB[2..0] = 010 DCData array Write.
 • IntB[2..0] = 011 DCTag array Write.
 • IntB[2..0] = 100 ICData array Read.
 • IntB[2..0] = 101 ICTag array Read.
 • IntB[2..0] = 110 ICData array Write.
 • IntB[2..0] = 111 ICTag array Write.
 • IntB[4] = 1 NOP.

IntB[4] should be used as command strobe, where a read or write command will only take place if
this pin is low. This allows idle cycles / NOP cycles in test mode.

It is necessary to issue at least 6 NOP commands to initialize the internal state of the processor
once the test mode is activated.

6.4 Cache Memory Address

The cache index is clocked in from SysAD bus and held in a cache Index register. IntB[3] is used
as an enable for this register. When this input is low a new index is read from the SysAD bus. The
bits of the SysAD bus that are used for this are indicated below.

 • For ICData portion SysAD[13..3] is used as index to cache.
 • For ICTag portion SysAD[13..5] is used as index to cache.
 • For DCData portion SysAD[12..3] is used as index to cache.
 • For DCTag portion SysAD[12..4] is used as index to cache.
MTI Confidential – 28 – July, 1995

R4300 RISC Processor Specification v2.2 Cache Test Mode.
6.5 Cache Read

After a cache read command is clocked in, the processor will read the selected cache and then
output the data onto SysAD bus. The Tester must stop driving the SysAD bus one cycle after it
has issued the read command. After four cycles the processor will drive the SysAD bus and
provide the data requested. It will drive the bus for one system cycle.

If the target is DCData or ICData, a 64 bit doubleword, will be read.Thus all bits of the SysAD bus
will be driven. If the target is either DCTag or ICTag, only a subset of the SysAD bus will be driven.

When reading the DCTag the SysAD bus will contain the following values:

 • SysAD[31..12] 20 Tag Bits
 • SysAD[11] Valid Bit
 • SysAD[10] Dirty Bit
 • SysAD[9..0] Index

When reading the ICTag the SysAD bus will contain the following values:

 • SysAD[31..12] 20 Tag Bits
 • SysAD[11] Valid Bit
 • SysAD[10..0] Index

The following diagram illustrates cache read timing. Note that the behavior is common to all
portions of cache.

Figure 8: DCData and ICData Read Timing

SClock

IntB[2..0] Read

IntB[3]

XXX

IndexSysAD

1 2 3 4 5

Data0

PValidB

IntB[4]

TestModeB

ResetB

Data1
July, 1995 – 29 – MTI Confidential

Cache Test Mode. R4300 RISC Processor Specification v2.2
Figure 9: DCTag and ICTag Read Timing

6.6 Cache Write

A cache write consists of a write command on the IntB pins followed by write data on the next
cycle. Pipelined writes are possible by latching an index once and then writing data to different
cache elements using the same address.

When writing DCTag portion the SysAD bus should contain the following values:

 • SysAD[31..12] 20 Tag Bits
 • SysAD[11] Valid Bit
 • SysAD[10] Dirty Bit
 • SysAD[9..0] Unspecified

When writing ICTag portion the SysAD bus should contain the following values:

 • SysAD[31..12] 20 Tag Bits
 • SysAD[11] Valid Bit
 • SysAD[10..0] Unspecified

The following diagrams illustrate cache write timing.

SClock

IntB[2..0] Read

IntB[3]

XXX

IndexSysAD Tag

PValidB

IntB[4]

TestModeB

ResetB

1 2 3 4 5
MTI Confidential – 30 – July, 1995

R4300 RISC Processor Specification v2.2 Cache Test Mode.
Figure 10: DCData and ICData Write Timing

Figure 11: DCTag Write Timing

SClock

IntB[2..0]

IntB[3]

XXX

IndexSysAD

IntB[4]

TestModeB

ResetB

1 2 3 4 5

Data1Data0 Index

Write Write

Data0 ...

SClock

IntB[2..0] Write

IntB[3]

XXX

IndexSysAD

IntB[4]

TestModeB

ResetB

1 2 3 4 5

Tag Index Tag

Write XXX
July, 1995 – 31 – MTI Confidential

Cache Test Mode. R4300 RISC Processor Specification v2.2
Figure 12: ICTag Write

The following figure illustrates a back to back write cycle. In this case the cache address is latched
and held into the index register. The first write is to a cache data bank; the second write is to the
cache tag bank. Note that the cache address in common for both writes.

Figure 13: Instruction and Data Cache Back-to-Back Data/Tag Write Timing

SClock

IntB[2..0] Write

IntB[3]

IndexSysAD

IntB[4]

TestModeB

ResetB

1 2 3 4 5

Tag Index Tag

XXXXXX Write

SClock

IntB[2..0] DataWr

IntB[3]

XXX

IndexSysAD

1 2 3 4 5

Data

IntB[4]

TestModeB

ResetB

TagWr

Index Data Tag

DataWr TagWr

Tag
MTI Confidential – 32 – July, 1995

R4300 RISC Processor Specification v2.2 Cache Test Mode.
6.7 Cache Organization

Two figures are provided below which illustrate a topological view and the formats of the
instruction and data caches. The topological view also contains address decoding scheme for
each memory portion.
July, 1995 – 33 – MTI Confidential

Cache Test Mode. R4300 RISC Processor Specification v2.2
Figure 14: Cache RAM Topological View

Data Bank0

Address 12 = 0
Address 13 = 0

Address 13=0,12=0

Address 13=0,12=1

Selects Col<0,4,...80>

Selects Col<1,5....81>

Address 3 = 1 Selects

Col<0,2,4,...142>

Col<1,3,5....143>

Address 3 = 0 Selects

Address<11..5> Select
128 rows

(256x 128)

Col 0

Col 127

R
O

W
 255

R
O

W
 0

Address<11..4> Select
256 rows

Data Bank1

Address 12 = 1
Address 13 = 0

Address 3 = 1 Selects

Col<0,2,4,...126>

Col<1,3,5....127>

Address 3 = 0 Selects

(256x 128)

Col 127

Col 0

R
O

W
 255

R
O

W
 0

Address<11..4> Select
256 rows

Data Bank2

Address 12 = 0
Address 13 = 1

Address 3 = 1 Selects

Col<0,2,4,...126>

Col<1,3,5....127>

Address 3 = 0 Selects

(256x 128)

Col 0

Col 127

R
O

W
 255

R
O

W
 0

Address<11..4> Select
256 rows

Data Bank3

Address 12 = 1
Address 13 = 1

Address 3 = 1 Selects

Col<0,2,4,...126>

Col<1,3,5....127>

Address 3 = 0 Selects

(256x 128)

Col 127

Col 0

R
O

W
 255

R
O

W
 0

Address<11..4> Select
256 rows

Data Bank0

Address 12 = 0

Address 3 = 1 Selects

Col<0,2,4,...126>

Col<1,3,5....127>

Address 3 = 0 Selects

(256x 128)

Col 0

Col 127

R
O

W
 0

R
O

W
 255

Address<11..4> Select
256 rows

Data Bank1

Address 12 = 1

Address 3 = 1 Selects

Col<0,2,4,...126>

Col<1,3,5....127>

Address 3 = 0 Selects

(256x 128)

Col 127

Col 0

Address<11..4> Select
256 rows

Address<10..4> Select
128rows

Address 12=0, 11=0
Select Col<0,4,..84>

Left side: Data Cache Right side: Instruction CacheTop of Die

Address 12=0, 11=1
Select Col<1,5,..85>

Address 12=0, 11=0
Select Col<2,6,..86>

Address 12=1, 11=1
Select Col<3,7,..87>

R
O

W
 0

R
O

W
 255

Col<0,1,2,3> Valid bit
Col<4,5,6,7> Tag bit 0
Col<80,81,82,83> Tag bit 19.

Col<0,1> Data bit 0
Col<126,127> Data bit 63

Col<0,1> Data bit 0
Col<126,127> Data bit 63

Col<0,1,2,3> Dirty bit.
Col<4,5,6,7> Valid bit
Col<8,9,10,11> Tag bit 0
Col<84,85,86,87> Tag bit 19.

Tag(128x84)

R
O

W
 127

Col 0

Col 83

R
O

W
 0

Address 13=1,12=0

Address 13=1,12=1

Selects Col<2,6,..82>

Selects Col<3,7,..83>
Tag(128x88)

R
O

W
 127

Col 0

Col 87

R
O

W
 0
MTI Confidential – 34 – July, 1995

R4300 RISC Processor Specification v2.2 System Control Coprocessor (CP0)
7.0 System Control Coprocessor (CP0)

CP0 registers and instructions provide access to the TLB and the caches. They also provide an
ability to manipulate the modes in which the processor can operate. The facilities for handling
interrupts and other exceptions are also controlled via CP0. Finally, any implementation
dependent test or debug features are contained in CP0.

The CP0 registers on the R4300 are bit for bit compatible with the R4000, and can be written and
read the same way. The effect of writing these registers differ slightly from the R4000, as noted in
Appendix A. Differences from the R4000.

7.1 R4300 Control Coprocessor Registers

The following table lists all CP0 registers used on the R4300. Attempting to write any unused
register is undefined and may have an unpredictable effect on the R4300 processor. Attempting
to read any unused register is undefined and may result in unpredictable data.

Table 6: System Control Coprocessor CP0 register list

Number Mnemonic Description
 0 Index Programmable Pointer into TLB array
 1 Random Random Pointer into TLB array
 2 EntryLo0 Low half of TLB entry for even VPN
 3 EntryLo1 Low half of TLB entry for odd VPN
 4 Context Pointer to kernel PTE table
 5 PageMask TLB Page Mask
 6 Wired Number of wired TLB entries
 7 ----- Unused
 8 BadVAddr Bad Virtual Address
 9 Count Timer Count
 10 EntryHi High half of TLB entry
 11 Compare Timer Compare
 12 SR Status Register
 13 Cause Cause of last exception
 14 EPC Exception Program Counter
 15 PRId Processor Revision Identifier
 16 Config Configuration Register
 17 LLAddr Load Linked Address
 18 WatchLo Memory Reference Trap address lower bits
 19 WatchHi Memory Reference Trap address upper bits
 20 XContext Context Register for MIPS III addressing
 21-25 ---- Unused
 26 PErr Parity error in cache
 27 ----- Unused
 28 TagLo Cache Tag Register
 29 TagHi Cache Tag Register (Reserved)
 30 ErrorEPC Error Exception Program Counter
 31 ----- Unused
July, 1995 – 35 – MTI Confidential

System Control Coprocessor (CP0) R4300 RISC Processor Specification v2.2
7.1.1 Index Register (0)
The Index register is a 6 bit read/write register which specifies an entry into the on-chip TLB. The
high order bit indicates the success or failure of a TLBP operation. The Index register is used to
specify an entry in the TLB to be used by the TLBR and TLBWI instructions. Note the Index field
contains six bits, but the R4300 only implements 32 entries. Thus, software should not load the
Index register with a value greater than 31 and attempt a TLBR or TLBWR operation.

where:

P Result of last Probe operation. Set to 1 if last TLB Probe instruction
was unsuccessful.

index Index to entry in TLB.
0 Must be all zeroes on reads and writes.

7.1.2 Random Register (1)
The Random register is a read only register of which 6 bits specify an entry in the on-chip TLB.
This register will decrement on every instruction executed. The values range between a low value
determined by the TLB Wired register, and an upper bound of 31. The TLB Random register is
used to specify the entry in the TLB affected by the TLBWR instruction. Upon Cold reset, or when
the Wired register is written, this register will be set to the upper limit.

where:

Random Index to entry in TLB.
0 Must be zero on all reads and writes.

7.1.3 EntryLo0 Register (2)
The EntryLo0 Register is a read/write register that is used to access on-chip TLB. EntryLo0 is for
even virtual pages. It is used by the TLBR, TLBWI, and TLBWR instructions. EntryLo0 contains
the Page Frame Number, along with several configuration bits for the TLB entry.

P 0 Index

31 30 6 5 0

0

31 6 5 0

Random

0 PFN C D V G

31 30 29 4 3 2 1 056
32 bit mode:

0 PFN C D V G

63 30 29 4 3 2 1 056
64 bit mode:
MTI Confidential – 36 – July, 1995

R4300 RISC Processor Specification v2.2 System Control Coprocessor (CP0)
where:

PFN Page Frame Number
C Cache Algorithm If C = 0 1 0, then the page is uncached.

If C = 0 1 1, then the page is cached.
Any other value (although undefined)
defaults to the page being cached.

V Page Valid if 1, Invalid if 0.
G If set in both Lo0 and Lo1, then ignore ASID.
0 Must be zero on all reads and writes.
D Page Dirty if 1, Clean if 0.

7.1.4 EntryLo1 Register (3)
The EntryLo1 Register is a read/write register that is used to access on-chip TLB. EntryLo1 is for
odd virtual pages. It is used by the TLBR, TLBWI, and TLBWR instructions. EntryLo1 contains the
Page Frame Number, along with several configuration bits for the TLB entry.

where:

PFN Page Frame Number.
C Cache Algorithm If C = 0 1 0, then the page is uncached.

If C = 0 1 1, then the page is cached.
Any other value (although undefined)
defaults to the page being cached.

V Page Valid if 1, Invalid if 0.
G If set in both Lo0 and Lo1, then ignore ASID.
D Page Dirty if 1, Clean if 0.
0 Must be zero on all reads and writes.

7.1.5 Context Register (4)
The Context register is a read/write register containing a pointer into a kernel Page Table Entry
(PTE) array. It is designed for use in the TLB refill handler.

The BadVPN2 field is not writable. It contains the VPN (bits 31..13) of the most recently translated
virtual address that caused the TLB miss. Bit 12 is excluded because a single TLB entry maps an
even-odd page pair. This format can be used directly as an address for pages of size 4K bytes.
For pages of 16M bytes, this value must be shifted and masked.

0 PFN C D V G

31 30 29 4 3 2 1 056
32 bit mode:

0 PFN C D V G

63 30 29 4 3 2 1 056
64 bit mode:
July, 1995 – 37 – MTI Confidential

System Control Coprocessor (CP0) R4300 RISC Processor Specification v2.2
The PTEBase is a read / write field, and contains the base address of the PTE table of the current
user address space.

where:

PTEBase Base address of the Page Entry Table.
BadVPN2 Virtual Page Number of the failed virtual address divided by two.
0 Must be zero on reads and write

7.1.6 PageMask Register (5)
The PageMask register is a read/write register that is used when reading or writing an on-chip
TLB. The TLBR, TLBWI, and TLBWR instructions use this register as a source or destination.
When virtual addresses are presented for translation, the corresponding bits in the TLB specify
whether virtual address bits 24..13 participate in the comparison. This implements a variable page
size on a per entry basis. R4300 implements 4K, 16K, 64K, 256K, 1M, 4M and 16M pages.

where:

MASK Mask for Virtual Page Size. The following table gives MASK values
for all seven page sizes. Any other value is undefined for R4300.

0 Must be zeroes on both read and write.

Table 1:

Page
Size

MASK field bits

24 23 22 21 20 19 18 17 16 15 14 13

4K 0 0 0 0 0 0 0 0 0 0 0 0

16K 0 0 0 0 0 0 0 0 0 0 1 1

64K 0 0 0 0 0 0 0 0 1 1 1 1

256K 0 0 0 0 0 0 1 1 1 1 1 1

1M 0 0 0 0 1 1 1 1 1 1 1 1

4M 0 0 1 1 1 1 1 1 1 1 1 1

16M 1 1 1 1 1 1 1 1 1 1 1 1

PTEBase BadVPN2 0

31 23 22 4 3 0

32 bit mode:

PTEBase BadVPN2 0

63 23 22 4 3 0

64 bit mode:

0 MASK 0

31 25 24 13 12 0
MTI Confidential – 38 – July, 1995

R4300 RISC Processor Specification v2.2 System Control Coprocessor (CP0)
7.1.7 Wired Register (6)
The TLB Wired register is a read/write register that specifies the boundary between the wired and
random regions in the TLB. This register is set to 0 upon Cold Reset. Writing to this register also
sets the Random register to 31. Writing a value greater than 31 to this register will result in
undefined behavior. The TLB entry specified by the Wired field is not considered to be in the wired
portion of the TLB.

where:

Wired TLB wired boundary.
0 Must be all zeroes on read and write.

7.1.8 BadVAddr Register (8)
The Bad Virtual Address register is a read-only register that displays the most recently translated
virtual address that failed to have a valid translation or that had an addressing error.

where:

BadVAddr Most recently translated virtual address that failed to have a valid
translation or that had an addressing error.

7.1.9 Count Register (9)
The Count register is a read/write register used to implement timer services. It increments at a
constant rate based on the clock cycle. On R4300, it will increment at one-half the PClock speed.
When the Count register has reached all ones, it will roll over to all zeroes and continue counting.
This register is both readable and writable. It is writable for diagnostic purposes.

where:

Count Current Count Value; updated at one-half PClock frequency.

0 Wired

31 6 5 0

BadVAddr

31 0
32 bit mode:

BadVAddr

63 0
64 bit mode:

Count

31 0
July, 1995 – 39 – MTI Confidential

System Control Coprocessor (CP0) R4300 RISC Processor Specification v2.2
7.1.10 EntryHi Register (10)
The EntryHi Register is a read/write register that is used to access on-chip TLB. It is used by the
TLBR, TLBWI, and TLBWR instructions. EntryHi contains the Address Space Identifier (ASID) and
the Virtual Page Number.

where:

R Region (00=user, 01=supervisor, 11=kernel) used to match
VAddr63..62

FILL Reserved; undefined on read, should be 0 or -1 on write (should
sign extend the virtual page number).

VPN2 Virtual Page Number divided by 2.
0 Must be zero on reads and writes.
ASID Address Space Identifier.

7.1.11 Compare Register (11)
The Compare register is a read/write register. When the value of the Count Register equals the
value of the Compare register, IP7 of the Cause register is set. This causes an interrupt on the
next execution cycle in which that interrupt is enabled. Writing to the Compare register will clear
the timer interrupt.

where:

Compare Value to be compared to Count register. An interrupt will be signaled
when they are equal.

7.1.12 Status Register (12)
The status register is a read/write register that contains the various mode, enables, and status bits
used on R4300. The contents of this register are undefined after a reset, except for TS, which is
zero; ERL and BEV, which are one. The SR bit is 0 after a Cold Reset, and 1 after NMI or (Soft)
Reset. Also the RP bit is set to 0 after a Cold Reset.

VPN2 0 ASID

31 13 12 8 7 0

R FILL VPN2 0 ASID

63 62 61 40 39 13 12 8 7 0

64 bit mode:

32 bit mode:

Compare

31 0
MTI Confidential – 40 – July, 1995

R4300 RISC Processor Specification v2.2 System Control Coprocessor (CP0)
where:

CU Coprocessor Unit usable if 1. CP0 is always usable by the kernel.
RP Reduced Power. Changes clock to quarter speed.
FR If set, enables MIPS III additional floating point registers.
RE Reverse Endian. Changes endianess in user mode.
ITS Instruction Trace Support. Enables trace support.
rsvd Reserved for future use. Read and write as zero.
BEV Controls location of TLB refill and general exception vectors.

(0=normal, 1= bootstrap).
TS A TLB Shutdown condition has occurred. This bit is set whenever a

multiple TLB hit has occurred (i.e. more then one entry in the TLB
matches during a TLB access).

SR Soft Reset or NMI has occurred.
0 Must be zeroes on read and write.
CH This is the CP0 Condition bit. It is readable and writable by software

only. It is not set or cleared by hardware.
CE, DE These fields are used only for compatibility reasons with the R4200

and are not used by the R4300 hardware.
IM Interrupt Mask. Enables and disables interrupts.
KX Kernel extended addressing enabled.
SX Supervisor extended addressing enabled.
UX User extended addressing enabled.
KSU Mode (10=user, 01=supervisor, 00=kernel).
ERL Error Level. Normal when zero, error if one.
EXL Exception Level. Normal when zero, exception if one.
IE Interrupt Enable.

7.1.13 Cause Register (13)
The Cause register is a read/write register that describes the nature of the last exception. A five
bit exception code indicates the cause of the exception and the remaining fields contain detailed
information relevant to the handling of certain types of exceptions.

The Branch Delay bit indicates whether the EPC has been adjusted to point at the branch
instruction which precedes the instruction that took an exception.

The Coprocessor Error field indicates the unit number referenced by an instruction causing a
“Coprocessor Unusable” exception.

RP FR RECU

2531 2628 27 16

15 8 7 6 2 1 0

KX SX KSU EXLERLUXIM IE

345

18 17 192021222324

CH0 SRTSBEVrsvdITS CE DE
July, 1995 – 41 – MTI Confidential

System Control Coprocessor (CP0) R4300 RISC Processor Specification v2.2
The Interrupt Pending field indicates which interrupts are pending. This field indicates the current
status and changes in response to external signals. IP7 is the timer interrupt bit, set when the
Count register equals the Compare register. IP6..2 are the external interrupts, set when the
external interrupts are signalled. An external interrupt is set at one of the external interrupt pins or
via a write request on the SysAD bus. IP1..0 are software interrupts, and may be written to set or
clear software interrupts.

where:

BD Branch Delay
CE Coprocessor Error
IP Interrupt pending
ExcCode Exception Code
0 Must be zeroes on read and write

Exception Codes are:

0 Int Interrupt
1 Mod TLB modification exception
2 TLBL TLB Exception (Load or instruction fetch)
3 TLBS TLB Exception (Store)
4 AdEL Address Error Exception (Load or instruction fetch)
5 AdES Address Error Exception (Store)
6 IBE Bus Error Exception (instruction fetch)
7 DBE Bus Error Exception (data reference: load or store)
8 Sys SysCall Exception
9 Bp Breakpoint Exception
10 RI Reserved instruction Exception
11 CpU Coprocessor Unusable Exception
12 Ov Arithmetic Overflow Exception
13 Tr Trap Exception
14 --- Reserved
15 FPE Floating Point Exception
16-22 Reserved
23 Watch Reference to WatchHi/WatchLo address
24-31 Reserved

7.1.14 EPC (14)
The EPC register is a read/write register that contains the address at which instruction processing
may resume after servicing an exception. For synchronous exceptions, the EPC register contains
either the virtual address of the instruction which was the direct cause of the exception, or when
that instruction is in a branch delay slot, the EPC contains the virtual address of the immediately
preceding branch or jump instruction and the Branch Delay bit in the Cause register is set.

31 30 29 28 27 16 15 8 7 6 2 1 0

BD 0 CE 0 IP 0 ExcCode 0
MTI Confidential – 42 – July, 1995

R4300 RISC Processor Specification v2.2 System Control Coprocessor (CP0)
where:

EPC Exception Program Counter.

7.1.15 Processor Revision Identifier (15)
The PRId register is a read-only register that contains information that identifies the
implementation and revision level of the processor and associated system control coprocessor.

The revision number can distinguish some chip revisions. However, MTI is free to change this
register at any time and does not guarantee that changes to its chips will necessarily change the
revision number, or that changes to the revision number necessarily reflect real chip changes. For
this reason, software should not rely on the revision number to characterize the chip.

The Implementation number for R4300 is 0x0B.

where:

Imp Implementation identifier.
Rev Revision Number.
0 Returns zeroes on reads.

7.1.16 Configuration Register (16)
The Config register specifies various configuration options that are available for R4300. It is
compatible with the R4000 Config register, but only a subset of the options available on the R4000
are possible on R4300. For that reason, there are many fields which are set to constant values.

The EP and BE fields are written to their default values by hardware during Cold Reset. These
fields are also readable and writable by software. The default values upon Cold Reset are as
follows: EP=0000, BE=1. The CU and K0 fields are readable and writable by software. There is
no other mechanism for writing to these fields, and their values are undefined after Reset (Cold or
Warm).

The EP and BE are expected to be changed only during processor initialization (done in uncached
space before any stores). If there are any changes to these values during normal operation,
correct behavior can not be guaranteed.

EPC

31 0
32 bit mode:

EPC

63 0
64 bit mode:

Imp Rev0

31 16 15 8 7 0

9

0 EP 000 BE 1 1 K0 1 0 CU0

023

0 0 1

4568

0 1 0

11121314151617

1 00 1

181920232427283031

EC
July, 1995 – 43 – MTI Confidential

System Control Coprocessor (CP0) R4300 RISC Processor Specification v2.2
where:

EC System clock ratio, read only
110 -> 1 : 1
111 -> 1.5 : 1
000 -> 2 : 1
001 -> 3 : 1
All other values of EC are undefined.
(Note: The system clock ratio encoding for the DivMode pins are not

the same as those shown above. For DivMode pin
encoding, see “8.3 Signal Descriptions“)

EP Pattern for writeback data on SYSAD port
0000 -> D
0110 -> DxxDxx
All other values of EP are undefined.

BE BigEndian.
0 -> Memory and kernel are Little Endian.
1 -> Memory and kernel are Big Endian.

CU Reserved (Readable and Writable by software).
K0 Kseg0 coherency algorithm.

This has the same format as the C field in EntryLo0 and EntryLo1.
If K0 = 0 1 0, then the region is uncached.
If K0 = 0 1 1, then the region is cached.
Any other value (although undefined) defaults to the region being

cached.
0 Returns 0 on read.
1 Returns 1 on read.

7.1.17 Load Linked Address (LLAddr) Register (17)
The LLAddr register contains the physical address read by the most recent Load Linked
instruction. This register exists for diagnostic purposes, and serves no function during normal
operation. It is both readable and writable by software.

where:

Paddr Bits 35..4 of the physical address. Note that for R4300, the MSB of
the physical address is only 31. A Load Linked instruction will write
0 into bits [31..28] of LLAddr, but a software write can set all 32 bits
to any value. This maintains software compatibility with R4000.

7.1.18 WatchLo (18)
R4300 processor provide a debugging feature to detect references to a physical address. Loads
or stores to the location specified by the WatchHi/WatchLo register pair cause a Watch trap.

 31 0

 PAddr

0 R WPAddr

31 3 2 1 0
MTI Confidential – 44 – July, 1995

R4300 RISC Processor Specification v2.2 System Control Coprocessor (CP0)
where:

PAddr Physical address bits 31..3.
R Trap on Read Access if 1.
W Trap on Write Access if 1.
0 Must be zeroes on reads and writes.

7.1.19 WatchHi (19)
R4300 processors provide a debugging feature to detect references to a physical address. Loads
or stores to the location specified by the WatchHi/WatchLo register pair cause a Watch trap.

where:

PAddr Physical address bits [35..32]. Note that for R4300, the MSB of the
physical address is only 31. So all of the bits of PAddr are ignored.
However all 4 bits of PAddr are software writable. This maintains
software compatibility with R4000.

0 Must be zeroes on reads and writes.

7.1.20 XContext Register (20)
The XContext register is a read/write register containing a pointer into a kernel Page Table Entry
(PTE) array. It is designed for use in the XTLB refill handler.

The R and BadVPN2 field is not writable. It contains the VPN of the most recently translated virtual
address that did not have a valid translation. It contains bits 39..13 of the virtual address that
caused the TLB miss. Bit 12 is excluded because a single TLB entry maps an even-odd page pair.
This format can be used directly as an address for pages of size 4K bytes. For page sizes other
than 4K bytes, this value must be shifted and masked.

The PTEBase field is writable as well as readable, and indicates the base address of the PTE table
of the current user address space.

where:

PTEBase Base address of the Page Entry Table.
BadVPN2 Virtual Page Number of the failed virtual address divided by two.
R Region (00=user, 01=supervisor, 11=kernel).
0 Must be zero on reads and writes.

0 PAddr

31 3 0

PTEBase BadVPN2 0

63 33 32 4 3 031 30

R

July, 1995 – 45 – MTI Confidential

System Control Coprocessor (CP0) R4300 RISC Processor Specification v2.2
7.1.21 PErr Register (26)
The PErr register exists only for compatibility reasons with R4000 / R4200. Since R4300 does not
implement parity on caches, this register is not used by hardware. It is software readable and
writable.

where:

Diagnostic Eight bit diagnostic field
0 Must be zeroes on all reads and writes

7.1.22 CacheErr Register (27)
The CacheErr register exists only for compatibility reasons with R4000 / R4200. Since R4300 does
not implement cache errors, this register is not used by hardware. It is a read only register that
returns 0 when read.

7.1.23 TagLo (28) and TagHi (29)
The TagLo register is a 32-bit read/write register used to hold the cache tag information for cache
instructions. Cache Store Tag instructions write the data from TagLo into cache and Cache Load
Tag instructions read the data from cache into TagLo register.

The TagHi register is reserved for future use.

The Tag registers are written by the CACHE and MTC0 instructions.

where:

PTagLo Physical address bits 31..12
Pstate Primary Cache State (0=invalid, 3=Dirty)
0 Must be zeroes on reads and writes

0 DIAGNOSTIC

31 8 7 0

0

31 0

Pstate 0PTagLo

31 8 7 6 5 02728

0

 TagLo

 0

31 0
 TagHi
MTI Confidential – 46 – July, 1995

R4300 RISC Processor Specification v2.2 System Control Coprocessor (CP0)
7.1.24 ErrorEPC (30)
The ErrorEPC register is similar to the EPC, but is used to store the PC on Reset and NMI
exceptions. It is read/write and contains the virtual address at which instruction processing may
resume after servicing an Error Exception.

where:

ErrorEPC Exception Program Counter for Reset and NMI.

7.2 CP0 Instructions

Coprocessor zero instructions on R4300 will perform the same basic functions as they did on the
R4000. The encoding will be identical for R4300.The only difference is in the implementation of
the Cache Ops. Please refer to the R-Series Architecture manual for details on the encoding and
function of the operations. Note that on R4300 like the R4000, the ERET instruction is supported
rather than the RFE instruction.

ErrorEPC

31 0
32 bit mode:

ErrorEPC

63 0
64 bit mode:
July, 1995 – 47 – MTI Confidential

System Control Coprocessor (CP0) R4300 RISC Processor Specification v2.2
Table 7: CP0 Instructions

7.2.1 CACHE - Cache Operations
These operations are used to access and manipulate the caches. They are documented in “Table
5: Cache Operations” in the in chapter “5.0 Data and Instruction Caches” of this document, as well as
in the R-Series Architecture document.

MTC0 Move To Coprocessor 0

MTC0 moves 32 bit sign extended contents of a general register to a
Coprocessor 0 register.

MFC0 Move From Coprocessor 0

MFC0 moves 32 bit sign extended contents of a Coprocessor 0 register to a
general register.

DMTC0 Double Move To Coprocessor0

DMTC0 moves 64 bit contents of a general register to a 64 bit Coprocessor 0
register. This operation is undefined for 32 bit Coprocessor 0 registers.

DMFC0 Double Move From Coprocessor 0

DMF0 moves contents of a 64 bit Coprocessor register to a general register.
This operation is undefined for 32 bit Coprocessor registers.

ERET Exception Return

ERET returns from an exception. Unlike a branch or jump, ERET does not
execute the next instruction. The PC will be loaded from the ErrorEPC register
if the processor is servicing an error trap (ERL is set), otherwise the PC is
loaded from the EPC register.

TLBR TLB Read

TLBR reads a TLB entry indexed by the Index CP0 register. PageMask,
EntryHi, EntryLo0 and EntryLo1 registers are loaded with the contents of the
TLB.

TLBWI TLB Write Indexed

TLBWI writes a TLB entry indexed by the Index CP0 register. TLB is loaded
with the contents of the PageMask, EntryHi, EntryLo0 and EntryLo1 registers.

TLBWR TLB Write Random

TLBWR writes a TLB entry indexed by the Random CP0 register. TLB is loaded
with the contents of the PageMask, EntryHi, EntryLo0 and EntryLo1 registers.

TLBP TLB Probe

TLBP probes the TPB for an entry that matches the virtual address specified in
the EntryHi register. The Index register is loaded with the address of the TLB
entry. If no TLB entry matches, the high-order bit of the Index register is set.
MTI Confidential – 48 – July, 1995

R4300 RISC Processor Specification v2.2 System Control Coprocessor (CP0)
7.3 R4300 32 bit Virtual Address Space

The following table describes the virtual address space when R4300 operates in 32-bit (MIPS II)
mode. Each of the three privilege modes, i.e. Kernel, Supervisor and User, has different access
rights to the various segments listed below.

Figure 15: R4300 32-bit Address Space

7.4 R4300 64 bit Virtual Address Space

The following table describes the virtual address space when R4300 operates in 64-bit (MIPS III)
mode. Each of the three privilege modes, i.e. Kernel, Supervisor and User, has different access
rights to the various segments listed below

0xffffffff Kernel virtual
address space (kseg3)

0xe0000000 Mapped, 0.5 GB
0xdfffffff Supervisor virtual

address space (ksseg)
0xc0000000 Mapped, 0.5 GB
0xbfffffff Uncached kernel physical

address space (kseg1)
0xa0000000 Unmapped, 0.5 GB
0x9fffffff Cached kernel physical

address space (kseg0)
0x80000000 Unmapped, 0.5 GB
0x7fffffff

User virtual
address space (kuseg)
Mapped, 2 GB

0x00000000
July, 1995 – 49 – MTI Confidential

System Control Coprocessor (CP0) R4300 RISC Processor Specification v2.2
Figure 16: R4300 64-bit Address Space

0xffffffff ffffffff Kernel virtual
address space (kseg3)

0xffffffff e0000000 Mapped, 0.5 GB
0xffffffff dfffffff Supervisor MIPS II

virtual address space (ksseg)
0xffffffff c0000000 Mapped, 0.5 GB
0xffffffff bfffffff Uncached kernel physical

address space (kseg1)
0xffffffff a0000000 Unmapped, 0.5 GB
0xffffffff 9fffffff Cached kernel physical

address space (kseg0)
0xffffffff 80000000 Unmapped, 0.5 GB
0xffffffff 7fffffff

Address error
0xc00000ff 80000000
0xc00000ff 7fffffff Kernel virtual

address space (xkseg)
0xc0000000 00000000 Mapped
0xbfffffff ffffffff Kernel physical

xkphys space (see below)
0x80000000 00000000 Unmapped
0x7fffffff ffffffff

Address error
0x40000100 00000000
0x400000ff ffffffff Supervisor MIPS III

virtual address space (xksseg)
0x40000000 00000000 Mapped
0x3fffffff ffffffff

Address error
0x00000100 00000000
0x000000ff ffffffff User virtual

address space (xkuseg)
0x00000000 00000000 Mapped
MTI Confidential – 50 – July, 1995

R4300 RISC Processor Specification v2.2 System Control Coprocessor (CP0)

July, 1995 – 51 – MTI Confidential

Figure 15: R4300 xkphys region detail

0xbfffffff ffffffff
Address error

0xb8000001 00000000
0xb8000000 ffffffff Cache/Coherency

Algorithm 7 (Cached)
0xb8000000 00000000 Unmapped, 4 GB
0xb7ffffff ffffffff

Address error
0xb0000001 00000000
0xb0000000 ffffffff Cache/Coherency

Algorithm 6 (Cached)
0xb0000000 00000000 Unmapped, 4 GB
0xafffffff ffffffff

Address error
0xa8000001 00000000
0xa8000000 ffffffff Cache/Coherency

Algorithm 5 (Cached)
0xa8000000 00000000 Unmapped, 4 GB
0xa7ffffff ffffffff

Address error
0xa0000001 00000000
0xa0000000 ffffffff Cache/Coherency

Algorithm 4 (Cached)
0xa0000000 00000000 Unmapped, 4 GB
0x9fffffff ffffffff

Address error
0x98000001 00000000
0x98000000 ffffffff Cache/Coherency

Algorithm 3 (Cached)
0x98000000 00000000 Unmapped, 4 GB
0x97ffffff ffffffff

Address error
0x90000001 00000000
0x90000000 ffffffff Cache/Coherency

Algorithm 2 (Uncached)
0x90000000 00000000 Unmapped, 4 GB
0x8fffffff ffffffff

Address error
0x88000001 00000000
0x88000000 ffffffff Cache/Coherency

Algorithm 1 (Cached)
0x88000000 00000000 Unmapped, 4 GB
0x87ffffff ffffffff

Address error
0x80000001 00000000
0x80000000 ffffffff Cache/Coherency

Algorithm 0 (Cached)
0x80000000 00000000 Unmapped, 4 GB

System Control Coprocessor (CP0) R4300 RISC Processor Specification v2.2
7.5 Translation Lookaside Buffer

Mapped virtual addresses are translated into physical addresses using a translation lookaside
buffer (TLB). R4300 implements a fully associative on-chip TLB. This TLB holds both instruction
and data pages, and is thus also referred to as the Joint TLB (JTLB). The TLB contains 32 entries,
each of which is simultaneously checked for a match with the extended virtual address. Each TLB
entry maps an even-odd pair of pages. The page size on R4300 can be 4K, 16K, 64K, 256K, 1M,
4M, or 16M bytes. The page size is specified on a per-entry basis by the MASK bit-mask field of
the entry. The valid values of the MASK field and the effect on the translation are documented in
the description of the PageMask Register.

A virtual address matches a TLB entry when the virtual page number (VPN) field of the virtual
address equals the VPN field of the entry, and either the Global (G) bit of the TLB entry is set, or
the address space identifier (ASID) field of the virtual address (as held in the EntryHi register)
matches the ASID field of the TLB entry. While the Valid (V) bit of the entry must be set for a valid
translation to take place, it is not involved in the determination of a matching TLB entry.

The operation of the TLB is not defined if more than one entry in the TLB matches. If one TLB entry
matches, the physical address and access control bits (C, D, and V) are retrieved; otherwise a TLB
refill exception occurs. If the access control bits (D and V) indicate that the access is not valid, a
TLB modification or TLB invalid exception occurs.

The format of each TLB entry in 64 bit addressing mode is as follows:

where:
MASK Comparison Mask (Determines Page Size).
R Region used to match VAddr63..62
VPN2 Virtual Page Number / 2
ASID Address Space Identifier.
PFN Page Frame Number (upper 20 bits of physical address).
C Cache Algorithm If C = 0 1 0, then the page is uncached.

If C = 0 1 1, then the page is cached.
Any other value (although undefined)
defaults to the page being cached.

D if set, page is dirty (writable).
V if set, entry is valid.

63 26 25 6 2 1 0

PFN C VD- -

35

191 189 168 167 136 135 128

VPN2 G ASID--R

139140141

255 217 216 204 192

- MASK -

205

127 90 89 70 66 65 64

PFN C VD- -

6769

190

68

4

MTI Confidential – 52 – July, 1995

R4300 RISC Processor Specification v2.2 System Control Coprocessor (CP0)
G if set, page is global when G bits in EntryLo1 & EntryLo0 are set.
- these bits are not stored in the TLB.

The format of each TLB entry in 32 bit addressing mode is as follows:

where:
MASK Comparison Mask (Determines Page Size).
VPN2 Virtual Page Number / 2
ASID Address Space Identifier
PFN Page Frame Number (upper 20 bits of physical address).
C Cache Algorithm If C = 0 1 0, then the page is uncached.

If C = 0 1 1, then the page is cached.
Any other value (although undefined)
defaults to the page being cached.

D if set, page is dirty (writable).
V if set, entry is valid.
G if set, page is global when G bits in EntryLo1 & EntryLo0 are set.
- these bits are not stored in the TLB.

7.5.1 Instruction Micro TLB
The thirty-two double entry TLB described above is a combined TLB that is visible to software.
R4300 will also implement a two entry “micro” TLB that is dedicated to instructions. This can be
thought of as the primary TLB for instructions. Instructions can access this TLB simultaneously
with data accessing the large combined TLB. If there is a miss in the microTLB, there will be a
pipeline stall while the new TLB entry is transferred from the combined TLB to the micro TLB. The
two entry microTLB is fully associative with a Least Recently Used replacement algorithm. Each
micro-TLB entry maps 4KB only. On the R4300, it is guaranteed that the microTLB is always a
subset of the software visible TLB.

31 26 25 6 2 1 0

PFN C VD- -

35

95 72 71 64

VPN2 G ASID-

757677

127 121 120 108 96

- MASK -

109

63 58 57 38 34 33 32

PFN C VD- -

3537 36

4

July, 1995 – 53 – MTI Confidential

System Control Coprocessor (CP0) R4300 RISC Processor Specification v2.2
7.6 R4300 Processor Modes

The R4300 processor will support several user selectable modes. All except ByPass PLL and
MasterClock to PClock ratios (DivMode) are set and reset by writing to the Processor Status
register (CP0 reg12) and the Configuration Register (CP0 reg16). ByPass PLL and DivMode
modes are documented in other sections.

7.6.1 Reduced Power Mode RP (bit 27 in Status Register)

The R4300 processor normally operates in a mode where the processor clock (PClock) operates
at a multiple of the Master Clock speed (3, 2, 1.5 or 1 selected by DivMode pins). The System
Interface Clock (SClock) operates at the same frequency as Master Clock.

The user may set the Reduced Power mode (RP) via a move to the Status register that sets the
RP bit. Upon setting this mode, the processor modifies its clocking scheme to slow the PClock to
one fourth of its normal frequency (i.e. 3/4, 2/4 1.5/4 or 1/4 of the Master Clock speed). SClock
and TClock will also be derived as one fourth of their normal frequency, (i.e. 1/4 of the Master
Clock speed). The clocks will switch frequency within 1 to 16 Master Clock cycles after the move
to Status register.

This feature is included to allow the user to selectively reduce power when the system is not being
heavily used. This feature will reduce the power consumed by the processor chip to 25% of its
normal value.

The default of this mode is normal clocking. The chip will return to this state after cold reset.

Software must be careful to execute a code sequence that will guarantee the proper operation of
the system upon setting or clearing the RP bit. Software must first write any registers on the
external agents that must be changed to accommodate the change in frequency (e.g. DRAM
refresh counters). Next software must guarantee that the system interface is in an inactive state.
This can be accomplished by an uncached read, which will guarantee the flush buffer is empty
upon completion of the read. Only then can software attempt to execute the instruction to set or
clear the RP bit. Finally, software should guarantee that at least the eight instructions immediately
preceding and following the Move to Coprocessor register will not cause a cache miss, TLB miss,
or exception of any kind.

7.6.2 Floating-Point Registers FR (bit 26 in Status Register)

This enables the user to access the full set of 32 64 bit floating point registers as defined in MIPS
III. When reset, the processor will access the registers as defined in the MIPS II architecture. This
functionality is the same as the R4000.

7.6.3 Data Rate EP (bits 27..24 in Configuration Register)

R4300 write data rate can be changed between “D” and “Dxx” modes under software control. It is
recommended to change it right after power up during processor initialization before any write
operations. This mode is set to “D” on Cold Reset.

7.6.4 System Endianness BE (bit 15 in Configuration Register)

The system endianness information is provided to R4300 through the software writable BE bit. It
is recommended to change it right after power up during processor initialization before any non-
word memory access operations. This mode is set to BigEndian on Cold Reset.

7.6.5 Reverse Endianness RE (bit 25 in Status Register)

When set, reverses the endianness for user software. This functionality is the same as the R4000.
MTI Confidential – 54 – July, 1995

R4300 RISC Processor Specification v2.2 System Control Coprocessor (CP0)
7.6.6 Instruction Trace Support Mode ITS (bit 24 in Status Register)

R4300 will support a mode to allow the user to track branches or jumps. This mode is set by setting
the ITS bit in the Status register. It can be disabled by resetting the ITS bit. This is new functionality
not implemented in the R4000.

When the ITS bit is set, the CPU reports all change of flow conditions on the SysAD bus by forcing
an instruction cache miss whenever a branch, jump or exception is taken.

7.6.7 Bootstrap Exception Vector BEV (bit 22 in Status Register)

The Bootstrap Exception Vectors (BEV) bit in the Status Register, when set, causes the base
exception vector to be located at virtual address of 0xbfc00000. When cleared, this base exception
vector is located at 0x80000000. This bit is used when diagnostic tests cause exceptions to occur
prior to verifying proper operation of the cache and main memory system.

7.6.8 Kernel eXtended addressing KX (bit 7 in Status Register)

If the KX bit is set, the processor will use the extended addressing TLB refill exception vector for
TLB misses on kernel addresses.

7.6.9 Supervisor eXtended addressing SX (bit 6 in Status Register)

If set enables MIPS III opcodes in supervisor-mode and causes TLB misses on supervisor
addresses to use the Extended TLB refill exception vector.

7.6.10 User eXtended addressing UX (bit 5 in Status Register)

If set enables MIPS III opcodes in user-mode and causes TLB misses on user addresses to use
the Extended TLB refill exception vector. If clear implements MIPS II compatibility on virtual
address translation.

7.6.11 Interrupt Enable IE (bit 0 in Status Register)

When clear, will not allow interrupts with the exception of reset and non-maskable interrupt.

7.7 Processor Interrupts

There are four variations of interrupt available on R4300. These are the non-maskable interrupt,
NMI; the external interrupts; software interrupts; and the timer interrupt.

The non-maskable interrupt is signaled by asserting the NMI* pin. It also may be set by an External
Write via the SysAD bus. On the data cycle, SysAD[22] is the write enable for SysAD[6], which is
the value to be written as the interrupt. As the name implies, this interrupt cannot be masked. An
NMI will force a jump to the Reset exception vector.

External interrupts are set by asserting the external interrupt pins Int[4..0]*. These pins will set bits
[14..10] of the Cause register (IP). They may be set by an External Write via the SysAD bus. On
the data cycle, SysAD[20..16] are the write enables for bits SysAD[4..0], which are the values to
be written as interrupts. These interrupts may be masked with the IM field of the Status register.

Software interrupts use bits 9 and 8 of the Cause register, which are bits 1 and 0 of the Interrupt
Pending field within the register. These may be written by software, but there is no hardware
mechanism to set or clear these bits. These interrupts are maskable.

The timer interrupt is bit 15 of the Cause register, which is bit 7 of the Interrupt Pending field. It will
be set whenever the value of the Count register equals the value of the Compare register. This
interrupt is maskable via the Interrupt Mask field of the Status register.
July, 1995 – 55 – MTI Confidential

System Control Coprocessor (CP0) R4300 RISC Processor Specification v2.2
7.8 Coprocessor 0 Hazards

For compatibility reasons, the R4300 will maintain the same hazards as the R4000. The
following description is for the R4000. Though the pipe stages are different, the hazards
will remain the same. Any violation of these hazards will have unpredictable results.

7.8.1 R4000 Hazards
The contents of the System Coprocessor registers and the TLB affect the operation of the
processor in many ways. For instance, an instruction that changes CP0 data also affects
subsequent instructions that use the data.

In the CPU, general registers are interlocked and the result of an instruction can generally be used
by the next instruction; if the result is not available right away, the processor stalls until it is
available. CP0 registers and the TLB are not interlocked, however; there may be some delay
before a value written by one instruction is available to following instructions.

There is a required-data dependence between an instruction that changes a register or TLB entry
(a writer) and the next instruction that uses it (a user). (A writer can write multiple data items,
forming multiple writer/user pairs.) The writer/user instruction pair places a hazard on the data if
there must be a delay between the time the writer instruction writes the data, and the user
instruction can use the data.

In addition to instructions, events can be writers and users of CP0 information. For instance, an
exception writes information to CP0 registers and events that occur for every instruction, like an
instruction fetch, use CP0 information. Therefore, when manipulating CP0 contents, the systems
programmer must identify hazards and write code that avoids these hazards.

Table 0-1 describes how to identify and avoid hazards, listing instructions and events that use CP0
registers and the TLB. This table also tells when written information is available (column 3) and
when this latest information can actually be used (column 2). Exception event writer timing refers
to the instruction identified with the exception; user event timing information is the pipestage of
each instruction during which the user event uses the data. In the case of a hazard, the number
of instructions required between a writer and user is:

available_stage - (use_stage + 1)

To identify a hazard, look for an instruction/event writer/user pair that has a required-data
dependence and use the timing information in the table to calculate the delay required between
the writer and user. If no delay is required, there is no hazard. If there is a hazard, place enough
instructions between the writer and user so that the written information is available or effective
when the user needs it.

NOTE: Any instructions inserted between a writer/reader pair with a hazard must not
depend on or modify the data creating the hazard (for example NOP instructions may
be used).

The following steps are used to determine a hazard delay:

1. Find the pipeline stage of the writer instruction in which the result is available. For
example, the MTC0 instruction writes a CP0 general register, and the new value is
available at stage 7.

2. Find the pipeline stage in which the user instruction reads or uses the data item
that the writer changes. The TLBWR instruction, for example, uses different
registers through different stages; all source register values must be stable by stage
5 and remain unchanged through stage 8.
MTI Confidential – 56 – July, 1995

R4300 RISC Processor Specification v2.2 System Control Coprocessor (CP0)
 3. Calculate the number of instructions that must be inserted between the hazardous
pair, by using this formula: available_stage - (use_stage + 1). For example, with an
MTC0/TLBWR pair, MTC0 data is available at stage 7, and TLBWR data must be
stable by stage 5 so the computation is: 7 - (5 + 1) = 1. This means 1 instruction
must be inserted between the MTC0 and TLBWR. If the result of the computation
is less than or equal to zero, there is no hazard and no instructions are required
between the pair.

Table 0-1 R4000 Coprocessor 0 Data Writer and User Timing

 Instruction or Event CP0 Data Used, Stage Used CP0 Data Written, Stage Available

MTC0 / DMTC0 CPR[0,rd] 7

MFC0 / DMFC0 CPR[0,rd] 4

TLBR Index, TLB 5-7
PageMask, EntryHi, EntryLo0,
EntryLo1

8

TLBWI
TLBWR

Index or Random,
PageMask, EntryHi,
EntryLo0, EntryLo1

5-8 TLB 8

TLBP PageMask, EntryHi 3-6 Index 7

ERET
EPC or ErrorEPC, TLB 4 Status[EXL, ERL] 4-8

Status 3 LLbit 7

Index Load Tag TagLo, TagHi, ECC 8

Index Store Tag TagLo, TagHi, ECC 8

CACHE Hit ops Status[CH] 8

CACHE ops cache line (see note)  cache line (see note) 

Load/Store

EntryHi.ASID
Status[KSU, EXL, ERL, RE],
Config[K0, DB], TLB

4

Config[SB] 7

WatchHi, WatchLo 4-5

Load/Store exception
EPC, Status, Cause,
BadVaddr, Context, XContext

8

Instruction fetch
exception

EPC, Status 8

Cause, BadVAddr, Context,
XContext

4

Instruction fetch

EntryHi[ASID],
Status[KSU, EXL, ERL, RE],
Config[K0, IB]

0

Config.SB 3

TLB (mapped addresses) 2

Coproc. usable test Status[CU, KSU, EXL, ERL] 2

Interrupt signals
sampled

Cause[IP],
Status[IM, IE, EXL, ERL]

3

TLB shutdown Status.TS 7

EntryHi.ASID refers to the ASID field of the EntryHi register. 
Config[K0, DB] refers to the K0 and DB fields of the Config register.
July, 1995 – 57 – MTI Confidential

System Control Coprocessor (CP0) R4300 RISC Processor Specification v2.2
 The EXL and ERL bits in the Status register are permanently cleared in stage 8, if
no exceptions abort the ERET. However the effect of clearing them is visible to an
instruction fetch starting in stage 4, so the “returned to” instructions use the
modified values in the Status register.

 Only one instruction is needed to separate Index Load Tag and MFC0 Tag, even
though table timing indicates otherwise.

 An MTC0 of a CPR must not be immediately followed by MFC0 of the same CPR.

 With an MTC0 to Status that modifies KSU and sets EXL or ERL, it is possible for
the five instructions following the MTC0 to be executed incorrectly in the new
mode, and not correctly in the kernel mode. This can be avoided by setting EXL
first, and only later changing the value of KSU.

 There must be two non-load, non-CACHE instructions between a store and a
CACHE instruction directed to the same primary cache line as the store.

Table 0-2 lists some hazard conditions, and the number of instructions that must come between
the writer and the user. The table shows the data item that creates the hazard, and the calculation
for the required number of intervening instructions.

Table 0-2 CP0 Hazards and Calculated Delay Times.

Writer  User Hazard On
Instructions

Between
Calculation

TLBWR/
TLBWI

 TLBP TLB entry 3 8-(4+1)

TLBWR/
TLBWI

 load/store using new TLB
entry

TLB entry 3 8-(4+1)

TLBWR/
TLBWI

 I-fetch using new TLB
entry

TLB entry 5 8-(2+1)

MTCO
Status[CU]

 Coprocessor instruction
needs CU set

Status[CU] 4 7-(2+1)

TLBR  MFC0 EntryHi EntryHi 3 8-(4+1)

MTC0 EntryLo0  TLBWR/TLBWI EntryLo0 1 7-(5+1)

TLBP  MFC0 Index Index 2 7-(4+1)

MTC0 EntryHi  TLBP EntryHi 1 7-(5+1)

MTC0 EPC  ERET EPC 2 7-(4+1)

MTC0 Status  ERET Status 3 7-(3+1)

MTC0
Status[IE]

 instruction interrupteda

a. You cannot depend on a delay in effect if the instruction execution order is changed by exceptions.
In this case, for example, the minimum delay for IE to be effective is the maximum delay before a
pending, enabled interrupt can occur.

Status[IE] 3 7-(3+1)

7.8.2 R4300 Specific Hazards
The R4300 Status register includes the ITS bit, which is not included in the R4000. However, the
hazard table still covers this situation. From the table, the Status register would be written in stage
7. The ITS bit can affect the instruction fetch of any taken branch. Instruction fetches are
considered to be used at stage 0. Thus there is a hazard of 6 instructions from writing the Status
register to any taken branch or jump..
MTI Confidential – 58 – July, 1995

R4300 RISC Processor Specification v2.2 System Interface
8.0 System Interface

An event that occurs within the processor that requires access to external system resources is
referred to as a system event. System events include: a fetch that misses in the instruction cache,
a load that misses in the data cache, a store that misses in the data cache, an uncached load or
store, and actions resulting from the execution of cache instructions.

When a system event occurs the processor issues a request or a series of requests through the
system interface to access some external resource to service the event. The system interface
must be connected to an external agent that coordinates access to system resources.

Processor requests include read requests, which provide an address to an external agent, and
write requests, which provide an address and a word or block of data to be written to an external
agent. External Requests include read responses, which provide a block or single transfer of data
from an external agent in response to read requests, and write requests, which provide an address
and a word of data to be written to a processor resource.

When an external agent receives a read request, it accesses the specified resource and returns
the requested data via a read response, which may be returned any time after the read request
and at any rate. Processor read requests that have been issued but for which data has not yet
been returned are said to be pending. The processor will not issue another request while the read
is pending. A processor read request is complete after the last transfer of response data has been
received from an external agent. A processor write request is complete after the last word of data
has been transmitted.

The Processor is the default master of the system interface. An external agent becomes master
of the system interface through arbitration or by default after a processor read request, and returns
mastership to the processor after an external request completes and/or after the processor read
request has been serviced.

The following sections detail the sequence and timing of processor and external requests.
Sequence refers to a series of requests that a processor generates to service a system event.
Timing refers to the cycle by cycle signal transitions that occur on the processor’s system interface
pins to realize a processor or external request.

Note that the following describes the SysAD bus protocol. The R4300 processor will always meet
the conditions of this protocol. R4300 will be capable of receiving sequences of transactions on
the bus at full protocol speed and receiving data on every cycle. The design of external agents
must at least meet the requirements of the protocol, and ideally will take advantage of the
maximum speed of R4300.

8.1 Sequences

The following sections detail a sequence generated by the processor for each system event.

8.1.1 Fetch miss
When the processor misses in the instruction cache on a fetch it obtains a cache line of
instructions from an external agent. The processor issues a read request for the cache line and
waits for an external agent to provide the data in response to the read request.
July, 1995 – 59 – MTI Confidential

System Interface R4300 RISC Processor Specification v2.2
8.1.2 Load Miss
When the processor misses in the data cache on a load, it obtains a cache line of data from an
external agent. The processor issues a read request for the cache line and waits for an external
agent to provide the data in response to the read request. If the data at the cache location which
the incoming line will replace contains valid dirty data, the data will be written to memory. The read
will complete before the write of the dirty cast-out data.

8.1.3 Store Miss
When the processor misses in the data cache on a store, it issues a read request to bring a cache
line of data into the cache, where it is then updated with the store data. If the data at the cache
location which the incoming line will replace contains valid dirty data, the data is written to memory.
The read will complete before the write of the dirty cast-out data.

To guarantee that cached data written by a store is consistent with main memory, the
corresponding cache line must be explicitly flushed from the cache using a cache operation. The
cache operations are detailed in section “5.5 Cache Operations”.

8.1.4 Uncached Load or Store
When the processor performs an uncached load, it issues a read request, and waits for a single
transfer of read response data from an external agent. When the processor performs an uncached
store, it issues a write request and provides a single transfer of data to the external agent. Note
that the processor will not consolidate data on uncached writes. For example, writes of two
contiguous halfwords will cause two writes, and will never be grouped into a single word write.

8.1.5 Cache Instructions
The R4300 processor provides a number of cache instructions for use in maintaining the state and
contents of the caches. For further details on cache instructions see section “5.5 Cache
Operations”.

8.2 Byte Order

The system interface byte order is set by the BigEndian bit in the CP0 Config register. The byte
order is big endian when high, and little endian when low. The RE (reverse endian) bit in the CP0
status register can be set by software to reverse the byte order in user mode.

8.3 Signal Descriptions
SysAD(31:0): (i/o) Multiplexed address and data transfer bus between the processor and

an external agent.

SysCmd(4:0): (i/o) Used for command and data identifier transmission between the
processor and an external agent.

EValid*: (i) Signals that an external agent is driving a valid address or valid data
on the SysAD bus and a valid command or data identifier on the
SysCmd bus during this cycle.

PValid*: (o) Signals that the processor is driving a valid address or valid data on
the SysAD bus and a valid command or data identifier on the SysCmd
bus during this cycle.

EReq*: (i) Signals that an external agent requests system interface bus
ownership.

PReq*: (o) Signals that the processor requests system interface bus ownership.
Also, when the processor experiences a protocol error (i.e. the
processor detects that an external agent has preformed an action in
MTI Confidential – 60 – July, 1995

R4300 RISC Processor Specification v2.2 System Interface
violation of the SysAD protocol), the processor will continuously toggle
PReq*.

PMaster*: (o) Signals that the processor is the master of the system interface bus.

EOK*: (i) Signals that an external agent is capable of accepting a processor
request,

Int(4:0)*: (i) General processor interrupt. These are visible as bits 14 to 10 of the
Cause register.

NMI*: (i) Non-maskable interrupt.

Reset*: (i) When asserted, initiates an maintains a warm reset in the processor.

TClock: (o) Transmit clock at the operation frequency of the system interface.
Equal in frequency and phase to MasterClock.

MasterClock: (i) Master clock input at the operation frequency of the system interface.

SyncOut: (o) Synchronization clock output.

SyncIn: (i) Synchronization clock input.

ColdReset*: (i) When asserted, this signal indicates to the R4300 processor that the
+3.3 volt power supply is stable and the R4300 chip should initiate a
cold reset sequence. The assertion of ColdReset* will reset the PLL.
Asynchronous.

JTDI: (i) JTAG serial data in.

JTDO: (o) JTAG serial data out.

JTMS: (i) JTAG command signal, signals that the serial data in is command
data.

JTCK: (i) JTAG serial clock input.

BypassPLL*: (i) This signal forces MasterClock to bypass the PLL and to feed directly
to the clock buffers. This should be used for test only. This signal will
be implemented as a non-bonding pad (default deasserted) and may
not be a pin on the production package. However this pin will be part
of the JTag scan chain.

TestMode* (i) This is used for testing cache directly. This must be deasserted
(connected to VCC) for normal operation. This signal will be
implemented as a non-bonding pad (default deasserted) and may not
be a pin on the production package. However this pin will be part of the
JTag scan chain.

DivMode(1:0) (i) These signals are an encoding of the PClock to MasterClock ratios.
TClock (system interface clock) will be the same frequency as
MasterClock. The encoding of DivMode for an example of 40MHz
MasterClock is shown below:

DiveMode(1:0) MasterClock TClock PClock Ratio

00 40MHz 40MHz 40MHz 1:1

01 40MHz 40MHz 60MHz 1.5:1

10 40MHz 40MHz 80MHz 2:1

11 40MHz 40MHz 120MHz 3:1

The primary communication paths for the system interface are a thirty-two bit address and data
bus, SysAD(31:0), and a five bit command bus, SysCmd(4:0). The SysAD bus and the SysCmd
bus are driven by the processor to issue a processor request when it is master, indicated by the
assertion of PMaster*, and driven by an external agent to issue an external response when the
processor is a slave, indicated by deassertion of PMaster*.
July, 1995 – 61 – MTI Confidential

System Interface R4300 RISC Processor Specification v2.2
A request through the system interface consists of an address, a system interface command that
specifies the nature of the request, and a series of data elements if the request is for a write, or a
read response for a read. Addresses and data are transmitted on the SysAD bus. System interface
commands are transmitted on the SysCmd bus.

When the processor is master it will assert the PValid* signal when the SysAD bus and the
SysCmd bus are valid. When the processor is slave, an external agent will assert the EValid*
signal when the SysAD bus and the SysCmd bus are valid.

The SysCmd bus is used to identify the contents of the SysAD bus during valid cycles. The most
significant bit of the SysCmd bus is used to indicate whether the current cycle is an address cycle
or a data cycle. During address cycles, the remainder of the SysCmd bus contains a system
interface command. During data cycles, the remainder of the SysCmd bus contains a data
identifier that indicates if the current data cycle is the last, along with other information about the
data cycle. The encoding of system commands and data identifiers is detailed in section 8.6 Signal
codes.

8.4 Signal timing

The system interface protocol describes the cycle by cycle signal transitions that occur on the pins
of the system interface to realize requests between the processor and an external agent.

The summary sub section (8.4.1 Timing Summary) describe the min and max timing of each signal.,
it is intended to fully specify the signal cycle timing for the system interface protocols. All the other
following sub sections in this section illustrate how they are used and provide some bus timing
examples.

8.4.1 Timing Summary
This timing summary section fully specifies the cycle timing for the system interface.

For each of the timing diagrams in this section, there are many signals that are either not
shown or have “grayed out” signal values. Within the context shown a signal with a
“grayed” value has no specifically required value, and so it can be any value as long as
that value does not violate any other bus value or timing specification. In other words,
grayed out signal values denote unknown or don’t care values, within the limits of the spec.

PMaster*: (o) Signals that the processor is the master of the system interface bus.

Figure 17: PMaster* Timing: Processor to ExtAgent

A Processor drives SysAD and SysCmd (processor is master).

B PMaster is deasserted. SysAD and SysCmd is tri-stated (there is no
bus master).

C External agent drives SysAD and SysCmd (external agent is master).

ExtAgent Cmd

SCycle A B C

Sclock

SysAD ExtAgent Data

SysCmd

PMaster*

Proc Data

Proc Cmd
MTI Confidential – 62 – July, 1995

R4300 RISC Processor Specification v2.2 System Interface
Figure 18: PMaster* Timing: ExtAgent to Processor

A External agent drives SysAD and SysCmd (external agent is master).

B SysAD and SysCmd is tri-stated (there is no bus master).

C PMaster is asserted. Processor drives SysAD and SysCmd (processor
is master).

Figure 19: PMaster* Timing: Processor Read Request

A Processor drives a valid read command and an external agent accepts
it.

B PMaster is deasserted. Bus is tri-stated.

C External agent drives last of requested data. For all cycles between B
and C the external agent is guaranteed mastership of the bus.

EValid* (i), PValid* (o) Signals a new valid address or valid data on the SysAD bus and a new
valid command or data identifier on the SysCmd bus during this cycle.
EValid* indicates if an external agent is driving new SysAD and
SysCmd values. PValid* indicates if the processor is driving new
SysAD and SysCmd values.

Pro Cmd

SCycle A B C

Sclock

SysAD Proc Data

SysCmd

PMaster*

ExtAgent Data

ExtAgent Cmd

End of Data

SCycle A B C

Sclock

SysAD Data

SysCmd

PValid*

PMaster*

D

EOK*

EValid*

Read Cmd

Address
July, 1995 – 63 – MTI Confidential

System Interface R4300 RISC Processor Specification v2.2
Figure 20: EValid*, PValid* Timing

A: New SysAD and SysCmd values.

Every cycle one of these signals remains asserted indicates that there is a new
SysAD and SysCmd value. The only exception to this rule is for
processor read & write request commands. If a processor read/write
request command is not accepted by the external agent, the processor
will repeat the command.

Figure 21: Multi-cycle EValid*, PValid* Timing

A: New SysAD and SysCmd value.

B: Another new SysAd and SysCmd value.

The only exception is: if A is a processor read/write request command
that is not accepted by the external agent, then B will be a repeat of
the command and data in A.

SCycle A

Sclock

SysAD

SysCmd Cmd

Data

EValid* or
PValid*

SCycle A B

Sclock

SysAD

SysCmd Cmd

Data

EValid* or
PValid*

Cmd

Data
MTI Confidential – 64 – July, 1995

R4300 RISC Processor Specification v2.2 System Interface
EOK*: (i) Signals that an external agent accepts a processor request. An
external agent has excepted the processor Rd/Wr command iff (if and
only if) the following has occurred:

Figure 22: EOK* Timing

A EOK is active.

B Processor asserts PValid and drives a Read or Write command. EOK
is asserted. External agent excepts the Processor command.

Once the external agent has accepted a processor write command, the agent
must be able to accept the entire data size at the programmed data
rate immediately following the command.

The external agent may provide read response data to the processor at any
rate.

Deasserting EOK may kill a processor read/write request in progress. If this
occurs, the external agent must ignore command and data from the
processor in the following cycle.

Figure 23: EOK* Timing: Killed Processor Write

A EOK is active.

B Processor asserts PValid and drives a Read or Write command. EOK
is deasserted (external agent has killed the processor’s command)

C The external agent must ignore any SysAD and SysCmd data from the
processor.

D The external agent does not ignore any SysAD and SysCmd data from
the processor.

SCycle A B C

Sclock

SysAD

SysCmd

EOK*

Pro Cmd (Rd/Wr)

Proc Address

PValid*

SCycle A B C

Sclock

SysAD

SysCmd

EOK*

Pro Cmd (Wr)

Proc Address

PValid*

Data Cmd

Proc Data

D

July, 1995 – 65 – MTI Confidential

System Interface R4300 RISC Processor Specification v2.2
Figure 24: EOK* Timing: Killed Processor Read

A EOK is active.

B Processor asserts PValid and drives a Read or Write command. EOK
is deasserted (external agent has killed the processor’s command)

C The external agent must ignore any SysAD and SysCmd data from the
processor.

D The external agent does not ignore any SysAD and SysCmd data from
the processor.

When a Processor request has been killed, the processor will always retry the
same request before giving a new Read/Write request.

EReq*: (i) Signals that an external agent requests system interface bus
ownership. To gain mastership of the bus, an external agent must
arbitrate with the processor as follows:

Figure 25: EReq* Timing: Bus Request

A External agent asserts EReq.

B Wait for PMaster to be deasserted (1 to N cycles).

C External agent drives SysAD and SysCmd. The external agent is
guaranteed to maintain mastership of the bus as long as EReq is

SCycle A B C

Sclock

SysAD

SysCmd

EOK*

Pro Cmd (Rd)

Proc Address

PValid*

D

PMaster*

ExtAgent Cmd

SCycle A B C

Sclock

SysAD ExtAgent Data

SysCmd

EReq*

PMaster*
MTI Confidential – 66 – July, 1995

R4300 RISC Processor Specification v2.2 System Interface
asserted. If at any time EReq is deasserted, the external agent must
go back to step A and re-arbitrate for the bus.

From the time that EReq* is asserted, the external agent is guaranteed to gain
mastership of the bus after at most one processor request. However,
if EOK* is also being deasserted, the external agent will gain
mastership of the bus without having to accept any processor
requests.

The external agent gives up mastership of the bus by deasserting EReq:

Figure 26: EReq* Timing: Bus Release

A External agent de-asserts EReq. External agent is driving bus.

B Bus is tristated.

C Processor regains mastership of bus.

Except for a processor read request (see “Figure 19: PMaster* Timing:
Processor Read Request” above), using EReq is the only way the
external agent gets and maintains bus mastership.

PReq* (o) Signals that the processor is requesting the bus. When the processor
is in slave state and has a read/write request to issue, it will assert
Preq*.

PReq* is also used to indicate when the R4300 has detected a
protocol error. When a protocol error is detected, the processor’s
system interface will hang and the PReq* signal will oscillate.

8.4.2 Arbitration
The processor is the default master of the bus and relinquishes ownership of the bus either when
an external agent requests and is granted the system interface or until the processor issues a read
request. The transition from processor master to slave is arbitrated by the processor using the
system interface handshake signals EReq* and PMaster*.

When a processor read request is pending, the processor transitions to slave by de-asserting
PMaster*, to allow an external agent to return read response data. The processor remains slave
until an external agent issues an end of data read response, when it then transitions to master with
the assertion of PMaster*. Note that an external agent is able to maintain mastership of the bus
after an end of data read response if the external agent arbitrates for mastership using EReq*.

Proc Cmd

SCycle A B C

Sclock

SysAD Proc Data

SysCmd

EReq*

PMaster*

ExtAgent Data

ExtAgent Cmd
July, 1995 – 67 – MTI Confidential

System Interface R4300 RISC Processor Specification v2.2
When the processor is master, an external agent acquires control of the system interface by
asserting EReq*, and waiting for the processor to de-assert PMaster*. When the processor is
ready to go slave state, it will de-assert PMaster*. The external agent must go through the 3 step
arbitration process (see EReq* in “8.4.1 Timing Summary”) before driving the bus. Once the
external agent has become master with an EReq*, it may continue to assert EReq* until it is ready
to relinquish the bus. That is, once the external agent has become bus master, it can remain
master as long as it wants by simply continuing to assert EReq*. The system interface will return
to master state (with the processor driving the bus) two cycles after EReq* is de-asserted. An
arbitration for external requests example is illustrated in “Figure 27: External Request Arbitration”.

Figure 27: External Request Arbitration

When an external agent is master, it may always respond with data to a read. If the external agent
has become master with EReq*, it may issue transactions at will. That is, the processor must
always accept any command or data on the bus at any time. There is no means for the processor
to hold off the external agent once the external agent is master. However the processor can
request the bus by asserting PReq*, and the external agent may or may not honor the request
depending on the system priorities.

If the processor is in slave state and needs the bus, it may assert the PReq* line to let the external
agent know that it wants the bus. When the processor sees EReq* de-asserted, it resumes
ownership, asserts the PMaster* line, and can issue its command. The processor will become
master and drive the bus two cycles after EReq* is deasserted. An example of processor request
for mastership of the bus and the release of the bus by the external agent is illustrated in “Figure
28: Processor request for bus arbitration and external agent release”.

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus: External agent data

SysCmd Bus:

EReq*

PMaster*

External agent command
MTI Confidential – 68 – July, 1995

R4300 RISC Processor Specification v2.2 System Interface
Figure 28: Processor request for bus arbitration and external agent release

Upon assertion of Reset* or ColdReset*, the processor becomes bus master and the external
agent must become slave.

This protocol guarantees that either the processor or an external agent is always bus master. The
master should never tristate the bus, except when giving up ownership of the bus under the rules
of the protocol.

8.4.3 Issuing Commands
When the processor is mastering the bus and wishes to issue a command, it cannot successfully
issue the command until the external agent signals that it is ready to accept one. This is indicated
by the EOK* line. Since it is master, the processor may place the command on the bus and
continually reissue it while waiting for EOK* to be asserted; however, the command is not
considered issued until EOK* has been asserted for two consecutive cycles (see EOK* in “8.4.1
Timing Summary”).

If the EOK* signal is asserted in one cycle then deasserted in the next cycle while at the same
cycle time a command is issued, that command is considered killed and must be retried. When a
command is killed this way, the processor will begin to execute the read/write command. This
action must be ignored by the external agent. If a write command is killed, the data cycle following
this killed transaction must be ignored. If a read is killed, the processor will release the bus one
cycle after and (assuming no EReq*) will regain mastership two cycles after. These actions allow
the processor to retry the transaction.

8.4.4 Processor Write Request
A processor write request is issued by driving a write command on the SysCmd bus, driving a write
address on the SysAD bus, and asserting PValid* for one cycle, followed by driving the appropriate
number of data identifiers on the SysCmd bus, driving data on the SysAD bus, and asserting
PValid*. For 1 to 4 byte writes, a single data cycle is required. Byte writes of size 5, 6, & 7 are

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus: External agent data

SysCmd Bus:

PMaster*

PReq*

EOK*

External agent cmd

EReq*

Processor address/data

Processor command
July, 1995 – 69 – MTI Confidential

System Interface R4300 RISC Processor Specification v2.2
broken up into 2 address/data transactions; one 4 bytes in size, the other 1, 2, or 3 bytes. For all
sizes greater than 7 bytes (e.g. 8, 16, 32), 4 bytes will be sent on each data cycle until the
appropriate number of bytes have been transferred. When the last piece of data is being
transferred, this final data cycle will be tagged as “Last Data” on the command bus.

To be fully compliant with all implementations of this protocol, an external agent should be able to
receive write data over any number of cycles with any number of idle cycles between any two data
cycles. However, for this implementation (i.e. R4300) the data will begin on the cycle immediately
following the write issue cycle, and will come at a programed cycle data rate thereafter. The
processor will drive data at the rate specified by the data rate configuration signals, see “8.4.9 Data
Rate Control”.

Writes may be cancelled and retried with the EOK signal. See above in “8.4.3 Issuing Commands”.

The example in “Figure 29: Processor block write request with D data rate” illustrates the bus
transactions for four word data cache block store.

Figure 29: Processor block write request with D data rate

The example in “Figure 30: Processor single write request followed by a killed and retried write request”
illustrates a write request which is cancelled by the de-assertion of EOK* during the address cycle
of the second write and which is retried when EOK* is asserted again.

Figure 30: Processor single write request followed by a killed and retried write request

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

Sclock

SysAD Bus Addr Data0 Data1 Data3

SysCmd Bus Write Data Data EOD

PValid*

Data2

PMaster*

EOK*

Data

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

Sclock

SysAD Bus AddrA DataA AddrB AddrB

SysCmd Bus Write EOD Write Write

PValid*

DataB

PMaster*

EOK*

EOD

DataB

EOD
MTI Confidential – 70 – July, 1995

R4300 RISC Processor Specification v2.2 System Interface
“Figure 32: Processor read request” has an example of a killed double word write request where the
external agent request and gets the bus. After the external agent releases the bus, the killed write
request is retried.

Figure 31: Killed and retried write request with intervening external request

8.4.5 Processor Read Request
A processor read request is issued by driving a read command on the SysCmd bus, driving a read
address on the SysAD bus, and asserting PValid*. Only one processor read request may be
pending at a time. The processor must wait for an external read response before starting a
subsequent read. The processor transitions to slave after the issue cycle of the read request by
de-asserting the PMaster* signal. An external agent may then return the requested data via a read
response. The external agent, which has become master, may issue any number of writes before
sending the read response data. An example of a processor read request and an uncompelled
change to slave state occurring as the read request is issued is illustrated in “Figure 32: Processor
read request”.

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus: Data0

SysCmd Bus:

PValid*

PMaster*

EOK*

Addr

Data Write

EReq*

Addr

Write

Data1

Data EOD

Data0
July, 1995 – 71 – MTI Confidential

System Interface R4300 RISC Processor Specification v2.2
Figure 32: Processor read request

The example in “Figure 32: Processor read request” illustrates a read request that is cancelled by
the de-assertion of EOK* during the address cycle. The read is retried when EOK* is asserted
again.

Figure 33: Killed and retried processor read request

“Figure 32: Processor read request” has an example of a killed read request where the external
agent request and gets the bus. After the external agent releases the bus, the killed read request
is retried.

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus: Addr

SysCmd Bus: Read

PValid*

PMaster*

EOK*

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus: Addr

SysCmd Bus:

PValid*

PMaster*

EOK*

Addr

Read Read
MTI Confidential – 72 – July, 1995

R4300 RISC Processor Specification v2.2 System Interface
Figure 34: Killed and retried read request with intervening external request

8.4.6 External Write Request
External write requests are similar to a processor single write except that the signal EValid* is
asserted instead of the signal PValid*. An external write request consists of an external agent
driving a write command on the SysCmd bus and a write address on the SysAD bus and asserting
EValid* for one cycle, followed by driving a data identifier on the SysCmd bus and data on the
SysAD bus and asserting EValid* for one cycle. The data identifier associated with the data cycle
must contain a last data cycle indication. Note that the external agent must gain and maintain bus
mastership during these transactions (see EReq* in “8.4.1 Timing Summary”).

An external write request example with the processor initially master is illustrated in “Figure 35:
External write request”.

Figure 35: External write request

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus: Addr

SysCmd Bus:

PValid*

PMaster*

EOK*

Addr

Read Read

EReq*

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus: Addr Data

SysCmd Bus: Write EOD

PValid*

PMaster*

EValid*

EReq*
July, 1995 – 73 – MTI Confidential

System Interface R4300 RISC Processor Specification v2.2
An example of a read response for a processor single word read request that is interrupted by an
external agent write request is illustrated in “Figure 39: External write followed by external read
response, system interface in slave state”. External writes can not occur in the middle of a data
response block. External writes can occur before the first data response of the data block or after
the last “EOD” response, but it can not occur between them.

Note: The only writable resources are processor interrupts. An external write to any address
is treated as a write to the processor interrupts.

8.4.7 External Read Response
An external agent returns data to the processor in response to a processor read request by waiting
for the processor to transition to slave, and then returning the data via a single data cycle or a
series of data cycles sufficient to transmit the requested data. After the last data cycle is issued
the read response is complete and the processor will become master (assuming EReq* was not
asserted). If at the end of the read response cycles, EReq* has been asserted, the processor will
remain slave until the external agent relinquished the bus. When the processor is in slave mode
and needs access to the SysAD bus, it will assert PReq* and wait until EReq* is de-asserted.

The data identifier associated with a data cycle may indicate that the data transmitted during that
cycle is erroneous; however, an external agent must return a block of data of the correct size
regardless of erroneous data cycles. If a read response includes one or more erroneous data
cycles, the processor will take a bus error.

Read response data must only be delivered to the processor when a processor read request is
pending. The behavior of the processor if a read response is presented to it when there is no
processor read pending is undefined.

An example of a processor single read request followed by a read response is illustrated in “Figure
36: Single read request followed by read response”.

Figure 36: Single read request followed by read response

A read response example for a processor block read with the system interface already in slave
state is illustrated in “Figure 37: Block read response, system interface already in slave state”.

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus: Addr Data

SysCmd Bus: Read EOD

PValid*

PMaster*

EOK*

EValid*
MTI Confidential – 74 – July, 1995

R4300 RISC Processor Specification v2.2 System Interface
Figure 37: Block read response, system interface already in slave state

A read response example for a processor single read request followed by an external agent write
request is illustrated in “Figure 38: Single read request followed by external write request (external agent
keeps bus)”.

Figure 38: Single read request followed by external write request (external agent keeps bus)

An example of a read response for a processor single word read request that is interrupted by an
external agent write request is illustrated in “Figure 39: External write followed by external read
response, system interface in slave state”. Cycle 5 is the data for the external write request in cycle
4. Cycle 7 is the read response data.

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus: Data0 Data1 Data2 Data3

SysCmd Bus: Data Data Data EOD

PValid*

PMaster*

EValid*

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus: AddrA DataA

SysCmd Bus: Read EOD

PValid*

PMaster*

EOK*

EValid*

EReq*

Data

Write

Addr

EOD
July, 1995 – 75 – MTI Confidential

System Interface R4300 RISC Processor Specification v2.2
Figure 39: External write followed by external read response, system interface in slave state

8.4.8 Flow Control
The signal EOK* may be used by an external agent to control the flow of processor read and write
requests. While EOK* is de-asserted the processor will repeat the current address cycle until an
external agent signals it is ready by asserting EOK*. There is a one cycle delay from the assertion
of EOK* to the state in which the Read/Write command becomes valid. EOK* must be asserted
for two consecutive cycles for the command issue completion. For more details on the usage of
EOK*, see above in “8.4.3 Issuing Commands”. Examples of EOK* use is illustrated in “Figure 40:
Delayed processor read request” and in “Figure 41: Two processor write requests, second write delayed”.

Figure 40: Delayed processor read request

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus: AddrA Data

SysCmd Bus: Read EOD

PValid*

PMaster*

EOK*

EValid*

DataA

Write

Addr

EOD

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Addr

SysCmd Read

PValid*

PMaster*

EOK*
MTI Confidential – 76 – July, 1995

R4300 RISC Processor Specification v2.2 System Interface
Figure 41: Two processor write requests, second write delayed

8.4.9 Data Rate Control
The system interface supports a maximum data rate of one word per cycle. The rate at which data
is delivered to the processor may be controlled by an external agent by driving data and asserting
EValid* only when data is available. The processor will interpret cycles during which EValid* is
asserted and the SysCmd bus contains a data identifier as valid data cycles. The processor will
continue to accept data until the data word tagged as the last data word is received. An external
agent may deliver data to the processor at the system interface maximum data rate.

The rate at which the processor transmits data to an external agent is programmable via the EP
field in Coprocessor0 Configuration Register. Data patterns are specified using the letters “D” and
“x”, where “D” indicates a data cycle and “x” indicates an unused cycle. A data pattern is specified
as a sequence of letters, indicating a sequence of data and unused cycles that will be repeated to
provide the appropriate number of data cycles for a given transfer. For example, a data pattern
specified by the sequence of letters “DDxx” achieves a data rate of two words every four cycles.
A processor block write request example for two words with Dxx pattern is illustrated in “Figure 42:
Processor block write request with Dxx data rate”; this transaction results from a store doubleword
instruction.

R4300 supports only two modes, D or Dxx. Note that during the cycles indicated by an x in the
pattern, the processor will continue to hold the same data as the previous cycle.

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus: AddrA DataA AddrB DataB

SysCmd Bus: Write EOD Write EOD

PValid*

PMaster*

EOK*
July, 1995 – 77 – MTI Confidential

System Interface R4300 RISC Processor Specification v2.2
Figure 42: Processor block write request with Dxx data rate

8.4.10 Consecutive SysAD Bus Transactions
The following figures (Figure 43 to Figure 46) are miscellaneous examples that illustrate the
minimum cycles required between consecutive bus transactions.

Figure 43: Processor single word read followed by block write request

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

Sclock

SysAD Addr Data0 Data0 Data1

SysCmd Write Data EOD

PValid*

Data0

PMaster*

EOK*

Data1 Data1

SCycle 1 2 3 4 5 6 7 8 9 10 11

Sclock

SysAD AddrA DataA AddrB

SysCmd Read Write

PValid*

PMaster*

EOK*

DataB0 DataB1

EValid*

EOD EODData
MTI Confidential – 78 – July, 1995

R4300 RISC Processor Specification v2.2 System Interface
Figure 44: Consecutive processor single word write requests with D data rate

Figure 45: Consecutive processor single word write requests with Dxx data rate

Figure 46: Consecutive processor write requests followed by external write request

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

Sclock

SysAD AddrA DataA AddrB

SysCmd Write EOD

PValid*

PMaster*

EOK*

EOD

DataB AddrC

WriteWrite

DataC

EOD

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

Sclock

SysAD AddrA DataA DataA

SysCmd Write EOD

PValid*

PMaster*

EOK*

DataA AddrB

Write

DataB

EOD

DataBDataB

SCycle 1 2 3 4 5 6 7 8 9 10 11

SClock

SysAD Bus: AddrA DataA

SysCmd Bus: Write EOD

PValid*

PMaster*

EValid*

EReq*

EOK*

AddrB DataB

Write EOD

Addr Data

Write EOD
July, 1995 – 79 – MTI Confidential

System Interface R4300 RISC Processor Specification v2.2
8.4.11 Starvation and Deadlock Avoidance.
Careful use of the EReq* and PReq* signals will allow a system to avoid starvation and deadlock
situations.

Whenever an external agent needs the bus, it can request the bus by asserting EReq*. The
external agent is guaranteed to gain mastership of the bus after accepting at most one read/write
request from the processor. If the external agent also deasserts EOK*, it is guaranteed to gain
mastership of the bus without accepting any read/write request from the processor.

The processor will assert PReq* when it wants to gain ownership of the bus. The external agent
can allow the processor to gain bus mastership, perform one read/write request and then give up
mastership by: deasserting EReq*, then asserting EReq* and re-arbitrating for the bus while
maintaining EOK* asserted. This EReq* deassertion pulse can be a minimum of one cycle in
length.

See “Figure 46: Consecutive processor write requests followed by external write request” for an example
of an external agent giving up the bus to allow only one read/write request from the processor.
Note that the external agent must be ready to accept this request by maintaining EOK* asserted.
Otherwise the read/write request will be held off or killed and the processor will give up bus
mastership without performing any request. This could lead to starvation of the processor.

Figure 47: External Agent Gives Up Bus for One Processor Request

8.5 Multiple Drivers on the SysAD Bus

In most applications the SysAD bus will be a point to point connection from the processor to a
bidirectional registered transceiver in an external agent. For those applications, the SysAD bus
has only two possible drivers, the processor and the external agent. However, certain applications
may wish to add additional drivers and receivers to the SysAD bus, and allow transmissions to
take place over the SysAD bus that the processor is not involved in. To accomplish this the
external agent(s) must coordinate the usage of the SysAD bus using the arbitration handshake
signals like EReq*, PMaster* and PReq*.

SCycle 1 2 3 4 5 6 7 8 9 10 11

SClock

SysAD Bus:

SysCmd Bus:

PMaster*

PReq*

EReq*

EOK*

Addr

Write Data

Data0

EOD

Data1

PValid*
MTI Confidential – 80 – July, 1995

R4300 RISC Processor Specification v2.2 System Interface
To implement an independent transmission on the SysAD bus that does not involve the processor,
the external agent(s) will request the SysAD bus by asserting EReq*. After the processor releases
the system interface to slave state, the external agent(s) may allow independent transmission to
take place on the SysAD bus, making sure that EValid* input to the processor is not asserted while
the transmission is occurring. When the transmission is complete, the external agent(s) de-asserts
EReq* to return the system interface to master state. To implement multiple drivers separate Valid
lines are required for non-processor chips to communicate.

8.6 Signal codes

System interface commands and data identifiers are encoded in five bits and transmitted from the
processor to an external agent or from an external agent to the processor on the SysCmd bus
during address and data cycles. When SysCmd(4) is de-asserted, the current cycle is an address
cycle and SysCmd(3:0) is a command. When SysCmd(4) is asserted, the current cycle is a data
cycle and SysCmd(3:0) is a data identifier.

For commands and data identifiers associated with external requests, all bits and fields have a
value or suggested value. For system interface commands and data identifiers associated with
processor requests, reserved bits and reserved fields in the command or data identifier are
undefined, except where noted.

For all system interface commands SysCmd specifies the system interface request type. The
encoding of SysCmd(4) for system interface commands is illustrated in “Table 8: Encoding of
system interface commands SysCmd(4)”.

Table 8: Encoding of system interface commands SysCmd(4)

For address requests, the remainder of the SysCmd bus specifies the attributes of the address
request. SysCmd(3) encodes the address request type. SysCmd(2:0) indicates the size of the
address requests. The encoding of SysCmd(3:2) for address requests is shown in “Table 8:
Encoding of system interface commands SysCmd(4)”. The encoding of SysCmd(1:0) for block or single
address requests is shown in “Table 10: Encoding of SysCmd(1:0) for block address requests” and
“Table 11: Encoding of SysCmd(1:0) for single address requests”, respectively.

SysCmd(4) Command

0 Address Cycle.

1 Data Cycle.
July, 1995 – 81 – MTI Confidential

System Interface R4300 RISC Processor Specification v2.2
Table 9: Encoding of SysCmd(3) & SysCmd(2) for Address Cycle

Table 10: Encoding of SysCmd(1:0) for block address requests

Table 11: Encoding of SysCmd(1:0) for single address requests

The encoding of SysCmd(3:0) for processor data identifiers is illustrated in “Table 12: Encoding of
SysCmd(3:0) for processor data identifiers”. The encoding of SysCmd(3:0) for external data identifiers
is illustrated in “Table 13: Encoding of SysCmd(3:0) for external data identifiers”.

Table 12: Encoding of SysCmd(3:0) for processor data identifiers

SysCmd(3) Command

0 Read Request.

1 Write Request.

SysCmd(2) Request Size.

0 Single data.

1 Block data.

SysCmd(1:0) Block size.

0 Two words.

1 Four words.

2 Eight words.

3 Reserved.

SysCmd(1:0) Data size.

0 One byte valid. (Byte).

1 Two bytes valid. (Half Word).

2 Three bytes valid. (Tri-Byte).

3 Four bytes valid. (Single Word).

SysCmd(3) Last data element indication.

0 Last data element.

1 Not the last data element.

SysCmd(2) Reserved.

SysCmd(1) Reserved for: Good data indication.

Processor drives 0 (Data is error free).

SysCmd(0) Reserved for: Data checking enable.

Processor drives 1 (Disable data checking).
MTI Confidential – 82 – July, 1995

R4300 RISC Processor Specification v2.2 System Interface
Table 13: Encoding of SysCmd(3:0) for external data identifiers

Note: External read requests for processor resources is not supported in R4300.

8.7 Physical Addresses

Physical addresses are driven on all 32 bits (bits 31 through 0) of the SysAD bus during address
cycles. Addresses associated with single read and write requests are aligned for the size of the
data element. Specifically, for single word requests, the low order two bits of the address will be
zero, and for half-word requests, the low order bit of the address will be zero. For byte and tri-byte
requests the address provided will be a byte address.

External agents returning read response data must support sub-block ordering. Addresses
associated with block read requests are aligned to the word of the desired data. The order in which
data is returned in response to a processor block read request is the word containing the
addressed data word first, followed by the remaining word(s) in the block.

Block writes are always block aligned.

8.8 Processor Reset and Initialization

The R4300 processor has two reset signals, ColdReset* and Reset*. Unlike the R4000, there is
no mode interface; all needed modes are directly controlled by pins on the package (i.e. DivMode
for clocks) or by software through the coprocessor 0 Configuration Register (i.e. Endianness, Data
Rate).

8.8.1 Cold Reset
Cold Reset is used to completely reset the processor, including clocks. Because of this there is no
guarantee of any chip state, except for some bits in the status register and configuration register.
Those bits are TS, SR, RP, DC and EP(3:0), which are zero, and ERL, BEV, and BE, which are
one.

Once power to the processor is established, ColdReset* must be asserted for a minimum of
64,000 Masterclock cycles to insure time for the on processor clocks to lock to MasterClock. (This
is 1.6ms at 40MHz). ColdReset* can be asserted & deasserted asynchronously with the rising
edge of MasterClock.

SysCmd(3) Last data element indication.

0 Last data element.

1 Not the last data element.

SysCmd(2) Response data indication.

0 Data is response data.

1 Data is not response data.

SysCmd(1) Reserved for: Good data indication.

0 Data is error free.

1 Data is erroneous.

SysCmd(0) Reserved for: Data checking enable.

Processor ignores this field (Suggested drive of 1, disable data checking)
July, 1995 – 83 – MTI Confidential

System Interface R4300 RISC Processor Specification v2.2
After ColdReset* is deasserted (and Reset* is not being asserted), the processor will branch to the
Reset Exception Vector and begin the Cold Reset exception. Note that upon resetting the
processor, it becomes the bus master and will drive the SysAD bus.

8.8.2 Warm Reset (also known as Soft Reset)
Warm Reset will reset the processor without losing clocks. This is a purely logical reset. The
processor will retain as much of its state as possible. Because Warm Reset takes effect
immediately upon assertion of the Reset* signal, multicycle operations such as cache misses or
floating point may be abandoned and some loss of data may result.

Warm Reset is started by assertion of the Reset* pin. It must be asserted for a minimum of 16
cycles, and must be asserted & deasserted synchronously with MasterClock, meeting setup and
hold times. In general, data in the processor will be preserved for debugging purposes. The TS
and RP bits will be set to zero, and SR, ERL, and BEV will be set to one.

Immediately upon being Reset, the processor will branch to the Reset Exception Vector, resume
ownership of the SysAD bus and begin driving. If Reset* is asserted in the middle of a SysAD
transaction, for example to recover a hung bus, care must be taken to also reset external agents
to avoid drive fights on the SysAD bus.

8.8.3 Non Maskable Interrupt (NMI)
The processor can also be forced to branch to the Reset Exception vector by an NMI. To software,
this condition is indistinguishable from Soft Reset. However, NMI will only take effect when the
processor pipeline is running. Thus NMI can be used to recover the processor from a software
hang (e.g., infinite loop) but cannot be used to recover the processor from a hardware hang (e.g.
no read response from an external agent). NMI cannot cause drive fights on the SysAD bus and
no reset of external agents should be required.

8.8.4 General Reset Information
Note that after resetting the processor, it will be the bus master and drive the SysAD bus. Care
must be taken to coordinate reset with other system elements. In general, bus errors immediately
before, during, or after Reset may result in unexpected behavior. Also, a very small amount of
processor state is guaranteed after a reset of the R4300 processor, meaning extreme care must
be taken to correctly initialize the processor via software. The R4300 processor also differs from
the R4000 in that only sixteen cycles of Reset* assertion are required.

R4300 differs also from the R4200 processor in setting up the configuration register mode bits.
What used to be external pins on R4200 are now software controlled Config register bits which
are set to a default value with the de-assertion of Cold Reset and are unaffected by Warm Reset
or NMI. Upon Cold Reset, the default modes of the R4300 are BigEndian and Data Rate = D. Since
instruction fetches are single word wide, the processor can fetch instructions even from a Little
Endian system memory and the first instructions could reset the Config (BE) bit to the system
endianness mode. The Config (EP) field, which specifies the data rate should also be set for those
systems that only support the slow mode, before any write instruction is executed.
MTI Confidential – 84 – July, 1995

R4300 RISC Processor Specification v2.2 Exception Handling
9.0 Exception Handling

The exception handling system is responsible for efficiently handling relatively infrequent events,
such as translation misses, arithmetic overflow, I/O interrupts, and system calls. These events
cause the interruption of the normal flow of execution; aborting instructions which cause
exceptional conditions and all those which follow and have already begun executing, and a direct
jump into a designated handler routine.

The architecture defines a minimal amount of additional state which is saved in coprocessor
registers in order to facilitate the analysis of the cause of the exception, the servicing of the event
which caused it, and the resumption of the original flow of execution, when applicable.

9.1 Exception operation

To handle an exception, the processor forces execution of a handler at a fixed address in kernel
mode with interrupts disabled. To resume, the PC, operating mode, and interrupt enable must be
restored, and thus it is this context that must be saved when an exception is taken.

When an exception occurs, the EPC is loaded with an appropriate restart location at which
execution may resume after servicing the exception. The EPC also can be thought of as containing
the address of the instruction that caused the exception, or if the instruction was executing in a
branch delay slot, the address of the immediate predecessor of the instruction.

The R4300 processor supports a supervisor mode and fast TLB refill for all address spaces.
R4300 provides a single interrupt enable (IE), a base operating mode (user, supervisor, kernel),
an exception level (normal, exception), and an error level (normal, error). Interrupts are enabled
with IE = 1 and both levels are normal. The operating mode is specified by the base mode when
the exception level is normal, and is kernel when exception level is set. Returning from an
exception consists of resetting the exception level to normal (see ERET instruction).

9.2 Precision of Exceptions

Exceptions are logically precise; the instruction that causes an exception and all those that follow
it are aborted, generally before committing any state, and can be re-executed after servicing the
exception. When the following instructions are killed, exceptions associated with those instructions
are also killed, so that exceptions are not taken in the order detected, but in instruction fetch order.
July, 1995 – 85 – MTI Confidential

Exception Handling R4300 RISC Processor Specification v2.2
9.3 Exception Types

The table below lists each of the exception types which are handled by the processor, giving an
interpretation of the meaning of each exception.

Table 14: Exception Types

A reset exception, requested by external logic, aborts
the current execution stream and starts executing at a
unique reset vector provided for this exception.

This is a non-maskable interrupt requested by external
logic. The Reset vector is used for this interrupt.

The referenced address does not match any TLB
entry. A separate vector is provided for this exception.
This vector is used for all virtual address spaces when
the Status register EXL bit is 0.

The referenced address did not match any TLB entry
and the referenced address space is using extended
addressing (MIPS III). A separate vector is provided for
this exception when the SR exception level (EXL) is 0.

Virtual-address reference that matches an invalid TLB
entry.

An attempt to write to a virtual address that did not
have D bit in the corresponding TLB entry set.

An external interrupt signaled by bus interface
circuitry. A bus error is signaled for events such as bus
time-out, and invalid memory addresses or access
types.

An attempt is made to load, fetch, or store a word not
aligned on a word boundary or load or store a halfword
not aligned on a halfword boundary, or load or store a
doubleword not aligned on a doubleword boundary, or
to reference a privileged virtual address.

An add or subtract operation causes two’s
complement overflow.

A trap operation was executed with a true condition.

Execution of a SYSCALL instruction.

Execution of a BREAK instruction.

Execution of an instruction with a reserved major
operation code (bits 31..26), or a SPECIAL instruction
with a reserved minor operation code (bits 5..0).

Execution of a coprocessor instruction for which the
corresponding coprocessor-usable bit was not set.

One of several floating-point exceptions. See chapter 3.

One of several interrupt conditions. See the Cause register.

 Reference to WatchHi/WatchLo address.

Reset


NMI

TLB refill



Extended addressing
TLB refill


TLB invalid

TLB modified

Bus error



Address error




Integer overflow

Trap

System call

Breakpoint

Reserved Instruction


Coprocessor
Unusable

Floating Point

Interrupt

Watch

-


-

TLBL/TLBS 



TLBL/TLBS 



TLBL TLBS 

Mod

IBE/DBE



AdEL/AdES




Ov

Tr

Sys

Bp

RI


CpU

FPE

Int

WATCH

Types Cause bit Description
MTI Confidential – 86 – July, 1995

R4300 RISC Processor Specification v2.2 Exception Handling
9.4 Exception vectors

The Reset, Soft Reset, and NMI exceptions are always vectored to 0xffff ffff bfc0 0000. The
address for other exceptions is a combination of a vector offset and a base address determined
by the BEV bit of the Status Register.

Table 15: Exception Vectors

9.5 Priority of Exceptions

When multiple exceptions can occur for a single instruction, only one exception is reported, with
priority given in the following order:

Reset
Soft Reset
NMI
Address error -- Instruction fetch
TLB refill -- Instruction fetch
TLB invalid -- Instruction fetch
Bus error -- Instruction fetch
System call
Breakpoint
Coprocessor Unusable
Reserved Instruction
Trap
Integer overflow
Floating Point Exception
Address error -- Data access
TLB refill -- Data access
TLB invalid -- Data access
TLB modified -- Data write
Watch
Bus error -- Data access
Interrupt

Exception

Reset, Soft Reset, NMI

TLB Refill, EXL=0

XTLB Refill, EXL=0

Other

Vector Base

0xffff_ffff_bfc0_0000
0xffff_ffff_8000_0000(BEV=0)
0xffff_ffff_bfc0_0200 (BEV=1)

0xffff_ffff_8000_0000(BEV=0)
0xffff_ffff_bfc0_0200 (BEV=1)

0xffff_ffff_8000_0000(BEV=0)
0xffff_ffff_bfc0_0200 (BEV=1)

Vector Offset

0

000

080

180
July, 1995 – 87 – MTI Confidential

Exception Handling R4300 RISC Processor Specification v2.2
9.5.1 Reset
Cause:

A Reset exception, also known as Cold Reset exception, occurs when the ColdReset* pin
transitions from assertion to deassertion. Cold Reset clears all state machines, and leaves the SR
bit of the Status Register cleared. CP0 register bits TS, SR, RP and EP(3:0) are initialized to zero,
and bits ERL, BEV, and BE are initialized to one. There is no guarantee of state for the rest of the
chip. Clocks cannot be counted on during a cold reset. This exception is not maskable.

Handling:

A special exception vector (0xffff ffff bfc0 0000) is provided for this exception. This vector is located
within the unmapped and uncached address space so that the cache and TLB need not be
initialized to handle this.

Servicing:

The Cold Reset exception is serviced by initializing all processor registers, coprocessor registers,
the caches and the memory system, performing diagnostic tests, and bootstrapping the operating
system. The reset exception vector is selected to appear within the uncached, unmapped memory
space of the machine so that instructions may be fetched and executed while the cache and virtual
memory system are still in an undefined state.

9.5.2 Soft Reset
Cause:

A soft reset, sometimes called warm reset, occurs in response to the Reset* pin on the chip
transitioning from assertion to deassertion WITHOUT ColdReset* pin being asserted immediately
before. So for a soft reset, there must be at least one cycle where neither Reset* nor ColdReset*
were asserted. A soft reset immediately resets all state machines, and sets the SR bit of the Status
Register. Currently executing operations may be abandoned but, in general, data in the processor
will be preserved for debugging purposes. CP0 register bits TS and RP bits will be set to zero, and
bits ERL and BEV will be set to one.

Execution begins at the reset vector in response to the Reset* pin being deasserted. This
exception is not maskable.

Handling:

A special exception vector (0xffff ffff bfc0 0000) is provided for this exception, same as the Cold
Reset exception. This vector is located within the unmapped and uncached address space so that
the cache and TLB need not be initialized to handle this.

To differentiate Soft Reset from Cold Reset exception, the SR bit of the Status Register is set.

Servicing:

The Soft Reset exception is serviced by saving as much of the current processor state for
diagnostic purposes, and then reinitializing as if for the Cold Reset Exception.
MTI Confidential – 88 – July, 1995

R4300 RISC Processor Specification v2.2 Exception Handling
9.5.3 Non-maskable Interrupt
Cause:

The Non-Maskable interrupt NMI exception occurs in response to the falling edge of the Non-
maskable Interrupt pin, NMI*. An NMI is treated as an interrupt. Upon getting an NMI, R4300
jumps to the reset exception vector and sets the SR bit in the status register. No state machines
or other bits in the chip are affected.

This exception is not maskable; it occurs regardless of the settings of the EXL, ERL, and IE Status
register bits.

Handling:

The Reset exception vector (0xffff ffff bfc0 0000) is used for this exception. This vector is located
within the unmapped and uncached address space so that the cache and TLB need not be
initialized to handle this exception. The SR bit of the Status register is set to differentiate this
exception from Cold Reset.

Unlike Reset, but like other exceptions, NMI is taken only at instruction boundaries; thus the state
of the caches and memory system are preserved by this exception. The caches, TLB, and normal
exception vectors need not be properly initialized. The contents of all registers are preserved when
this exception occurs, except for the ErrorEPC register, which contains the restart PC, and the
ERL bit of the Status register, which is set to one.

Servicing:

The NMI exception is serviced by saving the current processor state for diagnostic purposes, and
reinitializing as for the Reset exception.
July, 1995 – 89 – MTI Confidential

Exception Handling R4300 RISC Processor Specification v2.2
9.5.4 TLB Refill and Extended addressing TLB Refill
Cause:

The TLB refill exception occurs when no TLB entry matches a reference to a mapped address
space. This exception is not maskable.

Handling:

Two special vectors are provided for this exception; one for references to 32-bit address spaces,
and one for references to 64-bit address spaces. The UX, SX, and KX bits of the Status register
determine whether the user, supervisor, or kernel address spaces are 32-bit or 64-bit spaces. All
references use this vector when EXL is equal to zero in the Status register.

The TLBL or TLBS code in the Cause register is set, indicating whether the instruction, indicated
by the EPC register and BD bit in the Cause register, caused the miss via an instruction reference
or load or alternatively, via a store.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi registers contain the
virtual address that failed address translation. The EntryHi register also contains the Address
Space Identifier from which the translation fault occurred. The Random register normally contains
a valid location in which to put a replacement TLB entry. The contents of the EntryLo register is
undefined.

The EPC points at the instruction which caused the exception, unless it is in a branch delay slot.
If the instruction is in a branch delay slot, the EPC points at the branch instruction which precedes
it, and the BD bit of the Cause register is set.

Servicing:

To service this exception, the content of the Context or XContext register is used as a virtual
address to fetch a memory word containing the physical page frame and access control bits. The
memory word is placed into the EntryLo registers, and the EntryHi and EntryLo registers are
written into the TLB.

It is possible that the virtual address used to obtain the physical address and access control
information is on a page that is also not resident in the TLB. This is efficiently handled by allowing
a TLB refill exception in the TLB refill handler. This second exception goes instead to the common
exception vector because the EXL bit of the Status register is set.
MTI Confidential – 90 – July, 1995

R4300 RISC Processor Specification v2.2 Exception Handling
9.5.5 TLB Invalid
Cause:

The TLB Invalid exception occurs when a virtual address reference matches a TLB entry that is
marked invalid. This exception is not maskable.

Handling:

The common exception vector is used for this exception. The TLBL or TLBS code in the Cause
register is set, indicating whether the instruction, indicated by the EPC register and BD bit in the
Cause register, caused the miss via an instruction reference or load or alternatively, via a store.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi registers contain the
virtual address that failed address translation. The EntryHi register also contains the Address
Space Identifier from which the translation fault occurred. The Random register normally contains
a valid location in which to put a replacement TLB entry. The contents of the EntryLo register is
undefined.

The EPC points at the instruction which caused the exception, unless it is in a branch delay slot.
If the instruction is in a branch delay slot, the EPC points at the branch instruction which precedes
it, and the BD bit of the Cause register is set.

Servicing:

The valid bit of a TLB entry is typically cleared when a virtual address does not exist, or when it
exists, but is not in main memory (a page fault), or when a trap is desired on any reference to the
page (for example to maintain a reference bit). After servicing the particular cause of this
exception, the TLB entry is located with TLBP (TLB Probe), and replaced with an entry with the
valid bit set.

9.5.6 TLB Modified
Cause:

The TLB modified exception occurs when a store operation’s virtual address reference to memory
matches a TLB entry which is marked valid but not dirty/writable. This exception is not maskable.

Handling:

The common exception vector is used for this exception. The Mod code in the Cause register is
set.

When this exception occurs, the BadVAddr, Context, and EntryHi registers contain the virtual
address that failed address translation. The EntryHi register also contains the Address Space
Identifier from which the translation fault occurred. The contents of the EntryLo register is
undefined.

The EPC points at the instruction which caused the exception, unless it is in a branch delay slot.
If the instruction is in a branch delay slot, the EPC points at the branch instruction which precedes
it, and the BD bit of the Cause register is set.

Servicing:

The kernel uses the failing virtual address or virtual page number to identify the corresponding
access control information. The page identified may or may not permit write accesses, and if not
permitted, a Write Protection Violation has occurred.
July, 1995 – 91 – MTI Confidential

Exception Handling R4300 RISC Processor Specification v2.2
Otherwise, if write accesses are permitted, the page frame is marked as dirty/writable by the
kernel in its own data structures. The TLBP instruction is used to place the index of the TLB entry
which must be altered into the Index register. The EntryLo register is loaded with a word containing
the physical page frame and access control bits (with the D bit set), and the EntryHi and EntryLo
registers are written into the TLB.

9.5.7 Bus Error
Cause:

The Bus Error exception occurs when signaled by board-level circuitry. Bus error is signaled for
events such as bus time-out, backplane bus parity errors, and invalid physical memory addresses
or access types. This exception is not maskable.

This error occurs only for these events when they occur synchronously (cache miss refills,
uncached references, and unbuffered writes); a bus error resulting from a buffered write
transaction must instead be reported using the general interrupt mechanism.

Handling:

The common interrupt vector is used for this exception. The IBE or DBE code in the Cause register
is set, signifying whether the instruction, indicated by the EPC register and BD bit in the Cause
register, caused the exception via an instruction reference or alternatively, via a load or store.

The EPC points at the instruction which caused the exception, unless it is in a branch delay slot.
If the instruction is in a branch delay slot, the EPC points at the branch instruction which precedes
it, and the BD bit of the Cause register is set.

Servicing:

The physical address at which the fault occurred may be computed from information available in
the system control coprocessor registers. If the IBE code in the Cause register is set (instruction
fetch reference), the virtual address is contained in the EPC register. If the DBE code set (load or
store reference), the instruction which caused the exception is located at the virtual address
contained in the EPC register. If the BD bit of the Cause register is set along with either the IBE or
DBE code then the virtual address of the instruction which caused the exception is four plus the
contents of the EPC register. The virtual address of the load or store reference can then be
obtained by interpreting the instruction. The physical address can be obtained by using the TLBP
instruction and reading the EntryLo register to compute the physical page number.

The process executing at the time is handed a bus error signal. This error is usually fatal.
MTI Confidential – 92 – July, 1995

R4300 RISC Processor Specification v2.2 Exception Handling
9.5.8 Address Error
Cause:

The Address Error exception occurs when an attempt is made to load, fetch or store a word which
is not aligned on a word boundary, or to load or store a halfword which is not aligned on a halfword
boundary, or to load or store a doubleword which is not aligned on a doubleword boundary, or to
reference a kernel address space from user or supervisor mode, or a supervisor address space
from user mode. This exception is not maskable.

Handling:

The common exception vector is used for this exception. The AdEL or AdES code in the Cause
register is set, indicating whether the instruction, indicated by the EPC register and BD bit in the
Cause register, caused the exception via an instruction reference or load or alternatively, via a
store.

When this exception occurs, the BadVAddr register contains the virtual address that was not
properly aligned or which referenced a protected address space. The contents of the VPN field of
the Context and EntryHi registers is undefined. The contents of the EntryLo register is undefined.

The EPC points at the instruction which caused the exception, unless it is in a branch delay slot.
If the instruction is in a branch delay slot, the EPC points at the branch instruction which precedes
it, and the BD bit of the Cause register is set.

Servicing:

The process executing at the time is handed a segmentation violation signal. This error is usually
fatal.

9.5.9 Integer overflow
Cause:

The Integer overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI, or DSUB
instruction results in two’s complement overflow. This exception is not maskable.

Handling:

The common exception vector is used for this exception. The OV code in the Cause register are
set.

The EPC points at the instruction which caused the exception, unless it is in a branch delay slot.
If the instruction is in a branch delay slot, the EPC points at the branch instruction which precedes
it, and the BD bit of the Cause register is set.

Servicing:

The process executing at the time is handed an integer overflow signal. This exception may be
fatal.
July, 1995 – 93 – MTI Confidential

Exception Handling R4300 RISC Processor Specification v2.2
9.5.10 Trap
Cause:

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI,
TLTUI, TEQI, or TNEI instruction results in a true condition. This exception is not maskable.

Handling:

The common exception vector is used for this exception. The Tr code in the Cause register are set.

The EPC points at the instruction which caused the exception, unless it is in a branch delay slot.
If the instruction is in a branch delay slot, the EPC points at the branch instruction which precedes
it, and the BD bit of the Cause register is set.

Servicing:

The process executing at the time is handed an integer overflow signal. This exception may not
be fatal.

9.5.11 System Call
Cause:

The system call exception occurs when an attempt is made to execute the SYSCALL instruction.
This exception is not maskable.

Handling:

The common exception vector is used for this exception. The Sys code in the Cause register is set.

The EPC points at the SYSCALL instruction, unless it is in a branch delay slot. If the SYSCALL
instruction is in a branch delay slot, the EPC points at the branch instruction which precedes it.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status register (SR) is set,
otherwise it is cleared.

Servicing:

Control is transferred to the applicable system routine. To resume execution, the EPC must be
altered so that the SYSCALL instruction is not re-executed; this is accomplished by adding 4 to
the EPC register before returning. Note that if a SYSCALL instruction is in a branch delay slot, a
more complicated algorithm would be required.
MTI Confidential – 94 – July, 1995

R4300 RISC Processor Specification v2.2 Exception Handling
9.5.12 Breakpoint
Cause:

The Breakpoint exception occurs when an attempt is made to execute the BREAK instruction. This
exception is not maskable.

Handling:

The common exception vector is used for this exception. The BP code in the Cause register is set.

The EPC points at the BREAK instruction, unless it is in a branch delay slot. If the BREAK
instruction is in a branch delay slot, the EPC points at the branch instruction which precedes it.

If the BREAK instruction is in a branch delay slot, the BD bit of the Status register (SR) is set,
otherwise it is cleared.

Servicing:

Control is transferred to the applicable system routine. Additional distinctions may be made on the
basis of the otherwise unused bits of the BREAK instruction (bits 25..6), by loading the contents
of the instruction pointed at by the EPC register. (A value of 4 must be added to the contents of
the EPC register to locate the instruction if it resides in a branch delay slot.)

To resume execution, the EPC must be altered so that the BREAK instruction is not re-executed;
this is accomplished by adding 4 to the EPC register before returning. Note that if a BREAK
instruction is in a branch delay slot, interpretation of the branch instruction would be required in
order to resume execution.
July, 1995 – 95 – MTI Confidential

Exception Handling R4300 RISC Processor Specification v2.2
9.5.13 Reserved Instruction
Cause:

The Reserved Instruction exception occurs when an attempt is made to execute an instruction
whose major opcode (bits 31..26) is undefined or a SPECIAL instruction whose minor opcode (bits
5..0) is undefined. On the R4300 processor, this exception also occurs on REGIMM instruction
whose minor opcode (bits 20..16) is undefined. This exception also occurs on MIPS III opcodes
when the processor is in user mode and UX=0 in the Status register and when the processor is in
supervisor mode and SX=0 in the Status register. This exception is not maskable.

This exception provides a mechanism to interpret instructions which are added to or removed from
the MIPS processor architecture at a later time.

Handling:

The common exception vector is used for this exception. The RI code in the Cause register is set.

The EPC points at the reserved instruction, unless it is in a branch delay slot. If the reserved
instruction is in a branch delay slot, the EPC points at the branch instruction which precedes it.

Servicing:

In current systems, no defined instructions in the architecture are interpreted. The process
executing at the time is handed an illegal instruction signal. This error is usually fatal.

9.5.14 Coprocessor Unusable
Cause:

The Coprocessor Unusable exception occurs when an attempt is made to execute a coprocessor
instruction for which the corresponding coprocessor unit has not been marked usable, or for
coprocessor zero instructions, when the unit has not been marked usable and the process is
executing in user mode. This exception is not maskable.

Handling:

The common exception vector is used for this exception. The CpU code in the Cause register is
set.

The contents of the Coprocessor Usage Error field of the Coprocessor Control register indicates
which of the four coprocessors was referenced.

The EPC points at the unusable coprocessor instruction, unless it is in a branch delay slot. If the
unusable coprocessor instruction is in a branch delay slot, the EPC points at the branch instruction
which precedes it.

Servicing:

The coprocessor unit to which an attempt was made to reference is identified from the
Coprocessor Usage Error field. If the process is entitled to access, the coprocessor is marked
usable and the corresponding user state is restored into the coprocessor.

If the process is entitled to access to the coprocessor, but it is known not to exist or to have failed,
interpretation of the coprocessor instruction is possible. If the BD bit is set in the Cause register,
the branch instruction must be interpreted; then the coprocessor instruction may be emulated and
execution resumed with the EPC advanced past the coprocessor instruction.

If the process is not entitled to access to the coprocessor, the process executing at the time is
handed a privileged fault signal. This error is usually fatal.
MTI Confidential – 96 – July, 1995

R4300 RISC Processor Specification v2.2 Exception Handling
9.5.15 Interrupt
Cause:

The Interrupt exception occurs when one of the eight interrupt conditions are asserted. The
significance of these interrupts is implementation-dependent.

Each of the eight interrupts may be masked by clearing the corresponding bit in the IntMask field
of the Status register. All of the eight interrupts may be masked at once by clearing the IE bit of
the Status register.

Handling:

The common exception vector is used for this exception. The Int code in the Cause register is set.

The IP field of the Cause register indicates the current interrupt requests. It is possible that more
than one of the bits will be set at once, or even that no bits are set (if an interrupt is asserted and
then deasserted before this register is read).

Servicing:

If the interrupt is caused by one of the two software-generated exceptions, the interrupt condition
is cleared by setting the corresponding Cause register bit to zero.

If the interrupt is hardware-generated, the interrupt condition is cleared by alleviating the condition
which is causing the corresponding interrupt pin to be asserted. The manner in which this is
accomplished is implementation-dependent.
July, 1995 – 97 – MTI Confidential

Exception Handling R4300 RISC Processor Specification v2.2
9.5.16 Watch
Cause:

The Watch exception occurs when a load or store instruction references the physical address
specified in the WatchLo and WatchHi system control coprocessor registers. The WatchLo
register also specifies whether loads, stores, both, or neither initiate this exception. The CACHE
instruction never causes a WATCH exception. The exception is postponed while the EXL bit is set
in the Status register. This exception is maskable only by setting EXL in the Status register.

Handling:

The common exception vector is used for this exception. The WATCH code in the Cause register
is set.

Servicing:

This exception is intended as a debugging aid. Typically the exception handler will transfer control
to a debugger, allowing the user to examine the situation. To continue, the Watch must be disabled
for the execution of the faulting instruction and then re-enabled. Execution of the faulting
instruction may be accomplished by interpretation, or by setting breakpoints.

9.5.17 Floating Point
Cause:

The Floating Point Exception is used by the floating point coprocessor. Other implementations use
one of the hardware interrupts for this exception. This exception is not maskable.

Handling:

The common exception vector is used for this exception. The FPE code in the Cause register is
set.

The contents of the Floating Point Control Status register indicates the cause of this exception.

Servicing:

This exception is cleared by clearing the appropriate bit in the Floating Point Control Status
register. For an unimplemented exception, the kernel should emulate the instruction. For other
exceptions, the kernel should pass the exception to the user.
MTI Confidential – 98 – July, 1995

R4300 RISC Processor Specification v2.2 Clocks

July, 1995 – 99 – MTI Confidential

10.0 Clocks

The clocks on the R4300 chip are controlled via an on-chip Phase Locked Loop circuit. This circuit
will keep the R4300 chip’s internal clock edges aligned with the clock edges of the MasterClock
signal, which acts as the system master clock.

Inside the R4300 chip, the MasterClock signal will be multiplied by a factor determined by
DivMode(1:0) inputs to the processor, and then all internal clocks will be derived by dividing that
signal down. The R4300 chip has two primary internal clocks, the pipeline clock PClock, and the
system interface clock SClock. While other internal edges may be generated, these will be
transparent to the user. SClock will be the same frequency and phase as MasterClock.

R4300 will provide an external clock available to the system designers and users of the R4300
chip. This clock is the transmit clock TClock. TClock will be aligned with R4300’s SClock, and have
the same frequency.

10.1 PClock

The pipeline clock PClock can be equal to 1x, 1.5x, 2x or 3x the MasterClock frequency. This
multiplication factor is determined by DivMode(1:0) pins, which are static signal inputs to R4300.

10.2 SClock

The system interface clock, SClock, is the same as MasterClock frequency. SClock is always
derived from PClock.

10.3 TClock

TClock is generated by the processor at the same frequency as SClock. It is aligned with SClock.
It is used by external agents to drive data, and as the global clock for the external agent. TClock
can be thought of as the synchronized external system interface clock.

10.4 Phase Locked Loop

The R4300 clocks are controlled by a phase locked loop circuit. The phase locked loop circuitry
can be disabled by a BypassPLL pin. In this mode, the internal PClock and SClock will be derived
by dividing the clock driven at the MasterClock pin of the R4300 processor. This mode can be used
for test purposes, as well as in systems whose MasterClock is running too slowly for the phase
locked loop circuit to lock to.

10.5 SyncIn/SyncOut

The processor generates SyncOut at the same frequency as MasterClock and aligns the output
of the SyncIn input buffer with MasterClock. TClock is generated at the same frequency as
MasterClock and aligned with SyncOut.

SyncOut must be connected to SyncIn either directly or through an external buffer. The processor
can compensate for both output driver and input buffer delays (and, when necessary, delay
caused by an external buffer) when aligning SyncIn with MasterClock.

10.6 Reduced Power Mode

See section “7.6.1 Reduced Power Mode RP (bit 27 in Status Register)” for details on this mode.

R4300 RISC Processor Specification v2.2 JTAG Interface
11.0 JTAG Interface

The R4300 Processor provides a test interface using the JTAG (IEEE Std.1149.1/D6) protocol.
R4300 JTAG is fully IEEE compliant.

11.1 JTAG Signals

R4300 implements the standard Test Access Port (TAP). This includes the following four signals:

JTDI: (i)JTAG serial Data In

JTDO:(o)JTAG serial Data Out

JTMS:(i)JTAG Mode Select

JTCK:(i)JTAG Clock

11.2 JTAG Functionality

The minimal JTAG functionality includes the TAP controller, JTAG instruction register, JTAG
boundary scan, and a JTAG bypass register.

The TAP controller state machine monitors the JTMS signal and determines the functionality to be
implemented. This includes either loading the JTAG instruction register (IR), or beginning a serial
data scan through a data register (DR). As the data is scanned in, the state of the JTMS pin will
signal new data word, as well as the end of the data stream. The data register to be selected is
determined by the contents of the instruction register.

11.2.1 TAP Controller
The Tap Controller implements the JTAG protocol as described in the IEEE standard.

11.2.2 Instruction Register
The instruction register enables the user to select the boundary scan register or the bypass
register and any R4300 specific test features that are implemented. The IR register encodings are:

 IR Selection

 000 Boundary Scan Register

 1XX Bypass Register

 X1X Bypass Register

 XX1 Bypass Register

 011 Set Cache_Test_Mode Sticky bit

11.2.3 Bypass Register
In accordance with the IEEE standard, a bypass register is implemented. This one-bit register
latches the input from JTDI, and drives its output to JTDO.

11.2.4 Boundary Scan Register
The boundary scan register includes most of the inputs and outputs of the R4300 processor
(except some timing critical signals like clocks and pll signals). The pins of the R4300 chip may be
configured to drive any arbitrary pattern by scanning into the boundary scan register from the Shift-
DR state. Incoming data to the processor may be examined by loading the boundary scan register
while in the Capture-DR state and then scanning it out. following is the order of signals in the
boundary scan register:
July, 1995 – 100 – MTI Confidential

JTAG Interface R4300 RISC Processor Specification v2.2
[JTDI] SysAD<4> SysAD<3> SysAD<2> SysAD<1> SysAD<0> PReqB SysAD<31> PValidB
SysAD<30> EOKB SysAD<29> SysAD<28> SysAD<27>IntB<2> NMIB SysAD<26> PMasterB
SysAD<25> EReqB SysCmd<0> SysCmd<2> ResetB EValidB SysCmd<2> SysCmd<3>
ColdResetB SysCmd<4> DivMode<1> SysAD<24> DivMode<0> SysAD<23> IntB<3>
SysAD<22> SysAD<21> SysAD<20> TestModeB BypassPLLB TClock SyncOut SysAD<19>
SysAD<18> SysAD<17> IntB<4> SysAD<16> SysAD<15> SysAD<14> SysAD<13> SysAD<12>
SysAD<11> SysAD<10> IntB<0> SysAD<9> SysAD<8> SysAD<7> SysAD<6> SysAD<5>
IntB<1> jSysADEn [JTDO]
MTI Confidential – 101 – July, 1995

R4300 RISC Processor Specification v2.2 Specifications
12.0 Specifications

12.1 Electrical Characteristics

12.1.1 LVCMOS
R4300 will meet and exceed the JEDEC standard for low-voltage CMOS-compatible VLSI digital
circuits (LVCMOS).

12.1.2 DC Characteristics

12.1.2.1 Maximum Ratings
(Operation beyond the limits set forth in this table may impair the useful life of the device.)

Table 16: Maximum Ratings

Parameter Symbol
Test

Conditions
Minimum Maximum Units

Supply Voltage VCC 3.0 3.6 V

Input Voltage VIN -.51 VCC + 0.5 V

Storage
Temperature

TST -65 +150 C

Operating
Temperature

TC Case
temperature

0 +85 C

Note:

(1) VIN Min. = -3.0V for pulse width less than 15ns.
(2) Not more than one output should be shorted at a time. Duration of the short should not exceed

30 seconds.
July, 1995 – 102 – MTI Confidential

Specifications R4300 RISC Processor Specification v2.2
12.1.2.2 Operating Parameters

Table 17: Operating Parameters

Parameter Symbol Conditions
62.5 MHz

Units
Minimum Maximum

Output HIGH Volt-
age

VOH VCC = Min.
IOH=-4ma

2.4 V

Clock Output
HIGH Voltage3

VOHC VCC = Min.
IOH=-4ma

2.7 V

Output LOW Volt-
age

VOL VCC = Min.
IOL=4ma

.4 V

Input HIGH
Voltage2

VIH 2 VCC+.5 V

Input LOW
Voltage1,2

VIL -.5(1) .8 V

MasterClock Input
HIGH Voltage

VIHC 0.8 VCC VCC+.5 V

MasterClock Input
LOW Voltage

VILC -.5(1) 0.2 VCC V

Input Capacitance CIn 10 pF

Output Capaci-
tance

COut 10 pF

Operating Current ICC VCC = 3.0V,
TC=0C

0.67 A

Input Leakage ILeak 10 A

Input/Output
Leakage

IOLeak 20 A

Note:

(1) VIL Min. = -3.0V for pulse width less than 15ns.
(2) Except for MasterClock input
(3) Applies to TClock output
MTI Confidential – 103 – July, 1995

R4300 RISC Processor Specification v2.2 Specifications
12.1.3 AC Characteristics
Notes:

All output timings are given assuming 50pf of capacitive load. Output timings should be derated
where appropriate as per the table below.

12.1.3.1 MasterClock and Clock Parameters

Table 18: MasterClock and Clock Parameters

Parameter Symbol
Test

Conditions

62.5 MHz
Units

Minimum Maximum

MasterClock High tMCHigh Transition < 5ns 4 ns

MasterClock Low tMCLow Transition < 5ns 4 ns

MasterClock Freq1,2 20 62.5 MHz

MasterClock Period tMCP 16 50 ns

Clock Jitter tMCJitter +/-500 ps

MasterClock
Rise Time

tMCRise 4 ns

MasterClock
Fall Time

tMCFall 4 ns

JTAG Clock Period tJTAGCKP 4*tMCP ns

Note:

(1) Operation of R4300 is only guaranteed with the Phase Lock Loop enabled.
July, 1995 – 104 – MTI Confidential

Specifications R4300 RISC Processor Specification v2.2
12.1.3.2 System Interface Parameters

12.1.3.3 Capacitive Load Deration

Table 19: System Interface Parameters

Parameter Symbol Test Conditions
62.5 MHz

Units
Minimum Maximum

Data Output 1,2,3 tDO 2 8 ns

Data Setup 3 tDS 3.5 ns

Data Hold 3 tDH 1.5 ns

Clock Rise Time4 tCORise 4 ns

Clock Fall Time4 tCOFall 4 ns

Clock High Time4 tCOHigh 4 ns

Clock Low Time4 tCOLow 4 ns

Note:

(1) Timings are measured from 1.5V of the SClock to 1.5V of signal.
(2) Capacitive load for all output timings besides Status is 50pf.
(3) Data Output, Data Setup and Data Hold apply to all logic signals driven out of or driven into the

R4300 on the system interface. Clocks are specified separately.
(4) TCLock.

Table 20: Capacitive Load Deration

Parameter Symbol
62.5 MHz

Units
Min. Max.

Load Derate CLD 2 ns/25pF
MTI Confidential – 105 – July, 1995

R4300 RISC Processor Specification v2.2 Specifications
12.1.4 Timing Diagrams

Figure 48: MasterClock

Figure 49: TClock

Figure 50: Clock Jitter

MasterClock
0.8VCC

0.2VCC

tMCP tMCHigh

tMCLow tMCRise tMCFall

0.8VCC

0.2VCC

tCOHigh

tCOLow tCORise tCOFall

TClock

MasterClock

(1) With SyncOut shorted to SyncIn by the shortest path, the 50% point of TClock lines up
with the 50% point of MasterClock

Note: The SyncIn/SyncOut path and TClock must have the same capacitive loading to
match the use of TClock with the MasterClock edges.

TClock1

0.5VCC

tMCJittertMCJitter

0.5VCC
July, 1995 – 106 – MTI Confidential

Specifications R4300 RISC Processor Specification v2.2
Figure 51: Processor clock, PClock to SClock divisor of 2

cycle 1 2 3 4

MasterClock

SyncOut

PClock

SClock

TClock

SysAD Driven D D D D

SysAD Received D D D D

tDO

tDH

tDS

tSO tSO

Status Driven
MTI Confidential – 107 – July, 1995

R4300 RISC Processor Specification v2.2 Specifications
Figure 52: System Interface Edge Timing Relationships

12.2 PLL Passive Components.

The Phase Locked Loop circuit requires several passive components for proper operation, which
are connected to PLLCap0, PLLCap1, VccP, and VssP, as illustrated in “Figure 53: External PLL
Passive Components.” The capacitors for PLLCap0 (Cp) and PLLCap1(Cp) can be connected to
either VssP (as shown), VccP, or on to VssP and one to VccP.

It is essential to isolate the analog power and ground of the PLL circuit (VccP/VssP) from the
regular power and ground (Vcc/Vss). Initial evaluations have yielded good results with the
following values:

R = 5 ohms

C1 = 1 nF

C2 = 82 nF

C3 = 10 uF

Cp = 470pF

Since the optimum values for the filter components depend upon the application and the system
noise environment, these values should be considered as starting points for further
experimentation within your specific application. In addition, the chokes (inductors: L) can be
considered for use as an alternative to the resisters (R) for use in filtering the power supply.

SClock

SysAD
SysADC
SysCmd

ValidOut
Release

Valid output

tDO

tDO

ValidIn
ExtRqst
RdRdy
WrRdy

Valid
Input

tDS
tDH

Note: These waveforms only describe edge to edge timing relationships. Functional
descriptions are contained in previous chapters.

SysCmdP

tDS
tDH

Valid
Input

tDO
July, 1995 – 108 – MTI Confidential

Specifications R4300 RISC Processor Specification v2.2
Figure 53: External PLL Passive Components.

12.3 Pin Descriptions
SysAD(31:0): (i/o) Multiplexed address and data transfer bus between the processor and

an external agent.

SysCmd(4:0): (i/o) Used for command and data identifier transmission between the
processor and an external agent.

EValid*: (i) Signals that an external agent is driving a valid address or valid data
on the SysAD bus and a valid command or data identifier on the
SysCmd bus during this cycle.

PValid*: (o) Signals that the processor is driving a valid address or valid data on
the SysAD bus and a valid command or data identifier on the SysCmd
bus during this cycle.

EReq*: (i) Signals that an external agent requests system interface bus
ownership.

PReq*: (o) Signals that the processor requests system interface bus ownership.
Also, when the processor experiences a protocol error (i.e. the
processor detects that an external agent has preformed an action in
violation of the SysAD protocol), the processor will continuously toggle
PReq*.

PMaster*: (o) Signals that the processor is the master of the system interface bus.

EOK*: (i) Signals that an external agent is capable of accepting a processor
request,

Int(4:0)*: (i) General processor interrupt. These are visible as bits 14 to 10 of the
Cause register.

NMI*: (i) Non-maskable interrupt.

Reset*: (i) When asserted, initiates an maintains a warm reset in the processor.

PLLCap0

Vcc

VccP

VssP

Vss

PLLCap1

Cp

Cp

C2 C1 C3

R L

R L

R4300

All external PLL
components
should be placed
near the R4300
on the printed cir-
cuit board
MTI Confidential – 109 – July, 1995

R4300 RISC Processor Specification v2.2 Specifications
TClock: (o) Transmit clock at the operation frequency of the system interface.
Equal in frequency and phase to MasterClock.

MasterClock: (i) Master clock input at the operation frequency of the system interface.

SyncOut: (o) Synchronization clock output.

SyncIn: (i) Synchronization clock input.

ColdReset*: (i) When asserted, this signal indicates to the R4300 processor that the
+3.3 volt power supply is stable and the R4300 chip should initiate a
cold reset sequence. The assertion of ColdReset* will reset the PLL.
Asynchronous.

JTDI: (i) JTAG serial data in.

JTDO: (o) JTAG serial data out.

JTMS: (i) JTAG command signal, signals that the serial data in is command
data.

JTCK: (i) JTAG serial clock input.

BypassPLL*: (i) This signal forces MasterClock to bypass the PLL and to feed directly
to the clock buffers. This should be used for test only. This signal will
be implemented as a non-bonding pad (default deasserted) and may
not be a pin on the production package. However this pin will be part
of the JTag scan chain.

TestMode* (i) This is used for testing cache directly. This must be deasserted
(connected to VCC) for normal operation. This signal will be
implemented as a non-bonding pad (default deasserted) and may not
be a pin on the production package. However this pin will be part of the
JTag scan chain.

DivMode(1:0) (i) These signals are an encoding of the PClock to MasterClock ratios.
TClock (system interface clock) will be the same frequency as
MasterClock. The encoding of DivMode for an example of 40MHz
MasterClock is shown below:

DiveMode(1:0) MasterClock TClock PClock Ratio

00 40MHz 40MHz 40MHz 1:1

01 40MHz 40MHz 60MHz 1.5:1

10 40MHz 40MHz 80MHz 2:1

11 40MHz 40MHz 120MHz 3:1

Vss Power for chip.

Vcc Ground for chip.

VssP Quite Vss for PLL.

VccP Quite Vcc for PLL.

PLLCap0, PLLCap1 Connection for external capacitance component used for PLL low
pass filter.
July, 1995 – 110 – MTI Confidential

Specifications R4300 RISC Processor Specification v2.2
12.4 Pin Specifications.

12.4.1 120-pin PQFP Pin-out

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

VCC

VSS

SysAD22

SysAD21

VCC

VSS

SysAD20

VCC

VCCP

VSSP

PLLCAP0

PLLCAP1

VCCP

VSSP

VCC

MasterClock

VSS

TClock

VCC

VSS

SyncOut

SysAD19

VCC

SyncIn

VSS

SysAD18

SysAD17

IntB4

VCC

VSS

VSS

VCC

SysAD16

SysAD15

VSS

VCC

SysAD14

SysAD13

VSS

VCC

SysAD12

SysAD11

VSS

VCC

SysAD10

IntB0

SysAD9

VSS

VCC

SysAD8

SysAD7

JTMS

VSS

VCC

SysAD6

SysAD5

JTCK

IntB1

VSS

VCC

VSS

VCC

JTDI

SysAD4

JTDO

SysAD3

VSS

VCC

SysAD2

SysAD1

VSS

VCC

SysAD0

PReqB

VSS

VCC

SysAD31

PValidB

VSS

VCC

SysAD30

EOKB

SysAD29

VSS

VCC

SysAD28

SysAD27

IntB2

VSS

VCC

VCC

VSS

NMIB

SysAD26

PMasterB

VCC

VSS

SysAD25

EReqB

SysCmd0

VCC

VSS

SysCmd1

ResetB

EValidB

SysCmd2

VCC

VSS

SysCmd3

ColdResetB

SysCmd4

DivMode1

VCC

VSS

SysAD24

DivMode0

SysAD23

IntB3

VCC

VSS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
MTI Confidential – 111 – July, 1995

R4300 RISC Processor Specification v2.2 Specifications
12.4.2 120 Pin PQFP Physical Pin Location

VSS
VCC
IntB4
SysAD17
SysAD18
VSS
SyncIn
VCC
SysAD19
SyncOut
VSS
VCC
TClock
VSS
MasterClock
VCC
VSSP
VCCP
PLLCap1
PLLCap0
VSSP
VCCP
VCC
SysAD20
VSS
VCC
SysAD21
SysAD22
VSS
VCC

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

313233343536373839404142434445464748495051525354555657585960

V
S

S
V

C
C

S
ysA

D
16

S
ysA

D
15

V
S

S
V

C
C

S
ysA

D
14

S
ysA

D
13

V
S

S
V

C
C

S
ysA

D
12

S
ysA

D
11

V
S

S
V

C
C

S
ysA

D
10

IntB
0

S
ysA

D
9

V
S

S
V

C
C

S
ysA

D
8

S
ysA

D
7

JT
M

S
V

S
S

V
C

C
S

ysA
D

6
S

ysA
D

5
JT

C
K

IntB
1

V
S

S
V

C
C

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

VSS
VCC
JTDI
SysAD4
JTDO
SysAD3
VSS
VCC
SysAD2
SysAD1
VSS
VCC
SysAD0
PReqB
VSS
VCC
SysAD31
PValidB
VSS
VCC
SysAD30
EOKB
SysAD29
VSS
VCC
SysAD28
SysAD27
IntB2
VSS
VCC

91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

V
C

C
V

S
S

N
M

IB
S

ys
A

D
26

P
M

as
te

rB
V

C
C

V
S

S
S

ys
A

D
25

E
R

eq
B

S
ys

C
m

d0
V

C
C

V
S

S
S

ys
C

m
d1

R
es

et
B

E
V

al
id

B
S

ys
C

m
d2

V
C

C
V

S
S

S
ys

C
m

d3
C

ol
dR

es
et

B
S

ys
C

m
d4

D
iv

M
od

e1
V

C
C

V
S

S
S

ys
A

D
24

D
iv

M
od

e0
S

ys
A

D
23

In
tB

3
V

C
C

V
S

S

July, 1995 – 112 – MTI Confidential

Specifications R4300 RISC Processor Specification v2.2
12.4.3 179-pin PGA Pin-out

K1 VCC
K2 SysAD31
K3 NC
K16 VSSP
K17 VCCP
K18 VSS
L1 VSS
L2 NC
L3 PValidB
L16 SysAD20
L17 TestModeB
L18 VCC
M1 VCC
M2 SysAD30
M3 EOKB
M16 SysAD21
M17 ByPassPLLB
M18 VSS
N1 VSS
N2 NC
N3 NC
N16 SysAD22
N17 NC
N18 VCC
P1 SysAD29
P2 SysAD28
P3 SysAD27
P16 NC
P17 NC
P18 VSS
R1 VCC
R2 IntB2
R3 NC
R16 NC
R17 NC
R18 VSS
T1 VSS
T2 NC
T3 NC
T4 NC
T5 NMIB
T6 SysAD26
T7 SysCmd0
T8 SysCmd1
T9 NC

C10 SysAD9
C11 NC
C12 SysAD11
C13 SysAD13
C14 SysAD16
C15 NC
C16 NC
C17 NC
C18 VSS
D1 VSS
D2 JTDI
D3 NC
D16 NC
D17 NC
D18 VCC
E1 NC
E2 JTDO
E3 SysAD4
E16 NC
E17 NC
E18 SysAD17
F1 VCC
F2 NC
F3 SysAD3
F16 IntB4
F17 SysAD18
F18 VSS
G1 VSS
G2 SysAD1
G3 SysAD2
G16 SyncIn
G17 NC
G18 NC
H1 VCC
H2 SysAD0
H3 NC
H16 SysAD19
H17 SyncOut
H18 VSS
J1 VSS
J2 NC
J3 PReqB
J16 TClock
J17 MasterClock
J18 VCC

A1 No pin
A2 VCC
A3 VSS
A4 VCC
A5 JTCK
A6 VSS
A7 VCC
A8 VSS
A9 VCC
A10 VSS
A11 VCC
A12 VSS
A13 VCC
A14 VSS
A15 NC
A16 VCC
A17 VSS
A18 VSS
B1 VSS
B2 NC
B3 NC
B4 NC
B5 NC
B6 SysAD6
B7 NC
B8 JTMS
B9 SysAD8
B10 IntB0
B11 SysAD10
B12 SysAD12
B13 SysAD14
B14 SysAD15
B15 NC
B16 ResetB
B17 NC
B18 VCC
C1 VCC
C2 NC
C3 NC
C4 NC
C5 NC
C6 IntB1
C7 SysAD5
C8 NC
C9 SysAD7

T10 SysCmd2
T11 ColdResetB
T12 DivMode1
T13 NC
T14 DivMode0
T15 IntB3
T16 NC
T17 NC
T18 VCC
U1 VCC
U2 NC
U3 NC
U4 NC
U5 PMasterB
U6 NC
U7 EReqB
U8 NC
U9 EValidB
U10 NC
U11 SysCmd3
U12 NC
U13 SysCmd4
U14 SysAD24
U15
U16 NC
U17 NC
U18 VSS
V1 VSS
V2 VSS
V3 VCC
V4 VSS
V5 SysAD25
V6 VCC
V7 VSS
V8 VCC
V9 VSS
V10 VCC
V11 VSS
V12 VCC
V13 VSS
V14 NC
V15 SysAD23
V16 VSS
V17 VCC
V18 VSS
MTI Confidential – 113 – July, 1995

R4300 RISC Processor Specification v2.2 Specifications
12.4.4 179-Pin PGA Physical Pin Location

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • •

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

V

U

T

R

P

N

M

L

K

J

H

G

F

E

D

C

B

A

V

U

T

R

P

N

M

L

K

J

H

G

F

E

D

C

B

A

R4300 PC Pinout

x

Bottom
July, 1995 – 114 – MTI Confidential

R4300 RISC Processor Specification v2.2
Appendix A. Differences from the R4000

The R4300 processor implements the MIPS III instruction set, as does the R4000. As with any two
hardware implementations of the same architecture, there are some differences between R4300
and the R4000. While R4300 has tried to stay as close to the R4000 implementation as possible
both from a system design and software viewpoint, there are some visible differences. This section
is an attempt to highlight the differences between R4300 and the R4000. This is not intended to
be a complete list and cannot replace a thorough reading of the document.

The primary differences between R4300 and the R4000 are in the system interface bus definition
and cache handling. This is primarily because the R4300 processor provides no support for
second level caches and has the requirement of fitting into 120 pin PQFP package. R4300 also
provides no support for multiprocessing, which has an impact on system design.

A.1 Software visible differences

The functional differences between the R4000 and the R4300 processor that are visible to
software are contained in the Coprocessor 0 implementation.

A.1.1 Cache Ops
Because the R4300 processor does not support secondary cache, all of the references to
secondary cache in the R4000 implementation do not apply to R4300. Designating either SD or SI
(secondary data or instruction cache) for any cache op on R4300 is undefined. All writeback
operations will send data from primary cache to main memory. Cache op number seven (7) is
undefined for R4300.

The data cache Dirty bit, W bit in R4000, will be cleared for cache op Hit Write Back Data.

R4300 implements one software visible cache line state bit, where R4000, due to multi-
processing, implements two state bits. R4300 writes TagLo[7] when executing
Index_Store_Tag_D instruction into cache line state bit, while R4000 writes both TagLo[7] and
TagLo[6]. See section A.3.1 for more detail.

A.1.2 Cache Parity
R4300 does not provide parity protection for the caches.

Coprocessor0 CacheErr register (register 27) is not implemented, any accesses to this register
are undefined.

Coprocessor0 PErr register (register 26) is used for diagnostic purposes only.

A.1.3 Status Register
R4300 has a slightly different status register from the R4000 The bits that perform identical
functionalities are left in the same location on R4300 as they are in the R4000.

One bit of the Status Register that was previously always zero (i.e. unused) is now used. This is
the Instruction Trace Support ITS bit.

Status register’s CH bit, the Cp0 Condition bit used for the Branch on Co-Processor 0 BC0T/BC0F
instructions, is writable only by software in R4300. But, in R4000, this bit can be set or cleared by
the hardware dependent on secondary cache operations, which R4300 does not support.

Status register’s CE and DE bits, which are associated with parity handling, are unused and
hardwired to 0.
July, 1995 – 115 – MTI Confidential

R4300 RISC Processor Specification v2.2
A.1.4 Configuration Register
The R4300 Configuration register implements a subset of the fields on the R4000, since R4300
does not have as many options. The exact meaning of bits within the configuration register may
be different.

A.1.5 Unimplemented Operation Exception and other cause bits
R4000 defines the Unimplemented Operation Exception (E) in FSR to supersede all other cause
bits. The Unimplemented Exception handler is expected to ignore and clear all cause bits. Thus,
during E exception, all other cause bits are undefined or don’t care.

R4300 has a stricter definition than the R4000. It sets no other FP exception cause bits when there
is an Unimplemented Operation Exception.

A.1.6 Integer Divide-by-Zero
When an integer division by zero occurs, MIPS ISA specifies the result to be undefined. Under this
illegal operation, R4300 returns different value in Register LO than R4000:

Here is what R4000 returns in Hi and Lo for all cases of dividend:

Dividend Lo Hi

 >= 0 0xFFFFFFFF dividend
< 0 0x00000001 dividend

and R4300 returns:

Dividend Lo Hi

 >= 0 0x7FFFFFFF dividend
 < 0 0x80000001 dividend

A.1.7 Cache Parity Error exception
R4300 does not support parity and will never take parity error exception.

A.2 System Design differences

A.2.1 Processor Initialization
The R4000 had a fairly complicated scan based processor initialization scheme. R4300 has far
fewer modes; those that are not available via software are hardwired as pins on the package.
R4300 also requires only 16 cycles of Reset* assertion during the reset sequence.

A.2.2 System Interface
R4300 uses a similar protocol to the SysAD bus protocol, but not the same. R4300 system
interface bus is 32-bits and does not support parity. For full details of the protocol, refer to “System
Interface” chapter.

R4300 has fixed sizes for instruction cache lines (8 words) and data cache lines (4 words).
Instruction blocks will be written to the memory system as a block of eight words. (The writing of
instruction cache lines to memory can be done via the Hit Write Back Cache Op.)

R4300 will support two data rates for write transactions: D and Dxx. The rate to be used by R4300
is programmed via the EP field in Configuration register.
MTI Confidential – 116 – July, 1995

R4300 RISC Processor Specification v2.2
On the R4000, all address cycles are guaranteed to be at least three cycles apart. In fast mode
on R4300 (DataRate=D) addresses for back to back writes or reads may only be one cycle apart
(ADAD...).

R4300 guarantees that it can handle data coming onto the processor as fast as it can be delivered
by the SysAD bus. There will never be a stream of data presented to the R4300 processor
exceeding eight words, and R4300 can handle a data pattern of DDDDDDDD.

In order to conserve power, the R4300 processor provides only a single TClock.

A.2.3 RP Bit Effect on System Interface
On the R4000, SClock and TClock were unaffected by the RP bit. On R4300, setting the RP bit
will reduce the clock frequency of SClock and TClock by a factor of four. If there are any timing
dependent features in an external agent that would be affected by this (e.g., DRAM refresh
counters), the external agent must provide software a mechanism to accommodate the frequency
change.

A.3 Other Differences

A.3.1 I and D Cache
R4300 implements a 16k, direct mapped, virtually indexed instruction cache with a cache line of
eight words (thirty-two bytes). The data cache is 8k, direct mapped, virtually indexed with a cache
line of four words (sixteen bytes). This implies that any software routines for initializing,
invalidating, or flushing cache must take this difference into consideration.

R4300 implements one software visible cache line state bit. Due to multiprocessing support,
R4000 implements two cache line state bits. For compatibility, if a cache line state is checked via
Index_load_Tag_D cache-op, R4300 will repeat the single state bit twice and write it to TagLo
register PState field. The following PStates values are possible for R4300, 00, 11. For R4000,
00,01,10,11 are possible. The R4000PC, which does not support multiprocessing, for an invalid
line the state is 00, and for a line which was filled via a cache miss is set to 11, same as R4300.
But if the line state is modified via Index_Store_Tag_D cache-op then the only supported values
for R4300 are 00, 11. R4300 write TagLo[7] when executing Index_Store_Tag_D instruction into
line state bit, R4000 writes both TagLo[7] and TagLo[6].

A.3.2 TLB

A.3.2.1 TLB entries

R4300 implements a thirty-two way, fully associative TLB in which each entry maps two Page
Frame Numbers, one even and one odd. While the structure of this is identical to the R4000, the
number of entries is reduced from forty-eight entries on the R4000.

A.3.2.2 Interactions between ITM & TLB Ops

When a software TLB instruction is accessing the JTLB during the same cycle as an Instruction
TLB Miss (ITM) stall, the R4000 behaves in an undefined manner, and can actually generate a
bogus TLB Invalid Exception, especially when the TLB software read/write operation (tlbwi, tlbwr,
tlbr) is accessing a completely different entry than that accessed on behalf of the Instruction TLB
miss. R4300 has corrected this bogus TLB behavior.
July, 1995 – 117 – MTI Confidential

R4300 RISC Processor Specification v2.2
A.3.3 Floating Point Coprocessor

A.3.3.1 Floating-point Datapath

R4300 integrates the operation of Coprocessor 1, the floating point coprocessor, into the main
pipeline and datapath of the integer processor. This means that the integer pipe will stall for any
multicycle floating point instructions. While this is invisible to software in terms of functionality,
code that may have been optimized for the R4000 will likely see no improvement on R4300.

A.3.3.2 Variable latencies

Any multicycle instruction which experiences a source exception (i.e. an exception with its source
operands) will not cause a stall. Instead, it will issue a default result on that cycle or report a
trapped exception on the next cycle, depending on the trap enable flags. In addition, certain trivial
calculations (such as 0 * 0) will be performed with less latency than non-trivial cases of the same
operation. The R4000, on the other hand, always has the same latency for each particular
instruction whether an exception occurs or not.

A.3.3.3 Cvt.[s,d].l instruction

To convert a 64-bit integer to a single- or double-precision floating point number, R4000 initiates
a FP Unimplemented Operation exception when bits 63...52 of an integer are not all ones or all
zeros.

Since it has a unified 64-bit datapath for both integer and floating-point operations, R4300 can
process more bits out of a 64-bit integer in the long integer to floating-point convert instruction,
without added cost to the design. R4300 raises a FP unimplemented operate exception only when
bits 63...55 of a 64-bit integer are not all ones or all zeros.

A.3.4 RP Bit Effect on PClock

On the R4000, setting the RP bit will reduce the PClock frequency by a factor of two through
sixteen. On R4300, this bit will reduce PClock frequency by a factor of four.

A.3.5 Pipeline
R4300 uses a simpler pipeline than the R4000. This pipe is a five stage pipe that strongly
resembles the pipeline used on the R3000. R4300 is not superpipelined. This is not visible in any
functional way, but may impact how different code sequences may be optimized. This also means
that there will be fewer stalls due to the basic pipeline. This increases the CPI component due to
cache misses, meaning that the system design of the memory system is even more crucial to the
performance of the R4300 processor.

A.3.6 Interrupts
R4300 dedicates bit 15 of the Cause Register, which is bit 7 of the Interrupt Pending field, to the
timer interrupt caused when the Compare and Count registers match. Writing to Interrupt register
bit 5 via the system interface will have no effect. The R4000 allowed the user to select whether bit
15 was dedicated to the timer interrupt or to Interrupt register bit 5. Interrupt register bit 5 has been
eliminated on R4300.

A.3.7 Kernel Physical Address Segment Organization
R4300 implements only two cache coherency algorithms, uncached and cacheable non-coherent.
This, and the fact that R4300 implements only 32 physical address bits as compared to the
R4000’s 36-bit physical addresses, is reflected in the virtual address map in the organization of
the Kernel Physical Address Space segment. R4300 breaks this segment further into two valid
MTI Confidential – 118 – July, 1995

R4300 RISC Processor Specification v2.2
address spaces, one per cache coherency algorithm, while the rest of the address space is
unavailable. The R4000 processor, in contrast, has more valid addresses in this segment. Refer
to “Figure 16: R4300 64-bit Address Space” for the organization of this virtual address segment for
the R4300 processor.

A.3.8 JTAG
When in Shift-IR and Shift-DR modes, IEEE Std1149.1-1990 on page 5-11 in Table 5-2 states that
JTDO should be active. R4300 implements the JTAG controller per IEEE Std1149.1-1990. But,
R4000 implements an older version of the standard and does not drive JTDO under these two
modes.
July, 1995 – 119 – MTI Confidential

R4300 RISC Processor Specification v2.2
MTI Confidential – 120 – July, 1995

R4300 RISC Processor Specification v2.2
Appendix B. Differences from the R4200

The primary differences between R4300 and the R4200 are in the system interface bus
architecture and in the absence of parity. The requirement for R4300 to fit into a small PQFP
package necessitated a new bus definition, which is very similar to but not the same as the R4200
system interface bus.

Table 1: Summary of differences between R4200 and R4300

Feature R4200 R4300

System Bus 64 bits 32 bits

Multiplier No Yes

Pipeline Frequency 80Mhz 100Mzh

System Frequency 40Mhz 62.5Mhz

Flush Buffers 1 address 4 addresses

Cache Parity Yes No

System Bus Parity Yes No

Mode Pins Yes via Cp0 Config Reg

1:1 PClock / SClock Ratio No Yes

1.5:1 PClock / SClock Ratio No Yes

2:1 PClock / SClock Ratio Yes Yes

3:1 PClock / SClock Ratio No Yes

4:1 PClock / SClock Ratio Yes No

PQFP Package 208 pin 120 pin

PGA Package 179 pin 179 pin (Debug Only)

Physical Address 33 bits 32 bits

RClock & MasterOut Yes No

Fast DataRate DDx D

CacheTestMode via JTAG No Yes
July, 1995 – 121 – MTI Confidential

R4300 RISC Processor Specification v2.2
B.1 Software visible differences

B.1 .1 Cache Parity

R4300 does not provide parity protection for the caches.

Coprocessor0 CacheErr register (register 27) is not implemented, any accesses to this register
are undefined.

Coprocessor0 PErr register (register 26) is used for diagnostic purposes only.

B.1 .2 Status Register

Status register’s CE and DE bits, which are associated with parity handling, are unused and
hardwired to 0 and 1 respectively.

B.1 .3 Configuration Register

R4200 configuration register fields BE and EP are set by hardware to the values specified by
BigEndian and DataRate pins during reset and are read only by software; R4300 sets these fields
to default values during ColdReset only and allows software to modify them. Bits[19..18] changed
from 00 in R4200 to 01.

B.1 .4 Cache Parity Error Exception

R4300 does not support parity and will never take parity error exception.

B.2 System Interface

R4300 uses a similar protocol to the SysAD bus protocol, but not the same. R4300 system
interface bus is 32-bits and does not support parity. For full details of the protocol, refer to chapter
“8.0 System Interface”.

Instruction blocks will be written to the memory system as a block of eight words transaction
instead of the sequence of four doublewords separated by one dead cycle.

R4300 fast data rate is D instead of DDx. The data rate is software programmable via the
Configuration register, whereas it is a pin on R4200.

B.2 .1 Clocks

R4300 does not output MasterOut and RClock.

The clock derivation scheme is different in R4300. Instead of always multiplying MasterClock by
2 to generate PClock, the multiplication factor is now obtained from DivMode(1:0) pins of the chip.
This factor can be 1x, 2x, 3x or 1.5x to give the ratios of 1:1, 2:1, 3:1 and 3:2 between PClock and
MasterClock respectively. SClock and TClock are the same frequency as MasterClock, instead of
being derived from PClock. As with the R4200, RP mode on the R4300 divides PClock, SClock,
and TClock by four of their normal frequency.

B.2 .2 Power/Gnd pins

 There will be two sets of Vcc/Vss on R4300. One for I/O and core, the other for PLL. R4200 has
three sets, one for I/O, one for core and one for PLL.

B.2 .3 Packaging

 R4300 package is 120 pin PQFP; while R4200 uses 208 pin PQFP.
MTI Confidential – 122 – July, 1995

R4300 RISC Processor Specification v2.2
B.3 Other Differences

B.3 .1 Physical Address

 R4300 physical address and physical address space is 32 bits, while R4200 physical address and
space is 33 bits. This results in 20 bits in tag portion of the caches and page frame number fields
of TLB low and hi entries.

B.3 .2 Flush Buffer

 R4300 has a four double word (64 bits) deep flush buffer to improve performance of back to back
uncached write operations.

B.3 .3 Resets

 Reset does not need to be asserted during or after assertion of ColdReset. ColdReset
does not need to be asserted/deasserted synchronously with MasterClock.

B.3 .4 TLB Shutdown

When multiple entries in the TLB match during a TLB access, the TLB will no longer shutdown and
the processor will continue operation. The TS bit in the Status register will still be set.
July, 1995 – 123 – MTI Confidential

R4300 RISC Processor Specification v2.2
Appendix C. Glossary

BigEndian Data organization such that the most significant byte of a word (the leftmost byte) is
labeled byte 0.

CP0 Coprocessor Zero. This unit contains its own register set and instructions. It is used for
memory management and exception handing.

CP1 Coprocessor One. This is the floating point coprocessor.

Doubleword A sixty-four bit quantity.

Exception Any condition that causes the normal flow of instructions to be interrupted and special
software assistance to be invoked. Examples of exceptions are resets, external
interrupts, TLB misses, error conditions, and arithmetic exceptions such as underflow
and overflow.

Flush Buffer This is a buffer that contains data that is to be written to an external agent. It is filled by
either a store to an uncached location, or by a dirty cache line that must be written to
memory because a cache miss requires a new line to occupy that entry in cache. The
pipeline may continue while the flush buffer is full, but if any more data needs to be
written to an external agent, there is an interlock and the pipeline must stall until the flush
buffer empties.

Instruction TLB In general, this is synonymous with microTLB.

Interlock An interlock is a dependency of one instruction on a processor resource that is not ready
due its use by another instruction. Interlocks are resolved on R4300 by stalling the whole
pipeline. Examples of interlocks are integer multiplies, which use the ALU for many
cycles, cache misses, and load-use interlocks, where an instruction wishes to use a
register for which a load has not completed.

JTLB Joint TLB. This is a 32 double entry (even and odd entries) TLB that can hold both data
and instructions. The JTLB is the only TLB used for data, and is a secondary TLB used
for instructions, which have their own primary TLB.

LittleEndian Data organization such that the least significant byte of a word (the rightmost byte) is
labeled byte 0.

LLBit Load Linked bit. This bit is set any time the processor executes a Load Linked
instruction. It will be checked when a Store Conditional is attempted, and the store will
not occur if this bit is clear. All bits of the source register for the store conditional will be
cleared except the LSB, which will have the LLBit written into it. The LLBit will be cleared
upon any cache miss or upon execution of ERET. Though this mechanism is intended
for multiprocessor use, R4300 will implement it anyway.

MicroTLB The MicroTLB is a two entry, fully associative, instruction only TLB. If an instruction
access should miss this TLB, the R4300 processor will check the JTLB for the
translation.

NMI Non-Maskable Interrupt. This interrupt cannot be disabled by software.

Orion A mythological figure from ancient history.

Page Size Memory is divided into blocks known as pages. Virtual addressing is accomplished by
using a virtual page address to point to a block of real (physical) memory. The page size
is the amount of memory referenced by a virtual (or real) page.

PSIZE Physical address size in number of bits. R4300 supports 32 bits of physical address.

Run The normal state of the pipeline, in which each pipestage completes its work and passes
the instruction on to the next stage. While the pipeline is running, a new instruction will
be fetched and an old instruction will be retired on every clock.

SPECint The geometric mean of the integer benchmarks of the SPEC 89 benchmark suite.
July, 1995 – 124 – MTI Confidential

R4300 RISC Processor Specification v2.2
SPECfp The geometric mean of the floating point benchmarks in the SPEC 89 benchmark suite.

Stall A condition in which the pipeline has stopped moving, waiting for a resource conflict to
be resolved.

TLB Translation Lookaside Buffer. This contains entries of virtual addresses and their
corresponding physical addresses. The logical TLB is comprised on R4300 of a joint
TLB (JTLB), which hold both data and instructions, and a micro TLB (uTLB) which holds
only instructions. In general, when the term TLB is used in this document, it is referring
to the logical TLB.

uTLB Micro Instruction TLB.

VSIZE Virtual address size in number of bits. R4300 supports 40 bits of virtual address.

wombat A non-arboreal cousin of the koala.

Word A thirty-two bit quantity.

Write-back The cache write algorithm implemented on R4300. Data stored to a cached memory
address will be written back into the cache, but not directly out to memory. This is as
opposed to a write through algorithm.
MTI Confidential – 125 – July, 1995

	Appendix A. Differences from the R4000 115
	Appendix B. Differences from the R4200 121
	Appendix C. Glossary 124
	1.0 Introduction
	1.1 Reference Documents
	1.2 Data Formats and Addressing
	1.3 Registers
	1.4 Spec Objectives
	Table 1: Summary of Spec Objectives

	2.0 Overview
	1. Instruction Fetch IC
	2. Decode, file read, branch/jump RF
	3. Execution EX
	4. Data cache read DC
	5. File or data cache write WB
	Figure 1: Processor block diagram
	1. Execution unit
	2. Coprocessor 0
	3. Pipeline control
	4. Instruction address
	5. Instruction cache
	6. Data cache
	7. System interface
	8. Clock generation

	3.0 Operation Fundamentals
	3.1 Power management
	3.2 Processor Pipeline
	3.2.1 Pipeline Overview
	Figure 2: Pipeline Activities

	3.2.2 Pipeline Interlocks and Exceptions
	Figure 3: Pipeline Interlocks and Exceptions
	1. Coprocessor Interlock stall CPI and Coprocessor Exception CPE are defined to support an optional on-board coprocessor 2 CP2 for future product enhancement.

	3.2.3 Pipeline Operation
	3.2.3.1 Add ADD rd,rs,rt
	3.2.3.2 Jump and Link Register JALR rd,rs
	3.2.3.3 Branch on Equal BEQ rs,rt,offset
	3.2.3.4 Trap if Less Than TLT rs,rt
	3.2.3.5 Load Word LW rt,offset(base)
	3.2.3.6 Store Word SW rt,offset(base)

	4.0 Execution Unit
	4.1 Goals
	4.2 Overview
	4.3 Functional Description
	4.3.1 Instruction latencies
	Table 2: Integer instruction latencies
	1. The taken branch instruction is fetched in the EX stage of the branch instruction. The branch comparison and the target address calculation are done in phase 1 of the EX stage. The MIPS architecturally defined branch delay slot of one cycle is sti...
	2. To be compatible with MIPS-II instruction set, hardware will interlock if the result of a load is to be used by the immediately following instruction.

	Table 3: Instruction Latencies/Execution Rate on Floating-Point Data Movement
	1. The hardware will interlock for one cycle if the load result is used by the instruction in the load delay slot.

	Table 4: Floating-point Instruction Latencies1
	1. If the FP register result of a FP instruction (except Mov.fmt) is needed by the subsequent instruction, an additional one pipeline clock is required for the result to be bypassed from DC to EX stage.
	2. Architecturally defined branch delay slot of one also applies to all branch instructions on floating point coprocessor condition.
	3. The trivial cases for the multicycle FP instructions take two pipeline clocks to complete.

	4.3.2 Unit Organization
	4.3.2.1 Integer/Mantissa Data Path
	4.3.2.2 Operand Bypass Network
	4.3.2.3 Register File
	4.3.2.4 Floating-Point Instruction Execution
	4.3.2.5 Instruction Address Unit

	5.0 Data and Instruction Caches
	5.1 Cache Organization
	Figure 4: Format of Instruction Cache line
	Figure 5: Format of Data Cache line

	5.2 Cache States
	5.2.1 Instruction Cache
	5.2.2 Data Cache
	5.2.2.1 Data Cache State transition
	Figure 6: Data Cache State Transition

	5.2.3 Cache state change during processor execution
	5.2.4 Manipulation of the Caches by an External Agent
	5.2.5 Cache Line
	5.2.6 Instruction Cache line replacement
	5.2.7 Data Cache line replacement

	5.3 Cache Access Time
	5.4 Cache Miss Handling
	(1) Move the instruction physical address to the pads.
	(2) Wait for a pipeline clock PClock, aligned with the system clock SClock boundary.
	(3) Read memory.
	(4) Move memory data to the instruction cache array.
	(5) Write memory data into the instruction cache array.
	(6) Restart the processor pipe.
	(1) Move the data physical address to pads. At the same time, move the dirty victim cache line to the flush buffer if needed.
	(2) Wait for a pipeline clock PClock, aligned with system clock SClock boundary.
	(3) Read memory.
	(4) Receive the desired doubleword.
	(5) Receive other doubleword. Meanwhile, move the desired data to the processor pipe. Interlock the data cache from being accessed by a subsequent instruction.
	(6) Move memory data to the data cache array. Continue to interlock the data cache.
	(7) Write memory data into the data cache array. Continue to interlock the data cache.

	5.5 Cache Operations
	Table 5: Cache Operations

	5.6 Reset Effects
	5.7 Flush Buffer
	Figure 7: Flush Buffer format

	6.0 Cache Test Mode.
	6.1 Cache Memory Description
	6.2 Test Mode Description
	6.3 Test Mode Commands
	6.4 Cache Memory Address
	6.5 Cache Read
	Figure 8: DCData and ICData Read Timing
	Figure 9: DCTag and ICTag Read Timing

	6.6 Cache Write
	Figure 10: DCData and ICData Write Timing
	Figure 11: DCTag Write Timing
	Figure 12: ICTag Write
	Figure 13: Instruction and Data Cache Back-to-Back Data/Tag Write Timing

	6.7 Cache Organization
	Figure 14: Cache RAM Topological View

	7.0 System Control Coprocessor (CP0)
	7.1 R4300 Control Coprocessor Registers
	Table 6: System Control Coprocessor CP0 register list
	7.1.1 Index Register (0)
	7.1.2 Random Register (1)
	7.1.3 EntryLo0 Register (2)
	7.1.4 EntryLo1 Register (3)
	7.1.5 Context Register (4)
	7.1.6 PageMask Register (5)
	7.1.7 Wired Register (6)
	7.1.8 BadVAddr Register (8)
	7.1.9 Count Register (9)
	7.1.10 EntryHi Register (10)
	7.1.11 Compare Register (11)
	7.1.12 Status Register (12)
	7.1.13 Cause Register (13)
	7.1.14 EPC (14)
	7.1.15 Processor Revision Identifier (15)
	7.1.16 Configuration Register (16)
	7.1.17 Load Linked Address (LLAddr) Register (17)
	7.1.18 WatchLo (18)
	7.1.19 WatchHi (19)
	7.1.20 XContext Register (20)
	7.1.21 PErr Register (26)
	7.1.22 CacheErr Register (27)
	7.1.23 TagLo (28) and TagHi (29)
	7.1.24 ErrorEPC (30)

	7.2 CP0 Instructions
	Table 7: CP0 Instructions
	7.2.1 CACHE - Cache Operations

	7.3 R4300 32 bit Virtual Address Space
	Figure 15: R4300 32-bit Address Space

	7.4 R4300 64 bit Virtual Address Space
	Figure 16: R4300 64-bit Address Space

	7.5 Translation Lookaside Buffer
	7.5.1 Instruction Micro TLB

	7.6 R4300 Processor Modes
	7.6.1 Reduced Power Mode RP (bit 27 in Status Register)
	7.6.2 Floating-Point Registers FR (bit 26 in Status Register)
	7.6.3 Data Rate EP (bits 27..24 in Configuration Register)
	7.6.4 System Endianness BE (bit 15 in Configuration Register)
	7.6.5 Reverse Endianness RE (bit 25 in Status Register)
	7.6.6 Instruction Trace Support Mode ITS (bit 24 in Status Register)
	7.6.7 Bootstrap Exception Vector BEV (bit 22 in Status Register)
	7.6.8 Kernel eXtended addressing KX (bit 7 in Status Register)
	7.6.9 Supervisor eXtended addressing SX (bit 6 in Status Register)
	7.6.10 User eXtended addressing UX (bit 5 in Status Register)
	7.6.11 Interrupt Enable IE (bit 0 in Status Register)

	7.7 Processor Interrupts
	7.8 Coprocessor 0 Hazards
	7.8.1 R4000 Hazards
	7.8.2 R4300 Specific Hazards
	Figure 15: R4300 xkphys region detail

	8.0 System Interface
	8.1 Sequences
	8.1.1 Fetch miss
	8.1.2 Load Miss
	8.1.3 Store Miss
	8.1.4 Uncached Load or Store
	8.1.5 Cache Instructions

	8.2 Byte Order
	8.3 Signal Descriptions
	8.4 Signal timing
	8.4.1 Timing Summary
	Figure 17: PMaster* Timing: Processor to ExtAgent
	Figure 18: PMaster* Timing: ExtAgent to Processor
	Figure 19: PMaster* Timing: Processor Read Request
	Figure 20: EValid*, PValid* Timing
	Figure 21: Multi-cycle EValid*, PValid* Timing
	Figure 22: EOK* Timing
	Figure 23: EOK* Timing: Killed Processor Write
	Figure 24: EOK* Timing: Killed Processor Read
	Figure 25: EReq* Timing: Bus Request
	Figure 26: EReq* Timing: Bus Release

	8.4.2 Arbitration
	Figure 27: External Request Arbitration
	Figure 28: Processor request for bus arbitration and external agent release

	8.4.3 Issuing Commands
	8.4.4 Processor Write Request
	Figure 29: Processor block write request with D data rate
	Figure 30: Processor single write request followed by a killed and retried write request
	Figure 31: Killed and retried write request with intervening external request

	8.4.5 Processor Read Request
	Figure 32: Processor read request
	Figure 33: Killed and retried processor read request
	Figure 34: Killed and retried read request with intervening external request

	8.4.6 External Write Request
	Figure 35: External write request

	8.4.7 External Read Response
	Figure 36: Single read request followed by read response
	Figure 37: Block read response, system interface already in slave state
	Figure 38: Single read request followed by external write request (external agent keeps bus)
	Figure 39: External write followed by external read response, system interface in slave state

	8.4.8 Flow Control
	Figure 40: Delayed processor read request
	Figure 41: Two processor write requests, second write delayed

	8.4.9 Data Rate Control
	Figure 42: Processor block write request with Dxx data rate

	8.4.10 Consecutive SysAD Bus Transactions
	Figure 43: Processor single word read followed by block write request
	Figure 44: Consecutive processor single word write requests with D data rate
	Figure 45: Consecutive processor single word write requests with Dxx data rate
	Figure 46: Consecutive processor write requests followed by external write request

	8.4.11 Starvation and Deadlock Avoidance.
	Figure 47: External Agent Gives Up Bus for One Processor Request

	8.5 Multiple Drivers on the SysAD Bus
	8.6 Signal codes
	Table 8: Encoding of system interface commands SysCmd(4)
	Table 9: Encoding of SysCmd(3) & SysCmd(2) for Address Cycle
	Table 10: Encoding of SysCmd(1:0) for block address requests
	Table 11: Encoding of SysCmd(1:0) for single address requests
	Table 12: Encoding of SysCmd(3:0) for processor data identifiers
	Table 13: Encoding of SysCmd(3:0) for external data identifiers

	8.7 Physical Addresses
	8.8 Processor Reset and Initialization
	8.8.1 Cold Reset
	8.8.2 Warm Reset (also known as Soft Reset)
	8.8.3 Non Maskable Interrupt (NMI)
	8.8.4 General Reset Information

	9.0 Exception Handling
	9.1 Exception operation
	9.2 Precision of Exceptions
	9.3 Exception Types
	Table 14: Exception Types

	9.4 Exception vectors
	Table 15: Exception Vectors

	9.5 Priority of Exceptions
	9.5.1 Reset
	9.5.2 Soft Reset
	9.5.3 Non-maskable Interrupt
	9.5.4 TLB Refill and Extended addressing TLB Refill
	9.5.5 TLB Invalid
	9.5.6 TLB Modified
	9.5.7 Bus Error
	9.5.8 Address Error
	9.5.9 Integer overflow
	9.5.10 Trap
	9.5.11 System Call
	9.5.12 Breakpoint
	9.5.13 Reserved Instruction
	9.5.14 Coprocessor Unusable
	9.5.15 Interrupt
	9.5.16 Watch
	9.5.17 Floating Point

	10.0 Clocks
	10.1 PClock
	10.2 SClock
	10.3 TClock
	10.4 Phase Locked Loop
	10.5 SyncIn/SyncOut
	10.6 Reduced Power Mode
	11.0 JTAG Interface
	11.1 JTAG Signals
	11.2 JTAG Functionality
	11.2.1 TAP Controller
	11.2.2 Instruction Register
	11.2.3 Bypass Register
	11.2.4 Boundary Scan Register

	12.0 Specifications
	12.1 Electrical Characteristics
	12.1.1 LVCMOS
	12.1.2 DC Characteristics
	12.1.2.1 Maximum Ratings
	Table 16: Maximum Ratings

	12.1.2.2 Operating Parameters
	Table 17: Operating Parameters

	12.1.3 AC Characteristics
	12.1.3.1 MasterClock and Clock Parameters
	Table 18: MasterClock and Clock Parameters

	12.1.3.2 System Interface Parameters
	Table 19: System Interface Parameters

	12.1.3.3 Capacitive Load Deration
	Table 20: Capacitive Load Deration

	12.1.4 Timing Diagrams
	Figure 48: MasterClock
	Figure 49: TClock
	Figure 50: Clock Jitter
	Figure 51: Processor clock, PClock to SClock divisor of 2
	Figure 52: System Interface Edge Timing Relationships

	12.2 PLL Passive Components.
	Figure 53: External PLL Passive Components.

	12.3 Pin Descriptions
	12.4 Pin Specifications.
	12.4.1 120-pin PQFP Pin-out
	12.4.2 120 Pin PQFP Physical Pin Location
	12.4.3 179-pin PGA Pin-out
	12.4.4 179-Pin PGA Physical Pin Location

	Appendix A. Differences from the R4000
	A.1 Software visible differences
	A.1.1 Cache Ops
	A.1.2 Cache Parity
	A.1.3 Status Register
	A.1.4 Configuration Register
	A.1.5 Unimplemented Operation Exception and other cause bits
	A.1.6 Integer Divide-by-Zero
	A.1.7 Cache Parity Error exception

	A.2 System Design differences
	A.2.1 Processor Initialization
	A.2.2 System Interface
	A.2.3 RP Bit Effect on System Interface

	A.3 Other Differences
	A.3.1 I and D Cache
	A.3.2 TLB
	A.3.2.1 TLB entries
	A.3.2.2 Interactions between ITM & TLB Ops

	A.3.3 Floating Point Coprocessor
	A.3.3.1 Floating-point Datapath
	A.3.3.2 Variable latencies
	A.3.3.3 Cvt.[s,d].l instruction

	A.3.4 RP Bit Effect on PClock
	A.3.5 Pipeline
	A.3.6 Interrupts
	A.3.7 Kernel Physical Address Segment Organization
	A.3.8 JTAG

	Appendix B. Differences from the R4200
	B.1 Software visible differences
	B.1 .1 Cache Parity
	B.1 .2 Status Register
	B.1 .3 Configuration Register
	B.1 .4 Cache Parity Error Exception

	B.2 System Interface
	B.2 .1 Clocks
	B.2 .2 Power/Gnd pins
	B.2 .3 Packaging

	B.3 Other Differences
	B.3 .1 Physical Address
	B.3 .2 Flush Buffer
	B.3 .3 Resets
	B.3 .4 TLB Shutdown

	Appendix C. Glossary

