
Systems Manual

PC Development System for the
Nintendo 64

 SN Systems Software Ltd.

END USER LICENSE AGREEMENT BETWEEN THE “LICENSEE” AND SN SYSTEMS LTD “LICENSOR”

LICENSE: SN Systems Ltd (SN Systems) hereby grant the Licensee a non-transferable, non-exclusive right to use the
Licensor’s software product Tools on any single computer, provided that the Software is in use on only one computer at a
time in return for the license fee.

USE OF THE SYSTEM: You may use the Software and associated User Documentation on any single computer fitted
with Cartridge Hardware. You may also copy the Software for archival purposes, provided that any copy contains all the
proprietary notices for the original Software.

You may not:
Permit other individuals to use the Software except under the terms listed above;
Modify, translate, reverse engineer, decompile, disassemble (except to the extent applicable laws specifically prohibit such
restriction) or create derivative works based on the Software;
Copy the Software (except for backup purposes);
Rent, lease, transfer or otherwise transfer rights to the Software;
Remove any proprietary notices or labels on the Software

TITLE: Title, ownership rights and intellectual property rights in and to the software shall remain in SN Systems Ltd.

COPYRIGHT: The Software is owned by the Licensor. The Licensee may not copy the manual (s) or any other written
materials accompanying the Software.

LIMITED WARRANTY: The Licensor warrants that the Software will perform substantially in accordance with the
accompanying manual (s) for a period of 30 days from the date of receipt PROVIDED that the failure of the Software has not
resulted from accident, abuse or misapplication.

CUSTOMER REMEDIES: The Licensor’s entire liability and the Licensee’s exclusive remedy shall at the Licensor’s
option, either be:
(1) return of the license fee paid or
(2) repair or replacement of the Software that does not meet the Licensor’s Limited Warranty outlined above.

DISCLAIMER OF WARRANTY: THE SOFTWARE, ACCOMPANYING MANUAL (S) AND ANY SUPPORT
FROM SN SYSTEMS ARE PROVIDED “AS IS” AND WITHOUT ANY OTHER EXPRESSED OR IMPLIED
WARRANTY, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL SN SYSTEMS BE LIABLE FOR ANY
DAMAGES, INCLUDING LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES, EVEN IF SN SYSTEMS IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR FOR ANY
CLAIM BY YOU OR ANY THIRD PARTY. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN
ESSENTIAL PART OF THE AGREEMENT.

SN Systems’ liability under this Agreement whether in contract, tort (including negligence) or otherwise shall be limited to
the Fee paid by the Licensee.

TERMINATION: This license will terminate automatically if you fail to comply with the limitations described above or if
after thirty (30) days written notice to SN Systems, you terminate it. On termination you must destroy all copies of the
Software, in whole or in part, in any form and cease all use of the Software.

Please note that as this software is constantly being updated, it is quite likely that this manual
may contain some inaccurate or out-of-date references and some features of newly updated
software may not be fully covered.

For this reason, if you experience any difficulties with this documentation, updates are
available for download via the SN Systems BBS.

We recommend that you make regular use of this service and quickly take advantage of any
new features added to the software, report or download ‘bug’ reports, gain answers to
questions that may be causing you difficulty and keep up-to-date on news concerning the
development industry.

If you experience any difficulties, please do not hesitate to contact our Technical Support at
SN Systems:

Tel: +44 (0)117 929 9733
Fax: +44 (0)117 929 9251

This device complies with part 15 of FCC Rules. Operation is subject to the following two
conditions:

1) This device may not cause harmful interference
2) This device must accept any interference that may be received, including interference that

may cause undesired operation.

 1996, 1997 SN Systems Software Ltd. All rights reserved.

Nintendo 64 Contents Page i

© SN Systems Ltd

INTRODUCTION................................ I

ABOUT THIS SYSTEM..II
THE SYSTEM FOR NINTENDO 64 ...III
ISSUE INFORMATION... IV
ACKNOWLEDGEMENTS... V

INSTALLATION................................ 1-1

INSTALLING THE HARDWARE.. 1-2
INSTALLING THE PC INTERFACE.. 1-4
INSTALLING THE PC SOFTWARE.. 1-9
INSTALLING THE GNU ‘C’ SOFTWARE ...1-11
CHECKING THE INSTALLATION AND FIRST-TIME USE OF THE SYSTEM...1-12
REQUIREMENTS FOR DEBUGGING CARTRIDGE SOFTWARE..1-14
ADDITIONAL NOTES ..1-15
ELFCONV - LIBRARY CONVERTER PROGRAM...1-16

THE ASMN64 ASSEMBLER................................ 2-1

ASSEMBLER COMMAND LINE .. 2-2
ASSEMBLY ERRORS .. 2-5

SYNTAX OF ASSEMBLER STATEMENTS................................ 3-1

FORMAT OF STATEMENTS ... 3-2
FORMAT OF NAMES AND LABELS... 3-3
FORMAT OF CONSTANTS... 3-4
SPECIAL CONSTANTS.. 3-6
ASSEMBLER FUNCTIONS.. 3-8
SPECIAL FUNCTIONS... 3-9
ASSEMBLER OPERATORS..3-10
RADIX...3-12
ALIAS AND DISABLE...3-13

GENERAL ASSEMBLER DIRECTIVES................................ 4-1

ASSIGNMENT DIRECTIVES................................ 4-2

EQU.. 4-3
SET... 4-4
EQUS.. 4-6
EQUR... 4-8
RSIZE ... 4-9
RSSET...4-10
RSRESET..4-11

DATA DEFINITION................................4-12

DSIZE..4-13
DCSIZE ...4-14
DSSIZE ..4-15
HEX...4-16
DATASIZE AND DATA ...4-17
IEEE32 AND IEEE64..4-17

CONTROLLING PROGRAM EXECUTION................................4-18

ORG...4-19
CNOP...4-20
OBJ AND OBJEND...4-21

INCLUDE FILES................................4-22

INCLUDE..4-23
INCBIN..4-25

Page ii Contents Nintendo 64

© SN Systems Ltd

REF..4-26
DEF ...4-27

CONTROLLING ASSEMBLY................................ 4-28

END...4-29
IF, ELSE, ELSEIF, ENDIF, ENDC..4-29
CASE AND ENDCASE...4-31
REPT, ENDR...4-32
WHILE, ENDW...4-33
DO, UNTIL..4-34

TARGET-RELATED DIRECTIVE................................4-35

REGS...4-36

MACROS................................ 5-1

MACRO, ENDM, MEXIT... 5-2
MACRO PARAMETERS... 5-3
SPECIAL PARAMETERS.. 5-5
SHIFT, NARG... 5-7
MACROS.. 5-8
PUSHP, POPP... 5-9
PURGE..5-10
TYPE...5-11

STRING MANIPULATION FUNCTIONS................................ 6-1

STRLEN... 6-2
STRCMP... 6-3
INSTR... 6-4
SUBSTR.. 6-5

LOCAL LABELS................................ 7-1

SYNTAX AND SCOPE ... 7-2
MODULE AND MODEND... 7-3
LOCAL... 7-4

STRUCTURING THE PROGRAM................................ 8-1

GROUP... 8-2
SECTION.. 8-4
PUSHS AND POPS... 8-6
SECT AND OFFSET.. 8-7

OPTIONS, LISTINGS AND ERRORS................................ 9-1

OPT .. 9-2
ASSEMBLER OPTIONS.. 9-3
OPTION DESCRIPTIONS.. 9-4
PUSHO AND POPO.. 9-7
LIST AND NOLIST.. 9-7
INFORM AND FAIL .. 9-9
XDEF, XREF AND PUBLIC..9-10
GLOBAL...9-11

DEBUGGER FOR WINDOWS 95................................10-1

Introduction..10-1
Projects..10-1
Views..10-1
Colour Schemes..10-2
Files ...10-2
Dynamic Update...10-2

ON-LINE HELP AVAILABLE FOR THE DEBUGGER...10-3

Nintendo 64 Contents Page iii

© SN Systems Ltd

INSTALLING THE DEBUGGER..10-4
Directory Structure...10-4

OBTAINING RELEASES AND PATCHES ...10-5
Determining The Latest Releases And Patches..10-5
Mailing Lists...10-5
Addresses for SN Systems’ ftp, web and BBS sites...10-5
Beta Test Scheme..10-6

INSTALLING A FULL RELEASE..10-7
UPGRADING YOUR SYSTEM..10-8
CONFIGURING YOUR SCSI CARD ...10-9
TESTING THE INSTALLATION..10-10

Documentation...10-12
LAUNCHING THE DEBUGGER..10-15
THE FILE SERVER ..10-16

File Server Menu Commands..10-17
CONNECTING THE TARGET AND UNIT...10-18
PLUG-IN COMPONENTS..10-19
USING THE DISASSEMBLE MEMORY DIALOG...10-22
USING THE UPLOAD/DOWNLOAD MEMORY TOOL ...10-24
PROJECTS..10-26

Setting Up And Managing Projects...10-26
SELECTING FILES FOR YOUR PROJECT ..10-27

Adding Files To The List Of Project Files...10-27
CHANGING THE ORDER OF FILES IN THE FILE LIST ...10-28
SPECIFYING CPE FILE PROPERTIES...10-29
SPECIFYING SYMBOL FILE PROPERTIES...10-30
SPECIFYING BINARY FILE PROPERTIES..10-31
SAVING YOUR PROJECT ...10-32
RE-OPENING A PROJECT ..10-32
SAVING A PROJECT UNDER A NEW NAME..10-33
RESTORING A PROJECT..10-33
OPENING AN EXISTING PROJECT ..10-34
MANUALLY LOADING FILES INTO A PROJECT ...10-35
THE DEBUGGER PRODUCTIVITY FEATURES...10-36
TOOLBAR ICONS..10-36
HOT KEYS...10-37
VIEWS...10-38
CREATING A VIEW ..10-39
CYCLING BETWEEN VIEWS...10-40
SAVING YOUR VIEWS...10-41
NAMING A VIEW...10-41
CHANGING COLOUR SCHEMES IN VIEWS...10-42
WORKING WITH PANES..10-44
SPLITTING PANES ..10-44
CHANGING PANE SIZES ..10-45
DELETING A PANE...10-45
CHANGING FONTS IN PANES...10-46
SCROLLING WITHIN A PANE ..10-47
SELECTING A PANE TYPE ..10-48
MEMORY PANE..10-49
REGISTERS PANE ...10-51
DISASSEMBLY PANE...10-52
SOURCE PANE..10-54

Changing Source Files In The Source Pane..10-55
Navigating Source Files In The Source Pane..10-56

LOCAL PANE ...10-57
WATCH PANE..10-59

C Type Expressions In Watch Pane...10-61
Assigning Variables..10-62

Page iv Contents Nintendo 64

© SN Systems Ltd

Expanding Or Collapsing A Variable..10-63
Traversing An Index...10-64
Adding A Watch..10-65
Editing A Watch...10-66
Deleting A Watch..10-67
Clearing All Watches..10-67

DEBUGGING YOUR PROGRAM...10-68
SPECIFYING THE POLLING RATE AND CONTINUAL UPDATE RATE ..10-69

Forcing An Update...10-70
USING THE EXPRESSION MANAGER..10-71
SETTING BREAKPOINTS..10-77
USING THE CALL-STACK DISPLAY..10-83
STEPPING INTO A SUBROUTINE..10-86
STEPPING OVER A SUBROUTINE...10-87
STEPPING OUT OF A SUBROUTINE..10-88
RUNNING TO THE CURRENT CURSOR POSITION...10-89
RUNNING PROGRAMS...10-90
STOPPING A PROGRAM RUNNING ...10-90
MOVING THE PROGRAM COUNTER ...10-91
MOVING THE CARET TO THE PC..10-92
MOVING TO A KNOWN ADDRESS OR LABEL...10-93
EXPRESSION EVALUATION FEATURES ...10-95

Register Names...10-95
Typecasts and Typedefs..10-95
Labels...10-96
Functions..10-96
Expression Evaluation Name Resolution...10-96

PREVIOUSLY ENTERED EXPRESSIONS HISTORY LIST ..10-97
ANCHORING PANES TO THE PC..10-97
ANCHORING MEMORY PANES...10-98
IDENTIFYING CHANGED INFORMATION...10-99
CLOSING THE DEBUGGER WITHOUT SAVING YOUR CHANGES ...10-99
CLOSING THE DEBUGGER AND SAVING YOUR CHANGES...10-100

THE PSYLINK LINKER................................11-1

PSYLINK COMMAND LINE ...11-2
LINKER COMMAND FILES...11-4
GLOBAL...11-6
XDEF, XREF AND PUBLIC..11-7

THE PSYLIB LIBRARIAN................................12-1

PSYLIB COMMAND LINE ..12-2

THE CCN64 BUILD UTILITY................................ 13-1

CCN64 COMMAND LINE..13-2
SOURCE FILES ...13-4

THE PSYMAKE UTILITY................................14-1

PSYMAKE COMMAND LINE ...14-2
CONTENTS OF THE MAKEFILE...14-3

TBIOS2.COM...A-1
RUN.EXE - PROGRAM DOWNLOADER...A-3
RUNNING WITH BRIEF ...A-4
ASSEMBLER ERROR MESSAGES...B-1
PSYLINK ERROR MESSAGES.. B-13
PSYLIB ERROR MESSAGES...B-18

INDEX................................ I-ERROR! BOOKMARK NOT DEFINED.

Nintendo 64 Contents Page v

© SN Systems Ltd

Nintendo 64 Introduction Page i

© SN Systems Ltd

Introduction

This system is a fast PC based cross development system for producing and testing
mixed C and/or assembler programs for the Nintendo 64 games console.

This version of the system features:

• High performance SCSI interface card for host PC.

• Compact Nintendo 64 adapter cartridge; this includes 32 Mbytes of cartridge

emulation RAM.

• All the software you need:-

• A RISC R4300 assembler compatible with standard C compilers including the
popular Freeware Gnu-C.

• Fast R4300 assembler with numerous directives.

• High Speed Linker and Librarian, with extensive link-time options.

• A powerful Source Level Debugger which allows the programmer to step,

trace and set breakpoints directly in the source code.

Additional hardware required:

• Host 386/486/Pentium PC with hard disk drive, at least 16 Megabytes of
memory and 1 free 16 bit ISA slot.

• Nintendo 64 and a valid games cartridge.

Additional software required:

• Windows 95 with Microsoft Internet Explorer.

Page ii Introduction Nintendo 64

© SN Systems Ltd

About This System

•• This system has been developed by SN Systems Ltd who have many years
experience of development software and developers' needs. It represents the next
generation of development systems, backed up by a commitment to continual
enhancement, development and technical support.

•• The system includes two industry-standard Assemblers, a Linker, a Debugger and
a C and C++ compiler. The Assemblers are extremely fast, and fully compatible
with other popular development systems.

•• It offers Source Level Debugging. This allows you to step, trace, set breakpoints,
etc. in your original C or Assembler source code. The system automatically and
invisibly, handles multiple text files.

•• It provides a high-speed genuine SCSI parallel link between the Host PC and
target system, with a data transfer rate of over 1 Megabytes per second. The
system supports up to 7 connected target devices.

Nintendo 64 Introduction Page iii

© SN Systems Ltd

The System for Nintendo 64

The target interface is a compact cartridge that plugs into the cartridge port of the
Nintendo 64.

Adapter firmware provides diagnostics and self-test facilities. Also included are
assorted functions for useful run-time control of the development environment, as
well as extensive fileserver facilities which allow the target to manipulate files on the
host PC.

Page iv Introduction Nintendo 64

© SN Systems Ltd

Issue Information

Compatible development systems are available for a variety of other platforms:

• Sony PlayStation
• SEGA Saturn
• SEGA 32X
• SEGA MegaDrive/Genesis
• SEGA Mega-CD
• Nintendo Super NES
• Commodore Amiga 1200 and 600
• Williams Phoenix Arcade Board

Nintendo Development Software

The software for Nintendo 64 comes on four 3“ HD disks. Disk 1 and 2 contain all
the System software, including the R4300 Assembler, Debugger etc. Disk 3 and 4
contain an archive of the ‘Freeware’ GNU C compiler.

Note: A number of Nintendo 64 specific Libraries are provided by Nintendo.

Nintendo 64 Introduction Page v

© SN Systems Ltd

Acknowledgements

DOS and Windows

Microsoft, MS, MS-DOS are registered trademarks of Microsoft Corporation;
Windows and Windows 95 are trademarks of Microsoft Corporation.

IBM IBM is a trademark of International Business Machines

Brief Brief is a trademark of Borland International.

Sony Sony PlayStation is a trademark of Sony.

Nintendo Super NES is a trademark of Nintendo Corporation.
Nintendo 64 is a trademark of Nintendo Corporation.

Nintendo 64 Installation Page 1-1

© SN Systems Ltd

CHAPTER 1

Installation

The development system consists of the following physical components:

• • PC Board
• • Target Interface
• • SCSI Connecting Cable
• • Mains Connecting Cable
• • Software
• • Universal Power Supply - IEC Socket, rating 100-250v a.c., 47-63 Hz

Warning: For the Nintendo 64 Development Cartridge you must only use the
supplied 5V regulated power pack. Use of any other type will cause
serious damage to the Unit.

Installation is, therefore, a relatively straightforward procedure, and is described in
this chapter under the following headings:

• • Installation The Hardware
• • Installing The PC Interface
• • Installing The PC Software
• • Installing The GNU C Software
• • Checking The Installation And First Time Use Of The System
• • Requirements For Debugging Cartridge Software
• • Additional Notes
• • Elfconv - Library Converter Program

Page 1-2 Installation Nintendo 64

© SN Systems Ltd

Installing The Hardware

1. Check the configuration of the SCSI Card and install in the host PC; see later in
this chapter for full installation details.

Note: Ensure that you record the IO Address and IRQ value as these will be
required when you install the software.

2. Plug a standard Nintendo 64 game cartridge (e.g. Mario64 or Pilotwings64) into

the through connector at the back of the unit, so that the cartridge is front face up
when the interface is inserted in the Nintendo 64. The cartridge is required to
provide the security chip and the 4k boot header block. You should also be able
to make use of any additional hardware on the cartridge, e.g. game save memory.

3. Plug the interface into the Nintendo 64; the LEDs should be towards the front.

 Note: Ensure that the Nintendo 64 is switched off at this point.

4. Connect the SCSI cable to the PC.

Nintendo 64 Installation Page 1-3

© SN Systems Ltd

5. Plug the power supply into the side of the interface. The power LED (the top

one) should come on and the lower LED should flash. Check the hardware if the
lower LED is not flashing.

Note: At this point the Nintendo 64 should still be switched off.

Page 1-4 Installation Nintendo 64

© SN Systems Ltd

Installing the PC Interface

The PC Interface board should be fitted in to an empty 16 bit slot in the host PC. The
host must be an IBM PC-AT or compatible, running under MSDOS 3.1 or better.

Prior to fitting, the 3 banks of dip switches should be checked and configured as
required. It is likely, however, that the factory setting will suffice. They are described
below.

The PC Interface Board

CAUTION: This board is sensitive to static electricity; hold by the metal support bracket when
handling.

2 Active
Termination

Resistors

SCSI
Controller

50 Pin High
Density SCSI
Connector

On Dip
 1 2 3 4 5 6 7 8

On Dip
 1 2 3 4 5 6 7 8

On Dip
 1 2 3 4 5 6 7 8

Nintendo 64 Installation Page 1-5

© SN Systems Ltd

DIP SWITCHES

The PC card is configured by altering the three dip switch banks on the card. These
switches alter:

DMA
IRQ
SCSI Termination Power
IO Address
SCSI ID for the card (normally on ID 7)

FUNCTION DEFAULT
DMA 7 On, On
DMA 6 Off, Off
DMA 5 Off, Off
IRQ 15 On
IRQ 12 Off
IRQ 11 Off
IRQ 10 Off
IRQ 7 Off
IRQ 5 Off
Not Used Off, Off
SCSI Termination Power On
IO Address - A3 - A8 Off, On, On, On, On, Off
Card SCSI ID On, On, On

DMA DMA or Direct Memory Access, is a mechanism for the fast and efficient transfer of
data (in either direction) between the SCSI card and the PC’s memory.

This transference occurs via DMA channels 5, 6 or 7.

Only one channel can be used per card; if more than one card is in use a different
DMA channel must be used for each one.

Note: Data transfer may be interrupted if the same channel is used for more than one
card.

A channel is selected by switching the pair of adjacent dip switches to On and the
remaining pairs to Off.

Page 1-6 Installation Nintendo 64

© SN Systems Ltd

The default setting is 7; this is achieved as follows:

DMA 7 - On, On
DMA 6 - Off, Off
DMA 5 - Off, Off

Note: In each pair, both switches must be set to the same value.

Note: If all DMA dip switches are set to Off, the transfer of data will be slower
because this process will instead be carried out by the PC Processor.

IRQ An Interrupt Request (IRQ) number can be assigned to each attached device so that
it can quickly interrupt the PC Processor with a request.

When the PC receives an Interrupt Request it goes to a look-up table and ascertains
the purpose of the sub-routine attached to the IRQ number; it then processes this
sub-routine as soon as possible.

The SCSI Card offers the following IRQ numbers.

15, 12, 11, 10, 7, 5

Select the required number from this list by switching the adjacent dip switch to On.

Note: You can not use an IRQ number which is being used by another device. The
following procedures will list those currently in use:

1. From the Start menu select the Settings option.
2. Select Control Panel.
3. Double-click the Systems icon.
4. Select the Device Manager tab.
5. Select the Properties button.
6. Select the Interrupt request (IRQ) button.

The IRQ numbers currently in use will be displayed.

Note: The default IRQ setting for the SCSI Card is 15.

Note: It is possible to disable the IRQ number by removing all the jumpers but this
may result in an impaired performance.

Note: The SCSI card setting must match that which will be later specified for the
software.

Nintendo 64 Installation Page 1-7

© SN Systems Ltd

Note: If you use a PCI Mother Board it may be necessary to make the IRQ available
to the ISA Device in the bios . See the Mother Board documentation for
further information.

SCSI Termination Power

The SCSI Termination Power switch determines whether SCSI termination is
supplied on the card. Correctly applied termination minimises electrical interference;
without it the communication between the devices would become erratic.

The SCSI devices are connected in a chain structure. Termination is only required by
the devices at each end of the chain.

The default setting for this configuration is On.

In normal operation this should not be changed.

IO Address The IO Address provides a channel of communication between the SCSI card and the
PC.

You must first set the card to a hardware IO Address and then set the software to
access it at that address.

Note: If the hardware address does not match the software setting, a message will
indicate that the card is not found at that address.

The card offers a very large range of IO addresses from 20016 to 3f816 in increments
of 8. The address is changed by altering the 6 dip switches labeled A3 to A8.

A8 is the most significant bit, and A3 is the least.

An address line is selected by switching it to Off.

The default setting is 308; this is set as follows:

IO Address A3 - A8 - Off, On, On, On, On, Off

Page 1-8 Installation Nintendo 64

© SN Systems Ltd

Some examples are shown in the following table:

A8 A7 A6 A5 A4 A3
240 On On Off On On On
2A0 On Off On Off On On
300 Off On On On On On
308 Off On On On On Off
310 Off On On On Off On
318 Off On On On Off Off
380 Off Off On On On On
388 Off Off On On On Off
390 Off Off On On Off On
3E0 Off Off Off Off On On

Note: You must not choose an address which is the same as or within the range of
addresses occupied by another card as this would cause unpredictable results.
Use the following procedures to list those currently in use:

1. From the Start menu select the Settings option.
2. Select Control Panel.
3. Double-click the Systems icon.
4. Select the Device Manager tab.
5. Select the Properties button.
6. Select the Input/output (I/O) button.

The currently used addresses will be displayed.

SCSI ID Each attached device has its own SCSI ID which uniquely identifies it on the SCSI
bus.

The last three switches are used to alter the SCSI ID.

The default setting is 7; this is set as follows:

Card SCSI ID - On, On, On

Note: You are advised not to change this setting (or re-use it for another card) as it
has been pre-allocated in order to minimise any conflict with other internal
boards. Any SCSI ID duplication could result in unpredictable results.

Nintendo 64 Installation Page 1-9

© SN Systems Ltd

Installing the PC Software

The installation discs contain programs to perform the following functions:

• • Assembling
• • Linking
• • Debugging
• • Other Windows and miscellaneous tasks

To install the Development Tools:

Note: The tools must be installed before the GNU C Compiler.

1. Insert the first development tools disc in the ‘A’ drive.

2. Double-click the ‘A’ drive icon on your desktop and select the .exe file.

3. Select to view the installation help file or to
continue with the installation.

4. Select to confirm the Licence Agreement or to abort
the installation.

5. The Select Components To Install dialog will be displayed. A tick will be shown

alongside the Tools and the Debugger. Select to install both items.

6. From the Select Destination Directory Dialog, select to confirm that

you wish to place the Tools in the displayed directory or browse and select an
alternative from the directory listing if required.

7. To automatically set-up PSYQ_PATH in autoexec.bat, select at
the Edit Autoexec dialog.

8. From the Select Destination Directory Dialog, select to confirm that

you wish to place the Debugger in the displayed directory or browse and select an
alternative from the directory listing if required.

 Note: At this point you will also be required to specify a directory (or accept the

default) for the GNU C Compiler.

9. Insert the second tools disc and select .

10. Select to insert a short-cut for the Debugger on the Start menu.

Page 1-10 Installation Nintendo 64

© SN Systems Ltd

11. Set the required values for the SCSI card as follows:

 Enter a 3 or 4-digit hexadecimal number to the Port Address and specify an IRQ

value by clicking on the down arrow and selecting as appropriate.

 Note: The values specified here must match those already specified on the

hardware.

12. Select or at the Verify Values dialog.

13. Select to restart your PC to complete the installation.

 The Tools and Debugger are now installed.

Nintendo 64 Installation Page 1-11

© SN Systems Ltd

Installing the GNU ‘C’ Software

After you have installed the tools in their own directory on your hard disk, you are
ready to install the popular GNU ‘C’ N64 Compiler.

The disk contains all of the files provided by GNU for the N64 ‘C’ Compiler. For
Nintendo 64 software development you may require components that can only be
obtained directly from Nintendo. These include a number of useful Libraries and their
C Header files which are specific to the Nintendo 64 environment. If you do not
already have this software, you should contact Nintendo directly.

To install the GNU C Compiler:

1. Insert the first GNU C Compiler disc to the ‘A’ drive.

2. Double-click the ‘A’ drive icon on your desktop.

3. Select the .exe file.

4. Select if you agree to the Licence Agreement or to exit
the installation.

5. The Select Directory For GNU C Compiler dialog will be displayed. Select

 to confirm the displayed directory or browse and select an alternative
directory in which to place the GNU C Compiler.

6. Insert the second disc and select .

The installation is now complete.

Note: The library from Nintendo will have to be converted from elf format to the
System’s format See the elfconv documentation below for further details
about this process.

Page 1-12 Installation Nintendo 64

© SN Systems Ltd

Checking The Installation and First-Time Use Of The System

Checking the Installation:

Note: Before proceeding with your installation check read the README file for any
last minute changes or final release notes. This will be called
README.HTM or README.RTF and will be found in the psyq-win
directory.

1. At this point the Nintendo 64 should be switched off and the Target Adapter and
game cartridge should be connected to it. The power should be on for the
Adapter and the bottom LED should be flashing slowly, indicating that the bios
has not yet been loaded.

 Note: If the LED is flashing quickly this indicates that the Nintendo 64 is

switched on and no bios is loaded. This is an error which must be rectified by
switching the Nintendo 64 off.

2. Run the File Server by selecting the Debugger File Server from the Start menu.

3. This will attempt to connect to the Nintendo 64 console. If the connection is

successful the File Server will download the bios; the bottom LED will go out
and the following text will be output from the File Server:

 Psy-Q File and Message Server, Copyright 1996, 1997, SN Systems Ltd
 Version 2.0 (January 1997)
 Release 10, Patch Level 3

 Target Found: Bus ID = 0, SCSI ID = 0
 New Downloader - Reading profile information…
 Profile read for Nintendo 64 (no bios)
 OK
 Rebooting the Nintendo 64 (no bios)…
 Getting the target’s ID…
 ID is N64-NO-BIOS PLEASE LOAD
 bios1…
 sleep .5 sec…
 bios2…
 sleep .5 sec…
 New Downloader - Reading profile information…
 Profile read for Nintendo 64

Nintendo 64 Installation Page 1-13

© SN Systems Ltd

 If this has occurred communication will have been established between the PC

and the Nintendo 64.

4. Now you are ready to download a test cartridge image into the cartridge RAM.

 Proceed as follows:

5. From the File Server select the Tools menu.

6. Select the Uploader option.

7. Click the Download radio button and change the Download Address to

0xB0000000 .

8. Click Browse and select the file test.bin from the psyq-win\examples\n64

directory.

9. Click OK.

 The downloaded image is now in the cartridge RAM.

10. Switch on the Nintendo 64. The system will boot the image and stop at a

breakpoint at the start of the program.

11. Run the Debugger from the Start menu.

12. You are now ready to begin debugging.

Note: To convert the Nintendo 64 object files use the Elfconv converter program;
this is described below.

Page 1-14 Installation Nintendo 64

© SN Systems Ltd

Requirements for Debugging Cartridge Software

In order to be able to debug your own program you must link in the debug stub code.
This consists of two object modules occupying approximately 8k of ram. These are
PSYQ.OBJ and PSYQDBG.OBJ. They contain only one entry point
‘init_debug’ which must be called at the start of the program. The entry point
will hook the debug vector at $80000180 . The programs will pass any
interrupts/exceptions that they do not know how to handle to the previous address in
this vector; therefore ‘init_debug’ should not be called until this vector has
been initialised, i.e. contains a valid address. The debug stub will not function until
‘init_debug’ has been called; therefore any exceptions occurring before this
will not be handled.

Further details can be found in the test program’s Source and Linker Control Files.

If the MIPS chip in the Nintendo 64 stops communicating with the microcontroller in
the cartridge for any reason (e.g. the power is off or the program crashes badly), then
the microcontroller will inform the Debugger (or any other program running on the
PC and trying to communicate with the target) that the Nintendo is not responding
and the error message “Target Unit Is Busy” will be displayed. If the target
recovers or you reset it, the message will go away and the Debugger will continue to
run.

The interface uses a hardware interrupt to force the MIPS chip in the Nintendo 64 to
enter the debug stub. This means that it will not normally be necessary to add ‘poll
calls’ to your program unless you need to break in at points where interrupts are
disabled.

Nintendo 64 Installation Page 1-15

© SN Systems Ltd

Additional Notes

• The system has 32 Mbytes of ram fitted for cartridge emulation but the top 128k
(0xB1FE0000 - 0xB1FFFFFF) is reserved for debug purposes.

Note: Do not load anything into this area or it will be erased.

• After you produce the cartridge image and before you load the games program
into the Nintendo system, the program ‘setcsum.exe’ will set the load/entry
point of your program and the required checksum values. The minimum size for
a cartridge is 1Mbyte+4Kbytes; if your code is smaller than this it will be padded
to this length. The first 4k of the game image is a boot block. Most of the data
in this block is shadowed through at Nintendo 64 boot up from the data in the
cartridge you have plugged into the interface. Setcsum.exe will set any other
required values so all you need do is have a 4k block of 0s at the start of your
cartridge image.

Note: See the test program in psyq-win\examples\n64 for an example of this.

• The debug stub disables all interrupts while it is executing.

• Although the Assemblers and Linker support the use of the instructions for

manipulating 64 bit data (e.g. 1d, sd etc), they still only contain a 32 bit
expression evaluator so 64 bit constants cannot be used.

• The debug stub does not support the use of memory mapping in the region

0x00000000 - 0x7FFFFFFF or 0xC0000000 - 0xFFFFFFFF via
the TLB. Only 00s will be seen in these areas at the moment.

Page 1-16 Installation Nintendo 64

© SN Systems Ltd

ELFCONV - Library Converter Program

The Nintendo 64 libraries supplied by Nintendo contain object files in a file format
known as ELF. These files must be converted to SN System’s object file format if
the libraries are to be used with SN development software. Elfconv is a utility
program which performs this conversion.

To convert a library:

1. Three programs are required; one for each of the three stages of conversion:

• A library tool which understands ELF libraries; this will extract the object
files from an ELF format library, creating one or more files with a .o
extension.

• Elfconv; this can convert all .o files found in the current directory, a single
file or all files matching a given pattern. The output from elfconv is one or
more files with a .obj extension.

• SN System’s PSYLIB librarian program; this will combine one or more
.obj files into an SN format library, suitable for linking with PSYLINK.

2. The Nintendo 64 libraries are supplied for the SGI workstation; the first program
should therefore be the SGI’s standard ‘ar’ library tool. On the SGI workstation,
locate the library file(s) you wish to convert and type the following to extract all
the object files from each library:

ar x libraryname

This will create one or more .o files in the current directory, reflecting the
contents of that library.

3. Copy these files to your PC.

4. As Elfconv’s operation on each file is automatic, you only need to tell it which
files to convert via one of the following methods:.

elfconv input output
elfconv input
elfconv /a

For the first method elfconv will search for the file with name input and convert it
to a file named output.

Nintendo 64 Installation Page 1-17

© SN Systems Ltd

If you specify only an input file, elfconv will convert the relevant file and create
an output file with the same name but with obj suffixed to its extension.

For the third method all files with .o extensions will be converted as per the
second method.

Thus:

elfconv file1.o file1.obj Converts file1.o into file1.obj
elfconv file1.o Converts file1.o into file1.obj
elfconv /a Converts all .o files in the current

directory into .obj files

Elfconv will report the following kinds of errors:

A missing input file.
An input file which is not recognisable as an ELF object file.
Inability to create the output file (usually if there is no disk space).
Fatal and non-fatal errors during conversion of the file; these start with “!!” for
fatal and “>>” for non-fatal errors.

Note: You should not receive any fatal or non-fatal errors if elfconv is working
correctly and you are converting a genuine N64 library file. If you do
receive any errors, contact SN Systems for support.

5. After you have converted your object files, use PSYLIB to create an SN format
library. See the PSYLIB chapter for further details.

Nintendo 64 ASMN64 Assembler Page 2-1

© SN Systems Ltd

CHAPTER 2

The ASMN64 Assembler

The ASMN64 Assembler can assemble source code at over 1 million lines per
minute. Executable image or binary object code can be downloaded by the Assembler
itself, to run in the target machine immediately, or later, by the RUN utility.

This chapter discusses how to run an assembly session, under the following headings:

•• Assembler Command Line
•• Assembler and Target Errors

Page 2-2 ASMN64 Assembler Nintendo 64

© SN Systems Ltd

Assembler Command Line

During the normal development cycle, ASMN64 may be:

• run in stand alone mode
• launched from an editing environment such as Brief - see later in this chapter
• invoked as part of the Make utility - see The Psymake Utility chapter.

When the Nintendo 64 Assembler is run independently, the command line takes the
following form:

Syntax ASMN64 /switchlist source,object,symbols,listings,tempdata

or

ASMN64 @commandfile

If the first character on the command line is an @ sign, the string following it signifies
a command file containing a list of Assembler commands.

Switches The assembly is controlled by inclusion of a set of switches, each preceded by a
“forward slash (/)” . The “/o” switch introduces a string of assembler options; these
can also be defined in the source code, using an OPT directive. Assembler options
are described in detail in chapter 9, the available switches are listed below:

/c Produce list of code in unsuccessful conditions

/d Set Debug mode - if the object code is sent to the target
machine, do not start it.

/e n=x Assigns the value x to the symbol n.

/g Non-global symbols will be output directly to the linker
object file.

Nintendo 64 ASMN64 Assembler Page 2-3

© SN Systems Ltd

/j pathname Nominate a search path for INCLUDE files.

/k Permits the inclusion of pre-defined foreign conditionals,
such as IFND - see also MACROS, chapter 5.

/l Output a file for the Psylink Linker.

/m Expand all macros encountered.

/o options Specify Assembler options - see chapter 9 for
a full description of the available options.

/p Output pure binary object code, instead of an executable
image in .cpe format - see also RUN.EXE, chapter 2.

/ps Output ASCII representation of binary file in Motorola
s-record format

/w Output EQUATE statements to the Psylink file.

/z Output line numbers to the Psylink file.

/zd Generate source level Debug information.

Source The file containing the source code; if an extension is not specified, the default is n64
. If this parameter is omitted, the Assembler outputs help in the form of a list of
switches.

Object The destination file to which object code is written.

Symbols The file to which symbol information is written, for use by the Debugger.

Listings The file to contain listings generated by assembly.

Tempdata This parameter nominates a file to be placed on the RAM disk for faster access. If
the name is omitted, the default is asm.tmp; note that the temporary file is always
deleted after assembly is complete.

Page 2-4 ASMN64 Assembler Nintendo 64

© SN Systems Ltd

Remarks
• If any of the above parameters are omitted, the dividing comma must still be

included on the command line, unless it follows the last parameter.

• The Assembler run may be prematurely terminated by any of the following
methods:

Pressing Control-C.
Pressing Control-Break (recognised more quickly because it does not require
a DOS operation to spot it).
Pressing Esc.

• The Assembler checks for an environment variable called ASMN64. This can
contain default options, switches and file specifications, (in the form of a
command line), including terminating commas for unspecified parameters.
Defaults can be overridden in the runtime command line.

Examples asmn64 / zd / o ae+,w- scode,t0:,scode.sym

This command will initiate the assembly of the R3400 source code contained in a file
called scode. n64, with the following active options:

• source level debug information to be generated
• automatic alignment enabled
• warning messages to be suppressed
• the resultant object code to be transferred directly to the target machine, SCSI

device 0
• symbol information to be output to a file called scode.sym
• assembly listing to be suppressed

ASMN64 @game.pcf

will recognise the preceding @ sign and take its command line from a command file
called GAME.PCF .

Nintendo 64 ASMN64 Assembler Page 2-5

© SN Systems Ltd

Assembly Errors

During the assembly process, errors may be generated as follows:

By the assembler itself, as it encounters error conditions in the source code.

Remarks

Appendix A gives a full list of Assembler error messages.

plus

Abort, Retry or Bus Reset

Nintendo 64 Syntax of Assembler Statements Page 3-1

© SN Systems Ltd

CHAPTER 3

Syntax of Assembler Statements

In order to control the running of an Assembler, source code traditionally contains a
number of additional statements and functions. These allow the programmer to direct
the flow and operation of the Assembler as each section of code is analysed and
translated into a machine-readable format. Normally, the format of Assembler
statements will mirror the format of the host language, and ASMN64 follows this
convention.

This chapter discusses the presentation and syntax of Assembler statements, as
follows:

•• Format of Statements
•• Format of Names and Labels
•• Constants
•• Functions
•• Operators
•• RADIX
•• ALIAS and DISABLE

Page 3-2 Syntax of Assembler Statements Nintendo 64

© SN Systems Ltd

Format of Statements

Assembler statements are formatted as follows:

Name or Label Directive Operand

The following syntactical rules apply:

• Individual fields are delimited by spaces or tabs.

• Overlong lines can be split by adding an ampersand (&); the next line is then
taken as a continuation.

• Lines with an equals (=) sign as the first character are considered to be the case
options of a CASE statement - see Flow Control, chapter 4.

• Comment Lines:

• comments normally follow the operand, and start with a semicolon (;).

• lines which consist of space or tab characters are treated as comments.

• a complete line containing characters other than space or tabs is treated as

a comment, if it starts with a semicolon or asterisk.

Nintendo 64 Syntax of Assembler Statements Page 3-3

© SN Systems Ltd

Format of Names and Labels

Names and Labels consist of standard alpha-numeric symbols, including upper-case
letters, lower-case letters and numeric digits:

 A to Z, a to z, 0 to 9

In addition, the following characters can occur:

Colon (:) Can be used at the end of a name or label when defined, but not
when referenced.

Question Mark (?), Underscore (_), Dot (.)
These three characters are often used to improve the overall
readability

AT sign @ Indicates the start of a local label - see chapter 7. Note
that, by using the Assembler option /ln, the local label symbol can
be changed to a character other than @.

The following usage rules apply throughout:

• Numeric digits and Question Marks must not be the first character of a name.

• Labels normally start in column 1. However, if they start elsewhere, there must be
no characters preceding the name, except space or tab, and the last character
must be a colon.

• If a problem in interpretation is caused by the inclusion of a non-alphanumeric
character in a Name or Label, that character can be replaced by a backslash, or
the entire Name or Label surrounded by brackets.

Page 3-4 Syntax of Assembler Statements Nintendo 64

© SN Systems Ltd

Format of Constants

The Assembler supports the following constant types:

Character Constants

A character string enclosed in quote marks is a character constant and is evaluated as
its ASCII value. Character constants may contain up to 4 characters, to give a 32 bit
value. Thus:

"A" = 65 = 65
"AB" = (65*256) + 66 = 16706
"ABC" = (65*65536) + (66*256) + 67 = 4276803
"ABCD"= (65*16777216)+ (66*65536) + (67*256) + 68 = 1094861636

Integer Constants

Integer constants are normally evaluated as decimal, the default base, unless one of
the following is used:

• The RADIX directive changes the base - see chapter 3.

• If %, $ or 0x precede an individual integer, it signifies that the integer value
will be evaluated as binary or hex:

% - Indicates that the base is binary, e.g. %1001
$ - Indicates that the base is hex, e.g. $45af3921
0x - Indicates that the base is hex, e.g. 0x45af3921

Two possible characters are provided for base hex because option r+ (either / or
+ on the command line or opt r+ in the source), will allow the $ prefixed
versions of register names to be used but will disable the use of $ to prefix hex
constants. The 0x prefix however, can still be used with this option, e.g:

opt r-
lw a0, $14 (t0) ;or lw a0, 0x14 (t0)

;or lw a0, 20 (t0)

This operation takes the address in register t0, adds the 14(hexadecimal) value
to it and then takes the value at that address and puts it into a0.

This code is equivalent to:

opt r+
lw $4, 0x14 ($8) ;or lw $4, 20 ($8)

Nintendo 64 Syntax of Assembler Statements Page 3-5

© SN Systems Ltd

• If a character is preceded by a backslash and up arrow (\^), the corresponding
control character is substituted.

• The AN Assembler option allows numbers to be defined as Intel and Zilog
integers. That is, the number must start with a numeric character and end with
one of:

D for Decimal; H for Hexadecimal; B for Binary

Page 3-6 Syntax of Assembler Statements Nintendo 64

© SN Systems Ltd

Special Constants

The following pre-defined constants are available in ASMN64.

_year As a two digit number, e.g. 95
_month 1 = January; 12 = December
_day 1 = 1st day of month
_weekday 0 = Sunday; 6 = Saturday
_hours 00 - 23
_minutes 00 - 59
_seconds 00 - 59

* Contains the current value of the Location Counter.
@ Contains the actual PC value at which the current value will be

stored - see below.

narg Contains the number of parameters in the current macro argument -
see chapter 5 for further details.

__rs Contains the current value of RS Counter - see chapter 4 for
further details.

_filename A pre-defined string containing the name of the primary file
undergoing assembly.

Remarks Time and Date Constants:

Time and Date constants are set to the start of assembly; they are not updated during
the assembly process.

Example RunTime db\#_hours:\#_minutes:&
\#_seconds"

this expands to the form hh:mm:ss, as follows

RunTime db "21:08:49"

Note: This example uses the special macro parameter, \#, which is described in
Chapter 5.

Nintendo 64 Syntax of Assembler Statements Page 3-7

© SN Systems Ltd

Location Counter constants:

The current value of the program pointer can be used as a constant. To substitute the
value of the location counter at the current position, an asterisk (*) is used:

section Bss,g_bss
Firstbss equ *

Since * gives the address of the start of the line,

org $100
dw *,*,*

defines $100 three times.

An @, when used on its own as a constant, substitutes the value of the location
counter, pointing to an address at which the current value will be stored.

org $100
dw @,@,@

defines $100,$104,$108.

Page 3-8 Syntax of Assembler Statements Nintendo 64

© SN Systems Ltd

Assembler Functions

ASMN64 offers many functions to ease the programmer's task. These are listed
below; a more detailed explanation of their usage can be found later in this chapter.
In addition, there are other specialised functions which are described in the following
pages.

Name Action

def(a) Returns true if a has been defined
ref(a) Returns true if a has been referenced
type(a) Returns the data type of a
sqrt(a) Returns the square root of a
strlen(text) Returns the length of string in characters
strcmp(texta,textb) Returns true if strings match
instr([start,]txa,txb) Locate substring a in string b
sect(a) Returns the base address of section a
offset(a) Returns the offset into section a
sectoff(a) Equivalent to offset
group(a) Returns the base address of group a
groupoff(a) Returns the offset into group a

Nintendo 64 Syntax of Assembler Statements Page 3-9

© SN Systems Ltd

Special Functions

filesize("filename")
Returns the length of a specified file, or -1 if it does not exist.

groupsize(X) Returns the current (not final) size of group X.

grouporg(X) returns the ORG address of group X or the group in which X is defined if X is a
symbol or section name.

groupend(X) Returns the end address of group X.

sectend(X) Returns the end address of section X.

sectsize(X) Returns the current (not final) size of section X.

alignment(X) Gives the alignment of previously defined symbol X. This value depends upon the
base alignment of the section in which X is defined, as follows:

Word aligned - value in range 0 -3
Halford aligned- value in range 0 -1
Byte aligned - value always 0

Page 3-10 Syntax of Assembler Statements Nintendo 64

© SN Systems Ltd

Assembler Operators

The Assembler makes use of the following expression operators:

Symbol Type Usage Action

() Primary (a) Brackets of Parenthesis
+ Unary +a a is positive
- Unary -a a is negative (see Note1)

= Binary a=b Assign or equate b to a
+ Binary a+b Increment a by b
- Binary a-b Decrement a by b
* Binary a*b Multiply a by b
/ Binary a/b Divide a by b, giving the quotient
% Binary a%b Divide a by b, giving the modulus

<< Binary a<<b Shift a to the left, b times
>> Binary a>>b Shift a to the right, b times

~ Unary ~a Logical compliment or NOT a
& Binary a&b a is logically ANDed by b
^ Binary a^b a is exclusively ORed by b
! Binary a!b a is inclusively ORed by b
| Binary a|b Acts the same as a!b

<> Binary a<>b a is unequal to b
< Binary a<b a is less than b
> Binary a>b a is greater than b
<= Binary a<=b a is less than or equals b
>= Binary a>=b a is greater than or equals b

Note1 Since the Assembler will evaluate 32-bit expressions, the negation bit is
Bit 31. Therefore, $FFFFFF and $FFFFFFF are positive hex numbers; $FFFFFFFF is
a negative number

Note2 If a comparison evaluates as true, the result is returned as -1; if it evaluates as
 false, the result is returned as 0.

Nintendo 64 Syntax of Assembler Statements Page 3-11

© SN Systems Ltd

Hierarchy of Operators

Expressions in the Assembler are evaluated using the following precedence rules:

• Parentheses form the primary level of hierarchy and force precedence - their
contents are performed first;

• Without the aid of parentheses, operators are performed in the order dictated by
the hierarchy table;

• Operators with similar precedence are performed in the direction of their
associativity - normally, from left to right, except unary operators.

Operator Direction Description

() ← Primary
+ , -, ~ → Unary
<<, >> → Shift
&, !, ^ → Logical
*, /, % → Multiplicative
+, - → Additive
>, <, <=, >= → Relational
=, <> → Equality

Page 3-12 Syntax of Assembler Statements Nintendo 64

© SN Systems Ltd

RADIX

Description The RADIX directive is used to change the default base of integer values appearing
in source code (base 10), by over-riding the default with whatever base you specify.

Syntax RADIX newbase

Examples var1 dw 17
radix 8
var2 dw 17
radix 16
var3 dw 17
var4 dw %1001

Notes:
var1 is a value of 17 (decimal)
var2 contains a value of 15 (decimal)
var3 contains a value of 23 (decimal)
var4 contains a value of 17 (decimal)

Remarks
• Acceptable values for the new base are in the range of 2 to 16.

• Whatever the current default, the operand of the RADIX directive is evaluated to
a decimal base.

• The AN assembler option (see chapter 9) will not be put into effect if the default
RADIX is greater than 10, since the signifiers B and D are used as digits in
hexadecimal notation.

Nintendo 64 Syntax of Assembler Statements Page 3-13

© SN Systems Ltd

ALIAS and DISABLE

Description These directives allow the programmer to avoid a conflict between the reserved
system names of constants and functions and the programmer's own symbols.
Symbols can be renamed by the ALIAS directive and the original names
DISABLE'd, rendering them usable by the programmer.

Syntax newname ALIAS name
DISABLE name

Remarks Symbolic names currently known to the Assembler may be ALIASed and
DISABLEd. However, these directives must not be used to disable Assembler
directives.

Examples _Offset alias offset
disable offset
...

_Offset dh _Offset(Lab)
offset dh *-pointer

Nintendo 64 General Assembler Directives Page 4-1

© SN Systems Ltd

CHAPTER 4

General Assembler Directives

The Assembler provides a variety of functions and directives to control assembly of
the source code and its layout in the target machine.

This chapter documents the Assembler directives which allow the programmer to
control the processes of assembly, grouped as follows:

•• Assignment Directives
•• Data Definition
•• Controlling Program Execution
•• Include Files
•• Controlling Assembly
•• Target-related Directives

Page 4-2 General Assembler Directives Nintendo 64

© SN Systems Ltd

Assignment Directives

The directives in this section are used to assign a value to a symbolic name. The value
may be a constant, variable or string.

•• EQU
•• SET (and =)
•• EQUS
•• EQUR
•• Rsize
•• RSSET
•• RSRESET

Nintendo 64 General Assembler Directives Page 4-3

© SN Systems Ltd

EQU

Description Assigns the result of the expression, as a constant value, to the preceding symbolic
name.

Syntax symbol name EQU expression

See Also SET, EQUS

Remarks
• The Assembler allows the assigned expression to contain forward references. If

an EQU cannot be evaluated as it is currently defined, the expression will be
saved and substituted in any future references to the equate (see Note below).

• It is possible to include an equate at assembly time, on the Assembler command
line. This is useful for specifying major options of conditional assembly, such as
test mode - see Assembler switches, chapter 2..

• Assigning a value to a symbol with EQU is absolute; an attempt at secondary
assignment will produce an error. However, it is permissible to re-assign the
current value to an existing symbol; typically, this occurs when subsidiary code
redefines constants already used by the master segment.

Examples Length equ 4
Width equ 8
Depth equ 12
Volume equ Length*Width*Depth
DmaHigh equ $ffff8609
DmaMid equ DmaHigh+2

Note List equ Lastentry-Firstentry

if Firstentry, Lastentry not yet defined, then:

dw List+2

will be treated as

dw (Lastentry-Firstentry)+2

the equated expression is implicitly bracketed.

Page 4-4 General Assembler Directives Nintendo 64

© SN Systems Ltd

SET

Description Assigns the result of the expression, as a variable, to the preceding symbolic name.

Syntax symbol name SET expression
symbol name = expression

See Also EQU

Remarks
•• SET and equals (=) are interchangeable

• Values assigned by a SET directive may be re-assigned at any time.

• The Assembler does not allow the assigned expression in a SET directive to
contain forward references. If a SET cannot be evaluated as it is currently
defined, an error is generated.

• If the symbol itself is used before it is defined, a warning is generated, and it is
assigned the value determined by the preliminary pass of the Assembler.

• The symbol in a SET directive does not assume the type of the operand. It is,
therefore, better suited to setting local values, such as in macros, rather than in
code with a relative start position, such as a SECTION construct, which may
cause an error - see Examples.

Examples Loopcount set 0
GrandTotal = SubTotalA+SubTotalB
xdim set Bsize<<SC

Nintendo 64 General Assembler Directives Page 4-5

© SN Systems Ltd

The following example will encrypt the string passed as the macro parameter.

cbb macro string
lc = 0
 rept strlen(\string)
cc substr lc+1,lc+1,\string; extract one

 character into
 label cc

 db '\cc'^($A5+lc) ; encrypt the
 character stored

 in cc and define
 in memory

lc = lc+1 ; increment counter
 endr ; do for all chars

 in string
 endm

Page 4-6 General Assembler Directives Nintendo 64

© SN Systems Ltd

EQUS

Description Assigns a text or string variable to a symbol.

Syntax symbol name EQUS "text"
symbol name EQUS 'text'
symbol name EQUS symbol name

See Also EQU, SET

Remarks
• Textual operands are delimited by double or single quotes. If it is required to

include a double quote in the text string, delimit with single quotes or two double
quotes; similarly, to include a single quote in the text, delimit with double quotes
or two single quotes - see examples below.

• If delimiters are omitted, the Assembler assumes the operand to be the symbol
name of a previously defined string variable, the value of which is assigned to the
new symbol name.

• Point brackets, { and }, are special delimiters used in Macros - see MACRO
directive specification, chapter 5.

• Symbols equated with the EQUS directive can appear at any point in the code,
included as part of another text string. If there is the possibility of confusion with
the surrounding text, a backslash (\) may be used before the symbol name and if
necessary, after it, to ensure the expression is expanded correctly. See examples
below.

Examples

Sinquote equs ‘What’’s the point? ’
Sinquote equs “What’s the point? ”

Doubquote equs “Say” “Hello ” “and go ”
Doubquote equs ‘Say “Hello ” and go ’

Program equs “ABS v 1.2 ”
Qtex equs “What’s the score? ”

db “Remember to assemble
_filename ”,0

Nintendo 64 General Assembler Directives Page 4-7

© SN Systems Ltd

Z equs “123”

dw z + 4

converts to
dw 123 + 4

whereas the following expression needs backslashes to be
expanded correctly

dw number\z\a
converts to

dw number123a

SA equs ‘StartAddress ’

dw \SA\4

converts to
dw StartAddress4

Page 4-8 General Assembler Directives Nintendo 64

© SN Systems Ltd

EQUR

Description Defines a symbol as an alternative for a register.

Syntax symbol name EQURregister name

See Also REG

Remarks
• The major use of the EQUR directive is to improve the overall readability of the

source code.

• In order that the Assembler can evaluate the expression correctly, dots are not
allowed as part of the symbol name of an EQUR (see example below).

Examples lw t1,RGBinds(a2)

This could be re-written using EQUR's, as follows:

Red equr t1
Green equr a2

...
lw Red,RGBinds(Green)

Nintendo 64 General Assembler Directives Page 4-9

© SN Systems Ltd

Rsize

Description Assigns the value of the __RS variable to the symbol, and advances the rs counter by
the number of bytes, half-words or words, specified in count.

Syntax symbol name Rsize count

where size is b byte (8 bits)
h half word (16 bits)
w word (32 bits)

(if size is not specified, w is assumed)

See Also RSSET, RSRESET

Remarks
• This directive, together with the following two associated directives, operate on

or with the Assembler variable, __RS, which contains the current offset.

Examples rsreset

Icon_no rb 1
Dropcode rh 1
Actcode rh 1
Actname rb 10
Objpos rw 1
Artlen rb 0

After each of the first five RS equates, the __RS pointer is advanced; the values for
each equate are as follows:

Page 4-10 General Assembler Directives Nintendo 64

© SN Systems Ltd

Icon_no 0 (set to zero by RSRESET)
Dropcode 1
Actcode 4 (Automatic Alignment set, advances the pointer to Alignment
boundary)
Actname 6
Objpos 16
Artlen 20

The last rb does not advance the __RS pointer, since a count of zero is equivalent to
an EQUATE to the __RS variable.

RSSET

Description Assigns the specified value to __RS variable.

Syntax RSSET value

See Also Rsize, RSRESET

Remarks This directive is normally used when the offsets are to start at a value other than zero.

Examples See the Rsize directive

Nintendo 64 General Assembler Directives Page 4-11

© SN Systems Ltd

RSRESET

Description Sets the __RS variable to zero.

Syntax RSRESET [value]

See Also Rsize, RSSET

Remarks
• Using this directive is the normal way to initialise the __RS counter at the start of

a new data structure.

• The optional parameter is provided for compatibility with other assemblers; if
present, RSRESET behaves like the RESET directive.

Examples See the Rsize directive

Page 4-12 General Assembler Directives Nintendo 64

© SN Systems Ltd

Data Definition

The directives in this section are used to define data and reserve space.

•• Dsize
•• DCsize
•• DSsize
•• HEX
•• DATA
•• DATASIZE
•• IEEE32
•• IEEE64

Nintendo 64 General Assembler Directives Page 4-13

© SN Systems Ltd

Dsize

Description This directive evaluates the expressions in the operand field, and assigns the results to
the preceding symbol, in the format specified by the size parameter. Argument
expressions may be numeric values, strings or symbols.

Syntax symbol name Dsize expression,..,expression

where .size is b byte (8 bits)
h half word
w word

See Also DCsize

Remarks
• Textual operands are delimited by double or single quotes. If it is required to

include a double quote in the text string, delimit with single quotes or two double
quotes; similarly, to include a single quote in the text, delimit with double quotes
or two single quotes - see examples below. If delimiters are omitted, the
Assembler assumes the operand to be the symbol name of a previously defined
string variable, the value of which is assigned to the new symbol name.

• When the Automatic Alignment assembler option (/AE) is in force, directives for
half word and word ensure that the program counter is aligned to the next word
boundary.

Examples Hexvals dh $80d,$a08,0,$80d,0
Coords dw -15,46
Pointers dw StartMarker,EndMarker
ErrorMes db "File Error",0

Notes If the Assembler encounters a parameter that is out-of-range, an error is flagged; the
following statements will produce errors:

db 257
db -129
dh 66000
dh -33000

Page 4-14 General Assembler Directives Nintendo 64

© SN Systems Ltd

DCsize

Description This directive generates a block of memory of the specified length, containing the
specified value.

Syntax DCsizelength,value

where size is b byte (8 bits)
h half word (16 bits)
w word

See Also Dsize

Remarks When the Automatic Alignment assembler option (/AE) is in force, DCB directives
for half word and word ensure that the program counter is aligned to the next word
boundary.

Examples dcb 256,$7F ;generates 256 bytes containing $7F

dcw 64,$12345678 ;generates 54 words containing
$12345678

Nintendo 64 General Assembler Directives Page 4-15

© SN Systems Ltd

Dssize

Description Allocates memory to the symbol of the specified length and initialises it to zero.

Syntax symbol name DSsize length

where size is b byte (8 bits)
h half word (16 bits)
w word

See Also Dsize, DCsize

Remarks
• When the Automatic Alignment assembler option (/AE) is in force, DS directives

for word and long word ensure that the program counter is aligned to the next
word boundary.

• If this directive is used to allocate memory in a Group/Section with the BSS

attribute, the reserved area will not be initialised - see Groups and Sections,
chapter 8.

Examples List dsw 64

reserves an area 64 words long, and sets it to zero.

Buffer dsb 1024

reserves a 1k bytes area, and sets it to zero.

Page 4-16 General Assembler Directives Nintendo 64

© SN Systems Ltd

HEX

Description This directive takes a list of hex digits as an argument and assigns the resulting value
to the preceding symbol. It is intended as a quick way of inputting small hex
expressions.

Syntax symbol name HEX hexlist

See Also INCBIN

Remarks Data stored as HEX is difficult to read, less memory-efficient and causes more work
for the Assembler. Therefore, it is suggested that the HEX statement is used for
comparatively minor data definitions only. To load larger quantities of data, it is
recommended that the data is stored in a file, to be INCLUDEd as a binary file at
runtime - see Include Files, chapter 4.

Examples HexStr hex 100204FF0128

is another way of writing

HexStr db $10,$02,$04,$FF,$01,$28

Nintendo 64 General Assembler Directives Page 4-17

© SN Systems Ltd

DATASIZE and DATA

Description Together, these directives allow the programmer to define values between 1 and 256
bytes long (8 to 2048 bits). The size of the DATA items must first be defined by a
DATASIZE directive.

Syntax DATASIZE size
DATA value, value

where value is a numeric string, in hex or decimal, optionally preceded by a minus
sign.

See Also IEEE32, IEEE64

Remarks If a value specified in the DATA directive converts to a value greater than can be
held in size specified by DATASIZE, the Assembler flags an error.

Examples datasize 8
...
data $123456789ABCDEF0
data -1,$FFFFFFFFFFFF

IEEE32 and IEEE64

Description These directives allow 32 and 64 bit floating point numbers to be defined in IEEE
format.

Syntax IEEE32 fp.value
IEEE64 fp.value

See Also DATA, DATASIZE

Examples ieee32 1.23,34e10

ieee64 123456.7654321e-2

Page 4-18 General Assembler Directives Nintendo 64

© SN Systems Ltd

Controlling Program Execution

The directives in this section are used to alter the state of the program counter and
control the execution of the Assembler.

•• ORG
•• CNOP
•• OBJ
•• OBJEND

Nintendo 64 General Assembler Directives Page 4-19

© SN Systems Ltd

ORG

Description The ORG directive informs the Assembler of the location of the code in the target
machine.

Syntax ORG address[,parameter]

where address is a previously-defined symbol, or a hex or decimal value, optionally
preceded by a question mark (?) and followed by a (target-specific) numeric
parameter.

See Also OBJ, OBJEND, GROUP, SECTION

Remarks
• If a link file is output, the ORG directive must not be used - see Groups and

Sections, chapter 8.

• If the program contains SECTIONs, a single ORG is allowed, and it must
precede all SECTION directives. If the program does not utilise the SECTION
construct, it may contain multiple ORG's.

Examples org $100
Begin move.w sr,-(A7)

Program equ $4000
...
org Program

Page 4-20 General Assembler Directives Nintendo 64

© SN Systems Ltd

CNOP

Description Resets the program counter to a specified offset from the specified size boundary.

Syntax CNOP offset,size boundary

Remarks In code containing SECTIONs, the Assembler does not allow the program counter
to be reset to a size boundary greater than the alignment already set for that section.
Therefore, a CNOP statement with a size boundary of 2 is not allowed in a section
that is byte-aligned.

Examples section prime
Firstoff = 512
Firstsize = 2

...
 cnop Firstoff,Firstsize

sets the program counter to 512 bytes above the next word boundary.

Nintendo 64 General Assembler Directives Page 4-21

© SN Systems Ltd

OBJ and OBJEND

Description OBJ forces the code following it to be assembled as if it were at the specified
address, although it will still appear following on from the previous code.

OBJEND terminates this process and returns to the ORG'd address value.

Syntax OBJ address

OBJEND

See Also ORG

Remarks
• The OBJ - OBJEND construct is useful for code that must be assembled at one

address (for instance, in a ROM cartridge), but will be run at a different address,
after being copied there.

• Code blocks delimited by OBJ - OBJEND cannot be nested.

Examples org $100
dw *
dw *

obj $200
dw *
dw *

objend
dw *
dw *

The above code will generate the following sequence of words, starting at address
$100 :

$100
$104
$200
$204
$110
$114

Page 4-22 General Assembler Directives Nintendo 64

© SN Systems Ltd

Include Files

The source code for most non-trivial programs is too large to be handled as a single
file. It is normal for a program to be constructed of subsidiary files, which are called
together during the assembly process.

The directives in this section are used to collect together the separate source files and
control their usage; also discussed are operators to aid the control of code to be
assembled from INCLUDEd files.

•• INCLUDE
•• INCBIN
•• DEF
•• REF

Nintendo 64 General Assembler Directives Page 4-23

© SN Systems Ltd

INCLUDE

Description As the source code for most no-trivial programs is too large to be handled as a single
file, it is normal for a program to be constructed of subsidiary files, which are called
together during the assembly process. This directive tells the Assembler to draw in
and process another source file, before resuming the processing of the current file.

Syntax INCLUDE filename

where filename is the name of the source file to be processed, including drive and
path identifiers - see Note. The filename may be surrounded by quotes, but they will
be ignored.

See Also INCBIN

Remarks

Traditionally, there will be one main file of source code, which contains INCLUDE's
for all the other files.

The /j switch can be used to specify a search path for INCLUDEd files - see
Assembler Options, chapter 9.

Examples A typical start to a program may be:

 section short1
codestart jmp entrypoint

 db _hours,_minutes
 db _day,_month
 dh _year

 include vars1.s

 section short2

 include vars2.s

 section code

 include graph1.s
 include graph2.s

Page 4-24 General Assembler Directives Nintendo 64

© SN Systems Ltd

 include maths.s
 include trees.s
 include tactics.s

entrypoint li t0,8
 lw a0,fred

...

Note: Since a path name contains backslashes, the text in the operand of an
INCLUDE statement may be confused with the usage of text previously
defined by an EQUS directive. To avoid this, a second backslash may be used
or the backslash may be replaced by a forward slash.

Nintendo 64 General Assembler Directives Page 4-25

© SN Systems Ltd

INCBIN

Description Informs the Assembler to draw in and process binary data held in another source file,
before resuming the processing of the current file.

Syntax symbol INCBIN filename[,start,length]

• filename is the name of the source file to be processed, including drive and path
identifiers Optionally, the filename may be surrounded by quotes, which will be
ignored;

• start and length are optional values, allowing selected portions of the specified
file to be included.

See Also INCLUDE, HEX

Remarks
• This directive allows quantities of binary data to be maintained in a separate file

and pulled into the main program at assembly time; typically, such data might be
character movement strings, or location co-ordinates. The Assembler is passed no
information concerning the type and layout of the incoming data. Therefore,
labeling and modifying the INCBINed data is the responsibility of the
programmer.

• The /j switch can be used to specify a search path for INCLUDEd files - see
Assembler Options, chapter 9.

Examples Charmove incbin d:\source\charmov.bin

Note: Since a path name contains backslashes, the text in the operand of an INCBIN
statement may be confused with the usage of text previously defined by an
EQUS directive. To avoid this, a second backslash may be used or the
backslash may be replaced by a forward slash.

Thus, include f:\source\charmov.bin

may be re-written as

include d:\\source\\charmov.bin or

include d:/source/charmov.bin

Page 4-26 General Assembler Directives Nintendo 64

© SN Systems Ltd

Note The nominated file may be accessed selectively, by specifying a position in the file,
from which to start reading, and a length. Note that:

•• if start is omitted, the INCBIN commences at the beginning of the file;
• if the length is omitted, the INCBIN continues to the end of the file;
• if both start and length are omitted, the entire file is INCBINed.

REF

Description REF is a special operator to allow the programmer to determine which segments of
code are to be INCLUDEd.

Syntax [~]REF(symbol)

The optional preceding tilde (~) is synonymous with NOT.

Remarks REF is true if a reference has previously been encountered for the symbol in the
brackets.

Examples if ref(Links)
Links lw r1,8(a0)

...
jr ra
endif

The Links routine will be assembled if a reference to it has already been encountered.

Nintendo 64 General Assembler Directives Page 4-27

© SN Systems Ltd

DEF

Description Like the REF operator, DEF is a special function. It allows the programmer to
determine which segments of code have already been INCLUDEd.

Syntax [~]DEF(symbol)

The optional preceding tilde (~) is synonymous with NOT.

Remarks DEF is true if the symbol in the brackets has previously been defined.

Examples if ~def(loadadr)
loadadr equ $1000
execadr equ $1000
relocadr equ $80000-$300
 endc

The address equates will be assembled if load_addr has not already been defined.

Page 4-28 General Assembler Directives Nintendo 64

© SN Systems Ltd

Controlling Assembly

The following directives give instructions to the Assembler during the assembly
process. They allow the programmer to select and repeat sections of code:

•• END
•• IF
•• ELSE
•• ELSEIF
•• ENDIF
•• CASE
•• ENDCASE
•• REPT
•• ENDR
•• WHILE
•• ENDW
•• DO
•• UNTIL

Nintendo 64 General Assembler Directives Page 4-29

© SN Systems Ltd

END

Description The END directive informs the Assembler to cease its assembly of the source code.

Syntax END [address]

See Also REGS

Remarks
• The inclusion of this directive is mostly cosmetic, since the Assembler will cease

processing when the input source code is exhausted.

• The optional parameter specifies an initial address for the program. See also the
REGS statement, in the section - Target-Related Directives, chapter 4.

Example startrel lw t0,(a0)
addu r3,r2,r1
...
jr ra
end

IF, ELSE, ELSEIF, ENDIF, ENDC

Description These conditional directives allow the programmer to select code for assembly.

Syntax IF [~]expression
ELSE
ELSEIF [~]expression
ENDIF
ENDC

See Also CASE

Page 4-30 General Assembler Directives Nintendo 64

© SN Systems Ltd

Remarks
• The ENDC and ENDIF directives are interchangeable.

• If the ELSEIF directive is used without a following expression, it acts the same
as an ELSE directive.

• The optional tilde, preceding the operand expression, is synonymous with NOT.
Its use normally necessitates the prudent use of brackets to preserve the sense of
expression.

Examples if Nintendo 1
sec_dir equ 2

elseif Target
sec_dir equ 1

else
sec_dir equ 3

endif

 if ~usesquare
round macro
 addu \1,\2,\3
 endm

 elseif
round macro
 endm
 endc

ldimm macro dest,imm
if (\imm>-

 32768)&(\imm<32768)
addiu \dest,r0,\imm

 else lui \dest,(\imm)>>16
if (\imm)&$ffff

 ori \dest,\det,(\imm)&$ffff
 endif
 endif

endm

Nintendo 64 General Assembler Directives Page 4-31

© SN Systems Ltd

CASE and ENDCASE

Description The CASE directive is used to select code in a multiple-choice situation. The CASE
argument defines the expression to be evaluated; if the argument(s) after the equals
sign are true, the code that follows is assembled. The equals-question mark case is
selected if no previous case is true.

Syntax CASE expression
=expression[,expression]
=?

ENDCASE

See Also IF conditionals

Remarks In the absence of a equals-question mark (=?) case, if the existing cases are
unsuccessful, the case-defined code is not assembled.

Examples The following is an alternative for the example listed under the IF directive - see
chapter 4.

Target equ Nintendo1
...

 case Target

=Nintendo1
sec_dir equ 2

=Nintendo2
sec_dir equ 1

=? db "New Version",0
sec_dir equ 3

endcase

Page 4-32 General Assembler Directives Nintendo 64

© SN Systems Ltd

REPT, ENDR

Description These directives allow the programmer to repeat the code between the REPT and
ENDR statements. The number of repetitions is determined by the value of count.

Syntax REPT count
...
ENDR

See Also DO, WHILE

Remarks When used in a Macro, REPT is frequently associated with the NARG function.

Examples rept 12
dh 0,0,0,0
endr

cbb macro string
lc = 0
 rept strlen(\string)
cc substr lc+1,lc+1,\string
 db "\cc"^($A5+lc)
lc = lc+1
 endr

endm

Nintendo 64 General Assembler Directives Page 4-33

© SN Systems Ltd

WHILE, ENDW

Description These directives allow the programmer to repeat the code between the WHILE and
ENDW statements, as long as the expression in the operand holds true.

Syntax WHILE expression
...
ENDW

See Also REPT, DO

Remarks Currently, any string equate substitutions in the WHILE expression take place once
only, when the WHILE loop is first encountered - see Note below for the
ramifications of this.

Examples MultP equ 16
...

Indic = MultP
while Indic>1
lw r1,term(a0)
...

Indic = Indic-1
endw

Note: Because string equates are only evaluated at the start of the WHILE loop, the
following will not work:

s equs "x"
while strlen("\s") < 4
dcb "\s",0

s equs "\s\x"
endw

Page 4-34 General Assembler Directives Nintendo 64

© SN Systems Ltd

To avoid this, set a variable each time round the loop to indicate that looping should
continue:

s equs "x"
looping = -1

while looping
db "\s",0

s equs "\s\x"
looping = strlen("\s") < 4

endw

DO, UNTIL

Description These directives allow the programmer to repeat the code between the DO and
UNTIL statements, until the specified expression becomes true.

Syntax DO
...
UNTIL expression

See Also REPT, WHILE

Remarks Unlike the WHILE directive, string equates in an UNTIL expression will be re-
evaluated each time round the loop.

Examples MultP equ 16
...

Indic = MultP
do
lw r1,term(a0)
...

Indic = Indic-1
until Indic<=1

Nintendo 64 General Assembler Directives Page 4-35

© SN Systems Ltd

Target-Related Directive

The following directive allows the programmer to specify certain initial parameters in
the target machine:

•• REGS

Page 4-36 General Assembler Directives Nintendo 64

© SN Systems Ltd

REGS

Description This directive allows the programmer to specify certain initial parameters in the target
machine. If a CPE file is produced or object code output is directed to the target, the
REGS directive specifies the contents of the registers at the start of code execution.

Syntax REGS regcode=expression[,regcode=expression]

where regcode is the mnemonic name of a register, such as r1, PC.

Remarks This directive is not available for relocatable code which is specific to the target or
pure binary code.

Example regs pc = __SN_ENTRY_POINT

Register assigns can be declared on one line, separated by commas.

Nintendo 64 Macros Page 5-1

© SN Systems Ltd

CHAPTER 5

Macros

The Assembler provides extensive macro facilities; these allow the programmer to
assign names to complete code sequences. They may then be used in the main
program like existing assembler directives.

This chapter discusses the following topics, directives and functions:

•• MACRO, ENDM
•• MEXIT
•• Macro Parameters
•• SHIFT, NARG
•• MACROS
•• PUSHP, POPP
•• PURGE
•• TYPE

Page 5-2 Macros Nintendo 64

© SN Systems Ltd

MACRO, ENDM, MEXIT

The Assembler provides extensive macro facilities; these allow the programmer to
assign names to complete code sequences. They may then be used in the main
program like existing assembler directives.

Description A macro consists of the source lines and parameter place markers between the
MACRO directive and the ENDM. The label field is the symbolic name by which the
macro is invoked; the operand allows the entry of a string of parameter data names.

When the assembler encounters a directive consisting of the label and optional
parameters, the source lines are pulled into the main program and expanded by
substituting the place markers with the invocation parameters. The expansion of the
macro is stopped immediately if the assembler encounters a MEXIT directive.

Syntax Label MACRO [symbol,..symbol]
...
MEXIT
...
ENDM

See Also MACROS

Remarks
• Note that the invocation parameter string effectively starts at the character after

the macro name, that is, the dot (.) character. Text strings, as well as .b, .w and .l
are permissible parameters - see Parameters below.

• Control structures within macros must be complete. Structures started in the
macro must finish before the ENDM; similarly, a structure started externally must
not be terminated within the macro. To imitate a simple control structure
from another assembler, a short macro might be used - see MACROS below.

Examples remove macro
 dh -2,0,0

 endm

Form macro
 if strcmp('\1','0')
 dh 0
 else
 dh \1-Form Base
 endif

endm

Nintendo 64 Macros Page 5-3

© SN Systems Ltd

Macro Parameters

Parameters Macro parameters obey the following rules:

• The parameters listed on the macro invocation line may appear at any point in the
code declared between the MACRO and ENDM statements. Each parameter is
introduced by a backslash (\); where this may be confused with text from an
EQUS, a backslash may also follow the parameter.

• Up to thirty two different parameters are allowed, numbered \0 to \31. \0 is a
special parameter which gives the contents of the size field of the macro directive
when it was invoked, that is, the text after the point symbol (.) This includes not
only .b, .h or .w, but also any text:

Example zed macro
\0
endm
...
zed.nop

will generate a NOP instruction.

Instead of the \0 to \31 format, parameters can be given symbolic names, by their
inclusion as operands to the MACRO directive. The preceding backslash (\) is not
mandatory; however, if there is the possibility of confusion with the surrounding text,
a backslash may be used before and after the symbol name to ensure the expression is
expanded correctly:

Example Position macro A,B,C,Pos,Time
dh \Time*(\A*\Pos+\B*\Pos+\C*\Pos)
endm

Surrounding the operand of an invoked macro with greater than and less than signs
(<...>), allows the use of comma and space characters.

Page 5-4 Macros Nintendo 64

© SN Systems Ltd

Example Credits macro
 dh \1,\2
 db \3
 db 0
 even
 endm

...
Credits 11,10,<A BS, from Jones>

• Continuation Lines - when invoking a macro, it is possible that the parameter list
will become overlong. As with any directive statement, the line can be terminated
by an ampersand (&) and continued on the next line to improve readability.

Example chstr macro
 rept narg
 db k_\1
 shift
 endr
 db 0
 even
 endm

...
cheatstr chstr i,c,a,n,b,a,r,e,l,y,&

s,t,a,n ,d,i,t

Nintendo 64 Macros Page 5-5

© SN Systems Ltd

Special Parameters

There are a number of special parameter formats available in macros, as follows:

Converting Integers to Text

The parameters \# and \$ replace the decimal (#) or hex ($) value of the symbol
following them, with their character representation. Commonly, this technique is used
to access Run Date and Time:

Example
RunTime db "\#_hours:\#_minutes:&

\#_seconds"

this expands to the form hh:mm:ss, as follows

RunTime db "21:08:49"

Generating Unique Labels

The parameter \@ can be used as the last characters of a label name in a macro.
When the macro is invoked, this will be expanded to an underscore followed by a
decimal number; this number is increased on each subsequent invocation to give a
unique label.

Example Slots macro
 add r1,r0,r0
 lw r1,\1
 beq r11,r0,1
next\@ addiu f3,r0,1

bgt
dun\@
 endm

...
Slots freeob1,numslot1

Each time the Slots macro is used, new labels in the form next_001 and dun_001 will
be generated.

Page 5-6 Macros Nintendo 64

© SN Systems Ltd

Entire Parameter

If the special parameter _ (backslash underscore) is encountered in a macro, it is
expanded to the complete argument specified on the macro invocation statement.

Examples All macro
db _
endm
...
All 1,2,3,4

will generate

db 1,2,3,4

Control Characters

The parameter \^x, where x denotes a control character, will generate the specified
control character.

Using the Macro Label

The label heading the invocation line can be used in the macro, by specifying the first
name in the symbol list of the MACRO directive to be an asterisk (*), and
substituting * for the label itself. However, the resultant label is not defined at the
current program location. Therefore, the label remains undefined unless the
programmer gives it a value.

Extended Parameters

The Assembler accepts a set of elements, enclosed in curly brackets ({}), to be
passed to a macro parameter. The NARG function and SHIFT directive can then be
used to handle the list:

Example cmd macro
cc equs {\1}
 rept narg(cc)
 \cc
 shift cc
 endr
 endm

jr ra

Nintendo 64 Macros Page 5-7

© SN Systems Ltd

SHIFT, NARG

Description These directives cater for a macro having a variable parameter list as its operand. The
NARG symbol is the number of arguments on the macro invocation line; the SHIFT
directive shifts all the arguments one place to the left, losing the leftmost argument.

Syntax directive NARG
...
SHIFT

where NARG is a reserved, predefined symbol.

See Also Extended Parameters

Examples routes macro
 rept narg
 if strcmp('\1','0')
 dh 0
 else
 dh \1-routebase
 endif
 shift
 endr
 endm

...
 routes 0,gosouth_1

This example goes through the list of parameters given to the macro and defines a
half word of $0000 if the argument is zero or a 16 bit offset into the ‘routebase’ table
of the given label.

Page 5-8 Macros Nintendo 64

© SN Systems Ltd

MACROS

Description The MACROS directive allows the entry of a single line of code as a macro, with no
associated ENDM directive. The single line of code can be a control structure
directive.

Syntax Label MACROS [symbol,..symbol]

See Also MACRO

Remarks The MACROS directive may be used to stand in for a single, complex code line.
Often, the short macro allows the programmer to synthesise a directive from another
assembler. Including the /k option on the command line will cause several macros
emulating foreign directives to be generated.

Examples a = 0 ;a=0 do explosion
;a=1 do offset calculation

 if 0
boom macros
 jal explos\1

else
boom macros

lw r1,blow up-tactbase(\1
endif

Nintendo 64 Macros Page 5-9

© SN Systems Ltd

PUSHP, POPP

Description These directives allow text to be pushed into, and then popped from, a string
variable.

Syntax PUSHP string
POPP string

Remarks There is no requirement for the PUSH and corresponding POPP directives to appear
in the same macro.

Examples makeframe macro stksize
 pushp \stksize
 sub sp,\stksize\1
 endm

freeframe macro
popp stksize

 add sp,\stksize
 endm

This means the user does not have to specify stksize when using freeframe. The
user must ensure that calls to makeframe and freeframe are balanced.

Page 5-10 Macros Nintendo 64

© SN Systems Ltd

PURGE

Description The PURGE directive removes an expanded macro from the internal tables and
releases the memory it occupied.

Syntax PURGE macroname

Remarks It you need to redefine a macro, it is not necessary to purge it first as this is done by
the Assembler.

Examples HugeM macro
dh \1
dh \2
...
dh \31
endm

HugeM para1,103,faultlevel,&
...

40,50,para31

purge HugeM

Nintendo 64 Macros Page 5-11

© SN Systems Ltd

TYPE

Description TYPE is a function used to provide information about a symbol. It is frequently used
with a macro to determine the nature of its parameters. The value is returned as a
word; the meanings of the bit settings are given below.

Syntax TYPE(symbol)

The reply word can be interpreted as follows:

Bit 0 Symbol has an absolute value
Bit 1 Symbol is relative to the start of the Section
Bit 2 Symbol was defined using SET
Bit 3 Symbol is a Macro
Bit 4 Symbol is a String Equate (EQUS)
Bit 5 Symbol was defined using EQU
Bit 6 Symbol appeared in an XREF statement
Bit 7 Symbol appeared in an XDEF statement
Bit 8 Symbol is a Function
Bit 9 Symbol is a Group Name
Bit 10 Symbol is a Macro parameter
Bit 11 Symbol is a short Macro (MACROS)
Bit 12 Symbol is a Section Name
Bit 14 Symbol is a Register Equate (EQUR)

Nintendo 64 String Manipulation Functions Page 6-1

© SN Systems Ltd

CHAPTER 6

String Manipulation Functions

To enhance the Macro structure, the Assembler includes powerful functions for string
manipulation. These enable the programmer to compare strings, examine text and
prepare subsets.

This chapter covers the following string handling functions and directive:

•• STRLEN
•• STRCMP
•• INSTR
•• SUBSTR

Page 6-2 String Manipulation Functions Nintendo 64

© SN Systems Ltd

STRLEN

Description A function which returns the length of the text specified in the brackets.

Syntax STRLEN(string)

See Also STRCMP

Remarks The STRLEN function is available at any point in the operand.

Examples Nummov macro

 rept strlen(\1)
lw r3,(a0

 add a0,4
sw r3,(a1)
add a1,4
endr
endm
. . .
Nummov 12345

The number of characters in the string is used as the extent of the loop.

Nintendo 64 String Manipulation Functions Page 6-3

© SN Systems Ltd

STRCMP

Description A function which compares two text strings in the brackets, and returns true if they
match, otherwise it returns false.

Syntax STRCMP(string1,string2)

See Also STRLEN

Remarks When comparing two text strings, the STRCMP function starts numbering the
characters in the target texts from one.

Examples Vers equ "Acs"
...
if strcmp("\Vers","Sales")
lh v0,Sa1Ind (a0)
else
 if strcmp("\Vers","Acs")
 lh v0, AcInd (a0)
 else
 if strcmp("\Vers","Test")
 lh v0, TstInd (a0)
 endif
 endif
endif

Page 6-4 String Manipulation Functions Nintendo 64

© SN Systems Ltd

INSTR

Description This function searches a text string for a specified sub-string. If the string does not
contain the sub-string, the result of zero is returned; if the sub-string is present, the
result is the location of the sub-string from the start of the target text. It is also
possible to specify an alternate start point within the string via an optional parameter.

Syntax INSTR ([start,]string, sub-string)

See Also SUBSTR

Examples Mess equs "Demo for Sales Dept"
...
if instr("\Mess","Sales")
lw v0, Sa1Ind (a0
else
lw v0, AcInd (a0)
endif

Note: When returning the offset of a located sub-string, the INSTR function starts
numbering the characters in the target text from one.

Nintendo 64 String Manipulation Functions Page 6-5

© SN Systems Ltd

SUBSTR

Description This directive assigns a value to a symbol; the value is a sub-string of a previously
specified text string, defined by the start and end parameters. The start and end
parameters will default to the start and end of the string, if omitted.

Syntax symbol SUBSTR [start],[end],string

See Also INSTR, EQUS

Remarks When assigning a sub-string to a symbol, the SUBSTR directive starts numbering the
characters in the source text from one.

Examples Message equs "A short Sample String"
Part1 substr 9,14,"\Message"
Part2 substr 16,,"\Message"
Part3 substr ,7,"\Message"
Part4 substr ,,"\Message"

where Part1 equals Sample
Part2 equals String
Part3 equals A short

The last statement is equivalent to an EQUS assigning the whole of the original
string to Part4.

Cbb macro string
cc = 0

rept strlen(\string)
cc substr lc+1,lc+1,\string

db ‘\cc’^($A5+1c)
lc+1
endr
endm

Again, this is an example of encryption of a string.

Nintendo 64 Local Labels Page 7-1

© SN Systems Ltd

CHAPTER 7

Local Labels

As a program develops, finding label names that are both unique and definitive
becomes increasingly difficult. Local Labels ease this situation by allowing
meaningful label names to be re-used.

This chapter covers the following topics and directives:

•• Local Label Syntax and Scope
•• MODULE and MODEND
•• LOCAL

Page 7-2 Local Labels Nintendo 64

© SN Systems Ltd

Syntax and Scope

Syntax
• Local Labels are preceded by a local label signifier. By default, this is an @ sign;

however, any other character may be declared by using the l option in an OPT
directive or on the Assembler command line - see Assembler Options, chapter 9.

• Local label names follow the general label rules, as specified in chapter 3.

• Local labels are not de-scoped by the expansion of a macro.

Scope The region of code within which a Local Label is effective is called its Scope. Outside
this area, the label name can be re-used. There are three methods of defining the
scope of a Local Label:

• The scope of a local label is implicitly defined between two non-local labels.
Setting a variable, defining an equate or RS value does not de-scope current local
labels, unless the d option has been used in an OPT directive or on the Assembler
command line - see Assembler Options, chapter 9..

• The scope of a Local Label can also, and more normally, be defined by the
directives MODULE and MODEND - see chapter 7.

• To define labels (or any other symbol type) for local use in a macro, the LOCAL
directive can be used - see chapter 7..

Examples plot2 lb t0,loc(t1)
nop

 subiu t0,t2
 bne zero,t0,@chk1

nop
 jal lcolor

nop
b setplot

 nop
@chk1
Setplot set *
Plot3 ---

b @chk1
nop

Nintendo 64 Local Labels Page 7-3

© SN Systems Ltd

MODULE and MODEND

Description Code occurring after a MODULE statement, and up to and including the MODEND
statement, is considered to be a module. Local labels defined in a module can be re-
used, but cannot be referenced outside the module's scope. A Local label defined
elsewhere cannot be referenced within the current module.

Syntax MODULE
...
...
MODEND

See Also LOCAL

Remarks
• Modules can be nested.

• The MODULE statement itself is effectively a non-local label and will de-scope
any currently active default scoping.

• Macros can contain modules or be contained in a module. A local label occurring
in a module can be referred to by a macro residing anywhere within the module.
A module contained within a macro can effectively provide labels local to that
macro.

Examples mystrcmp module
 move t2,a0
 move v0,zero
@lp lbu t0,0(t2)

addi t2,t2,1
 lbu t1,0(a2)

addiu a2,a2,1
bne t0,t1,@diff
nop
bnez t0,@lp
nop
li v0,1 ;true

@diff jr ra
nop

 modend ;mystrcmp

Page 7-4 Local Labels Nintendo 64

© SN Systems Ltd

LOCAL

Description The LOCAL directive is used to declare a set of macro-specific labels.

Syntax LOCAL symbol,..,symbol

See Also MODULE

Remarks
• The scope of symbols declared using the LOCAL directive is restricted to the

host macro.

• The LOCAL directive does not force a type on the symbol set that makes up its
operand. In practice, therefore, such symbols can be used as equates, string
equates or any other type, as well as labels.

Examples print macro string
local mylabel

 jal stringprint
 nop

db \string,0
cnop 0,4

mylabel
 endm

Nintendo 64 Structuring the Program Page 8-1

© SN Systems Ltd

CHAPTER 8

Structuring the Program

Normally, the organisation of the memory of the target machine does not match the
layout of the source files. The Assembler however, uses Groups and Sections to
create a structured target memory and relocatable program sections.

This chapter covers the following topics and directives:

•• SECTION
•• GROUP
•• PUSHS and POPS
•• SECT and OFFSET

Page 8-2 Structuring the Program Nintendo 64

© SN Systems Ltd

GROUP

Description This directive declares a group with up to seven group attributes.

Syntax GroupName GROUP [Attribute,..Attribute]

where an attribute is one of the following - see below for descriptions:

WORD
BSS
ORG(address)
FILE(filename)
OBJ(address)
SIZE(size)
OVER(GroupName)

See Also SECTION

Remarks Group Attributes are interpreted as follows:

WORD - the group may be accessed using absolute word addressing. Note that this
will only have an effect if the ow+ parameter has been used to allow optimisation to
occur.

Example Group1 group word

BSS - no initialised data to be declared in this group.

Example Group1 group bss

ORG - sets the ORG address of the group, without reference to the other group
addresses. If this attribute is omitted, the group will be placed in memory, following
on from the end of the previous group.

Nintendo 64 Structuring the Program Page 8-3

© SN Systems Ltd

Example org $100
G1 group
G2 group org($400)
G3 group

will place the groups in the sequence G1,G2,G3

FILE - outputs a group, such as an overlay, to a its own binary file; other groups will
be output to the declared file.

Example Group1 group org($400),file("charov.bin")

OBJ - sets the group's OBJ address. Code is assembled as if it is running at the OBJ
address but is placed at the group's ORG address. If no address is specified then the
OBJ value is the same as the group's ORG address.

Examples Group1 group org($400),obj($1000)

Group2 group org($800),obj()

SIZE - specifies the maximum allowable size of the group. If the size exceeds the
specified size, the assembler reports an error.

Example Group1 group size(32768)

OVER - overlays this group on the specified group. Code at the start of the second
group is assembled at the same address as the start of the first group. The largest of
the overlaid groups' sizes is used as the size of each group.

Note: It is necessary to use the FILE attribute to force different overlays to be
written to different output files.

Example Group2 group over(Group1)

Page 8-4 Structuring the Program Nintendo 64

© SN Systems Ltd

SECTION

Description This directive declares a logical code section.

Syntax SECTIONsize SectionName[,Group]

SectionName SECTIONsize [Attribute,..Attribute]

The second format is a special case, designed to allow definition of a section with
group attributes - see below for a description.

See Also GROUP

Remarks
• Unless the section has been previously assigned, the section will be placed in an

unnamed default group, if the GROUP name is omitted

• It is possible to define a section with group attributes. The assembler will
automatically create a group with the section name preceded by a tilde (~) and
place the section in it.

Example Sect1 section bss

defines Sect1, with the BSS attribute, in a group called ~Sect1.

• The size parameter can be b, h or w; if the parameter is omitted, the default size
is word. When a size is specified on a section directive, alignment to that size is
forced at that point. The start of the section is aligned on a boundary based on
the largest size on any of the entries to that section - in all modules in the case of
linked code.

Note: If a section is sized as byte, you cannot use the EVEN directive in the
section. Furthermore, the CNOP directive cannot be used to re-align the
Program Counter to a value greater than the alignment of the host section
- See chapter 4.

Nintendo 64 Structuring the Program Page 8-5

© SN Systems Ltd

• If sections are used to structure application code, only a single ORG directive
can be used; this must precede all section definitions. Groups and Sections may
have ORG attributes to position them.

No ORG directives or attributes are permitted when producing linkable output.
Within a group, sections are ordered in the sequence that the Linker encounters
the section definitions.

Example

Sectionb one
db 1,2,3

section two
db 10,11,12

sectionb one
db 4,5

section two
db 13,14

Will produce the following sections and bytes:

one 1,2,3,4,5
two 10,11,12,0,13,14

Page 8-6 Structuring the Program Nintendo 64

© SN Systems Ltd

PUSHS and POPS

Description These directives allow the programmer to open a new, temporary section then return
to the original section. PUSHS saves the current section, POPS restores it.

Syntax PUSHS

POPS

Examples plotcomp lw t0,8(tl)

passdl equ *
pushs
section dolight
dw passdl
...
pops

This example shows PUSHS and POPS being used to pass system information
between sections, in the form of the location counter.

Nintendo 64 Structuring the Program Page 8-7

© SN Systems Ltd

SECT and OFFSET

Description The SECT function returns the address of the section in which the symbol in the
brackets is defined. The OFFSET function returns the offset value from the
beginning of the section.

Syntax SECT (expression)

OFFSET (expression)

Remarks
• If a link is being performed, the SECT function is evaluated when it is linked; if

there is no link it will be evaluated when the second pass has finished.

• Likewise, if a link is being performed, the OFFSET function is evaluated when it
is linked; however, if there is no link the OFFSET will be evaluated during the
first pass.

Examples dh sect(Table1)
dh sect(Table2)
dh offset(*)

Nintendo 64 Options, Listings and Errors Page 9-1

© SN Systems Ltd

CHAPTER 9

Options, Listings and Errors

This chapter completes the discussion of the Assembler and its facilities. It covers
methods of determining run-time Assembler options, producing listings and error-
handling, as well as passing information to the Linker:

•• OPT
•• Assembler Options
•• PUSHO and POPO
•• LIST and NOLIST
•• INFORM
•• FAIL
•• XREF, XDEF and PUBLIC
•• GLOBAL

Page 9-2 Options, Listings and Errors Nintendo 64

© SN Systems Ltd

OPT

Description This directive allows Assembler options to be enabled or disabled in the application
code. See ‘Assembler Options’ below for a full listing.

Syntax OPT option,..option

See Also PUSHO, POPO

Remarks
• An option is turned on and off by the character following the option code:

+ (plus sign) = ON

- (minus sign) = OFF

• Options may also be enabled or disabled by using the / O switch on the Assembler
command line - see Command Line Syntax, chapter 2.

Examples opt an+,l:,e-

Nintendo 64 Options, Listings and Errors Page 9-3

© SN Systems Ltd

Assembler Options

The following reference list shows the default settings for the various options and
optimisations available during assembly. More detailed descriptions are given below.

Option Description Default

AE Enable Automatic Alignment Mode On
AN Enable Alternate Numeric mode Off
AT Allow Assembler to use temporary Register On
C Activate/ Suppress Case sensitivity Off
D Allow EQU or SET to descope local labels Off
E Print lines containing errors On
H Automatic hazard removal (insert NOP) Off
Lx Substitute x for Local Label signifier Off
M Enable/disable macro instructions On
N Insert NOP in branch delay slots Off
R Allow $ prefixed register names Off
S Handle equated names as labels Off
T Automatically truncate values in db/dh/dw statements Off
V Write Local Labels to symbol file Off
W Print warning messages On
WS Operands may contain white space Off
X Assume XREFs in defined section Off

Page 9-4 Options, Listings and Errors Nintendo 64

© SN Systems Ltd

Option Descriptions

AE - Automatic Alignment
When using the word and long word forms of DC, DCB, DS and RS, enabling this
option forces the program counter to the following boundary prior to execution. The
default setting for this option is AE+.

AN - Alternate Numeric
The default setting for this option is AN- but setting it to AN+ allows the inclusion of
numeric constants in Zilog or lntel format, i.e. followed by H, D or B to signify Hex,
Decimal or Binary, e.g. 0F123H = $F123. See also the section on the RADIX
directive - chapter 3.

AT - Alternate Assembler to use Temporary Register
Within MIPS standard format code, some instructions are not actually instructions
but macros, for example:

sw t0,fred

when assembled will produce the following:

Lui at,fred>>16
sw t0,fred&$ffff(at)

This trashes the AT Register.

Warnings will be generated when the AT Register is used if this option is set to AT+
but errors will be inserted if it is set to AT-.
The default setting is AT+.

C - Case Sensitivity
When this option is set to C+, the case of the letters in a label's name is significant;
for instance, SHOWSTATS, ShowStats and showstats would all be legal. The
default setting is C-.

D - Descope Local Labels
The default setting for this option is D- but if it is set to D+, local labels will be
descoped if an EQU or SET directive is encountered.

E - Error Text Printing
If this option is enabled, the text of the line which caused an Assembler error will be
printed together with the host file name and line number. The default setting for this
option is E+.

Nintendo 64 Options, Listings and Errors Page 9-5

© SN Systems Ltd

H - Automatic Hazard Removal
If this option is set to the default H-, the Assembler will warn the user of any pipline
hazards. If it is set to H+, it will insert an NOP into the code. Note that this does
not apply to instructions following returns at the end of subroutines.

L- Local Label Signifier
Local labels are signified by a preceding AT sign (@). This option allows the use of
the character following the option letter as the signifier. Thus, L: would change the
local label character to a colon (:). L+ and L- are special formats that toggle the
character between a dot (+) and an @ sign (-). The default setting is L-.

M - Enable/Disable Macro Instruction
Set this option to M- and errors will be given on macro instructions, e.g. the
following code:

li r2,$587329

will expand to the following sequence:

lui r2,$58
ori r2,$7329

Set it to the default M+ and the same code will generate an error.

N - Generate an NOP in Branch Delay Slots
The default setting for this option is N- but set it to N+ and an NOP will be
automatically inserted after all branch instructions.

R - Allow $ prefixed register names
R+ will allow the $ prefixed versions of the register names to be used but will disable
the use of $ to prefix hexadecimal constants.

S - Treat Equated Symbols as Labels
The default setting for this option is S- but set it to S+ and disassembly will treat
equates as labels rather than just values.

W - Print warning messages
When this option is set to the default setting of W+, the Assembler will identify
various instances where a warning message would be printed but assembly will
continue. Disabling the W option will suppress the reporting of warning messages.

WS - Allow white spaces
The default setting for this option is WS- but if it is set to WS+, operands may
contain white spaces. Thus, the statement:

dc.l 1 + 2

defines a longword of value 1 with WS set Off, and a longword of value 3 with WS
set to On.

Page 9-6 Options, Listings and Errors Nintendo 64

© SN Systems Ltd

X - XREFs in defined section
The default setting for this option is X- but if it is set to X+, XREFs are assumed to
be in the section in which they are defined. This allows optimisation to absolute word
addressing to be performed provided that the section is defined with the WORD
attribute or is in a Group with the WORD attribute.

Nintendo 64 Options, Listings and Errors Page 9-7

© SN Systems Ltd

PUSHO and POPO

Description The PUSHO directive saves the current state of all the assembler options; POPO
restores the options to their previous state. They are used to make a temporary
alteration to the state of one or more options.

Syntax PUSHO

POPO

See Also OPT

Examples pusho ;save options state
opt ws+, c+ ;change options state

SetAlts = height * time
SETALTS dh 256 * SetAlts

popo ;restore previous state

LIST and NOLIST

Description The NOLIST directive turns off listing generation; the LIST directive turns on the
listing.

Syntax NOLIST

LIST indicator

where indicator is a plus sign (+) or a minus sign (-).

Page 9-8 Options, Listings and Errors Nintendo 64

© SN Systems Ltd

Remarks
• If a list file is nominated, either by its inclusion on the Assembler command line,

or in the Assembler’s environment variable, a listing will be produced during the
first pass.

• The Assembler maintains a current listing status variable, which is originally set
to zero. List output is only generated when this variable is zero or positive. The
listing directives affect the listing variable as follows:

• NOLIST sets it to -1;
• LIST, with no parameter, zeroises it;
• LIST + adds 1;
• LIST - subtracts 1.

Examples Directive Status Listing produced?

nolist -1 no
list - -2 no
list 0 yes
list - -1 no
list - -2 no
list + -1 no
list + 0 yes

Note: The Assembler automatically suppresses production of listings during macro expansion
and/or for unassembled code because of a failed conditional.

These actions can be overridden by:

• including the / M option on the Assembler command line to list expanding
macros;

• including the / C option on the Assembler command line to list conditionally
ignored code - see Command Line Syntax, chapter 2.

Nintendo 64 Options, Listings and Errors Page 9-9

© SN Systems Ltd

INFORM and FAIL

Description The INFORM directive displays an error message contained in text which may
optionally contain parameters to be substituted by the contents of expressions after
evaluation. Further Assembler action is based upon the state of severity. The FAIL
directive is a pre-defined statement, included for compatibility with other Assemblers.
It generates an “Assembly Failed” message and halts assembly.

Syntax INFORM severity,text[,expressions]

FAIL

Remarks
• These directives allow the programmer to display an appropriate message if an

error condition is encountered which the Assembler does not recognise.

• Severity is in the range 0 to 3, with the following effects:

0 : the Assembler simply displays the text;
1 : the Assembler displays the text and issues a warning;
2 : the Assembler displays the text and raises an error;
3 : the Assembler displays the text, raises a fatal error and halts the assembly.

• Text may contain the parameters %d, %h and %s. They will be substituted by
the decimal, hex or string values of the following expressions.

Examples TableSize equ TableEnd-TableStart
MaxTable equ 512

if TableSize>MaxTable
inform 0,"Table starts at %h and&

is %h bytes long",&
TableStart,TableSize

inform 3,"Table Limit Violation"
endif

Page 9-10 Options, Listings and Errors Nintendo 64

© SN Systems Ltd

XDEF, XREF and PUBLIC

Description If several sub-programs are being linked, use XDEF, XREF and PUBLIC to refer to
symbols in a sub-program which are defined in another sub-program.

Syntax XDEF symbol[,symbol]
XREF symbol[,symbol]

PUBLIC on
PUBLIC off

Remarks
• In the sub-program where symbols are initially defined, the XDEF directive is

used to declare them as externals.

• In the sub-program which refers the symbols, the XREF directive is used to

indicate that the symbols are in another sub-program.

• The Assembler does not completely evaluate an expression containing an

XREFed symbol; however, resolution will be effected by the linker.

• The PUBLIC directive allows the programmer to declare a number of symbols as

externals. With a parameter of on, it tells the Assembler that all further symbols
should be automatically XDEFed, until a PUBLIC off is encountered.

Examples Sub-program A contains the following declarations :

xdef Scores,Scorers
...

The corresponding declarations in sub-program B are:

xdef PointsTable
xref Scores,Scorers
...

public on
Origin = MainChar
Force dh speed*origin
Rebound dh 45*angle

public off

Nintendo 64 Options, Listings and Errors Page 9-11

© SN Systems Ltd

GLOBAL

Description The GLOBAL directive allows a symbol to be defined which will be treated as either
an XDEF or an XREF. If a symbol is defined as GLOBAL and is later defined as a
label, it will be treated as an XDEF. If the symbol is never defined, it will be treated
as an XREF.

Syntax GLOBAL symbol[,symbol]

See Also XREF, XDEF, PUBLIC

Remarks This is useful in header files because it allows all separately assembled sub-programs
to share one header file, defining all global symbols. Any of these symbols later
defined in a sub-program will be XDEFed, the others will be treated as XREFs.

Nintendo 64 Windows 95 Debugger Page 10-1

© SN Systems Ltd

CHAPTER 10

Debugger for Windows 95

Introduction

The Debugger for Windows 95 takes advantage of the new range of 32-bit operating
systems available for PCs; it provides full source level as well as traditional symbolic
debugging and supports and enhances all the power of the DOS-based version plus
the advantages of a multi-tasking GUI environment.

It helps you to detect, diagnose and correct errors in your programs via the step and
trace facilities, with which you can examine local and global variables, registers and
memory.

Breakpoints can be set wherever you need them at C and Assembler level and if
required, these breaks can be made conditional on an expression. Additionally,
selected breakpoints can be disabled for particular runs.

The Debugger employs drop-down menus, tool buttons, keyboard shortcuts and pop-
up menus to help you debug quickly and intuitively.

Projects

The Debugger uses Projects to group together details of Files, Targets, Units, Views
and other settings and preferences. All this information is saved and made available
for your next debugging session.

Views

The Debugger offers the functionality of splitting the screen into a number of Panes,
each displaying discreet or linked information. This information is available within a
View, or document window (MDI Child). Each View can be split horizontally or
vertically into the number of Panes you require and each Pane can be set to show a
specific type of information.

You can have as many combinations of either tiled Panes or overlapping Views as
you choose.

Your choice of Views depends on the level at which you are debugging. For
example, it is appropriate to use a Register Pane for assembler debugging and a Local
Pane when debugging in C.

Page 10-2 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Individual Views can be saved on disk for subsequent use in other Projects.
However, when you close the Debugger and then re-start a session, your previous
screen set-up will initially be displayed automatically.

Colour Schemes

To aid identification, a separate colour scheme can be allocated to the Views used by
each Unit that you reference. Alternatively, the same colour can be allocated to all
Views.

Files

The Symbol Files you require are located and loaded by the Debugger and the
relevant CPE and Binary Files are downloaded to the Target. Where a multi-unit
system is in use you must also specify the Unit where Symbol and Binary Files are to
be loaded.

Dynamic Update

Changes in memory are highlighted on each display update, showing which areas of
memory are being altered as the Target is being run and you are stepping and tracing
your code.

The following topics are discussed in this chapter:

On-line Help

Installing the Debugger

Launching the Debugger

The File Server

Connecting the Target and Unit

Plug-In Components

Project Management

Debugger Productivity Features

Views

Panes

Debugging Options

Closing the Debugger

Nintendo 64 Windows 95 Debugger Page 10-3

© SN Systems Ltd

On-line Help Available For The Debugger

Help text describing the features covered in this chapter, can also be accessed on-line
via the Help menu on the main menu.

Selecting these options will result in the following:

• Contents will display the Contents page of the help system in the left-hand side of
the screen. Clicking any of the underlined topics will provide further information
about the relevant subject.

• Pane Types and the required Pane will directly access relevant text for the chosen
Pane.

• Installation will display installation procedures.

• About will provide the Version Number.

Within the on-line help system, clicking text with a dotted underline will display a
pop-up description but double-clicking text with a solid underline will display another
(linked) help page.

The buttons at the top of the help text window can be used to facilitate the following:

• Search and/or Find to locate a particular word or topic.

• Back to re-display the previous page.

• << and >> to display the previous and next page in the browse sequence, as
outlined in the Table Of Contents. (See below).

• Glossary to display an alphabetic listing of terms found in the help system. Click
on any topic to obtain a pop-up definition.

As well as accessing information via the Contents page, on-line help can also be
located via the Table Of Contents in the right-hand area of the screen. This
represents the subject areas of the help system as book icons. Double-click any icon
to display titles of the individual pages which compose each ‘book’. Double-click
any of these pages and the text will be displayed in the left-hand side of the screen.

Page 10-4 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Installing The Debugger

A Set-up program is used to install the Debugger; this is distributed via either of the
following methods:

• Full Release Files

• Maintenance Patch Files

Both methods are described in more detail below the Directory Structure.

Directory Structure

All the Files relating to the Windows software live in one directory tree. This tree
can reside anywhere but it is probably easier to locate it on the root of a local drive.

The default directory name is:

‘C:\PsyQ_Win\’

and it is recommended that you follow this convention. Set-up also installs several
Files in the Windows System directory and adds two keys to the Registry.

These keys are:

[HKEY_LOCAL_MACHINE\SOFTWARE\SN Systems] (hardware settings)
[HKEY_CURRENT_USER\Software\SN Systems] (configuration information)

Set-up also registers the File types .psy (Project), .pqx (plug-in) and .cpe and adds
some programs to the Start menu.

IMPORTANT: Do not install the program on a server and execute it across a
network. For un-installation advice, please contact SN Systems.

Nintendo 64 Windows 95 Debugger Page 10-5

© SN Systems Ltd

Obtaining Releases And Patches

Releases and patches are available directly from SN Systems’ BBS and ftp sites. In
order to access these sites you will need an account with the necessary permissions.

To apply for an account telephone SN Systems or contact them via
Support@snsys.com.

Note: Members of the Windows-Users mailing list will be notified of releases and
patches as they become available.

Determining The Latest Releases And Patches

This is achieved via any of the following methods:

• Contact John@snsys.com

• Look in one of the File sites for the latest Files and information

• See http://www.snsys.com

Mailing Lists

SN Systems maintain a number of mailing lists for different purposes. For further
information see http://www.snsys.com.

Addresses for SN Systems’ ftp, web and BBS sites

• ftp://bbs.snsys.com

• http://www.snsys.com

• BBS - +44 (0)117 9299 796 and +44 (0)117 9299 798

Page 10-6 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Beta Test Scheme

SN Systems maintain a separate scheme for beta testing new versions of the
Debugger.

The benefits of this are as follows:

• You will receive new versions of the Debugger before any other user

• You will have a prioritorised chance to supply feedback to the Debugger’s authors

If you are a member of this scheme, you don’t need to install release versions of the
Debugger.

For more information, contact John@snsys.com.

Nintendo 64 Windows 95 Debugger Page 10-7

© SN Systems Ltd

Installing A Full Release

A Full Release File contains an archive of several Files and a Set-up program that can
be used to install the Debugger automatically.

To install the release:

1. Obtain the latest full release from SN Systems.

2. Read Readme.txt which contains last-minute installation instructions.

3. If the release is on a floppy, launch Setup.exe straight-away. If however, the
release is in a zip File, you must unzip the File into a temporary directory and
then launch Setup from that temporary directory.

4. If this is the first full installation of the Debugger, confirm the displayed license
conditions.

5. Specify or confirm the directory in which you wish to install the Debugger.

6. The Files will be installed and the Registry will be updated.

7. Depending on the type of installation, specify the settings for the DEX Board or
SCSI Card. (See Configuring Your Dex Board/SCSI Card below).

8. Once the dialogue has been completed the installation is complete.

Note: This method can be used for the first installation of the Debugger and also for
subsequent upgrades if you do not wish to use Maintenance Patches. See
Upgrading Your System below.

Page 10-8 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Upgrading Your System

From time to time, SN Systems will provide updates to the Debugger that introduce
bug fixes and new features. For your convenience, updates are supplied as full
installations and as maintenance patches.

A Maintenance Patch contains only the difference between Files so it is much smaller.
This makes it quicker to download and apply. However, patches can only be applied
over certain previous versions.

To apply a Maintenance Patch:

1. Determine your current release by reading the About box for the Debugger.

2. Obtain the Maintenance Patch from SN Systems. Instructions will be provided so
you can determine which patch must be applied.

3. Apply the patch according to the instructions.

Nintendo 64 Windows 95 Debugger Page 10-9

© SN Systems Ltd

Configuring Your SCSI Card

If you are installing a Full Release for a SCSI Target, you must specify the settings
for the SCSI Card.

Enter appropriate values to the dialogue box displayed during the Set-up program.

 SCSI Card Settings Dialogue Box

1. Specify a Port Address and IRQ value by clicking on the down arrows and
selecting as appropriate.

2. Click .

The installation is now complete.

IMPORTANT: Port Address and IRQ values must be correct for the Debugger to
work. If they are incorrect or another device is configured to use
similar settings, the programs will not work.

Note: The IRQ value can be set to 0 to run without interrupts. This will help with
trouble shooting and will only impair the performance of the system if you
make a lot of use of file or message serving.

Page 10-10 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Testing The Installation

Once the Debugger has been installed, you should test the installation as follows:

1. Ensure that the Nintendo 64 is switched off and that the Target Adapter and
game cartridge are connected to it. The power should be on for the Adapter and
the bottom LED should be flashing slowly, indicating that the bios has not yet
been loaded..

2. Run the File Server by selecting the Debugger File Server from the Start menu.

3. This will attempt to connect to the Nintendo 64 console. If the connection is

successful the File Server will download the bios; the bottom LED will go out
and the following text will be output from the File Server:

 Psy-Q File and Message Server, Copyright 1996, 1997, SN Systems Ltd
 Version 2.0 (January 1997)
 Release 10, Patch Level 3

 Target Found: Bus ID = 0, SCSI ID = 0
 New Downloader - Reading profile information…
 Profile read for Nintendo 64 (no bios)
 OK
 Rebooting the Nintendo 64 (no bios)…
 Getting the target’s ID…
 ID is N64-NO-BIOS PLEASE LOAD
 bios1…
 sleep .5 sec…
 bios2…
 sleep .5 sec…
 New Downloader - Reading profile information…
 Profile read for Nintendo 64

 If this has occurred communication will have been established between the PC

and the Nintendo 64.

4. Now you are ready to download a test cartridge image into the cartridge RAM.

 Proceed as follows:

5. From the File Server select the Tools menu.

6. Select the Uploader option.

7. Click the Download radio button and change the Download Address to

0xB0000000 .

Nintendo 64 Windows 95 Debugger Page 10-11

© SN Systems Ltd

8. Click Browse and select the file test.bin from the psyq-win\examples\n64

directory.

9. Click OK.

 The downloaded image is now in the cartridge RAM.

10. Switch on the Nintendo 64. The system will boot the image and stop at a

breakpoint at the start of the program.

11. Run the Debugger from the Start menu.

12. You are now ready to begin debugging.

Page 10-12 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Documentation

If you experience problems during installation, the following documents provide
useful information:

• README.HTM

• README.RTF

• README.N64

Nintendo 64 Windows 95 Debugger Page 10-13

© SN Systems Ltd

Using The Check System Diagnostic Tool

The Check System Diagnostic Tool is a Plug-In which is used to check for faults in
the Debugger installation or hardware and if any are found and a compatible Email
program is in use, to automatically generate a report of them to SN Systems Support.

There are two ways to access the Diagnostic Tool:

1. Either, first select the Debugger group from the Program menu and then the
Check System for Errors option.

Alternatively, select System Diagnostic Tool from the main Tools menu.

Page 10-14 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Via the displayed Diagnostic Tool Dialog you can check the following areas:

Plug-Ins - That the required Plug-Ins are installed and that files are
actually present for registered Plug-Ins.

Windows System - That the required DLLs are present and are the correct
size and version.

Registry - That the registry settings are correct.
Target Connection - That the Target is communicating with the PC.
System Files - That a list of the installed Psy-Win files has been printed.

The results of any previous diagnostic checks will be shown for each group.

2. By default, the diagnostic process will include all the above groups. To exclude a
particular check or checks from the run, de-select Include in Diagnostic Check
for each relevant group.

3. Click the button.

 If any errors are detected you will be prompted to mail SN Systems support.

4. Provided that you have a MAPI compatible Email program and it is currently

running, click and your email window will appear. Each attached
file to be sent to SN Systems support contains error information for one of the
checks.

Note: Click the required button on the Diagnostic Tool Dialog to
examine these details yourself.

6. Enter a description of the error(s) and send the mail as normal.

7. Click the appropriate button to repeat any particular check.

8. If no errors are detected but you still suspect problems, click the

 button to re-run the diagnostic checks and manually
access the email program. Send a message as required.

Nintendo 64 Windows 95 Debugger Page 10-15

© SN Systems Ltd

Launching The Debugger

There are several ways of launching the Debugger under Windows 95.

A simple way is as follows:

1. Select the Start menu from Windows 95.

2. Choose the Programs option from the list displayed.

3. Select the Psy-Q folder from the list of programs.

4. Select Debugger from the folder.

You can also launch the Debugger from the desktop or folders or through Explorer
in Windows 95.

When you close the Debugger, it will remember the current working directory and
restore this when it is re-opened.

The Debugger will also remember the current state of the flashing caret when itis
loaded. If you turn the flashing off, it will remain off until you close the Debugger,
when it will be restored. If you then re-open the Debugger, the caret flashing will be
stopped again.

Note: Switching away from the Debugger will not re-start the caret flashing.

With the drag and drop facility you can drop a Debugger Project File (extension
.PSY) onto the icon of the Debugger and the selected Project is launched.

Alternatively, as file type .PSY has been registered with the Windows 95 shell, you
can right-click on a Project File, select Debug from the menu and the Debugger will
be launched with the selected Project.

Note: While the Debugger is still running, you can open a new Project by following
the procedure described in the previous paragraph.

When you launch the Debugger it scans for recognised Units and if none are found a
dialogue box prompts you to either Repoll or Quit. If Repoll does not work you are
advised to start troubleshooting.

Page 10-16 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

The File Server

The primary function of the File Server is to provide the PC Open and PC Read
functions for your program.

When the File Server is running, the icon and name of the application appear on the
Task bar of Windows 95.

You can view the messages appended into the message window of the File Server
during debugging by clicking on this icon.

File Server Message Window

If you wish the message window to be permanently displayed on top of other
windows, select Always on Top from the View menu.

When the Debugger or File server experiences a communication error, the screens
will go blank. Press Ctrl + U to re-attempt the connection.

Nintendo 64 Windows 95 Debugger Page 10-17

© SN Systems Ltd

File Server Menu Commands

In addition, the following options are available from the File Server Command menu:

• Run Project - Not currently in use.

• Debug Project - Not currently in use..

• Download CPE File to the Target.

• Run CPE runs the Target after the CPE File has been downloaded.

• Ping determines the current status of the Target

• Halt provides the option to stop the Target if it is running.

• Start causes the Target to start running.

• Clear Window removes any File Server messages.

• Reboot Target reboots the Target.

• Reset Target will attempt a hardware reset if supported by the Target.

• File Serving determines whether file and message serving are available.

• Telnet Server determines whether the Telnet Server is accessible.

Note: Resetting the Target while the Debugger is running may cause unpredictable
results.

Note: The Reset option is also available from the System menu of the File server.

Note: When you close the File Server, it will remember the current working
directory and restore this when it is re-opened.

Page 10-18 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Connecting The Target and Unit

The Debugger automatically checks your system when you launch it, identifies any
Targets that are connected and according to whether you are running a single or
multi-Unit system, automatically connects to the relevant Unit(s).

The Unit toolbar appears at the far right of the Main Menu bar. The last icon in the
toolbar has a pictogram of the Target known as the Unit button.

There will be a Unit toolbar and unique button for each Unit identified. Click on the
button to display the Unit menu. This menu allows you to download and load (as
relevant) foreign CPE and foreign Symbol Files and download non-foreign CPE and
Binary Files.

The Unit button menu options are:

• Download CPE

• Download Binary

• Load Symbols

Each toolbar contains a set of debugging icons which represent:

• Starting programs

• Stopping a program running

• Stepping into a subroutine

• Stepping over a subroutine

• Stepping out of a subroutine

Note: Note that these actions operate only in respect of the relevant Unit; therefore,
where a multi-Unit system is in use they will not necessarily operate in respect
of the Active View.

Note: The File Server window displays any output from the Target while it is
running.

Nintendo 64 Windows 95 Debugger Page 10-19

© SN Systems Ltd

Plug-In Components

The Debugger provides two types of Plug-In components; these provide additional
functionality or extend the Debugger in some way and are installed separately. They
are categorised as follows:

• Tool Based Plug-Ins
• Pane Based Plug-Ins

To install or remove a Plug-In component:

1. Select the Plug-In Manager from the Tools menu.

Plug-In Manager Installation/Removal Mode

2. This dialog allows you to install or remove all the Plug-Ins currently available on
your machine. If you wish to restrict the display to Tool-based or Pane-based
versions only, select the relevant group from the Plug-In Category pull-down
menu.

3. Select as required and click or as necessary.

You will now be able to access the installed Plug-Ins.

Page 10-20 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Tool Based Plug-Ins

The following facilities are available:

• Plug-In Manager
• Check System Diagnostics
• Upload/Download Memory
• Disassemble Memory
• View and edit Breakpoints

To access a Tools-based Plug-In component:

From the main Tools menu, select the required option.

A relevant dialog box will be provided for the entry and inspection of information.

Pane Based Plug-Ins

The following facilities are available:

• Plug-In Manager
• Breakpoint Manager
• Call-Stack Display

To access a Pane based Plug-In:

1. Right-click in a relevant Pane.

2. Select Change Pane.

3. Select Other or Ctrl + Shift + O.

4. The Plug-In Manager will display the currently available Pane Plug-Ins.

Nintendo 64 Windows 95 Debugger Page 10-21

© SN Systems Ltd

Plug-In Manager When Switching Between Panes

5. Select as required and click .

Information from the selected option will be displayed in the Pane.

Note: The functionality of the Breakpoint Manager Pane is the same as for the
Tool based Breakpoint Dialog.

6. To switch to another Pane based Plug-In, repeat steps 1 to 5.

Page 10-22 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Using The Disassemble Memory Dialog

The Disassemble Memory Dialog is a Tools based Plug-In which is used to produce
a machine code disassembly of a specified area of memory, similar to that which
appears in the Disassembly Pane.

The area to be disassembled can be specified as an address range, as a number of
bytes or as a number of instructions. The output can be copied to a file on your PC
or it can be sent to the Windows clipboard to be pasted directly into another
Windows program.

To access the Disassemble Memory Dialog:

1. From the main Tools menu select the Disassemble Memory option.

2. Specify where the disassembled memory is to be output.

Where it is to be output to a file the name and path can be explicitly entered or

click and select as required.

Alternatively, to save to the Windows clipboard check the Save to Clipboard
box.

3. Specify the Start Address, i.e. the address on the Target’s memory from where to
start the disassembly. This value is always in hexadecimal. Click on the adjacent

 button to call up the Expression Manager; from here you can specify an
expression to be used as the start address.

Nintendo 64 Windows 95 Debugger Page 10-23

© SN Systems Ltd

4. Specify a Stop Value. If the Stop With entry is an address, the Stop Value must
be in hexadecimal. If the entry to Stop With is a number of bytes or instructions
however, the Stop Value must be in decimal.

When the Stop Value is specified as an address, the Expression Manager is
available via the button.

5. Click when the values have been specified.

Page 10-24 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Using The Upload/Download Memory Tool

The Upload/Download Memory Dialog is a Tools based Plug-In which allows you
to:

• Upload a portion of memory from the target machine to a file on the host
machine

or

• • Download a portion of memory from the host machine to the target machine

It is then possible to save and restore the state that a machine’s memory was in prior
to an exception occurring.

To access the Uploader/Download Memory Dialog:

1. From the main Tools menu, select the Upload/Download Memory option.

2. Select the required mode from the relevant Upload/Download Memory radio
buttons.

Upload/Download Dialog With Upload Image Selected.

Only one option can be selected at a time and the default mode is Upload.

When Upload Image is selected you must specify the From and To positions of
the required image or check the Length box and only specify a From position if
you wish this to represent the length of a block of memory.

Nintendo 64 Windows 95 Debugger Page 10-25

© SN Systems Ltd

When Download Image is selected you only need to specify the To address as
the memory to be downloaded is calculated from the size of the file from which
memory is being downloaded.

Note: Clicking the button will invoke the Expression Manager via which
you can search for and specify particular addresses.

3. Enter a name to the Binary File box; this can be the complete name and path or

click and select as appropriate.

4. If you are uploading memory you will be asked to supply a filename to which the

portion of memory should be saved. If you are downloading memory, you must
specify the name of the file from which the memory will be taken.

Note: If you click on the downward arrow adjacent to each edit box, a list of
previously used addresses or files (as relevant) will be displayed. The most
recently used items will appear at the top of the list.

5. Click and an attempt is made to upload or download the memory.
Errors resulting from this action will be displayed in the File Server window.

Click to exit the dialog without uploading or downloading memory.

Page 10-26 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Projects

A Project is a combination of the elements and settings associated with a specific
development project.

It consists of any or all of the following:

• Units to be debugged

• Screen layout

• CPE Files

• Symbol Files

• Binary Files

• Breakpoints

• Other settings and preferences.

This set of information is used by the Debugger to track the debugging process.
When you save a Project this includes all the Views, colour schemes and breakpoints
already specified for it. These settings are reinstated when the Project is next
opened.

Setting Up And Managing Projects

 To create a new Project you can either:

1. Open the default Project by selecting New from the Project menu.
2. Save and name the Project.

or

1. As 1) above.

2. Select files for the Project and add them to the file list.

3. Set file properties for executable files.

4. Save and name the Project

5. Re-open the Project with the files in the file list.

Nintendo 64 Windows 95 Debugger Page 10-27

© SN Systems Ltd

Selecting Files For Your Project

The Debugger uses files that are output from the build process. Three types of file
may be included in the Project; these are:

• CPE Executable Files

• Symbol Files

• Binary Files

Adding Files To The List Of Project Files

This is achieved as follows:

1. Select the Project menu from the Menu bar.

2. Choose Files from the menu; the Files dialog appears.

3. Click to insert them into your file list.

4. Select CPE, Binary or Symbol Files from the ‘Files of Type’ drop-down list.

5. Locate the file and click .

6. When you add a file to the file list a relevant dialog box requests you to set the
file properties. For CPE and Binary Files these will determine the downloading
of files to the Target. Additionally, for Binary and Symbol Files, they determine
the Unit to which they will be loaded. See the ‘Understanding File Properties’
sections below.

Note: It is not necessary to specify the Unit to which a CPE File should be loaded
as this information is held within the file itself.

7. Repeat the operation until all the files you require appear in the list. To remove a
file from the list, highlight it and click .

8. Click when you have added all the files you require.

The CPE and Binary Files will be downloaded in the order shown in the file list.

Page 10-28 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Note: As file type .CPE has been registered with the Windows 95 shell, you can
run a program directly from the shell by double-clicking on the relevant
CPE File. Alternatively, if you wish to download the file to the Target
without running it, right-click the relevant file and select Download from
the menu.

Note: When you add Binary and Symbol Files to a Project they are not loaded
until the Project is saved and re-opened.

Changing The Order Of Files In The File List

If you have multiple CPE and Binary Files within your Project, the order in which
they are loaded during debugging is determined by the position you placed them in
the File list.

To change the file sequence:

1. Select the Project menu from the Menu bar.

2. Choose Files from the menu.

3. Highlight a file.

4. Use or to alter the position of the file in the list.

Repeat the process until the files are in the required order.

Note: This option is only useful if you have multiple CPE and Binary Files in your
Project and the load order is important.

Nintendo 64 Windows 95 Debugger Page 10-29

© SN Systems Ltd

Specifying CPE File Properties

When you select a CPE File to include in your Project, a dialogue box requests that
you set the properties for this file.

These properties allow you to control the downloading of files to the Target. The
options are:

• Download when Project starts - This causes the CPE File to be downloaded
when the Project is opened or reopened.

• Run after CPE has been downloaded - This causes the Unit to start running the
code after downloading the file.

You may select either or both of these properties for any CPE File in the Project.

If you do not set the properties of at least one CPE File, the Debugger will not
download any files to the Target when the Project is opened.

To change CPE File properties:

1. Select the Project menu from the Menu bar.

2. Choose Files from the menu.

3. Select the CPE File to change.

4. Click .

5. Use the check boxes to apply the properties.

6. Click .

Page 10-30 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Specifying Symbol File Properties

When you select a Symbol File to include in your Project, a dialogue box requests
that you confirm or specify the Unit to which the file should be loaded.

To change Symbol File properties:

1. If the required Unit is not already displayed, click the down arrow until it
appears.

2. Highlight the required Unit.

3. Click .

4. Click .

Nintendo 64 Windows 95 Debugger Page 10-31

© SN Systems Ltd

Specifying Binary File Properties

When you select a Binary File to include in your Project, you must complete the
following dialogue box:

Binary File Properties Dialogue Box

These properties allow you to control the downloading of files to the Target:

• Download when Project starts - If this is selected the Binary File will be
downloaded when the Project is opened or reopened.

• Downloaded to a specified address - The files will be downloaded to the address
specified. This should be in OX notation for hexadecimal numbers. The default
address will be zero.

• Specify the Unit where the File is to be loaded - Click on the down arrow to
display further Units.

If you do not set the first option for at least one Binary File, the File Server will not
download any Binary Files to the Target when the Project is opened. However, all
Binary Files in the Project will be available on the relevant Unit menu.

To change Binary File properties:

1. Select the Project menu from the Menu bar.

2. Choose Files from the menu.

3. Select the Binary File to change and click .

4. Select the Download when Project starts option if required and/or enter a
relevant address.

5. Confirm or specify the Unit where the File is to be loaded.

6. Click .

Page 10-32 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Saving Your Project

Once the files have been selected, the new Project must be saved and re-loaded
before debugging can begin.

This is achieved as follows:

1. Select the Project menu from the Menu bar.

2. Choose the Save option from the menu.

3. Give a name and path to your Project.

4. File names in Windows 95 are up to 250 characters long and can contain spaces.

 Debugger Project Files must be saved with the default File extension of .PSY.

5. Click .

Note: For a new Project you can choose the Restore rather than the Save option.
Restore prompts you to save the Project before reloading it.

Note: The Save or Save As options can be used to save an existing Project.

Re-opening A Project

After saving a new Project you must re-open it before working with the files which
have been added to the file list.

This is achieved as follows:

1. Select the Project menu from the Menu bar.

2. Choose the Re-open option from the menu.

Note: Ctrl + R or the Re-open icon on the toolbar can also be used to re-open
a Project.

Note: When you close the Debugger it will remember the current working directory
and restore this when it is opened.

Nintendo 64 Windows 95 Debugger Page 10-33

© SN Systems Ltd

Saving A Project Under A New Name

The Save As option on the Project menu is used to save changes made to an existing
Project, under a new name.

The default File extension for a Debugger Project is .PSY. When you save Project
Files you must use this extension.

To save a Project under a new name:

1. Select the Project menu from the Menu bar.

2. Choose the Save As option from the menu.

3. Give a name and path to the renamed Project.

4. Click .

Restoring A Project

The Restore option on the Project menu is used to re-load a Project in the state in
which it was last saved, abandoning any changes made since the last save.

To restore a Project:

1. Select the Project menu from the Menu bar.

2. Choose the Restore option from the menu.

Page 10-34 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Opening An Existing Project

When you launch the Debugger, the last Project you worked on will be loaded
automatically.

To open a different Project:

1. Select the Project menu from the Menu bar.

2. Choose the Open option from the menu.

3. Select the Project (.PSY) you require.

4. Click .

Or

From the Project menu select the required Project from the Project File history
listing..

Note: An existing Project can also be opened via the Open Project icon found
on the toolbar.

Note: As File type .PSY has been registered with the Windows 95 shell, you can run
a Project by double-clicking on the relevant .PSY File within the shell.
Alternatively, if you only wish to load the Project into the Debugger, right-
click the relevant file and select Debug from the menu.

Nintendo 64 Windows 95 Debugger Page 10-35

© SN Systems Ltd

Manually Loading Files Into A Project

External Files can be downloaded at any time; they are not saved with the Project.

External CPE Files are downloaded to the Target as follows:

1. Click on the Unit menu at the base of the Debugger screen.

2. Choose the Download CPE option from the menu.

3. Choose the External File option.

4. Browse and select the required CPE File.

5. Click .

Note: You can also download a CPE File by double/clicking it within the shell.

Symbol Files can be loaded into the Debugger as follows:

1. Click on the relevant Unit menu at the base of the Debugger window.

2. Choose the Load Symbols option from the menu.

3. Browse and select the required Symbol File.

4. Click .

Note: An error message will be displayed if you attempt to load Symbol Files with
overlays. This facility will be supported in a later version of the software.

Page 10-36 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

The Debugger Productivity Features

To enable you to work faster and more efficiently when using the Debugger, the
following two features speed up your control of the debugging runs.

• Toolbar Icons

• Hot Keys

Toolbar Icons

The toolbar contains the group of icons shown above. Icons provide a quicker means
of activating commands and setting properties.

From left to right they represent the following actions:

Open a Project File
Save and then reopen the current Project
Open a new View
Switch to the next View
Split the Active Pane horizontally
Split the Active Pane vertically
Delete the Active Pane
Set the default colour scheme

The Show Toolbar option on the Project menu is used to toggle the menu bar on and
off. When the option is ticked the toolbar is displayed.

To toggle the toolbar:

1. Select the Project menu from the Menu bar.

2. Choose the Show Toolbar / Hide Toolbar option from the menu.

Note: Every Pane type has its own, additional toolbar which is appended to the
main toolbar when that Pane is made Active.

Note: Double-click to customise a toolbar or use Alt+Drag to move buttons around
the toolbar or delete them.

Nintendo 64 Windows 95 Debugger Page 10-37

© SN Systems Ltd

Hot Keys

The following Hot Keys can be used instead of the Debugger menu options:

F2 Split Horizontal.
F3 Split Vertical.
F4 Delete current Pane.
F5 Toggle breakpoint on and off.
F6 Run to cursor.
F7 Step into a subroutine.
F8 Step over a subroutine.
F9 Run a program.
F12 Step out of a subroutine.
Esc Stop a program running.
Ctrl + A Add a watch to a Watch Pane.
Ctrl + B Add horizontal scroll bars to Expression, Disassembly

and Source Panes.
Ctrl + L Add locals to a Watch Pane. This command adds all

locals to the watch but when the watch goes out of
scope it will not delete them as in a Local Pane.

Ctrl + M Toggle the stepping mode between Source and
Disassembly

Ctrl + R To Re-open.
Ctrl + Shift + D Change Pane to Disassembly Pane.
Ctrl + Shift + L Change Pane to Local Pane.
Ctrl + Shift + M Change Pane to Memory Pane.
Ctrl + Shift + R Change Pane to Register Pane.
Ctrl + Shift + S Change Pane to Source Pane.
Ctrl + Shift + T Toggle between hexadecimal and decimal globally.
Ctrl + T Change the mode of a single expression from hex to

decimal or vice versa.
Ctrl + Shift + W Change Pane to Watch Pane.
Ctrl + Shift + number Assign an identifying number to each View.
Ctrl + number Switch between Views.
Shift + Arrow Keys Activate adjacent Pane in the specified direction.

Where more than one, the current caret position
determines the Pane to be made Active.

Shift + Ctrl + F10 Set the width to match the size of the window in the
Memory Pane.

Ins New View or add a watch in a Watch Pane or add a
breakpoint in the Breakpoint Manager.

Alt + Shift + number Assign an identifying number to each Plug-In Pane.
Alt + number Switch between Plug-In Panes.

Note: These keys will all operate in respect of the Active Pane.

Page 10-38 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Views

A View appears in the main window of the Debugger; it is used to display debugging
information according to your requirements and to control step and trace actions
during debugging.

When a Project is first created it has a default Pane layout.

Views can be split into as many Panes as you wish. These can be of the same or
different types.

Only one is Active at any time; it will be displayed in a different colour scheme to the
others.

Notes: Having created a View of different Panes you can save this as a View File
either in, or independent of, the Project. Further information about Panes
can be found in Working With Panes and Selecting A Pane Type.

Nintendo 64 Windows 95 Debugger Page 10-39

© SN Systems Ltd

Creating A View

Within a Project you can create as many Views as required; in turn, each View can
be split into as many Panes as you need.

When you open a new Project, one View is displayed for each Unit connected.

Default View

To create a new View:

1. Select the View menu from the Menu bar.

2. Choose the New option from the menu.

3. From the Choose Unit box specify the Unit for which you wish to create a new
View.

Note: The Choose Unit box will not appear when you are connected to a single
Unit.

Page 10-40 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

You can also use the New View icon on the toolbar to create a new View or
use the Hot Key Insert.

Alternatively, you can open a new View from the relevant Unit button, in which case
you won’t be prompted for the required Unit.

Note: A new View is supplied with the title ‘Default View’. The View Name option
in the View menu should be used to give it a title.

Note: Views can be saved either inside or outside of Projects.

Cycling between Views

If you have more than one View open within a Project you can cycle between them
as follows:

1. Select the View menu from the Menu bar.

2. Choose the Next View option.

The Views are cycled around until you see the one you require. All Views appear on
the View list regardless of the Unit for which they have been specified.

Alternatively, the Next View icon on the toolbar , the Hot Keys Ctrl + F6 or
Ctrl + TAB can be used to cycle between Views.

Up to ten Views can each be assigned an identifying number from 0 to 9; the number
of the assignment will appear in the title bar of the View. You can then use the
number to quickly switch between Views. Select Ctrl + Shift + number to assign
the number and Ctrl + number to access the View. If the destination View is
minimised, it will be restored or maximised according to the state of the current
View.

Note: These assignments are preserved in Projects and in saved Views.

Nintendo 64 Windows 95 Debugger Page 10-41

© SN Systems Ltd

Saving Your Views

Any number of Views can be saved within a Project.

All open Views will automatically be saved when you save the Project and will be
opened when the Project is re-opened.

View Files can also be saved independently of Projects using the Save As command
on the View menu.

This is achieved as follows:

1. Arrange the Panes as you require.

2. Select the View menu from the Menu bar.

3. Choose the Save As option from the menu.

4. Give the View a name and path.

5. Click .

Note: The name you give the View File is not displayed on the View. To give a
View a title use the View Name option on the View menu.

Naming A View

Because you can use many Views within a Project, it is helpful to give each View an
individual title.

1. Select the View menu from the Menu bar.

2. Choose the View Name option from the menu.

3. Enter the View name in the edit box.

4. Click . The name appears at the top of the View.

Note: This is not the name of the File. See the note in Saving Your Views above
for further details.

Page 10-42 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Changing Colour Schemes In Views

To change the colours for a particular Unit:

1. Activate a View/Pane on the Unit that you wish to set colours for.

2. Select the View menu from the Menu bar.

3. Choose Set Default Colours... from the menu.

The following areas may be changed for the Active Unit:

Inactive Pane background colour

Inactive Pane text colour

Active Pane background colour

Active Pane text colour

PC text colour

Changed information colour

Breakpoint background colour

Breakpoint text colour

4. Click on the box representing the area you wish to amend.

A standard Windows dialogue box allows you to choose from a range of standard
or customised colours.

Set Default Colours Dialogue Box

Nintendo 64 Windows 95 Debugger Page 10-43

© SN Systems Ltd

5. Select the required colour(s).

 The selected colour scheme will be displayed for all visible Views.

6. Select to retain the revised colours or to
revert to the original scheme.

Unit colours can also be amended by clicking on the Set Colour icon on the
toolbar.

Page 10-44 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Working With Panes

When a Project is first set up, the default View contains a default Pane layout for
each Unit connected. However, this View can be split into as many Panes as you
wish. These can be of the same or different types. Only one of the Panes is Active;
it will be displayed in a different colour scheme to the others.

A Pane can be made Active via any of the following methods:

• Clicking on it

• Changing the Active View and the first Pane created for that View will become
Active

• Using Shift and the appropriate arrow key to Activate the Pane in the specified
direction

• Clicking the right mouse button on the required Pane and selecting from the
displayed menu

Splitting Panes

A View can be divided into as many Panes as you wish. Click on the one you wish to
split to make it Active, then:

1. Select the View menu from the Menu bar.

2. Choose either Split Vertical or Split Horizontal from the menu.

The Active Pane is split in half, either vertically or horizontally, depending on your
choice.

You can also split a Pane horizontally or vertically via the icons on the toolbar

 or by using the hot keys F2 to split horizontally or F3 to split vertically.

Note: When you split a Pane the two halves will both be of the same type as the
original. The font for the new Pane will also match that of the original.

Nintendo 64 Windows 95 Debugger Page 10-45

© SN Systems Ltd

Changing Pane Sizes

To change the size of Panes:

Drag the splitter bar between the Panes with the mouse.

The size and position of the Panes is saved when you save the View or the Project.

Note: Splitter bars only control the areas between the Panes. If you wish to change
the size of the Debugger window you have to use the borders of the window
itself.

Deleting A Pane

The Delete Pane option on the View menu is used to delete a Pane within a View, as
follows:

1. Click on the required Pane to make it Active.

2. Select the View menu from the Menu bar.

3. Choose Delete Pane from the menu.

Alternatively, the Delete Pane icon on the toolbar or the hot key F4 can be used
to delete the Active Pane.

Page 10-46 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Changing Fonts In Panes

If required, the Set Font command can be used to change the display of text within a
Pane, as follows:

1. Make the required Pane Active.

2. Select the View menu from the menu bar.

3. Choose Set Font from the menu.

A standard Windows dialogue box allows you to select from the available fonts.

Note: When you split a Pane, the new Pane will be displayed in the same font as the
original one.

IMPORTANT: You will only be able to use non proportional fonts, e.g. Courier,
New Courier, Fixed Sys, Terminal..

See Also:

Changing Colour Schemes In Views

Nintendo 64 Windows 95 Debugger Page 10-47

© SN Systems Ltd

Scrolling Within A Pane

Many Panes are unable to display the full set of information that is available to the
Debugger in the small screen area shown. Therefore, the Debugger puts scroll bars
onto Panes where there is more information than can be displayed on that part of the
screen.

To see this additional information drag the thumb within the scroll bar or click on the
arrows at either end of the scroll bar.

Note: Horizontal scroll bars are not automatically included in Expression,
Disassembly or Source Panes but they can be added via Ctrl + B.

You can also scroll to the region you want by clicking on the required Pane to make
it Active and then clicking and holding the left mouse button before dragging it to the
top or bottom of the Pane.

See Also:

Changing Pane Sizes

Page 10-48 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Selecting A Pane Type

There are six types of Pane and you may display any number and combination.

A menu that allows you to change Pane properties is accessed via the Pane menu on
the Menu bar or by right clicking the mouse on a relevant Pane. These menus are
unique to the type of Pane that is Active but all the menus have the option Change
Pane that allows you to switch between the different types.

Additionally, icons representing each type of Pane appear adjacent to the main
toolbar.

Registers Pane - Displays the registers of the relevant CPU

Memory Pane - Displays areas of memory within the Target

Source Pane - Displays Source Files associated with program that CPU is running

Disassembly Pane - Displays the code that the CPU is running

Watch Pane - Displays ‘watches’ or expressions

Local Pane - Displays local variables

Click on the relevant icon to change the Active Pane.

Note: You can also use the Hot Keys to switch between Pane types.

Nintendo 64 Windows 95 Debugger Page 10-49

© SN Systems Ltd

Icons representing menu options for the selected Pane are dynamically appended to
the far right of the main tool bar. For example, if a Disassembly Pane is Active,
Disassembly Pane options will be displayed.

Further details about the options for each type of Pane can be found below.

Memory Pane

There are three areas displayed on the Memory Pane: to the left is the memory
address; in the middle is the value at the displayed memory address; and to the right is
an optional ASCII display of the values which can be toggled on or off.

Memory Pane Display

You can goto an area of memory by typing the required address over the memory
address or by selecting Goto from the Pane menu and entering a known address or
label name to the dialogue box displayed.

See Also:

Moving To A Known Address Or Label

Use the scroll bars or the goto functions described above to move around the display.

The default setting for the Pane is in bytes with the ASCII display set.

Page 10-50 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Change this default by selecting the Pane menu and choosing from the options:

• Bytes

• Words (bytes x 2)

• Double words (bytes x 4)

• ASCII (Toggle ASCII display on and off)

• Set Width (Changes the number of bytes displayed on a line)

 Alternatively, clicking on these icons will activate the
options listed above.

You can overtype the hexadecimal or ASCII displays to alter the content of the
memory. A change to the hexadecimal display will be reflected in the ASCII display
and visa versa.

When you move the mouse pointer over the values, the Status line displays the
Memory Address and one of the following Memory Types:

• RAM

• ROM

• Invalid.

 Invalid memory is displayed as question marks instead of hexadecimal values and full
stops instead of ASCII.

The Set Width icon can be used to change the width of the display; click on the icon
and type in the number of bytes to be shown on each line.

Shift + Ctrl + F10 can be used to set the width of the Pane to match the
size of the window.

The Active Pane can be made a Memory Pane via any one of the following
methods:

Clicking on the Memory Pane icon on the toolbar

Using the Pane Type option from the Pane Menu

Using the Hot Key Ctrl+Shift+M.

Nintendo 64 Windows 95 Debugger Page 10-51

© SN Systems Ltd

Registers Pane

The Registers Pane shows the registers of the central processing Unit. These can be
overtyped if required.

If the CPU has a Status Register, you can overwrite the individual bits by typing 0 or
‘R’ to reset the bit or 1 or ‘S’ to set it.

The display also shows the disassembled instruction at the Program Counter (PC)
and the address of the instruction which will be executed next.

It also shows the current status and (if relevant) exception of the CPU on the bottom
line of the Pane.

Registers Pane Display

When you click the right hand mouse button over a Registers Pane or select the Pane
menu on the menu bar, you will see the Change Pane Type or Pane Operations
options. Note that these are the only menu options for this type of Pane.

Note: If the current context stack level is not 0, the stack level (number) will appear
in the Registers Pane as a visual warning.

See Also:

Using The Call Stack Display

The Active Pane can be made a Registers Pane via any of the following methods:

Clicking on the Registers Pane icon on the toolbar

Using the Pane Type option from the Pane menu

Using the Hot Key Ctrl+Shift+R

Page 10-52 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Disassembly Pane

The Disassembly Pane shows the disassembled code from an area of memory.

Four columns are displayed; the first shows the address or label; the second displays
the values at that location in hexadecimal; the disassembled op code is shown in the
third column and the fourth contains the op code parameters.

Disassembly Pane Display

When the cursor is positioned on a particular label on the Disassembly Pane, the
relevant label name and value will be displayed on the Status line.

The Program Counter (PC) is shown on the screen preceded by the marker ‘>‘.

When you click the right hand mouse button over a Disassembly Pane or select from
the Pane menu on the menu bar you see the following options:

• Copy to copy the address that the specified line represents, into the clipboard

• Paste to paste the specified address

• Properties - Follow PC to anchor the Pane to the Program Counter

• Properties - Respond to Goto Breakpoint to display breakpoints in all relevant
Panes when you double-click a breakpoint

• Properties - Centre on PC to make the Registry global setting an individual
property of the Disassembly Pane

• Goto to put the cursor at a known address or label name

• Set PC to set the PC to where the cursor is

• Toggle breakpoint to set and remove breakpoints

• Edit breakpoint to disable a breakpoint or make it conditional

• Run to cursor to run the Unit to the cursor position.

Nintendo 64 Windows 95 Debugger Page 10-53

© SN Systems Ltd

These options can also be activated by:

• Using the appropriate Hot Keys

• Clicking on these icons

Note: Ctrl + B can be used to add horizontal scroll bars to the Disassembly Pane.

The Active Pane can become a Disassembly Pane via any one of the following
methods:

Clicking on the Disassembly Pane icon on the toolbar

Using the Pane Type option from the Pane menu

Using the Hot Key Ctrl+Shift+D

See Also:

Anchoring Panes To The PC

Moving To A Known Address Or Label

Setting Breakpoints

Editing Breakpoints

Page 10-54 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Source Pane

A Source Pane displays one of the Source Files included in your Project.

Source Pane Display

When you click the right hand mouse button over a Source Pane or select from the
Pane menu on the Menu bar you see the following options:

• Copy to copy the address that the specified line represents, into the clipboard

• Paste to paste the specified address

• Properties - Follow PC to anchor the Pane to the Program Counter

• Properties - Respond to Goto Breakpoint to display breakpoints in all relevant
Panes when you double-click a breakpoint

• Properties - Centre on PC to make the Registry global setting an individual
property of the Disassembly Pane

• Goto PC (space)

• Goto to put the cursor at a known address or label name

• Source Files to swap between the Source Files in the Project

• Toggle breakpoint to set and remove breakpoints

• Edit breakpoint to disable a breakpoint or make it conditional

• Run to cursor to run the Unit to the cursor position.

Note: If the Program Counter (PC) is at a line displayed on the Pane it will be
preceded by the PC point line marker ‘>‘ and the line will be displayed in a
different colour.

Note: If a breakpoint exists within the Pane it will display in a contrasting colour.

Nintendo 64 Windows 95 Debugger Page 10-55

© SN Systems Ltd

The options listed above can also be accessed:

• By using the appropriate Hot Keys

• By clicking on these icons

Note: If the display is not set to follow the Program Counter (PC), the file displayed
may not be the one executing at the PC.

Note: Ctrl + B can be used to add horizontal scroll bars to the Source Pane.

The Active Pane can be made a Source Pane via any one of the following methods:

Clicking on the Source Pane icon on the toolbar

Using the Pane Type option from the Pane menu

Using the Hot Key Ctrl+Shift+S

See Also:

Anchoring Panes To The PC

Moving To A Known Address Or Label

Setting Breakpoints

Editing Breakpoints

Changing Source Files In The Source Pane

By default, the Source Pane displays the Source File which contains the PC or is
blank if the PC is out of range of your source.

Any of the Project Source Files can be examined in this Pane by using the Source
Files option from the Source Pane menu, as follows:

1. Select the Source Pane menu from the Menu bar.

2. Choose the Source Files option from the menu.

3. Select a Source File from the list displayed.

4. Click .

Page 10-56 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Navigating Source Files In The Source Pane

Each Source Pane stores a history list of the Source Files which have been viewed in
the Pane. The following keys are used to navigate this list:

Ctrl + J To go backwards.
Ctrl + K To go forwards.
Ctrl + Shift + J Shows the previous Source File in the list but deletes the

current Source File from the forward list.

The history list is stored with the Pane in the View or Project. If you insert a new
module into your Project (as opposed to adding one at the end), the history list may
be transposed when you next load the Source Pane.

Nintendo 64 Windows 95 Debugger Page 10-57

© SN Systems Ltd

Local Pane

The Local Pane is used to display all variables in the current local scope when you
are debugging in C.

As you step and trace, the contents of this Pane will change to display the variables in
the new scope.

You can expand or collapse variables and traverse array indices.

Local Pane Display

Variables can be viewed in hexadecimal or decimal modes by right-clicking within the
Pane and ‘toggling’ between Hexadecimal/Decimal (on the displayed menu) as
required. A tick will appear alongside Hexadecimal when this mode is selected.

Note: Ctrl + Shift + T will also toggle the mode between hexadecimal and decimal
and Ctrl + T will toggle the mode for a single expression.

Any Local variable that evaluates to a ‘C’, l-type expression, can be assigned a new
value.

When you select the Local Pane menu or click the right hand mouse button over a
Local Pane you see the following menu:

• Expand/Collapse - when the cursor is over a pointer, a structure or an array

• Increase Index - when the cursor is over an array element

• Decrease Index - when the cursor is over an array element.

Page 10-58 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

These options can also be activated by:

• Using the appropriate Hot Keys

• Clicking on these icons

Note: Use of the Local Pane is restricted to debugging in C.

The Active Pane can be made a Local Pane via any of the following methods:

Clicking on the Local Pane icon on the toolbar

Using the Pane Type option from the Pane menu

Using the Hot Key Ctrl+Shift+L

See Also:

Using The Call Stack Display

Watch Pane

Expanding Or Collapsing A Variable

Traversing An Index

Nintendo 64 Windows 95 Debugger Page 10-59

© SN Systems Ltd

Watch Pane

The Watch Pane is used to evaluate and browse C type expressions.

Watch Pane Display

When you select the Watch Pane menu or click the right hand mouse button over a
Watch Pane, the following menu is displayed:

• Add Watch

• Edit Watch

• Delete Watch

• Clear All Watches

• Expand/Collapse - to view/hide the components of a structure or an array

• Increase Index - to view higher indexed values within an array

• Decrease Index - to view lower indexed values within an array

• Add Locals - to add all local variables

Note: The Add Locals command will add all locals to the watch but unlike the Local
Pane, when the watch goes out of scope the local variables will not be deleted.

These options can also be activated by the following methods:

• Using the appropriate Hot Keys

• Clicking on the appropriate icons

Structures, pointers and arrays can be opened in a Watch Pane.

Page 10-60 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

• If you open a structure the members of that structure are displayed.

• If you open a pointer it is dereferenced.

• If you open an array the first element of the array is displayed.

The contents of the Watch Pane are saved within the View when the Project is saved.

Variables can be viewed in hexadecimal or decimal modes by right-clicking within the
Pane and ‘toggling’ between Hexadecimal/Decimal (on the displayed menu) as
required. A tick will appear alongside Hexadecimal when this mode is selected.

Note: Ctrl + Shift + T will also toggle the mode between hexadecimal and decimal
and Ctrl + T will toggle the mode for a single expression.

Any Watch variable that evaluates to a ‘C’, l-type expression can be assigned a new
value.

 Note: The options Expand/Collapse and Increase Index ‘+’ and Decrease Index ‘-’
are only available for arrays, pointers and structures.

 See Also:

Using The Call Stack Display

Hot Keys

Assigning Variables

Expanding Or Collapsing AVariable

The Active Pane can be made a Watch Pane via any one of the following methods:

Clicking on the Watch Pane icon on the toolbar

Using the Pane Type option from the Pane menu

Using the Hot Key Ctrl+Shift+W

Nintendo 64 Windows 95 Debugger Page 10-61

© SN Systems Ltd

C Type Expressions In Watch Pane

The following ‘C’ type expressions, shown in order of precedence, may be used to
evaluate expressions within the Watch View of a Project:

[] array subscript

-> record lookup

~ - * & unary prefix

* / % multiplicative

+ - additive

<< >> bitwise shifting

<> <= >= comparatives

== != equalities

& bitwise and

^ bitwise xor

| bitwise or

Note: As in C, parenthesis can be used to override precedence.

Page 10-62 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Assigning Variables

Any variable that evaluates to a ‘C’, l-type expression can be assigned a new value.
For example, in the case of a de-referenced pointer, a new value can be assigned to
the pointer or the de-referenced expression.

Variables are assigned as follows:

1. Place the caret over the required expression to make it Active.

2. Press ‘=‘.

3. Enter the new value to the displayed dialogue box; this can be another expression
if required.

4. Click .

In the example below, this facility was used to assign a new value of 0x80002000 to
the specified pointer. The de-referenced structure changes to reflect the amended
value.

Displayed Structures For Pointer Address

Nintendo 64 Windows 95 Debugger Page 10-63

© SN Systems Ltd

Amended Structures After Pointer Assigned New Variable

IMPORTANT: The expression that you are assigning and the new value, must
have compatible types.

Note: Variables can be assigned whilst the Target is running.

Expanding Or Collapsing A Variable

Pointers, structures and arrays are variables which can be expanded or collapsed in
the Local or Watch Panes and the Call Stack Display when you place the caret over
them.

If you expand a pointer a line will be added below for the dereferenced pointer. For
example if the pointer is to an integer, the dereferenced pointer will display that
integer.

An expanded structure will display all the elements of that structure below it.

For an expanded array the second line of the display will display the first element of
the array.

To expand or collapse a variable:

1. Select the Pane menu for the Local or Watch Panes.

2. Choose the Expand or Collapse option from the menu.

Page 10-64 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

When shown in the Watch Pane, expressions which can be expanded or collapsed will
be prefixed as follows:

+ this indicates an expression that can be expanded

- this indicates that the expression is expanded and can be
closed.

This is followed by the expression’s type and value.

To edit an expression, Shift +double-click or highlight it and press Return.

Note: It is also possible to expand or collapse an expression by using the expand or

collapse icons on the Pane toolbar or pressing SPACE.

Note: Ctrl+SPACE or Ctrl+double-click will expand all the elements in an array.

Traversing An Index

You can traverse an index if the caret is on an array element in the Local or Watch
Panes.

If an index is increased, the array will display the next array element.

Decreasing an index causes the previous array element to be displayed.

To increase or decrease an index:

1. Select the Pane menu for the Local or Watch Panes.

2. Choose the Increase Index or Decrease index option from the menu.

Note: It is also possible to expand or collapse a variable by using the increase index

or decrease index icons on the Pane toolbar.

Nintendo 64 Windows 95 Debugger Page 10-65

© SN Systems Ltd

Adding A Watch

The Watch Pane is used to evaluate and browse C type expressions.

To add a watch or expression :

1. Make the Watch Pane the Active Pane.

2. Select the Watch Pane menu from the Menu bar.

3. Choose the Add Watch option from the menu.

4. Type the required expression directly into the Add Expression dialog box or click

the down arrow to display expressions which have been used previously.

Add Watch Dialogue Box

5. Enter or click the required expression and select

The Debugger also offers various ‘matching’ facilities whereby you can enter a partial
value and the program will search the current and global scopes for those matching
the specified criteria or browse all available symbols. These are described below in
Using The Expression Manager.

Page 10-66 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Note: It is also possible to add a watch by clicking on the add watch icon on
the Watch Pane toolbar or using the Hot Key Insert.

See Also:

Using The Expression Manager

Editing A Watch

Any of the C type expressions that you can enter into the Watch Pane can be edited
as follows:

1. Make the Watch Pane the Active Pane.

2. Select the Watch Pane menu from the Menu bar.

3. Choose the Edit Watch option from the menu.

4. Select the watch to edit.

5. Amend as necessary via the Edit Expression dialog and click . History,
browsing and matching facilities are available via this dialogue box.

Note: It is also possible to edit a watch by clicking on the Edit Watch icon on
the Watch Pane toolbar.

Note: To view variables in hexadecimal, right-click within the Pane and ‘toggle’
‘Hexadecimal/Decimal’ as necessary. A tick will appear alongside
Hexadecimal when this option has been selected. Ctrl + Shift + T can also
be used to toggle the mode displayed. You can also toggle the mode for a
single expression via Ctrl + T.

See Also:

Using The Expression Manager

Previously Entered Expressions History List

Nintendo 64 Windows 95 Debugger Page 10-67

© SN Systems Ltd

Deleting A Watch

Any of the C type expressions entered into the Watch Pane can be deleted as follows:

1. Make the Watch Pane the Active Pane.

2. Select the Watch Pane menu from the Menu bar.

3. Choose the Delete Watch option from the menu.

4. Select the watch and press Enter.

Note: It is also possible to delete a watch by clicking on the Delete Watch icon
on the Watch Pane toolbar or pressing DEL.

Note: You can only delete a Watch at the root of the expression, not on any
expanded part of it.

Clearing All Watches

All of the C type expressions entered into the Watch Pane can be removed in one
action, as follows:

1. Make the Watch Pane the Active Pane.

2. Select the Watch Pane menu from the menu bar.

3. Choose the Clear All Watches option from the menu.

Note: You can also clear all watches by clicking on the Clear All Watches icon
on the Watch Pane toolbar.

Page 10-68 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Debugging Your Program

The Debugger helps you to detect, diagnose and correct errors in your programs.
This is achieved via facilities which enable you to step and trace through your code in
order to examine local and global variables, registers and memory.

Breakpoints can be set wherever you need them at C and Assembler level and if
required, these breaks can be made conditional on an expression. Additionally,
selected breakpoints can be disabled for particular runs.

Your choice of Views depends on the level at which you are debugging. For example
it is appropriate to use a Register Pane for assembler debugging and a Local Pane
when debugging in C.

Nintendo 64 Windows 95 Debugger Page 10-69

© SN Systems Ltd

Specifying The Polling Rate And Continual Update Rate

It is possible to set the rate at which the Debugger checks the exception state of the
Target, i.e. determine the granularity of discovering an exception when the Target is
running.

Note: Even though checking the exception state has zero hit for some Targets, it is
not recommended that you set this value below 250 ms.

It is also possible to specify the rate at which the Debugger updates information while
the Target is running. This is particularly important for Targets which connect
independently of a pollhost() since rapid connection rates may cripple the Target. It
is measured in polling ticks, e.g. 250 x 4 ticks = a continual update rate of 1 second.
If required, continual update (not polling) can be turned off altogether.

The rates are set as follows:

1. Select Continual Update Rate from the Project option on the main menu or press
Ctrl+I. A dialogue box displays the current polling rate in milliseconds:

 Update Rate Dialogue Box

2. If required, enter a new value and select . The rate is saved between all
debugging sessions and not as part of a Project.

3. The continual update rate is measured in polling ticks; enter a new value if
required.

To turn off the continual update rate:

De-select the Continual Update Rate; only the polling rate will still be active.

Page 10-70 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Forcing An Update

During continual update, the information you see in the Debugger windows won’t be
updated until the next connection; therefore, the slower the update rate, the longer it
will be before exceptions can be spotted. However, it is possible to force an update
by pressing Ctrl+U, selecting the Update option from Debug on the main menu or

clicking the button on the toolbar.

Nintendo 64 Windows 95 Debugger Page 10-71

© SN Systems Ltd

Using The Expression Manager

The Expression Manager Dialog is used to enter an expression, for example to add a
watch to the Watch Pane or specify a location for a breakpoint.

In summary, the Dialog provides the following facilities:

• A history list of previous expressions
• Name completion
• Enhanced browsing features
• The ability to select from various groups of symbols
• Expression copying and pasting to/from the expression clipboard
• Instant expression evaluation

To access the Expression Manager:

The dialog will be displayed whenever you select an option which requires you to
specify an expression. The title bar will reflect the context from which it was called.

Expression Manager Dialog

Page 10-72 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

To specify an expression:

1. Enter text or symbols to the Current Expression box.

2. If you do not know the format of the required expression, click (or
press Alt+B) and the Symbol Browser will display all symbols (and their details)
in the current scope. See Using the Symbol Browser below.

3. A pull-down history list of the most recently entered expressions is also available

from the Current Expression box.

4. Select or specify as appropriate.

5. Alternatively, if you know and have entered part of the expression, click

 (or press Alt+C) and use the name completion facility; this will
take the text fragment from the left of the cursor and attempt to match it with the
start of the debugging symbols found in the current scope. If a single match is
found the text is replaced by the complete symbol. Where more than one match
is found a separate window will show the matching symbols in alphabetical order.

Expression Manager Displaying Matching Symbols

Nintendo 64 Windows 95 Debugger Page 10-73

© SN Systems Ltd

6. Select the symbol to be inserted into the expression; press ESC to cancel the
operation.

7. By default, all available symbols are matched during name completion, however,

you can change this to match only symbols of a specific group by selecting an
alternative from the Symbol Group list. The selection can be restricted to any of
the following groups:

All Symbols
Globals
Locals
Functions
Types
Assembler Labels

Note: The group selected here will also be the first one displayed by the Symbol
Browser. See point 2 above and Using the Symbol Browser below.

8. Click when your expression is complete; it will be inserted into the
relevant Pane.

To evaluate an expression:

At any time you can attempt to evaluate the current expression by clicking

 (or pressing Alt+E). If the expression can be evaluated, its memory
address will be displayed in the adjacent window, otherwise a suitable error will be
given.

Page 10-74 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Expression Manager Displaying Evaluated Expression

To use the Expression Clipboard:

1. Click (or press Alt+Y) to copy the current expression into the
Debugger’s Expression Clipboard; this can be recalled later within other
Debugger components

Note: The expression text is also copied into the Windows Clipboard to be used
by other Windows applications.

2. The contents of the Expression Clipboard can also be inserted into the current

expression by clicking or pressing Alt+P.

Nintendo 64 Windows 95 Debugger Page 10-75

© SN Systems Ltd

To use the Symbol Browser:

1. Click (or press Alt+B) and the Symbol Browser will display all
symbols (and their details) in the current scope.

The details are as follows:

Name The name of the symbol as it would appear in your code.
Type For storage variables - type (eg int, float); For functions - return type.
Class ‘C’ class of the symbol, e.g. automatic, static, union, typedef etc.
Location The memory location or position relative to the stack the symbol

refers to, if applicable to the symbol.
Dims The number of dimensions of the symbol if it represents an array and

also the size of each of its dimensions.
Tag The structure or enumerator tag if applicable.

2. You can restrict the number of symbols which will be displayed by selecting a

particular group of symbols from the pull-down menu and clicking .

3. In addition, the ‘wildcard’ matching facility can be used in conjunction with the

specified symbol group to restrict the display to particular symbols. Enter
wildcard text in the edit box . A ‘*’ character will match 0 to any number of text
characters, while a ‘?’ character will match any single text character. All other
characters will only match the equivalent text character; ‘m*?n’ will match all
symbols in the specified symbol group that start with ‘m’, end in ‘n’ and have at
least one character between, for example ‘main’.

By default, all symbols are sorted and displayed in alphabetical name order.
However, if you click on the heading name for any of the details columns, the
symbols will be sorted by the relevant column heading.

4. Click or press RETURN on a symbol name and it will be inserted into the
Current Expression box in the Expression Dialog.

5. Click to insert the expression in the relevant Pane.

Page 10-76 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

To specify multiple expressions:

1. If required, more than one expression and symbol can be entered in the Current
Expression box.

2. Use the mouse and Ctrl and/or Shift keys to make a specific selection and then

press RETURN to insert it in the Current Expression box; the expressions will
be represented by appropriate text in angled brackets ‘<Multi 1>’ and ‘<Multi
2>’ as shown below:

Add Expression Dialog Displaying Representation Of Multiple Expressions

Up to three multiple selections can be specified at a time.

Single expressions can be specified alongside multiple groups.

If a group is deleted in the Current Expression box, all symbols and expressions
within the group will be removed.

3. When completed, click to insert the expression(s) in the relevant
Pane.

Nintendo 64 Windows 95 Debugger Page 10-77

© SN Systems Ltd

Setting Breakpoints

Breakpoints can be set in Source and Disassembly Panes; they appear in the Pane as
a different coloured bar.

A Project can have many breakpoints set and they are saved when the Project is
saved. They are restored relative to Assembler labels wherever possible; this ensures
they are preserved even when you alter the source code and rebuild.

The Debugger supports a Pane and Tool based Breakpoint Plug-In.

The Breakpoint Manager Pane and Breakpoint Manager Dialog allow you to
view all current breakpoints. They also allow you to set breakpoints anywhere in
memory and alter a breakpoint’s type and settings.

There are four types of breakpoint:

Absolute The PC stops when it arrives at the breakpoint.
Counter The counter is increased by one every time the PC passes the

breakpoint. This does not stop the PC.
Countdown The counter is decreased by one from an initial user-set value every

time the PC passes the breakpoint. When the counter reaches zero the
PC stops at the breakpoint.

Conditional The PC stops at a conditional breakpoint only if a user-specified
expression evaluates as TRUE.

To access the Breakpoint Manager Pane:

1. Right-click within a Source or Disassembly Pane and select Other from the
displayed sub-menu. Left-click within the empty Pane.

The Plug-In Manager will display the currently installed Plug-Ins.

Page 10-78 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Plug-In Manager

2. Select the Breakpoint Manager Pane and click .

The selected Pane displays a list of the breakpoints which are currently set.
Where relevant the following information is shown for each one:

Address The memory location of the breakpoint.
Label The nearest label to the breakpoint.
Expression Any expression used to create a conditional breakpoint.
Count The number of steps since the PC passed the breakpoint or until

the breakpoint is reached.
Type The breakpoint type.
Enabled The current state - Yes or No.

The breakpoint’s type is also reflected in the icon displayed next to its address.
This icon changes to a ‘triggered’ icon when the breakpoint stops the PC.

Nintendo 64 Windows 95 Debugger Page 10-79

© SN Systems Ltd

Breakpoint Manager Pane

To access the operations menu for a breakpoint:

Right-click over the required breakpoint.

A sub-menu is displayed, from which you can carry out the following actions:

To add a breakpoint:

In the displayed Expression Manager enter the memory address where you wish
the breakpoint to appear. See Using The Expression Manager for further
details.

To remove a breakpoint:

Toggle the option for the selected breakpoint.

To disable a breakpoint:

Toggle the option for the selected breakpoint.

To alter breakpoint properties:

1. The Breakpoint Dialog will display the current properties for the selected
breakpoint.

Page 10-80 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

2. Change the Breakpoint Type if required. If Countdown is chosen you must
enter a value to the Breakpoint Count box.

You must specify a Break expression if the Breakpoint Type is
Conditional. Use the adjacent browse button to search for available
symbols.

3. can be used to reset the Breakpoint Count to zero when Counter has
been selected.

4. De-select or select the Enabled box if required. When this check box is set

the breakpoint is enabled and only these will be included in a debugging run.

5. Use to leave the dialogue box without saving the changes you
have made.

6. Click when the amendments are complete.

Note: This dialog is also accessible via the Edit Breakpoint option from the Source
or Disassembly Panes.

To access the Breakpoint Manager Dialog:

From the main Tools menu, select the Breakpoint Manager Dialog. This performs
identical functions to the Pane but uses buttons as well as the right-click menu. It
provides a quick means of displaying and amending breakpoint settings without the
necessity of switching Pane types.

Nintendo 64 Windows 95 Debugger Page 10-81

© SN Systems Ltd

It is also possible to directly set or edit a breakpoint as follows:

1. Make a Source or Disassembly Pane Active.

2. Click on the instruction or line at which you want to set the break or amend an
existing one.

3. Select the Source menu from the Menu bar.

4. Choose the Toggle or Edit breakpoints option from the menu.

Note: An Absolute breakpoint will be inserted by default when the Toggle
breakpoints option is used. Use Edit breakpoints and a relevant selection to
insert any other type.

A breakpoint can be removed by clicking on the colour bar and toggling the menu
option taken to create it.

Note: Breakpoints can also be set and removed via the F5 key or the set / unset

breakpoint icons on the Pane toolbar .

Note: The button on the toolbar will clear all breakpoints, Note however that
if you have upgraded a previous beta version, this button will not be available
unless you have customised the toolbar.

Page 10-82 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Any of the following methods can be used to create, remove and edit breakpoints:

The F5 key

Shift + F5 or Shift + Double-click will display the Breakpoint Dialog from which
breakpoints can be edited.

The Breakpoint options from the Source or Disassembly Pane menus

The Breakpoint icons from the Pane toolbars .

The View and Edit Breakpoints option from the Tools menu.

Note: Double-clicking on a breakpoint in a Source and Disassembly Pane will goto
that breakpoint. De-selecting the Respond to breakpoint event in the
Pane’s context menu however, will switch this property off. The information
is saved with the View or Project.

Nintendo 64 Windows 95 Debugger Page 10-83

© SN Systems Ltd

Using The Call-Stack Display

The Call-Stack Display Pane Plug-In allows you to view the whole of the stack and
step up and down it to a particular context.

The benefit of this is that it allows you to see the functions being called and where
they were called from. It is also possible to see the parameter types and values that
were passed to a function.

Note: The Debugger will only provide call stack information when it detects there is
a valid frame pointer and there are symbols available for the current function.

To display the Call Stack:

1. Right-click within any Pane and select Other from the displayed sub-menu. Left-
click within the empty Pane.

The Plug-In Manager will display the currently installed Plug-Ins.

2. Select the Call-Stack Display Plug-In and click .

Call-Stack Display

The Call-Stack Display dialog provides a view of the whole stack; an icon (a
green triangle) points to the current context. Other contexts are designated by a
red triangle. Parameter details are highlighted by a red or green circle depending
on whether they are part of the current context or not.

Page 10-84 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

The Windows 95 tree control functions have been used in this dialog to show
information about the stack. You can therefore quickly see which context the
stack is in and which function calls have been placed on the stack. You can
expand a branch if you wish to view more information about a function call. If
they are available, branches will be shown for function return values, parameter
types or parameter values.

To use the scroll bar:

1. A scroll bar on the right of the tree control allows you to view various portions of
the stack.

2. When you click on a stack context, the pointer will move to that context and

reposition the view on the stack accordingly.

To switch contexts:

1. You can alter the context (machine state) to reflect a previous function call by
clicking on a particular context in the tree control.

2. The green icon will be repositioned to reflect that the machine’s current state has

been changed and other windows will be updated accordingly.

Note: You can customise the tool bar to include the following stack stepping
icons:

 - To increase the stack level context.

 - To decrease the stack level context.

To expand a branch:

1. Right-click within the Pane.

2. A pop-up menu allows you to display return values, parameter types or parameter

values. Left-click an item to select it and a check mark will appear alongside it.
Left-click again to de-select the option.

3. If a cross is shown to the left of displayed parameters, this means that the
parameter is a structure, pointer or an array. In the same way that parameters can
be expanded in a watch window, clicking on this cross will also reveal the derived
types and values.

Note: When the autoexpand menu item is selected, parameter details associated
with a context will be displayed, provided that at least one parameter
detail option is selected.

Nintendo 64 Windows 95 Debugger Page 10-85

© SN Systems Ltd

To copy a selection to the Expression Clipboard:

1. It is possible to select an item from the Call Stack Display and copy it into the
Expression Clipboard for subsequent use in a different application.

2. Select the item to be copied.

3. Press Ctrl + C or right-click and select the Copy option from the displayed pop-

up menu.

Note: The selected expression also appears on the Debugger’s status bar.

To change properties of the Call Stack:

1. Right-click within the Pane.
2. A pop-up menu allows you to display return values, parameter types or parameter

values. Left-click an item to select it and a check mark will appear alongside it.
Left-click again to de-select the option.

Note: Properties selected via the right-click pop-up menu are saved when the Project
is saved.

Page 10-86 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Stepping Into A Subroutine

The Step Into command allows you to trace the execution of the program one step at
a time and so isolate any bugs that might be present.

When you Step Into a subroutine call, the Program Counter moves to the start of the
subroutine and displays the relevant code. At the end of the subroutine you will be
returned to where it was called from.

At Assembler level a debugging step is the execution of a single instruction.

At Source level, one line at a time will be executed in each step and any subroutines
or calls within that line will be stepped into.

The current stepping mode is indicated by SRC or DIS on the far right of the status
bar; the Debugger will change this to the appropriate mode when either a Source or
Disassembly Pane become active. You can override this however by using Ctrl + M
to toggle between the two.

Note: If the mode is SRC and a Source level step cannot be performed, a
Disassembly level step will be performed instead.

To Step Into a subroutine during debugging:

1. Select the Debug menu from the Menu bar.

2. Choose the Step Into option from the menu.

Note: Alternative ways of Stepping Into a subroutine are to use the Step Into icon

on the Unit toolbar (at the bottom of the Debugger window) or to press
F7. Note that it is possible to use the Step Into icon for a non-Active View.

Nintendo 64 Windows 95 Debugger Page 10-87

© SN Systems Ltd

Stepping Over A Subroutine

When you use the Step Over command, the subroutine is executed but not displayed
and the Program Counter moves to the next line of calling routine code.

At Assembler level a debugging step is the execution of a single instruction.

At Source level, one line at a time will be executed in each step and any subroutines
or calls within that line will be performed.

The current stepping mode is indicated by SRC or DIS on the far right of the status
bar; the Debugger will change this to the appropriate mode when either a Source or
Disassembly Pane become active. You can override this however by using Ctrl + M
to toggle between the two.

Note: If the mode is SRC and a Source level step cannot be performed, a
Disassembly level step will be performed instead.

To Step Over a subroutine:

1. Select the Debug menu from the Menu bar.

2. Choose the Step Over option from the menu.

Note: Alternative ways of Stepping Over a subroutine are to use the Step Over icon

by the Unit menu or to press F8. Note that you can use the Step Over
icon for a non-Active View.

Page 10-88 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Stepping Out Of A Subroutine

The Step Out Of command returns you to the command after the statement that
called the current function, i.e. it unpicks the stack one level, calculates the Program
Counter at this level, sets a temporary breakpoint at this address, sets the stack level
to 0 and then runs the target.

Note: In order to use the Step Out command, the Debugger requires full symbol
information for the function you are in and you must not be executing prolog
or epilog code.

To Step Out of a subroutine:

1. Select the Debug menu from the Menu bar.
2. Choose the Step Out option from the menu.

Note: Alternative methods of Stepping Out of a subroutine are to click on the Step

Out Of icon on the Pane toolbar or to use the Hot Key F12.

Nintendo 64 Windows 95 Debugger Page 10-89

© SN Systems Ltd

Running To The Current Cursor Position

The Run to Cursor command can be used during debugging within the Source and
Disassembly Panes.

To run to the current cursor position:

1. Make a Source or Disassembly Pane active.

2. Click on the displayed code at the point you want to run to.

3. Select the Source or Disassembly menu from the Menu bar.

4. Choose the Run To Cursor option from the menu.

If the Unit does not reach the cursor position it will continue running.

Note: Alternative methods of running to the cursor are to click on the Run To

Cursor icon on the Pane toolbar or to use the Hot Key F6.

Note: You can use Run To Cursor while the Unit is running to make it stop at the
cursor position.

Page 10-90 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Running Programs

The Run command causes the CPU of the specified Unit to start running.

It will continue until it meets a breakpoint, a processor exception or is stopped by the
Stop or Run To Cursor commands.

During a debugging run the various Panes will show the progress of the run.

To start the program running:

1. Select the Debug menu from the menu bar.

2. Choose the Go option from the menu.

Note: Alternative ways to start the run are to click the Start button on the relevant

Unit toolbar or to press F9. F9 will also stop the Target if it is running.

Stopping A Program Running

The Stop command halts the CPU of the specified Unit as soon as possible.

It is specified as follows:

1. Select the Debug menu from the Menu bar.

2. Choose the Stop option from the menu.

Note: Alternative ways to stop the run are to click the Stop button on the relevant

Unit toolbar or to press Esc.

Nintendo 64 Windows 95 Debugger Page 10-91

© SN Systems Ltd

Moving The Program Counter

The program counter (PC) can be set via the Set PC command.

This command moves the program counter to the current cursor position.

It is found on the Pane menus for Source and Disassembly Panes and is set as
follows:

1. Make a Source or Disassembly Pane Active.

2. Place the caret where you wish the PC to move to.

3. Click the right hand mouse button to call the Pane menu.

4. Select the Set PC option from the menu.

With this command, no instructions are executed between the previous and new PC
position.

The opposite command to Set PC is Goto PC which takes the cursor to the position
of the Program Counter.

Note: An alternative way to activate the Set PC command is by using the Hot Key
Shift+Tab.

Page 10-92 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Moving The Caret To The PC

The caret point can be placed at the program counter address via the Goto PC
command.

This is found on the Pane menus for Source and Disassembly Panes.

To Set The PC:

1. Make a Source or Disassembly Pane Active.

2. Click the right hand mouse button to call the Pane menu.

3. Select the Goto PC option from the menu.

Goto PC is the opposite command to Set PC which sets the Program Counter to the
value at the current caret position.

Note: Alternatively, pressing the ‘space’ bar will directly place the caret point at
the program counter address.

Nintendo 64 Windows 95 Debugger Page 10-93

© SN Systems Ltd

Moving To A Known Address Or Label

The Goto command is available on the Source, Disassembly and Memory Pane
menus. It is used to put the caret and PC at a known address, label name, register
name or value of a specified C expression as described below:

1. Make the Source, Disassembly or Memory Pane Active.

2. Click the right hand mouse button to call the Pane menu.

3. Select the Goto option from the menu.

4. The Goto Expression dialogue box appears.

Go To Expression Dialogue Box

5. Type the required expression directly in Current Expression box or click the
down arrow to display expressions which have been entered previously. Various
browsing and matching facilities are also available via this dialog box. See Using
The Expression Manager for further details.

6. Enter or select the required expression and click . Note that a
hexadecimal address must be prefixed with the string ‘0x’

As the Goto action will take you to the value of the specified expression, note the
consequences when you enter a name containing C debug information as well as an
Assembler label.

Page 10-94 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

For example, if ‘_ramsize’ is specified you will be taken to the value of _ramsize, not
to where it is defined. This is because the C expression evaluator sees the C
definition of _ramsize first and then evaluates it. To Goto this address, you must
enter either ‘&_ramsize’ or ‘:_ramsize’.

Alternatively, you could Goto ‘main’ (as functions evaluate to their address); to
Goto an offset from main, enter: ‘:main+offset’, ‘&main+offset’ or
‘(int)main+offset’. This is because ‘main’ by itself has the type int () which cannot
be added.

Note: When you have successfully ‘gone to’ an expression in a Memory Pane, the
‘pointed to’ word is enclosed in a box. This will remain until you Goto
something else or anchor the Pane to an expression.

See Also:

Anchoring Memory Panes

Expression Evaluation Features

Using The Expression Manager

Previously Entered Expressions History List

Note: Alternatively, you can activate the Goto command via the Goto icon on the

toolbar or the Hot Key Ctrl G.

Nintendo 64 Windows 95 Debugger Page 10-95

© SN Systems Ltd

Expression Evaluation Features

Register Names

Register names can be specified in any dialogue box where expressions can be
entered. By default, the evaluator looks for C symbols first, so any variables which
are the same as register names will be shown instead. If a name is being interpreted
as a register it will be prefixed by a ‘$’.

It is recommended that you use this ‘$’ prefix when entering register names to
explicitly tell the evaluator that it is looking at a register.

Note: Registers have a C type of ‘int’.

Typecasts and Typedefs

Typecasts can be entered to an expression via the usual C syntax.
If you entered ‘(int*)$fp’ to a Watch Pane you would see the following:

+int*(int*)$fp = 0x8000ff00

Typecasting also works for structure tags; however, you are not required to enter
the keyword ‘struct’ when casting to a structure tag.

You would expect to see the following when typecasting to a structure (or class):

-Tester* (Tester*)$fp = 0x807ff88
 -Tester
 +unsigned char* m_pName = 0x00000645
 +unsigned char* mpLongName = 0xFFFFFFFF

You can also cast to typedefs; for example, entering ‘(daddr_t)p’ will produce:

long (daddr_t)p = 0x00003024

Page 10-96 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Labels

Labels can also be included in a C expression. The evaluator looks for C level
information first and then label information. If it finds a label it will prefix it with a
‘:’.

It is recommended that you use this prefix when entering labels to explicitly tell the
evaluator that it is looking at a label.

Note: Labels have a C type of ‘int’.

Functions

If you include a function name in an expression, its value will be the same as its
address. It will appear in a Watch window as follows:

int () main = (...) (0x80010BFC)

Note: This is contrary to C where the value of a function, is what is returned from
the function when it is executed.

Note: It is recommended that you access the address of a function via the ‘&’
operator or the Assembler label.

Expression Evaluation Name Resolution

In summary, the search order for a name in an expression is as follows:

1. Escaped Register Names (prefix ‘$’)

2. Escaped Label Names (prefix ‘:’)

3. C Names

4. Register Names

5. Label Names

Nintendo 64 Windows 95 Debugger Page 10-97

© SN Systems Ltd

Previously Entered Expressions History List

Once an expression has been specified via an Expression Manager dialogue box, it
will be stored in a history buffer.

When you next access one of these dialogue boxes, click the down arrow to display a
listing of these values.

At this point you can enter a new expression to the dialogue box or select one from

the list and click . The selected expression can also be edited at this point.

Note: The most recent expressions used are held at the top of the list.

Anchoring Panes To The PC

By default the Source and Disassembly Panes are anchored to the Program Counter
(PC).

This means that whenever possible the instruction or line at the PC is always
displayed in the Pane.

The Follow PC property is toggled as follows:

1. Make a Source or Disassembly Pane Active.

2. Click the right hand mouse button to call the Pane menu.

3. Select the Follow PC option from the menu.

Note: This option is also available from the Source and Disassembly Pane toolbar

 or from the Source or Disassembly menus on the Menu bar.

Page 10-98 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Anchoring Memory Panes

Anchoring a Pane has the same function as using Goto on every Debugger update.

To anchor the Pane:

1. Select Anchor... from the Pane menu or press Ctrl+A when a Memory Pane is
active.

2. Enter an expression.

3. Select .

The specified expression will appear in an indicator bar on the Pane. If this goes red,
the expression cannot be evaluated in the current scope. Otherwise, the Pane will be
‘anchored’ to the value of the expression and a box will be drawn around the anchor
point.

You can edit the expression by clicking the indicator.

To turn off anchoring:

1. Call up the Anchor dialogue box.

2. Clear the box.

3. Select .

Nintendo 64 Windows 95 Debugger Page 10-99

© SN Systems Ltd

Identifying Changed Information

Any changes to variables since the last debugging step are displayed in a colour of
your choice on all Panes except for Disassembly and Source.

This colour is set via the Set Default Colour option from the View menu.

See Also:

Changing colour schemes in Views

Closing The Debugger Without Saving Your Changes

The Quit option on the Project menu stops the Debugger running but does NOT save
the current Project.

To close the Debugger without saving your changes:

1. Select the Project menu from the Menu bar.

2. Choose the Quit option from the menu.

Note: When you close the Debugger, it will remember the current working directory
and restore this when it is re-opened.

Page 10-100 Windows 95 Debugger Nintendo 64

© SN Systems Ltd

Closing The Debugger And Saving Your Changes

The Exit option on the Project menu saves the current Project at the latest state and
stops the Debugger running.

To close the Debugger and save your changes:

1. Select the Project menu from the Menu bar.

2. Choose the Exit option from the menu.

Note: It is also possible to close the Project by clicking on the X icon on the system
menu shown in the top right corner of the Debugger window.

Note: Next time you open the Debugger the last Project you saved will be launched
automatically.

Note: When you close the Debugger, it will remember the current working directory
and restore this when it is re-opened.

See Also:

Saving Your Project

Nintendo 64 PSYLINK Linker Page 11-1

© SN Systems Ltd

CHAPTER 11

The PSYLINK Linker

The Linker PSYLINK is a fully-featured linker which works with all processor types.
You can split complex programs into separate, manageable sub-programs which can
be recombined by PSYLINK into a final, single application.

This chapter discusses the linker together with the Librarian utility, under the
following headings:

•• Command Line Syntax
•• Linker Command Files
•• XDEF, XREF and PUBLIC
•• GLOBAL

The Linker-associated Assembler directives (XDEF, XREF, PUBLIC and GLOBAL)
are repeated here for ease of reference.

Page 11-2 PSYLINK Linker Nintendo 64

© SN Systems Ltd

PSYLINK Command Line

Description The PSYLINK link process is controlled by a series of parameters on the command
line and optionally by the contents of a Linker command file. The syntax for the
command line is as follows:

Syntax PSYLINK [switches] objectfile(s),output,symbolfile,mapfile,libraries

If a parameter is omitted, the separating comma must still appear unless it is the last
parameter of the line.

Switches Switches are preceded by a forward slash (/), and are as follows:

/c Tells the linker to link case sensitive; if it is omitted, all names
are converted to upper case.

/d Debug Mode - perform link only.

/e symb=value Assigns value to symbol.

/i Invokes a window containing Link details.

/l path Specify path to search for library files.

/m Output all external symbols to the map file.

/n maximum Set the maximum number of object files, or library modules,
that can be linked, 1 to 32768; default = 256
Higher values require larger amounts of memory.

/o address Set an address for an ORG statement.

/p Output padded pure binary object code; ORGed sections of
code are separated with random data. (equivalent of /pb
switch on assembler)

/ps Output ASCII representation of binary file in Motorola
s-record format.

/s All sections must be in defined groups.

/u number Specify the unit number in a multi-processor target.

/v Enable automatic overlay recognition by the Debugger.

Nintendo 64 PSYLINK Linker Page 11-3

© SN Systems Ltd

/wl Warn of multiple definitions in libraries.

/wm Warn of multiple declarations of the same C variable.

/x address Set address for the program to commence execution.

/z Clear all requested BSS memory sections.

Objectfile(s) A list of object files, output by the Assembler using the /l option. File names are
separated by spaces or plus (+) signs; if the file starts with an @ sign, it signifies the
name of a Linker command file. See below for a description of the format.

Output The destination file for the linked code; if omitted no output code is produced. If the
output file name is in the format Tn:, the linked code is directly sent to the target
machine - n specifies the SCSI device number.

Symbolfile The destination file for the symbol table information used by the Debugger.

Mapfile The destination file for map information.

Libraryfiles Library files available - see The PSYLIB Librarian chapter for further information.

Page 11-4 PSYLINK Linker Nintendo 64

© SN Systems Ltd

Linker Command Files

Command files contain instructions for the Linker about source files and how to
organise them. The Linker command file syntax is much like the Assembler syntax,
with the following commands available:

Commands INCLUDE filename Specify name of object file to be read.
INCLIB filename Specify library file to use
INCBIN filename Specify binary file to be included
ORG address Specify ORG address for output

name EQU value Equate name to value
REGS pc=address Set initial PC value

name GROUP attributes Declare group
name SECTION attributes Declare section with attributes

SECTION name[,group] Declare section, and optionally specify its
group

name ALIAS oldname Specify an ALIAS for a symbol name
UNIT unitnum Specify destination unit number; this must
always be 0 for the Nintendo.

Group attributes:
BSS group is uninitialised data
ORG(address) specify group's org address
OBJ(address) specify group's obj address
OBJ() group's obj address follows on from previous group
OVER(group) overlay specified group
FILE("filename") write group's contents to specified file
SIZE(maxsize) specify maximum allowable size

Remarks

• The directive INCBIN allows direct inclusion of binary data. The command
format is: label INCBIN file,section[,alignment] e.g.

grdata incbin “graphics.bin”,.data

This will put the contents of binary file graphics.bin into section .data and
define label grdata to be at the start of this data.
The optional alignment specifies the data’s alignment as a power of 2, for
example in:

grdata incbin “graphics.bin”,.data,4

the data will be aligned on a 16 byte boundary.

Nintendo 64 PSYLINK Linker Page 11-5

© SN Systems Ltd

• Both INCLUDE and INCLIB statements can specify a prefix to be added to all
the section names specified in a module/library, for example,

include “l1.obj”,level1

will cause all sections mentioned in the file l1.obj to have level1 prefixed
onto them so .text becomes level1.text , etc.

This removes the need to use the previously used -Wa,s… option in
ccn64/ccpsx/etc.

If INCLIB has a prefix specified then all used modules from that library will have
the prefix added to their section’s names.

• The Linker will now define global labels to allow the user to access the base
address and size of each section and group. This is done by prefixing each group
and section name with _ (underscore) and adding _obj,_org and _size onto
the end of the name to produce three names giving the obj, org and size of
the group/section respectively. Any .(dot) characters in the name will be
converted to _ (underscore) characters.

For example, the existence of the standard section .text will result in the creation
of the labels __text_obj , __text_org and __text_size .

Note: Two leading underscores, one explicitly added and one from converting
the ‘.’.

To access these names from C, declare the name as an external and then take its
address to get the value, e.g.

memset(&__bss_obj, 0, (int) &__bss_size);

will clear the bss section to 0.

•• Sections within a group are in the order that section definitions are encountered
in the command file or object/library files.

• Any sections that are not placed in a specified group will be grouped together at
the beginning of the output.

• Groups are output in the order in which they are declared in the Linker command
file or the order in which they are encountered in the object and library files.

• Sections which are declared with attributes, (i.e. not in a group) in either the
object or library files, may be put into a specified group by the appropriate
declaration in the Linker command file.

Page 11-6 PSYLINK Linker Nintendo 64

© SN Systems Ltd

Examples include "inp.obj"
 include "sort.obj "
 include "out.obj"

 org 1024
 regs pc=progstart

comdata group word
code group
bssdata group bss

 section datal,comdata
 section data2,comdata

 section codel,code
 section code2,code

 section tables,bssdata
 section buffers,bssdata

Linker Associated Directives.

GLOBAL

Description The GLOBAL directive allows a symbol to be defined which will be treated as either
an XDEF or an XREF. If a symbol is defined as GLOBAL and is later defined as a
label, it will be treated as an XDEF. If the symbol is never defined, it will be treated
as an XREF.

Syntax GLOBAL symbol[,symbol]

See Also XREF, XDEF, PUBLIC

Remarks This is useful in header files because it allows all separately assembled
modules to share one header file, defining all global symbols. Any of these symbols
later defined in a module will be XDEFed, the others will be treated as XREFs.

Nintendo 64 PSYLINK Linker Page 11-7

© SN Systems Ltd

XDEF, XREF and PUBLIC

Description If several sub-programs are being linked, use XDEF, XREF and PUBLIC to refer to
symbols in a sub-program which are defined in another sub-program.

Syntax XDEF symbol[,symbol]
XREF symbol[,symbol]

PUBLIC on
PUBLIC off

Remarks
• In the sub-program where symbols are initially defined, the XDEF directive is

used to declare them as externals.
• In the sub-program which refers the symbols, the XREF directive is used to

indicate that the symbols are in another sub-program.
• The Assembler does not completely evaluate an expression containing an XREFed

symbol; however, resolution will be effected by the linker.
• The PUBLIC directive allows the programmer to declare a number of symbols as

externals. With a parameter of on, it tells the Assembler that all further symbols
should be automatically XDEFed, until a PUBLIC off is encountered.

Examples Sub-program A contains the following declarations :

xdef Scores,Scorers
...

The corresponding declarations in sub-program B are:

xdef PointsTable
xref Scores,Scorers
...

public on
Origin = MainChar
Force dcw speed*origin
Rebound dcw 45*angle

public off

Page 11-8 PSYLINK Linker Nintendo 64

© SN Systems Ltd

Example Linker Command File for GNU C Program

org $80010000
text group
bss group bss

section .rdata, text
section .text, text
section .ctors, text
section .dtors, text
section .data, text
section .sdata, text
section .sbss, bss

include objfile1.obj
include objfile2.obj

inclib c:\n64\lib\libsn.lib

regs PC=__SN_ENTRY_POINT

Nintendo 64 PSYLIB Librarian Page 12-1

© SN Systems Ltd

CHAPTER 12

The PSYLIB Librarian

If the Linker cannot find a symbol in the files produced by the Assembler, it can be
instructed by a Linker command line option to search one or more object module
Library files.

This chapter discusses Library usage and the PSYLIB library maintenance program:

•• PSYLIB Command Line Syntax
•• Using the Library feature

Page 12-2 PSYLIB Librarian Nintendo 64

© SN Systems Ltd

PSYLIB Command Line

Description The Library program, PSYLIB.EXE, adds to, deletes from, lists and updates
libraries of object modules.

Syntax PSYLIB [switches] library module...module

where a switch is preceded by a forward slash (/).

See Also PSYLINK

Switches /a Add the specified module(s) to the library, replacing any already present

/d Delete the specified module(s) from the library

/l List the module(s) contained in the library (all will be listed if not specified)

/lv List specified library modules including symbols, if changed

/u Update the specified modules in the library

/x Extract the specified modules from the library (extracts all modules if no
module list given)

Note: The /lv switch shows symbols in the order they’re declared in the modules.
XBSS-type symbols appear with an asterisk before the name, e.g. ‘*fbuff’.

Library The name of the file to contain the object module library.

Module list The object modules involved in the library maintenance.

Using the Library feature

• To incorporate a Library at link time, specify a library file on the Linker command
line - see chapter 12.

• If the Linker locates the required external symbol in a nominated library file, the
module is extracted and linked with the object code output by the Assembler.

Nintendo 64 Build Utility Page 13-1

© SN Systems Ltd

CHAPTER 13

The CCN64 Build Utility

CCN64 is a build utility to execute the C Compiler, Assembler and Linker.
CCN64 makes use of the ASN64 Assembler to process the assembly syntax
produced by the GNU C Compiler. It is discussed in the following sections:

• • CCN64 Command Line
• • Source Files

Page 13-2 PSYMAKE Utility Nintendo 64

© SN Systems Ltd

CCN64 Command Line

Description CCN64.EXE is a utility that simplifies the process of running the separate 'C'
compiler passes and then assembling and linking the compiler output. Using CCN64
you need only specify the input files and the output format you require, and CCN64
itself will execute the tools required to generate the output.

Syntax CCN64 [options / filename[,filename...]]

The command line consists of a sequence of control options and source file names.
Options are preceded by a minus sign (-), and filenames are separated by commas.

Long command lines can be stored in separate control files. These can then be used
on the command line by using a ‘@’ sign in front of the control file name.

Options Control
-E Pre-process only. If no output file is specified output is send

to the screen.
-S Compile to assembler source
-c Compile to object file. If an output file is specified, then all output is

sent to this file. Otherwise it saved as the source file name with an
.OBJ extension.

-Ipath Specify extra include path for pre-compiler.

Debug
-g... Generate debug information for source level debugging

Optimisation
-O0 No optimisation (default)
-O or -O1 Standard level of optimisation
-O2 Full optimisation
-03 Full optimisation and function in-lining.

General
-W... Suppress all warnings
-Dname=val Define pre-processor symbol name, and optionally to the value

specified.
-Uname Undefine the pre-defined symbol name before pre-processing starts
-v Print all commands before execution
-f... Compiler option
-m... Machine specific option

Nintendo 64 Build Utility Page 13-3

© SN Systems Ltd

Linker
-llibname Include specified library libname when linking
-X... Specify linker option
-odestin Specify the destination. Either a file (e.g. prog.cpe), or target (e.g.

t0:) can be specified

See GNU C documentation for full description

Example CCPSX -v -g -Xo$80010000 main.c -omain.cpe,main.sym

This example will execute the compiler to compile the source file MAIN.C ,then run
ASN64 to produce the object file and finally will run PSYLINK to produce an
executable and symbol file (MAIN.CPE and MAIN.SYM respectively) ORGd to
the specified address. The -v switch will cause CCN64 to echo all commands it
executes to stdout. The -g switch will request full debug info in the symbol file.

CCN64 @main.cf -omain

This will force CCN64 to use the contents of the MAIN.CF file on the command
line, before the -o option.

Page 13-4 PSYMAKE Utility Nintendo 64

© SN Systems Ltd

Source Files

The specified source files can be either C or assembler source files, or object files.
CCN64 decides how to deal with a source file based on the files extension. The
following table describes how each file extension is processed:

.c Passed through C pre-processor, C compiler, Assembler, Linker

.i Passed through C compiler, Assembler, Linker

.cc Passed through C pre-processor, C++ compiler, Assembler, Linker

.cpp Passed through C pre-processor, C++ compiler, Assembler, Linker

.ii Passed through C++ compiler, Assembler, Linker

.ipp Passed through C++ compiler, Assembler, Linker

.asm Passed through C compiler, Assembler, Linker

.s Passed through Assembler, Linker

.other Passed through Linker

Remarks
• The PC file system is not case sensitive so the case of the extension has no effect.

The UNIX file system is case sensitive so the case of the extension is important.

• Various command line switches can stop processing at any stage, eliminating

linking, assembling or compiling.

• The -x option can be used to override the automatic selection of action based on

file extension.

• Files with extensions that are not recognised are treated as object files and passed

to the linker. This includes .OBJ files, the standard object file extension.

• Several different source files, which may have different file extensions, may be

placed on the command line.

Nintendo 64 PSYMAKE Utility Page 14-1

© SN Systems Ltd

CHAPTER 14

The PSYMAKE Utility

PSYMAKE is a make utility which automates the building and rebuilding of
computer programs. It is general purpose and not limited to use with this system. The
utility is discussed under the following headings:

•• Command Line Syntax
•• Format of the Makefile

Page 14-2 PSYMAKE Utility Nintendo 64

© SN Systems Ltd

PSYMAKE Command Line

Description PSYMAKE only rebuilds the components of a system that need rebuilding. Whether
a program needs rebuilding is determined by the file date stamps of the target file and
the source files that it depends on. Generally, if any of the source files are newer than
the target file, the target file will be rebuilt.

Syntax PSYMAKE [switches] [target file]

or

PSYMAKE @makefile.mak

Switches Valid switch options are :

/b Build all, ignoring dates
/d name=string Define name as string
/f filename Specify the MAKE file
/i Always ignore error status
/q Quiet mode; do not print commands before executing them
/x Do not execute commands - just print them

If no /f option is specified, the default makefile is makefile. If no extension is
specified on the makefile name, .MAK will be assumed.

If no target is specified, the first target defined in the makefile will be built.

Nintendo 64 PSYMAKE Utility Page 14-3

© SN Systems Ltd

Contents of the Makefile

The Makefile consists of a series of commands, governed by explicit rules, known as
dependencies, and implicit rules. When a target file needs to be built, PSYMAKE
will first search for a dependency rule for that specific file. If none can be found,
PSYMAKE will use an implicit rule to build the target file.

Dependencies:
A dependency is constructed as follows :

targetfile : [sourcefiles]
[command
...
command]

• The first line instructs PSYMAKE that the file "targetfile" depends on the files
listed as "sourcefiles".

• If any of the source files are dated later than the target file, or the target file does
not exist, PSYMAKE will issue the commands that follow in order to rebuild the
target file.

• If no source files are specified, the target file will always be rebuilt.

• If any of the source files do not exist, PSYMAKE will attempt to build them first
before issuing the commands to build the current target file. If PSYMAKE
cannot find any rules defining how to build a required file, it will stop and report
an error.

The target file name must start in the left hand column. The commands to be
executed in order to build the target must all be preceded by white space (either
space or tab characters). The list of commands ends at the next line encountered with
a character in the leftmost column.

Page 14-4 PSYMAKE Utility Nintendo 64

© SN Systems Ltd

Examples main.cpe: main.n64 inc1.h inc2.h
asmn64 main,main

This tells PSYMAKE that main.cpe depends on the files main.n64, inc1.h
and inc2.h. If any of these files are dated later than main.cpe, or main.cpe
does not exist, the command "asmn64 main,main " will be executed in order to
create or update main.cpe.

main.cpe: main.n64 inc1.h inc2.h
asmn64 /l main,main,main
psylink main,main

Here, two commands are required in order to rebuild main.cpe.

Implicit Rules
If no commands are specified, PSYMAKE will search for an implicit rule to
determine how to build the target file. An implicit rule is a general rule stating how to
derive files of one type from another type; for instance, how to convert .asm files into
.exe files.

Implicit rules take the form:

.<source extension>.<target extension>:
command

 [...
command]

Each <extension> is a 1, 2 or 3 character sequence specifying the DOS file extension
for a particular class of files.

At least one command must be specified.

Examples .s.bin:
asmn64 /p $*,$*

This states that to create a file of type .bin from a file of type .S, the asmn64
command should be executed. (See below for an explanation of the $* substitutions.)

Nintendo 64 PSYMAKE Utility Page 14-5

© SN Systems Ltd

Executing commands:
Once the commands to execute have been determined, PSYMAKE will search for
and invoke the command. Search order is:

• current directory;
• directories in the path.

Command prefixes:
The commands in a dependency or implicit rule command list, may optionally be
prefixed with the following qualifiers :

@ - suppress printing of command before execution
- number - abort if exit status exceeds specified level
- - (without number) ignore exit status (never abort)

• Normally, unless /q is specified on the command line, PSYMAKE will print a
command before executing it. If the command is prefixed by @, it will not be
printed.

• If a command is prefixed with a hyphen followed by a number, PSYMAKE will
abort if the command returns an error code greater than the specified number.

• If a command is prefixed with a hyphen without a number, PSYMAKE will not
abort if the command returns an error code.

• If neither a hyphen or a hyphen+number is specified, and /i is not specified on the
command line, PSYMAKE will abort if the command returns an error code other
than 0.

Page 14-6 PSYMAKE Utility Nintendo 64

© SN Systems Ltd

Macros A macro is a symbolic name which is equated to a piece of text. A reference to that
name can then be made and will be expanded to the assigned text. Macros take the
form:

name = text

• The text of the macro starts at the first non-blank character after the equals sign (
=), and ends at the end of the line.

• Case is significant in macro names.

• Macro names may be redefined at any point.

• If a macro definition refers to another macro, expansion takes place at time of
usage.

• A macro used in a rule is expanded immediately.

Examples FLAGS = /p /s
...
.s.bin:

asmn64 $(FLAGS) /p $*,$*

The $(FLAGS) in the asmn64 command will be replaced with /p / s.

Pre-defined macros:
The following pre-defined macros all begin with a dollar sign and are intended to aid
file usage:

$d Defined Test Macro, e.g.:
!if $d(MODEL)
if MODEL is defined ...

$* Base file name with path, e.g. C:\PSYQ\TEST

$< full file name with path, e.g. C:\PSYQ\TEST.S

$: path only, e.g. C:\PSYQ

$. full file name, no path, e.g. TEST.s

$& base file name, no path, e.g. TEST

The filename pre-defined macros can only be used in command lists of dependency
and implicit rules.

Nintendo 64 PSYMAKE Utility Page 14-7

© SN Systems Ltd

Directives: The following directives are available:

!if expression
!elseif expression
!else
!endif

These directives allow conditional processing of the text between the if, elseif, else
and endif. Any non-zero expression is true; zero is false.

!error message Print the message and stop.

!undef macroname Undefines a macro name.

Expressions: Expressions are evaluated to 32 bits, and consist of the following components :

Decimal Constants e.g. 1 10 1234
Hexadecimal e.g. $FF00 $123abc
Monadics - ~ !
Dyadics + - * / % > < &

| ^ && ||
> < >= <= == (or =)
!= (or <>)

The operators have the same meanings as they do in the C language, except for = and
<> ,which have been added for convenience.

Value assignment:
Macro names can be assigned a calculated value; for instance:

NUMFILES == $(NUMFILES)+1

(Note two equals signs in value assignment)

This evaluates the right hand side, converts it to a decimal ascii string and assigns the
result to the name on the left.

In the above example, if NUMFILES was currently "42", it will now be "43".

Note NUMFILE = $(NUMFILES)+1

would have resulted in NUMFILES becoming "42+1".
Undefined macro names convert to '0' in expressions and null string elsewhere.

Page 14-8 PSYMAKE Utility Nintendo 64

© SN Systems Ltd

Comments:
Comments are introduced by a hash mark (#):

main.exe: main.n64 # main.exe only depends
on main.n64

whole line comment

Line continuation:
A command too long to fit on one line may be continued on the next by making '\' the
last character on the line, with no following spaces/tabs:

main.exe : main.n64 i1.h i2.h \
 i3.h i4.h

Nintendo 64 APPENDIX A Page A-1

© SN Systems Ltd

TBIOS2.COM

Description: TBIOS2.COM is a DOS TSR program, which acts as a driver for the interface board,
installed in the host PC.

Note: This program is only necessary if you are running DOS software.

Syntax TBIOS2 [switches]

where each switch is preceded by a forward slash (/) and separated by spaces.

Switches /a card address Set card address:
200 - 3f8

/b buffer size Specify file transfer buffer size:
2 to 32 (in kilobytes)

/d channel Specify DMA channel:
5, 6, 7; 0 = off

/i intnum Specify IRQ number:
5, 7, 10, 11, 12, 15; 0 = off

/l filename Specify Fileserver log file; All fileserver
functions will be recorded in the specified
file.

/s id Override PC Interface SCSI ID jumper
setting: 0 to 7

/8 Run in 8 bit slot mode

Remarks
• Normally, TBIOS2.COM is loaded in the AUTOEXEC.BAT; it can safely be

loaded high to free conventional memory.
• If TBIOS2 is run again, with no options, the current image will be removed from

memory. This is useful if you wish to change the options without rebooting the
PC.

• If the DMA number is not specified, the TBIOS2 will work without DMA;
however, it will be slower.

• The TBIOS2 can drive the interface in 8 bit mode; however, this is the slowest
mode of operating the interface.

• The buffer size option (/b) sets the size of the buffer used when the target
machine accesses files on PC. A larger buffer will increase the speed of these
accesses; however, more PC memory will be consumed. The default is a 1 K
buffer.

Page A-2 APPENDIX A Nintendo 64

© SN Systems Ltd

Examples TBIOS2 /a308 /d7 /i15

Start the driver using the typical settings of:

Card address 308
DMA channel 7
Interrupt vector 15

Note: The downloaded bios will remain until the interface is powered off. It should
not be necessary to switch it off during the normal course of development. It
is possible to switch the N64 off and on or reset it without affecting the bios
in the interface. The only thing that can cause the interface to lock up is if the
Nintendo 64 saturates access to the cartridge ram. If this happens switch the
Nintendo off and allow it to recover.

Note: If you are using Windows 95, DO NOT install TBIOS2 from your
AUTOEXEC.BAT. Only install it in one DOS box.

Nintendo 64 APPENDIX A Page A-3

© SN Systems Ltd

RUN.EXE - program downloader

Description This program downloads runnable object code to the target machine.

Note: TBIOS2 must be loaded in the current DOS box.

Syntax RUN [switches] file name [[switches] filename...]

where switches are preceded by a forward slash (/) .

Switches /h halt target - that is, download but do not run.
/t# use target SCSI ID number # - always 0 for the Nintendo.
/u# use target unit number # always 0 for the Nintendo.
/w## retry for ## seconds if target does not respond.

Remarks If run is executed without any runtime parameters, the program will simply attempt
to communicate with the target adapter hardware. If successful, run displays the
target identification; if the attempt fails, an appropriate error message is displayed.

The file to be downloaded may contain:

• An executable image, output by the development system, in .cpe format. Up to 8
cpe files may be specified

• A raw binary image of a cartridge.

For an executable file, execution will begin as indicated in the source code; for a
binary ROM image, execution will begin as if the target machine had been reset with
a cartridge in place.

Multiple executable files may be specified. However, only the last executable address
will apply - specified files are read from left to right.

A binary file can be downloaded to a particular address by specifying the address
after the file name, e.g.:

run game.bin,b0000000

will download game.bin to address b0000000 (hex).

Note: The Windows equivalent to this program is pqrun .

Page A-4 APPENDIX A Nintendo 64

© SN Systems Ltd

Running with Brief

Most programmers prefer to develop programs completely within a single, enabling
environment. Future versions of the software will provide a self-contained
superstructure with a built-in editor, tailored to the requirements of the assembly and
debug sub-systems. For the time being however, these facilities can be found in
Borland's Brief text editor.

Installation in Brief

In order to use Brief you will need to make a few changes to your
AUTOEXEC.BAT file after you have installed Brief:

Set the BCxxx environment variables. These variables take the file extension of a
source file to tell Brief how to Assemble or Compile the file. For example:

set bcn64="asmn64 /i /w /d /zd %%s,t0:,%%s,,"
set bcs="asmn64 /i /w /d /zd %%s,t0:,%%s,,"
set bcc="ccn64 -v -g -Xo$80010000 %%s.c -
o%%s.cpe,%%s.sym"

These will Assemble .N64 source file with ASMN64, .S source files with the
ASMN64 assembler (see chapter 2), and Compile .C source files with CCN64 (see
The Build Utility chapter).

Set the BFLAGS environment variable, with -mPSYQ appended, to force the macro
file to be loaded on start-up. For example:

set bflags=-ai60Mk2u300p -mrestore -Dega -D101key -mPSQ

The variable may look different depending on how Brief was set up.

Finally, copy the file PSYQ.CM, containing macros, into the \BRIEF\MACROS
directory, or create it from source file PSYQ.CB;

Nintendo 64 APPENDIX A Page A-5

© SN Systems Ltd

Note: The standard Brief feature of using Alt-F10 to compile the current file as
instructed by the BCxxx environment variable still works as normal. However,
if you take the time to write a simple make file for each of your projects you
will find the System’s keystrokes much more convenient and powerful.

The brief macros:

Ctrl-G Goto label (locate definition of label under the cursor in loaded source
files)

Ctrl-F Return from label (undo the above operation)
Ctrl-W Write out all changed files
Ctrl-V Evaluate expression under cursor using values from symbol file(s)
Ctrl-F9 Select make file for current project
Ctrl-F10 Make program and enter debugger
Alt-F9 Make program and start it running
F9 Enter the Debugger

If you wish to change any of these key assignments then change to your
\BRIEF\MACROS directory and edit the file PSYQ.CB. Near the top of this file you
will see where the keys are assigned to the various functions and it should be easy to
change the key names and re-compile the macro by pressing Alt-F10.

Note: If you re-assign any of the Brief standard key assignments then you may lose
access to that original Brief function.

Ctrl-F9 allows you to select which make file you wish to use. By default, the System
will use the file in your current directory called MAKEFILE.MAK. If you do not
wish to use this file then use Ctrl-F9 to select the preferred make file.

Ctrl-F10, Alt-F9 and F9 work by calling the PSYMAKE program with a suitable
parameter to select which operation to perform. Your System disk includes a simple
make file called MAKEFILE.MAK as an example. If you edit this file you will see
that it defines how to do one of three operations:-

• Assemble and Run
• Assemble but don't Run
• Enter Debugger

Page A-6 APPENDIX A Nintendo 64

© SN Systems Ltd

It should be easy for you to adapt this file to your needs. If you are doing one simple
assembly then all you will have to change is the name of the file that is assembled and
add any other command line options you require.

It does not matter which of your source files you are in when you press one of the
make/debug keys - the make file will specify the commands to the assembler and
debugger.

Nintendo 64 APPENDIX A Page A-7

© SN Systems Ltd

Nintendo 64 APPENDIX B - Error Messages Page B-1

© SN Systems Ltd

Assembler Error Messages

Assembler Messages:

'%n' cannot be used in an expression
%n will be the name of something like a macro or register

'%n' is not a group
Group name required

'%n' is not a section
Section name expected but name %n was found

Alignment cannot be guaranteed
Warning of attempt to align that cannot be guaranteed due to the base alignment of
the current section

Alignment's parameter must be a defined name
In call to alignment() function

Assembly failed
Text of the FAIL statement

Bad size on opcode
E.g. attempt to use .b when only .w is allowed

Branch (%l bytes) is out of range
Branch too far

Branch to odd address
Warning of branch to an odd address

Cannot POPP to a local label
E.g. POPP @x

Cannot purge - name was never defined

Case choice expression cannot be evaluated
On case statement

Code generated before first section directive
Code generating statements appeared before first section directive

Could not evaluate XDEF'd symbol
XDEF'd symbol was equated to something that could not be evaluated

Page B-2 APPENDIX B - Error Messages Nintendo 64

© SN Systems Ltd

Could not open file '%s'

Datasize has not been specified
Must have a DATASIZE before DATA statement

Datasize value must be in range 1 to 256
DATASIZE statement

Decimal number illegal in this radix
Specified decimal digit not legal in current radix

DEF's parameter must be a name
Error in DEF() function reference

Division by zero

End of file reached without completion of %s construct
E.g. REPT with no ENDR

ENDM is illegal outside a macro definition

Error closing file
System close file call returned an error status

Error creating output file
Could not open the output file

Error creating temporary file
Could not create specified temporary file

Error in assembler options

Error in expression
Similar to syntax error

Error in floating point number
In IEEE32 / IEEE64 statement

Error in register list
Error in specification of register list for MOVEM / REG

Error opening list file
System open returned an error status

Error reading file
System read call returned an error status

Nintendo 64 APPENDIX B - Error Messages Page B-3

© SN Systems Ltd

Error writing list file
An error occurred while writing to the list file.

Error writing object file
System write call returned an error or disk is full

Error writing temporary file
Disk write error, probably disk full

Errors during pass 1 - pass 2 aborted
If pass 1 has errors then pass 2 is not performed

Expanded input line too long
After string equate replacement, etc. line must be <= 1024 chars

Expected comma after < >
 <...> bracketed parameter in MACRO call parameter list

Expected comma after operand

Expected comma between operands

Expected comma between options
In an OPT statement

Expecting '%s' at this point
Expecting one of ENDIF/ENDCASE etc. but found another directive

Expecting '+' or '-' after list command
In a LIST statement

Expecting '+' or '-' after option
In an OPT statement

Expecting a number after /b option
On Command line

Expecting comma between operands in INSTR

Expecting comma between operands in SUBSTR

Expecting comma or end of line after list
In { ... } list

Expecting ON or OFF after directive
In PUBLIC statement

Page B-4 APPENDIX B - Error Messages Nintendo 64

© SN Systems Ltd

Expecting options after /O
On Command line

Expecting quoted string as operand

Expression must evaluate
Must be evaluated now, not on pass 2

Fatal error - macro exited with unterminated %s loop
End of macro with unterminated WHILE/REPT/DO loop.
Due to the way the assembler works, this must be treated as a fatal error

Fatal error - stack underflow - PANIC
Assembler internal error - should never occur!

File name must be quoted

Files may only be specified when producing CPE or pure binary
output

In FILE attribute of group

Forward reference to redefinable symbol
Warning that a forward reference was made to a symbol that was given a number of
values in SET or = statements. The value used in the forward reference was the last
value the symbol was set to.

Function only available when using sections

Group '%n' is too large (%l bytes)
Group exceeds value in SIZE attribute

GROUP's parameter must be a defined name
In GROUP() function call

GROUPEND's parameter must be a group name
Error in call to GROUPEND() function

GROUPORG's parameter must be a group
In call to GROUPORG() function

GROUPSIZE's parameter must be a group name
Error in call to GROUPSIZE() function

IF does not have matching ENDIF/ENDC

Illegal addressing mode
Addressing mode not allowed for current op code

Nintendo 64 APPENDIX B - Error Messages Page B-5

© SN Systems Ltd

Illegal character '%c' (%d) in input
Strange (e.g. control) character in input file

Illegal character '%c' in opcode field

Illegal digit in suffixed binary number
In alternate number form 101b

Illegal digit in suffixed decimal number
In alternate number form 123d

Illegal digit in suffixed hexadecimal number
In alternate number form 1abh

Illegal group name

Illegal index value in SUBSTR

Illegal label
Label in left hand column starts with illegal character

Illegal name for macro parameter
In macro definition

Illegal name in command
Target name in ALIAS statement

Illegal name in locals list
In LOCAL statement

Illegal name in XDEF/XREF list

Illegal parameter number
Maximum of 32 parameters

Illegal section name

Illegal size specifier for absolute address
Can only use .w and .l on absolute addressing

Illegal start position/length in INCBIN

Illegal use of register equate
E.g. using a register equate in an expression

Illegal value (%l)

Illegal value (%l) for boundary in CNOP

Page B-6 APPENDIX B - Error Messages Nintendo 64

© SN Systems Ltd

Illegal value (%l) for offset in CNOP

Illegal value for base in INSTR

Initialised data in BSS section
BSS sections must be uninitialised

Instruction moved to even address
Warning that a padding byte was inserted

Label '%n' multiply defined

LOCAL can only be used inside a macro
LOCAL statement found outside macro

Local labels may not be strings
 @x EQUS ... is illegal

Local symbols cannot be XDEF'd/XREF'd

MEXIT illegal outside of macros

Missing '(' in function call

Missing ')' after function parameter(s)

Missing ')' after file name
In FILE attribute

Missing closing bracket in expression

Missing comma in list of case options
In =... case selector

Missing comma in XDEF/XREF list

MODULE has no corresponding MODEND

Module may not end until macro/loop expansion is complete
If a loop / macro call starts inside a module then there must not be a MODEND until
the loop / macro call finishes

Module must end before end of macro/loop expansion - MODEND
inserted

A module started inside a loop / macro call must end before the loop / macro call
does

More than one label specified
Only one label per line (can occur when second label does not start in left column but
ends in ':')

Nintendo 64 APPENDIX B - Error Messages Page B-7

© SN Systems Ltd

Move workspace command can only be used when downloading
In WORKSPACE statement

Names declared with local must not start with '%c'
In LOCAL statement

NARG can only be used inside a macro
Use of NARG outside macro

NARG's parameter must be a number or a macro parameter name
Illegal operand for NARG() function

No closing quote on string

No corresponding IF
ENDIF/ELSE without IF

No corresponding DO
UNTIL without DO

No corresponding REPT
ENDR without REPT

No corresponding WHILE
ENDW without WHILE

No matching CASE statement for ENDCASE
ENDCASE without CASE

No source file specified
No source file on command line

Non-binary character following %

Non-hexadecimal character '%c' encountered
In HEX statement

Non-hexadecimal character starting number
Expecting 0-9 or A-F after $

Non-numeric value in DATA statement

OBJ cannot be specified when producing linkable output
OBJ attribute on group

Odd number of nibbles specified
In HEX statement

OFFSET's parameter must be a defined name
Error in OFFSET() function call

Page B-8 APPENDIX B - Error Messages Nintendo 64

© SN Systems Ltd

Old version of %n cannot be purged
Only macros can be purged

One string equate can only be equated to another
Attempt to equate to expression, etc.

Only one of /p and /l may be specified
On Command line

Only one ORG may be specified before SECTION directive

Op-code not recognised

Option stack is empty
POPO without PUSHO

Options /l and /p not available when downloading to target
On Command line

ORG ? can only be used when downloading output

ORG address cannot be specified when producing linkable
output

No ORG group attributes when producing linkable output

ORG cannot be used after SECTION directive

ORG cannot be used when producing linkable output

ORG must be specified before first section directive
When using sections only one ORG statement may appear before all section
statements (other than as group attributes)

Out of memory, Assembler aborting

Out of stack space, possibly due to recursive equates
Assemblers stack is full, possible cause is recursive equates, e.g. x equ y+1 , y equ
x*2

Nintendo 64 APPENDIX B - Error Messages Page B-9

© SN Systems Ltd

Overflow in DATA value
DATA value too big

Overlay cannot be specified when producing linkable output
No OVER group attributes when producing linkable output

Overlay must specify a previously defined group name
Error in OVER group attribute

Parameter stack is empty
POPP encountered but nothing to pop

POPP must specify a string or undefined name

Possible infinite loop in string substitution
E.g. reference to x where x is defined as x equs x+1

Previous group was not OBJ'd
OBJ() attribute specified but previous group had no obj attribute to follow on from

Psy-Q needs DOD version 3.1 or later.

Purge must specify a macro name

Radix must be in range 2 to 16

REF's parameter must be a name
Error in REF() function reference

Register not recognised
Expecting a register name but did not recognise

Remainder by zero
As for division by 0 but for % (remainder)

Repeat count must not be negative
REPT statement error

Replicated text too big
Text being replicated in a loop must be buffered in memory but this loop was too big
to fit

Resident SCSI drivers not present.

SCSI card not present - assembly aborted
SECT's parameter must be a defined name
Error in SECT() function call

Page B-10 APPENDIX B - Error Messages Nintendo 64

© SN Systems Ltd

SECTEND's parameter must be a section name
Error in call to SECTEND() function

Section stack is empty
POPS without PUSHS

Section was previously in a different group
Section assigned to a different group on second invocation

SECTSIZE's parameter must be a section name
Error in call to SECTSIZE() function

Seek in output file failed
DOS seek call returned error status

Severity value must be in range 0 to 3
In INFORM statement

SHIFT can only be used inside a macro
SHIFT statement outside macro

Short macro calls in loops/macros must be defined before
loop/macro

Short macros may not contain labels

Size cannot be specified when producing linkable output
SIZE attribute on group

Size specified in /b option must be in range 2 to 64
On command line

Square root of negative number

Statement must have a label
No label on, for example, EQU op

STRCMP requires constant strings as parameters

String '%n' cannot be shifted
String specified in SHIFT statement is not a multi-element string (i.e. {...} bracketed)
and so cannot be shifted.

STRLEN's operand must be a quoted string

Symbol '%n' cannot be XDEF'd/XREF'd

Symbol '%n' is already XDEF'd/XREF'd

Nintendo 64 APPENDIX B - Error Messages Page B-11

© SN Systems Ltd

Symbol '%n' not defined in this module
Undefined name encountered

Syntax error in expression

Timed out sending data to target
Target did not respond

Too many characters in character constant
Character constants can be from 1 to 4 characters

Too many different sections
There is a maximum of 256 sections

Too many file names specified
On command line

Too many INCLUDE files
Limit of 512 INCLUDE files

Too many INCLUDE paths specified
Too many INCLUDE paths in /j options on command line

Too many output files specified
Maximum of 256 output files

Too many parameters in macro call
Maximum number of parameters (32) exceeded

Too much temporary data
Assembler limit of 16m bytes of temporary data reached

TYPE's parameter must be a name
Call of TYPE() function

Unable to open command file
From Command line

Undefined name in command
Target name in ALIAS statement

Unexpected case option outside CASE statement
Found =... statement outside CASE/ENDCASE block

Unexpected characters at end of Command line

Page B-12 APPENDIX B - Error Messages Nintendo 64

© SN Systems Ltd

Unexpected characters at end of line
End of line expected but there were more characters encountered (other than
comments)

Unexpected end of line

Unexpected end of line in macro parameter

Unexpected end of line in list parameter
In { ... } list

Unexpected MODEND encountered
MODEND without preceding MODULE

UNIT can only be specified once
In UNIT statement

UNIT cannot be used when producing linkable output
In UNIT statement

Unknown option
In OPT statement

Unknown option /%c
Unknown option on Command line

Unrecognised attribute in GROUP directive

Unrecognised optimisation switch '%c'
In OPT statement or Command line

User pressed Break/Ctrl-C
Assembly aborted by user

XDEF'd symbol %n not defined
Symbol was XDEF'd but never defined

XDEF/XREF can only be used when producing linkable output

Zero length INCBIN - Warning of zero length INCBIN statement

Nintendo 64 APPENDIX B - Error Messages Page B-13

© SN Systems Ltd

Psylink Error Messages

Linker Messages:

%t %n redefined as section
New definition of previously defined symbol

%t '%n' redefined as group
New definition of previously defined symbol

%t '%n' redefined as XDEF symbol
New definition of previously defined symbol

Attempt to switch section to %t '%n'
Non-section type symbol referenced in section switch

Attempt to use %t '%n' as a section in expression
Section type symbol required

Code in BSS section '%n'
BSS type sections should not contain initialised data

COFF file has incorrect format
COFF format files are those produced by Sierra C cross compiler, etc.

Different processor type specified
Object code is for different processor type than target or attempt was made to link
code for different processor types

Division by zero

Error closing file
Close file call returned error status

Error in /e option
On Command line

Error in /o option
On Command line

Page B-14 APPENDIX B - Error Messages Nintendo 64

© SN Systems Ltd

Error in /x option
On Command line

Error in command file

Error in Linker options
On Command line

Error in REGS expression

Error reading file %f
Read file call returned error status

Error writing object file
Write file call returned error status - probably disk full

Errors during pass 1 - pass 2 aborted
Pass 2 does not take place if there were errors on Pass 1

Expecting a decimal or hex number
/o option on Command line

File %f is in out-of-date format
File should be re-built before re-assembling

File %f is not a valid library file

File %f is not in PsyLink file format

Group '%n' is too large (%l bytes)
Group is larger than its size attribute allows
Group '%n' specified with different attributes
Different definitions of a group specify different attributes

Illegal XREF reference to %t '%n'
Object file defines xref to symbol which cannot be xref'd, e.g. a Section name

Multiple run addresses specified
More than one run address specified

No source files specified
No source file on Command line

Nintendo 64 APPENDIX B - Error Messages Page B-15

© SN Systems Ltd

Object file made with out-of-date assembler
File should be re-built before re-assembling

Only built in groups can be used when making relocatable
output

When /r command line option is used, only the built in groups can be used, i.e. no
new groups may be defined

Option /p not available when downloading to target

Options /p and /r cannot be used together
On Command line

ORG ? can only be used when downloading output

Out of memory, Linker aborting

Previous group was not OBJ'd
Cannot specify OBJ() attribute if previous group did not have obj attribute

Reference to %t '%n' in expression
Use of, e.g. a section name in an expression

Reference to undefined symbol #%h
There is an internal error in the object file

Relocatable output cannot be ORG'd

Remainder by zero

Run-time patch to odd address
Warning that a run-time longword patch to an odd address will occur which may
cause some Amiga systems to crash

SCSI Card not present - Linking aborted
Could not find SCSI Card

SCSI drivers not loaded

Section '%n' must be in one of groups code, data or BSS
When producing Amiga format code

Page B-16 APPENDIX B - Error Messages Nintendo 64

© SN Systems Ltd

Section '%n' placed in non-group symbol #%h
There is an internal error in the object file

Section '%n' placed in non-group symbol '%n'
An attempt was made to place a section in a non-group type symbol

Section '%n' placed in two different groups
Section is placed in different groups

Section '%n' placed in unknown group symbol #%h
There is an internal error in the object file

Section '%n' must be in one of groups text, data or BSS
When producing ST format code

Symbol '%n' multiply defined
New definition of previously defined symbol

Symbol '%n' not defined
Undefined symbol

Symbol '%n' placed in non-section symbol #%h
There is an internal error in the object file

Symbol '%n' placed in unknown section symbol #%h
There is an internal error in the object file

Symbol in COFF format file has unrecognised class
COFF format files are those produced by Sierra C cross compiler, etc.

Timed out sending data to target
Target not responding or offline

Too many file names specified
Too many parameters on command line

Too many modules to link
Maximum of 256 modules may be linked

Too many symbols in COFF format file
COFF format files are those produced by Sierra C cross compiler, etc.

Unable to open output file
Could not open specified output file

Undefined symbol in COFF file patch record
COFF format files are those produced by Sierra C cross compiler, etc.

Unit number must be in range 0-127

Nintendo 64 APPENDIX B - Error Messages Page B-17

© SN Systems Ltd

Unknown option /%c
On Command line

Unknown processor type '%s'
Could not recognise target processor type

Unrecognised relocatable output format
/r option on command line

User pressed Break/Ctrl-C
Linking aborted by user

Value (%l) out of range in instruction patch
Value to be patched in is out of range

WORKSPACE command can only be used when downloading output

Page B-18 APPENDIX B - Error Messages Nintendo 64

© SN Systems Ltd

Psylib Error Messages

Librarian Messages:

Cannot add module : it already exists
Module may only appear in a library once

Could not create object file
Error creating object file when extracting

Could not create temporary file
Error creating temporary file

Could not open/create
System error opening file

Error reading library file
System error occurred reading file

Error writing library file
System error writing file, probably disk full

Incorrect format in object file
Error in object file format - re-build it

No files matching
No object files matching the specifications were found

No library file specified

No object files specified

No option specified
An action option must be specified on the command line

Unknown option /
On Command line, option not recognised

Nintendo 64 Index Page I-1

© SN Systems Ltd

...5-6
$...5-6
& ...5-5
\ ... 3-6,5-6, 5-7
{ ...5-7
< > ...3-11,5-4
/ ...2-2,3-11
@ ...2-2
- ...3-11
! ...3-11
$...3-4
% ...3-11
& ..3-2, 3-11
()...3-11
* ..3-7, 3-11,5-7
. ...3-3
: ...3-3
; ...3-2
? ...3-3
@.. 3-3, 3-7, 3-8
^ ...3-11
_ ...3-3
__RS..3-7
_filename...3-7
~ ...3-11
< ...3-11
<< ..3-11
<= ..3-11
> ...3-11
>= ..3-11
>> ..3-11
? ...4-23
_ _RS..4-11
{ ...4-7
= ..3-11,4-5, 4-38
=?...4-38
8 bit...A-1
16 bit slot...1-4
32 bit evaluator..1-15
64 bit data..1-15

A

About The System.. I-ii
adapter cartridge ... I-i
Adapter firmware.. I-iii
Adding A Watch..10-57
Additional hardware...1-2
Additional Notes..1-15
ALIAS...3-15
Alignment..3-10
Alignment..4-20
Alignment..8-4
Alternate Numeric..9-4
Anchoring a Pane...10-78
array...10-52

Environment Variable..2-4
Assembler

Running with Brief..A-4
AUTOEXEC.BAT.................................A-1, A-2, A-4
Assembler

Options... 9-3, 9-5
Warning Messages... 9-6

Assembler
Command File... 2-2
Error Messages.. 2-5
User Termination... 2-4

Assembler
Comment Lines... 3-2
Constants.. 3-4, 3-7
Continuation Lines.. 3-2
Functions.. 3-9, 3-10
Operators... 3-11

Assembler, White Space.. 9-5
Assigning Variables...10-54
Assignment Directives... 4-2
Automatic Even................................. 4-13, 4-14, 4-15

B

Beta Test Scheme.. 10-6
boot block.. 1-15
Boot header block.. 1-2
Break at Point...10-66
Break if expression is true...................................10-66
Breakpoints..10-64
Brief... I-v
Brief..A-5

Macros...A-5
BSS... 8-2
buffer size..A-1

C

C++ compiler...I-ii
card address..A-1, A-2
cartridge emulation RAM..I-i
Cartridge port..I-iii
CASE.. 4-31
Case Sensitivity... 9-4
channel..A-1
Character Constants.. 3-4
Checking the Installation..................................... 1-12
checksum values.. 1-15
Command Lines

RUN..A-3
CNOP.. 4-20,8-4
CPE Files..A-3
Command Files

PSYLINK.. 11-4
Command Lines

PSYLINK.. 11-2
Command Files

Assembler.. 2-2
Command Lines

Assembler.. 2-2
Command Lines

PSYMAKE.. 14-2

Page I-2 Index Nintendo 64

© SN Systems Ltd

COMMAND.COM...14-5
Compact cartridge... I-iii
completion...10-58
Configuring Your SCSI Card...............................10-9
Connecting Cable...1-1
Constants

Character..3-4
Integer..3-4
Location Counter..3-7
Special ...3-6
Time and Date..3-6

Continuation Lines
Assembler..3-2

Continual Update Rate.......................................10-63
CPE File Properties..10-22
cross development system.. I-i

D

DATA..4-17
DATASIZE..4-17
Date Constants...3-6
Debug stub code...1-14
Debug vector..1-14
Decrease Index...10-49
DEF ...4-27
Deleting A Watch...10-62
Development systems.. I-iv
DISABLE...3-13
dip switches...1-5, 1-6
DMA Channel..1-6, A-1, A-2
DMA number..A-1
DOS..A-2
DO...4-34
DOS... I-v

E

Edit breakpoint...10-65
Editing A Watch..10-61
ELF libraries..1-16
ELF object file format...1-16
ELFCONV - Library Converter Program..............1-16
Elfconv errors...1-17
ELSE ...4-29
ELSEIF..4-29
END...4-29
ENDC..4-29
ENDCASE...4-31
ENDIF...4-29
ENDM...5-2
ENDR..4-32
ENDW...4-33
Environment Variables...2-4
EQU...4-3
EQUR..4-8
EQUS...4-6
Error Messages

Assembler..2-5
Expand/Collapse..10-49
Expanding Or Collapsing A Variable.................10-55

Expressions
Constants... 3-4
Functions.. 3-9, 3-10
Operators... 3-11

F

Edit breakpoint...10-65
Editing A Watch...10-616
ELF libraries ... 1-16
ELF object file format.. 1-16
ELFCONV - Library Converter Program............. 1-16
Elfconv errors.. 1-17
ELSE... 4-29
ELSEIF... 4-29
END.. 4-29
ENDC ... 4-29
ENDCASE.. 4-31
ENDIF... 4-29
ENDM... 5-2
ENDR ... 4-32
ENDW.. 4-31
Environment Variables.. 2-4
EQU.. 4-3
EQUR.. 4-8
EQUS.. 4-6
Error Messages

Assembler.. 2-5
Expand/Collapse...10-49
Expanding Or Collapsing A Variable.................10-55
Expressions

Constants... 3-4
Functions.. 3-9, 3-10
Makefiles...8
Operators... 3-11

G

game cartridge... 1-2
game image... 1-15
GLOBAL.. 9-11, 11-6
GNU C Program

Example Linker Command File....................... 11-8
Gnu-C. ..I-i

H

Hardware interrupt.. 1-15
hardware required..I-I
HEX.. 4-16
host PC..A-1

I

IBM.. I-v
IEEE32.. 4-17
IEEE64.. 4-17
INCBIN... 4-25
INCLUDE... 4-23
Increase Index..10-51
Installing Development Software......................... 1-19
Installing The Debugger...................................... 10-4
Installing the GNU ‘C’ Software.......................... 1-11

Nintendo 64 Index Page I-3

© SN Systems Ltd

Installing The Hardware...1-2
INSTR..6-4
Interface Board..A-1
intnum...A-1
IO Address...1-7
IRQ Number..A-1

L

Labels ..10-76
Labels

Format..3-3
Symbols..3-3

Labels
Local..7-1

Launching The Debugger...................................10-13
LED...1-3
Librarian... See PSYLIB
Library conversion...1-16
library tool...1-16
Linker .. See PSYLINK
LIST ..9-7
LOCAL..7-4
Local Labels

Within Modules..7-3
Local Labels

Descope..9-4
Signifier ...9-5

Location Counter..3-7

M

MACRO...5-2
Macros...5-10

Continuation Lines...5-4
Control Characters...5-6
Entire Parameter ..5-6
Extended Parameters..5-6
Integers to Text..5-5
Parameter Type..5-11
Parameters..5-3
Unique Labels..5-5

MEXIT ..5-2
MODEND..7-3
MODULE..7-3

N

NARG..5-7
Nintendo 64 libraries..1-15
NOLIST...9-7

O

OBJ..4-21
OBJ..8-3
OVER..8-3
OBJEND..4-21
Obtaining Releases And Patches...........................10-5
OFFSET...8-7
On-line Help Available For The Debugger...........10-3
Operator Precedence...3-11
Operators ...3-11

ORG... 4-19 ,8-2

P

Pane Type...10-41
PC Board... 1-1
PC Interface

Installation .. 1-5
PC Interface board... 1-5
PC memory..A-1
PC Processor... 1-7
PC Software
pointer..10-52
POPO.. 9-7
Power supply... 1-3
Project..10-19
PSYLIB librarian program.................................. 1-16
PSYLIB... 12-1

Command Line.. 12-2
PSYLINK.. 11-1

Command Line.. 11-2
PSYMAKE.. 14-1

Command Line.. 14-2
Makefile.. 14-3

PUBLIC.. 11-7
PUBLIC.. 9-10
PURGE... 5-10
PUSHO.. 9-7
PUSHP.. 5-9
PUSHS.. 8-6

R

RADIX.. 3-12
REF... 4-26
REGS.. 4-36
Register Names...10-75
REPT .. 4-32
RSRESET.. 4-11
RSSET.. 4-10
RUN..A-3

Command Line..A-3
Run to cursor..10-45
R4300 assembler...I-i

S

Saturates access to cartridge ram...........................A-2
Scope of Local Labels.. 7-2
SCSI bus.. 1-8
SCSI Card... 1-2
SCSI ID... 1-8
SCSI ID duplication.. 1-8
SCSI parallel link...I-ii
SCSI Termination Power....................................... 1-7
SECT .. 8-7
Simple Name Completion...................................10-58
Structuring the Program.. 8-1
security chip.. 1-2
SET... 4-4
setcsum.exe... 1-15
SGI workstation... 1-16

Page I-4 Index Nintendo 64

© SN Systems Ltd

SHIFT..5-7
SIZE ..8-2
Specifying Binary File Properties.......................10-24
Specifying Symbol File Properties......................10-23
Step Into command..10-67
Step Over command...10-68
STRCMP..6-3
String Manipulation Functions...............................6-1
STRLEN..6-2
SUBSTR..6-5
Syntax of Local Labels...7-2

T

Target Interface..1-1
Target interface... I-iii
TBIOS2...A-2
TBIOS2 Command Line..A-1
TBIOS2.COM...A-1
TSR program..A-1
test program...1-15
Time Constants..3-6
TLB ...1-15

Toolbar Icons..10-29
Traversing An Index...10-56
TYPE.. 5-11
Typecasts and Typedefs......................................10-75

U

Unit toolbar..10-17
UNTIL .. 4-34

W

Warnings, Assembler Messages............................. 9-5
White Space, Assembler.. 9-5
WHILE.. 4-33
WORD.. 8-2

X

XDEF.. 9-10, 11-7
XREF.. 9-10, 11-7

Z

Zilog Numbers.. 9-4

