
.. '°"
0 ca 2 Ill
... 2 -2

· .
..

•

•

•

. NINTEND0~4 ·

Audio Development
,:; d. ~

. ~- ..

Guide
.· ' ..

NUS-06-0151-001A
Released: 11 /18/97

Nintendo 64 Audio Development Guide

':

,-
'

- \~''

D.C.N. NUS-06-0151-001 Rev. A

This document contains confidential and
proprietary information and is also
protected under the copyright laws of the
United States and foreign cou"'tries. No
part of this document may be released,
distributed, transmitted or reproduced in a
any form or by any electronic or
mechanical means, including information ··
storage and retrieval systems, without the
written permission of Nintendo.

© 1997 Nintendo of America Inc.

~ ,:... -; . . ;, • 1. 1, <. '

. ~, ,

2

•

•

•

•

•

•

Table of Contents

Table of Contents

AUDIO SYSTEM OVERVIEW .. 7
SGI AUDIO LIBRARY .. 9

SOUND PLAYER ... 9
SEQUENCE PLAYER .. 9
SYNTHESIS DRIVER ... 10
AUDIO MICROCODE ... 10

SOUND PLAYBACK .. 13
OVERVIEW OF SOUND PLAYBACK ... 13
SYNTHESIZER CONFIGURATION .. 14

Initializing the Audio Heap ... 15
Setting the Hardware Playback Rate ... 16
Creating the Synthesizer ... 17
Preparing the DMA Callback Routine .. 20

PLAYING A SEQUENCE .. 21
Reading the Audio Bank from ROM .. 21
Reading MIDI Sequence from ROM .. 22
Sequence Player Startup .. 22
Sequence Structure Initialization ... 26
Configure the Sequence ... 27
Audio Bank Initialization .. 28
Audio Bank Settings .. 29
Sequence Playback .. 30
Stopping a Sequence .. 31
Sequence Player Deletion ' .. 32

3 NUS-06-0132-001 A
Released: 9/9/97

.Nintendp 64 Audio Development Guide

Table of Contents (continued)

PLAYING SOUND EFFECTS ... 34
Reading the Audio Bank from ROM .. 34 • ;.·;:: Sou.nd Player Startup .. 35
Audio Bank Initialization .. 36
Allocation of Sound Resources ... 37
Sound Selection .. 38
Sound Playback .. 38
Stopping Sounds ... 39

. , Sound· Player Deletion .. 39
AUDIO STACK EXECUTION ... 40

Buffer Preparation (triple buffer) .. 40
Synchronizing Retrace Events, SP Events 40
Adjusting the Frame Size .. 40

. . Creating the Audio Command List .. 41
· "Ex~quting the Audio Task List.. ... 41

. '\ Audio DAC Settings .. 44
l,J$E.OF AUDIO TOOLS .. 45
~-~bUND DEVELOPMENT PROCESS .. 45
;\, "Creating the Wave Table .. 45
i.·" Creating Bank Files , ... ;f.t;..;:il·t•· 45
. tooUfFOR CREATING WAVE TABLES ~ .. ~~ :: 46

•
Tabledesign Tool .. •.;-'····:··• 46
''vadpcm_enc" Tool ... 47

. . The ic (Installment Compiler) .. 48

.~ .' Creating tlie ic Source File .. 50
,,.,· 'other Tools .. .:.;~ 59
, Jt)OLS FOR CREATING THE SEQUENCE BANK : 60

The midicvt Tool .. 60
The midicomp Tool ... 61
The sbc Tool ... 62
Other Tools ... 63

•
4 .. -~- . -~;-·,,- :_.,_)· .

•

•

•

Table of Contents

Table of Contents (continued)

PROGRAMMING CAUTIONS ... :~ 65
COMMON VALUES' 65
MANAGING RESTRICTIONS AND ALLOCATING RESOURCES: ... 65

Determining Hardware Playback Rates ; 66
Limitations on Voice and Processing Time ' 66
Sound and Music (BGM) Bank Partitioning 67
ROM Space Limitations .. : ... 67

CREATING SAMPLE DATA ... : 67
PLAYBACK PARAMETERS AND THE INSTALL (.INST) FILE ... : 69

Sample Parameter Settings for the Install File 69
Use of the Install File .. 70
Envelopes ... _ 70
Keymap .. · 71
Tuning Samples Recorded at the Hardware Playback Rate ; 71
Tuning Samples Recorded at a Rate Other than the Hardware ,
Playback Rate ... '.: .. ::'..'..: ... 72
Sounds .. :·; .. ':· · :·.\73·
Instruments .. !'..','::i:~74
Banks .. ;/ .. 74
Making a Bank· File .. .; ,_:\ -.-.. ~· .. .-: .. _74

MIDI FILES .. : : : : ~~· .. 75
Loops in a Sequence ... ;: 75
Nested Loops .. ." . ." · ': 77
Creating a Compact MIDI File that Contains Loops:~ ·.· :.' ... 78
Problems Related to Loops ... 78

CREATING THE MAKEFILE .. 78
GENERAL MIDI AND N64 ... ~?. 79

5 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

•

•

•
6

•

•

•

Audio System Overview

AUDIO SYSTEM OVERVIEW
Nearly all of the audio functions for Nintendo 64 (N64) are implemented
by software. The N64 does not use a sound-generator chip or dedicated
DSP. This provides a greater degree of flexibility in sound development.
For example, there are no hardware-imposed restrictions on the number
of simultaneous sounds which can be produced. A great variety of
effects can be implemented with software.
Because there are limitations on processing speed and memory, it is
necessary to examine a means of implementing high-quality audio that
does not impose a burden on other types of processing, such as
graphics. In addition, not all special effects that are theoretically possible
are supported by standard libraries. Thus, the programmer must create
waveform synthesis drivers for those effects that are not supported.

Waveform synthesis processing is performed by coordinated operation of
the CPU and RSP. The CPU creates an audio command list in the audio
command buffer, in RAM. This list is interpreted and executed by the
audio microcode run by the RSP, resulting in actual waveform synthesis .

In general, audio data is synthesized by the CPU and RSP for each field
of a video signal (1/60 sec for NTSC, 1/50 sec for PAL) and stored in the
audio buffer. It is necessary to reserve a buffer just large enough to
accommodate the playback rate (the rate that determines the amount of
sample data output per second).
The Al (audio interface) reads monaural or stereo waveform data from a
memory area specified as the audio buffer at fixed time intervals. It
sends this data to the DAC (D/A converter for audio output), resulting in
sound output.

A figure that outlines the audio system is shown on the following page .

7 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

Application •
Synthesizer Driver

Creation

RD RAM
(command list buffer)

RSP • Creation

RD RAM
(audio buffer)

Audio Interface (Al)

AudioDAC
Figure 1 : Sound Processing Flow

•
8

•

•

•

SGI Audio Library

SGI AUDIO LIBRARY
The descriptions in this manual are based on the assumption that the SGI
(Silicon Graphics Inc.) audio library is being used. However, because the
synthesis drivers and microcode used are common to those used with
other players (Nintendo 64 Sound Tools audio library and players made
by the user), it is likely that the information provided here can also be
applied to those players.
The N64 audio library made by SGI is a lightweight function library.
When used with the N64, it can synthesize and operate audio in an
interactive format. This library supports both sound sample playback and
wave-table synthesis. Wave-table synthesis is a music synthesis system
that involves creating a table containing sample sounds (wave table),
changing components of the sample sounds in the table (such as the
pitch), and playing music. These functions are implemented using four
software objects; a sound player, sequence player, synthesizer driver,
and audio microcode .

SOUND PLAYER
The sound player is used mainly when sound effects are reproduced. It
can reproduce both ADPCM-compressed sound and 16-bit
uncompressed sound, as well as looped or non-looped sound.

SEQUENCE PLAYER
There are two types of sequence players. One is used to play standard
MIDI files of format Type 0. The other is used to play compact MIDI files,
a special N64 format. Both types perform sequence, instrument bank,
and sequence resource allocation; sequence interpretation; and MIDI
message scheduling.
Aside from having different sequence formats, the functions of the two
sequence players are nearly identical. However, the player of Type O
standard MIDI files is capable of external loop control, while the compact
MIDI player executes loops using loop commands embedded in the
sequence data. The compact MIDI player can create a different loop for
each track, making nested loops possible.

9 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guida

Both the sequence player and sound player are clients of the synthesis
driver. The synthesis driver can have any number of clients, including
multiple sound players and sequence players.

SYNTHESIS DRIVER
The synthesis driver creates the audio command list executed by the
RSP audio microcode. The application creates tasks based on this audio
command list and passes these tasks to the audio microcode.
Use of the synthesis driver enables the player to allocate a wave table to
the reproduced voice (synthesizer voice: a voice actually processed by
the synthesizer) and thereby control the playback parameters.
The synthesis driver can be used to reproduce ADPCM-compressed 16-
bit audio files. The N64 ADPCM compression format compresses
waveform data to approximately 1/4 of its original size.
Multiple players can be registered in the synthesis driver. In general, the
sequence player and sound player are registered for use, but players
created by the user can also be registered.
To conserve memory space, waveform data is generally kept in memory,
and data in ROM is retrieved by DMA as needed. The routines for this
processing are stored in the configuration structure required to initialize
the synthesis driver. These routines must be prepared at the application
level.

AUDIO MICROCODE
The audio microcode is used for waveform synthesis. It uses the RSP as
the processor for waveform synthesis.
The audio microcode processes tasks received from the application and
synthesizes 16-bit UR stereo sample data.
The RSP can perform eight product-sum calculations in a single cycle,
using the vector unit (VU). Using this method, waveform synthesis is
performed in units of 8 samples per cycle.

10

•

•

•

•

•

•

SGI Audio Library

The RSP can directly access only the DMEM within the RSP. Because
the capacity of DMEM is limited, the number of samples that can be
processed at one time is also limited. Consequently, a single frame's
worth of data must be divided and then processed.
The most common synthesis drivers process 160 samples at one time.
(A synthesis driver is currently available from Nintendo which processes
in units of 180 samples at a time.)

,u

11 NUS-06-0132-001 A
Released: 9/9197

Nintendo 64 Audio Development Guide

•

•

•
12

•

•

•

Sound Playback

SOUND PLAYBACK
The descriptions provided in this section are generally aimed at
programmers who are new to programming sound for the N64.

OVERVIEW OF SOUND PLAYBACK
The process of creating and reproducing sound is summarized in the
following steps.
1. Create and initialize the necessary resources (usually audio heap,

synthesizer, player).
2. Make repeat calls to alAudioFrame to create the audio task lists.
3. Execute these task lists with the RSP.
4. Call osAiSetNextBuffer to configure the output DAC, which outputs

the audio.
Although the process of creating and initializing the required resources
depends to some extent on the demands of the application, it generally
proceeds according to the following steps.
1. Call alHeapini t to create the audio heap.
2. Call osAiSetFrequency to set the output frequency.
3. Call alinit to create the synthesizer. {alinit requires a callback

routine that initializes the audio OMA structure.)
4. Create a message cue to receive signals that coordinate the timing of

audio processing.
5. Create a player (e.g. sound player, sequence player) to add to the

synthesizer.
6. Initialize the resources allocated to each player .

13 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

SYNTHESIZER CONFIGURATION
Before sound can be reproduced, the synthesizer must be configured.
The configuration process is listed below.
1. Initialize the audio heap.
2. Set the audio playback rate.
3. Create the synthesizer.
4. Prepare the DMA callback routine.
Each of these steps is described in the following paragraphs.

14

•

•

•

•

•

•

Sound Playback

Initializing the Audio Heap

The memory required for each function in the audio library is dynamically
allocated from a memory area called the audio heap. Thus, to use the
audio library, the audio heap area must first be initialized. The
alHeapini t () function is used for this purpose.

alHeaplnit()
Syntax

#include <libaudio.h>
void alHeapinit(ALHeap *hp, u8 *base, s32 len);

Arguments
hp Pointer to the ALHeap structure, which indicates the heap to

be initialized
base Pointer to the beginning of the DRAM heap
len Length of the DRAM heap in bytes

With sample programs such as soundmonkey, approximately 300 KB of
memory is allocated as the audio heap. However, the memory size
required for the heap area must be determined by considering factors
such as the number of simultaneous sounds and the MIDI sequence data
used.

Although there is no formula for deciding the appropriate heap size, the
amount of remaining available memory can be determined by checking
the ALHeap structure, which designates the heap. This amount can be
computed using (heap->cur - heap->base). After all buffers needed by
the application are allocated, please check the remaining available
memory in the heap and evaluate whether the heap size is appropriate.

Not~; Mfllflory allocatl:JCI to th• audio heap cannot be released .

15 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

Setting the Hardware Playback Rate

Next, the hardware playback rate must be set. The
osAiSetFrequency () function is used for this purpose.

osAiSetFrequency()

Syntax
#include <ultra64.h>
s32 osAiSetFrequency(u32 frequency)

Arguments
frequency

Return Value

frequency (Hz)

Actual hardware playback rate
Example:

c.outputRate = osAiSetFrequency(OUTPUT_RATE);

•

Based on the frequency argument, osAiSetFrequency () computes an •
accurate quantity from an internal divisor and returns the actual
frequency. Please set the frequency argument to 3000-368000 Hz for
NTSC systems and 3050-376000 Hz for PAL systems.

•
16

Sound Playback

Creating the Synthesizer

• The alini t () function is used to create the synthesizer.

•

•

allnit()

Syntax
#include <libaudio.h>
void alinit(ALGlobals *globals, ALSynConfig *c);

Arguments
globals
c

Pointer to the ALGlobals structure
Pointer to the synthesis driver configuration structure

Before the synthesis driver is created, the synthesis driver configuration
structure must be defined. The following are parameters for the
synthesis driver configuration structure.

maxVVoices
This parameter sets the maximum number of virtual voices.

Virtual voices is a hypothetical voice parameter declared in a way that is
most useful for the player. It is described by the Al Voice structure.
Virtual voices must be allocated to players used in sound playback.
Replacement of a virtual voice with a low priority sequence, once it has
been allocated to a physical voice, by a virtual voice with a higher priority
sequence is called "voice steeling." This occurs when (number of virtual
voices)> (number of physical voices). Voice stealing can be prevented
by assigning a priority sequence to the virtual voice.

maxPVoices

·. ······tr1~tern•~i1QtjteJ1:>ei:mimp1emehtoo at tf!e
.·tstage it developfitfmt .(de'{elopment.t:11)vlfdnment

. 2~0H)~ Thusfsetting·thispafijrrieterwill have no effect.

This parameter sets the maximum number of physical voices (the number
of voices for which wave-form synthesis is actually performed). This
corresponds to a sound processing module composed of the ADPCM
decompression, pitch shifter, and gain unit.

17 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

Allocating even more physical voices than virtual voices results in voices
that cannot be used, or wasted voices. Therefore, these parameters
should always be set so that the following is true: (number of physical •
voices) ~ (number of virtual voices).

max Updates

This parameter establishes the maximum number of updates for
undetermined parameters. This is concerned with internal parameter
updates for the synthesis driver. Within the synthesis driver, parameter
settings are processed and the physical voice processor module is
divided before synthesis is performed. Thus, memory area is required to
temporarily hold the parameter contents until the parameter settings are
actually reflected. This parameter can therefore be used to specify the
number of ALParams structures to allocate for internal parameter
updates. In general, numerous updates are needed when numerous
voices are supported.

18

•

•

•

•

•

Sound Playback

maxFXBuses
This parameter identifies the maximum number of auxiliary effects buses .
Because only one bus is currently supported, this parameter is ignored.
Consequently, it can remain unspecified.
dmaproc
This parameter is a pointer to the procedure used during initialization of
the DMA callback routine. The synthesis driver is structured so that
waveform data does not reside in main memory (to conserve memory
space). Consequently, waveform data in ROM must be retrieved by DMA
as needed. The callback routine that performs this processing is
specified here. This routine must be prepared by the application.
Although waveform data can be read into RDRAM in advance, this is not
generally advisable from the perspective of memory efficiency. When
developing sound for the 64DD, however, DMA from the disk as needed
is not possible. Thus, the need may arise to put waveform data for sound
effects in memory, in advance .
heap
This is a pointer to the memory heap used by the audio system. This
specifies the heap area created by alHeapinit ().

outputRate
This is the number of samples generated by the synthesizer per second.
Normally, the return value of osAiSetFrequency ()can be substituted
here.
fxType
This indicates the type of effect used. The following can be specified.

AL_FX_NONE no effect used
AL_FX_SMALLROOM reverb (small room)
AL_FX_BIGROOM reverb (big room)
AL_FX_ECHO echo

chorus
flange

AL_FX_CHORUS
AL_FX_FLANGE
AL_FX_CUSTOM specified for a custom effect

19 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

pa rams
This is a pointer to a parameter string used with AL_Fx_cusTOM. For
information on these parameters, please refer to "The Audio Library" in •
the Nintendo 64 Programming Manual.

Examples of definitions used for the synthesis driver configuration
structure are listed below.
#define MAX_VOICES
#define MAX_UPDATES
#define OUTPUT_RATE

24
64
44100

ALSynConfig

c.maxVVoices
c.maxPVoices
c.maxUpdates
c.dmaproc
c.heap
c.outputRate
c.fxType

c;

MAX_ VOICES;
MAX_ VOICES;
MAX_UPDATES;
&dmaNew;
&hp;
osAiSetFrequency(OUTPUT_RATE);
AL_FX_SMALLROOM;

Preparing the DMA Callback Routine

A OMA callback routine that is called by the synthesis driver must first be
created to retrieve waveform data in ROM and move it to RAM as
necessary. A pointer must be created in the synthesis driver
configuration structure that points to the OMA initialization routine.

This OMA initialization routine is called once for each physical voice.
With its first call, it initializes the OMA buffer and, when waveform data is
actually required, returns a pointer (ALDMAproc pointer) to the called
function.
ALDMAproc accepts address, length, and status pointers for the required
data and returns a pointer to the buffer where this data is stored as its
return value.
For specific configurations, please refer to the sample programs.

The procedure described above enables a synthesizer to be created.
The next objects created will be the clients of the synthesizer; the
sequence player and sound player.

20

•

•

•

•

•

PLAYING A SEQUENCE
Playing a sequence involves the following procedure .
1. Read the audio bank from ROM.
2. Read the MIDI sequence from ROM.
3. Start the sequence player.
4. Initialize the sequence structure.
5. Configure the sequence.
6. Initialize the audio bank.
7. Configure the audio bank.
8. Sequence playback.
The following procedures are then performed, as needed.
9. Sequence termination.
10. Sequence player deletion.
Each of these elements is described below .

Reading the Audio Bank from ROM

Sound Playback

To implement sound for audio, the wave table control file must first be
moved to RAM using DMA transfer. DMA transfer is not described in
detail here. Please refer to sample programs in /usr; src; PR/, such as
playseq.

The following example is a typical OMA transfer of an audio bank.
1. Use osCreatePiManager to create a Pl manager.
2.

3.
4.

5.
6 .

Use oscreateMesgQueue to create a message cue for confirming that
a DMA transfer has been completed.
Use alHeapAlloc to reserve heap area for the audio bank.
Set the stage for DMA by using osWritebackDCacheAll to perform a
CPU cache writeback.
Use osPiStartDma to initiate OMA transfer.
Use osRecvMesg to confirm completion of the DMA transfer.

21 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

Reading MIDI Sequence from ROM

To implement sound for a sequence, the MIDI sequence in ROM must •
first be moved to RAM using DMA transfer. DMA transfer is not
described in detail here. Please refer to sample programs in
/usr I src/PR/ I such as playseq.

The following is a typical DMA transfer of a MIDI sequence. It is
assumed in this process that a Pl manager and DMA message cue have
already been created.
1. To read in a MIDI sequence, the first part of the .sbk file header

(version: 2 bytes + number of sequences: 2 bytes) must be read.
For this to occur, the number of sequences must be known (refer to
"Audio File Format" in the Nintendo 64 Programming Manual).
Because the first part of the .sbk file header is 4 bytes in size, the
header area is first reserved by alHeapAlloc, and a DMA transfer of
4 bytes is then performed.

2. Next, the entire header is transferred by DMA, including a ALSeqData •
structure corresponding to the number sequences.

3. alSeqFileNew is used to initialize the sequence bank file.
4. Based on information in the ALSeqData structure, the required MIDI

sequences are transferred by DMA.

Sequence Player Startup

Either alSeqpNew() or alCSPNew()is used to start the sequence player.
alSeqpNew() is the player used for playback of TypeO standard MIDI files
and alCSPNew() is used for compact MIDI files.

22

•

•
alSeqpNew()

Syntax
#include <libaudio.h>

Sound Playback

void alSeqpNew(ALSeqPlayer *seqp, ALSeqConfig *config);

Arguments
seqp Pointer to the sequence player structure to initialize
config Pointer to the sequence player configuration structure

alSeqpNew implements the configuration settings specified by config
and initializes the Type 0 MIDI sequence player specified by seqp so that
it can be registered with the synthesis driver as a client.
Please use caution when allocating memory from the audio heap
specified by the config structure.

Before alSeqpNew ()is called, the sequence player configuration structure
must be defined. This structure consists of the following parameters.

maxVoices
• This parameter sets the maximum number of virtual voices supported.

maxEvents

•

This parameter sets the maximum number of internal events supported.

In the sequence player and sound player, sound changes occurring in
chronological order are managed by a structure called an event.
ALEventListrtem structures are used for event storage and the number
of allocated ALEventListrtem structures can be specified here. To play
complex sequences, more events are required.

maxChannels

This parameter sets the number of MIDI channels supported. Typically,
the value 16 is specified .

23 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

debugFlags
This parameter sets flags for reporting audio errors. If this is set to 0,
errors are not reported. Any of the following flags can be specified, or
several can be combined using the OR symbol (I).

NO_SOUND_ERR_MASK Suppress error messages when there is no
sound that can be used as that required by
the specified pitch.

NOTE_OFF _ERR_MASK Suppress error messages when a Note-Off
occurs but the note of the specified
channel does not include the voice
currently being played.

NO_VOICE_ERR_MASK Suppress error messages when voice
allocation is requested but no usable
voices are available.

*initOsc
This specifies a function pointer for the initialization handle of the
oscillator which processes vibration and tremolo effects. When such
effects are not used, O must be specified.

*updateOsc
This specifies a function pointer for the update handle of the oscillator
which processes vibration and tremolo effects. When such effects are
not used, O must be specified.

*stopOsc
This specifies a function pointer for the interrupt handle of the oscillator
which processes vibration and tremolo effects. When such effects are
not used, O must be specified.

24

•

•

•

•

•

•

Sound Playback

heap

This is a pointer to the initialized audio heap. The audio heap created by
alini tHeap () is specified.
The following are examples of definition strings for the sequence player
configuration structure and use of alSeqpNew (J •

#define MAX_VOICES 24
#define MAX_EVENTS 32

ALSeqPlayer
ALSeqConfig

seqp;
seqc;

seqc.rnaxVoices MAX_VOICES;
seqc.rnaxEvents MAX_EVENTS;
seqc.rnaxChannels 16;
seqc.heap &hp;
seqc.initOsc O;
seqc.updateOsc O;
seqc.stopOsc O;
seqc.debugFlags NO_VOICE ERR MASK
NOTE_OFF_ERR_MASK I NO_SOUND_ERR_MASK;
alSeqpNew(&seqp, &seqc);

25 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

The following functions are used with the compact MIDI player.

alCSPNew()

Syntax
#include <libaudio.h>
void alCSPNew(ALCPlayer *seqp, ALSeqpConfig *config);

Arguments
seqp Pointer for initializing the compact MIDI sequence player

structure.
config Pointer to the sequence player configuration structure.

AlCSPNew performs the configurations specified by config and initializes
the compact MIDI sequence player and seqp so that the player can be
registered in the synthesis driver as a client. The contents of config and
all other features of this function are the same as for alSeqpNew.

Sequence Structure Initialization

To enable sequence playback with the MIDI sequence player, the MIDI
sequence structure must first be initialized. To reproduce a MIDI
sequence, the sequence structure stores information related to sequence
data . This storage is performed using alSeqNew ()or alCSeqNew ().
alSeqNew () is used for Type 0 MIDI file sequence players, and
alCSeqNew () is used for compact MIDI file sequence players.

alSeqNew()

Syntax
#include <libaudio.h>
void alSeqNew(ALSeq *seq, u8 *ptr, s32 len);

Arguments
seq
ptr

Pointer to the ALSeq structure to be initialized.
Pointer to the MIDI data.

len Length of the MIDI data in bytes.

This function initializes the ALSeq runtime structure with the MIDI
sequence data indicated by ptr and the data length indicated by len.

26

•

•

•

•

•

•

Sound Playback

The following functions are used with the compact MIDI player.

alCSeqNew()

Syntax
#include <libaudio.h>
void alCSeqNew(ALCSeq *seq, u8 *ptr);

Arguments
seq
ptr

Pointer to the ALCSeq structure to be initialized.
Pointer to the compact MIDI data.

Configure the Sequence

Once initialization of the sequence structure is completed, the sequence
to be reproduced is set in the player. This is accomplished using
alSeqpSetSeq ()or alCSPSetSeq (). alSeqpSetSeq () is used for Type 0
MIDI players and alcsPsetseq () for compact MIDI players.

alSeqpSetSeq()

Syntax
#include <libaudio.h>
void alSeqpSetSeq(ALSeqPlay~r *seqp, ALSeq *seq);

Arguments
seqp
seq

Pointer to the sequence player.
Pointer to the sequence structure in which the target sequence
is registered.

In the sequence player, alSeqpsetseq () sets the sequence structure
(seq) in which the sequence to be reproduced is stored.
alSeqpsetseq () always sets the sequence tempo to 120 BPM (Beats
Per Minutes, the number of quarter notes counted per minute) .

27 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

When a bank is linked to the sequence player, alSeqpsetseq () resets
the channel parameters of the sequence player. The initial instrument in
the bank is used as the default program. The pan, volume, priority, and
pitch-bend range of that instrument are used as default channel
parameters. When a percussion instrument is in the bank, this
instrument is used for MIDI channel 10. The setting for effects is
AL_DEFAULT_FXMIX.

The following functions are used for compact MIDI players.

alCSPSetSeq()
Syntax

#include <libaudio.h>
void alCSPSetSeq(ALCSPlayer *seqp, ALCSeq *seq);

Arguments
seqp
seq

Pointer to the compact MIDI sequence player.
Pointer to the compact MIDI sequence structure in which the
target sequence is registered.

Audio Bank Initialization

The audio bank used for sequence playback must be initialized.
alBnkfNew ()is used for this purpose.

alBnktNew()
Syntax

#include <libaudio.h>
void alBnkfNew(ALBankFile *ctl, u8 *tbl);

Arguments
ctl Pointer to the control data (.ctl).
tbl Pointer to the wave table data (.tbl).

Two of the files created by the IC (instrument compiler) are used in sound
playback. One of these is the control file (. ctl), which is responsible for

•

•

handling instrument performance information. The other is the wave- •
table file (. tbl), responsible for handling wave-table data (waveform
data).

28

•

•

•

Sound Playback

The control file includes the offset address, which references the wave-
table data. To improve runtime performance, the offset is converted to a
virtual address by alBnkfNew .

In general, control data is transferred to DRAM at even an earlier stage
than wave-table data. This is because wave-table data always turns out
to be sizable and, to prevent wasteful use of DRAM, it is transferred to
DRAM using DMA as needed. When the size of the wave-table file is
small, this data is loaded into DRAM in advance to minimize DMA
requests during sequence playback.

Audio Bank Settings

Once the audio bank is initialized, the instrument bank used by the
sequence player is configured. alSeqpSetBank ()or alCSPSetBank ()are
used for this purpose. alSeqpSetBank () is used for Type 0 MIDI
sequence players, and alCSPSetBank () is used for compact MIDI
sequence players.

alSeqpSetBank()
Syntax

#include <libaudio.h>
void alSeqpSetBank(ALSeqPlayer *seqp, ALBank *b);

Arguments
seqp
b

Pointer to the sequence player.
Pointer to the instrument bank used .

29 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

alCSPSetBank()

Syntax
#include <libaudio.h>
void alCSPSetBank(ALCSPlayer *seqp, ALBank *b);

Arguments
seqp
b

Pointer to the compact MIDI sequence player.
Pointer to the instrument bank used.

The following is an example of audio bank initialization and settings.
alBankfNew((ALBankFile *)midiBankPtr,
_miditableSegmentRomStart);
midiBank = ((ALBankFile *)midiBankPtr)->bankArray[O];
alSeqpSetBank(seqp, midiBank);

In this example, it is assumed that the control data are in the RAM area
indicated by midiBankPtr and the wave-table are in the ROM area
indicated by _miditableSegmentRomStart.

In the second line, the initial bank containing control data
(bankArray [o J) is specified as the instrument bank (midi Bank). For
information on the format of the the ALBankFile structure, please refer to
"Audio File Format" or the section on "libaudio.h" in the Nintendo 64
Programming Manual.

Sequence Playback

alSeqpPlay ()or alCSPPlay ()are used to start sequence playback.
alSeqpPlay () is used for Type 0 MIDI sequence players, and
alCSPPlay () is used for compact MIDI sequence players.

alSeqpPlay()

Syntax
#include <libaudio.h>
void alSeqpPlay(ALSeqPlayer *seqp);

Arguments
seqp Pointer to the sequence player.

30

•

•

•

•

•

•

alCSPPlay()

Syntax
#include <libaudio.h>
void alCSPPlay(ALCSeqPlayer *seqp);

Arguments
seqp Pointer to the compact MIDI sequence player.

Stopping a Sequence

Sound Playback

alSeqpStop ()or alCSPStop () is used to stop sequence playback.
alseqpstop () is used for Type 0 MIDI sequence players, and
alCSPStop () is used for compact MIDI sequence players.

alSeqpStop()
Syntax

#include <libaudio.h>
void alSeqpStop(ALSeqPlayer *seqp);

Arguments
seqp

alCSPStop()
Syntax

Pointer to the sequence player.

#include <libaudio.h>
void alCSPStop(ALCSeqPlayer *seqp);

Arguments
seqp Pointer to the compact MIDI sequence player .

31 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

Sequence Player Deletion

Once the sound player is no longer needed, the client registration of the
synthesis driver can be deleted using alSeqpDelete ()or
alCSPDelete ().

alSeqpDelete()
Syntax

#include <libaudio.h>
void alSeqpDelete(ALSeqPlayer *seqp);

Arguments
seqp Pointer to the MIDI sequence player structure to be deleted.

Before executing alSeqpDelete (), be sure to call alSeqpStop and
confirm that no voices are being reproduced. alSeqpDelete () does not
free up memory.
The following functions are used for compact MIDI players.

alCSPDelete()
Syntax

#include <libaudio.h>
void alCSPDelete(ALCSeqPlayer *seqp);

Arguments
seqp Pointer to the compact MIDI sequence player structure to be

deleted.

Before executing alCSPDelete (), be sure to call alSeqpStop and
confirm that no voices are being reproduced. alCSPDelete () does not
free up memory.

32

•

•

•

•

•

•

Sound Playback

The following figure represents a summary of the flow of data during MIDI
data playback and of the role of the functions. Although the sequence
player used in this figure is a Type O player, the summary for compact
MIDI players is the same.

MIDI
Sequence Data

Registration

Control File (· ctl)

ALBankFile
(Beginning of File)

MIDI MIDI
Sequence Data Sequence Data

Registration Registration alSeqNew

Sequence Sequence
Structure Structure

14--- play: alSeqpPlay

Sequence Player 14--- stop: alSeqpStop

14--- delete: alSeqpDelete

settings: alSeqpSetBank

association: alBnkfNew

Pointer Select 1 of multiple banks

Wave Table
(. tbl)

References
ALBank, ALBank, ALBank .

Pointer
References

ALinstrument, ALinstrument

ALSound, ALSound . . .

Pointer
References

ALWavetable, ALWavetable

Note: For information concerning the flow of data
referencing for the bank file, refer to "Audio
File Format" in the Nintendo 64 Programming
Manual.

Figure 2. Data Flow During MIDI Sequence Reproduction

33 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

PLAYING SOUND EFFECTS
Sound effects are played using the sound player. The sound player and
the sequence player are both 'clients' of the synthesizer.
To apply sound effects, the following procedure must be performed.
1. Read the audio bank from ROM.
2. Sound player startup.
3. Audio bank initialization.
4. Allocation of resources to sound.
5. Selection of sounds.
6. Sound playback.
In addition, the following steps are performed, as needed.
7. Stop sounds.
8. Delete sound player.
These elements are explained in the following paragraphs.

Reading the Audio Bank from ROM

To implement sound for audio, the wave table control file must first be
moved to RAM using DMA transfer. DMA transfer is not described in
detail here. Please refer to sample programs in /usr / src /PR/, such as
playseq.

The following example is a typical DMA transfer of an audio bank.
1. Use osCreatePiManager to create a Pl manager.
2. Use osCreateMesgQueue to create a message cue for confirming that

a DMA transfer has been completed.
3. Use alHeapAlloc to reserve heap area for the audio bank.
4. Set the stage for DMA using oswritebackDCacheAll to perform a

CPU cache writeback.
5. Use osPiStartDma to initiate DMA transfer.
6. Use osRecvMesg to confirm completion of the DMA transfer.

34

•

•

•

Sound Playback

Sound Player Startup

• For the sound player to be used, it must be started by alSndpNew ().

alSndpNew()

•

•

Syntax
#include <libaudio.h>
void alSndpNew(ALSndPlayer *sndp, ALSndpConfig *config);

Arguments
sndp Pointer to the sound player structure to be initialized.
con fig Pointer to the sound player configuration structure.

alSndpNew () configures according to the settings specified by config
and initializes the sound player sndp so that it can be registered as a
client.
Please exercise caution when using the audio heap specified in config.

Before alSndpNew () is called, the sound player structure must
configured. The parameters of this structure are as follows.

maxSounds
This parameter defines the maximum number of sounds that can be
allocated to the player.
maxEvents
This parameter defines the maximum number of internal events that can
be supported.

heap
This is a pointer to the initialized audio heap. This allocates the heap
area created using alHeapini t () .

35 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

An example of the sound player configuration structure is listed below.
#define MAX_VOICES 24
#define MAX_EVENTS 32

ALSndpConfig SPConfig;

SPConfig.maxSounds
SPConfig.maxEvents
SPConfig.heap

Audio Bank Initialization

MAX_ VOICES;
MAX_EVENTS;
&hp;

The audio bank used for sound effect playback must be initialized.
alBnkfNew () is used for this purpose.

alBnkfNew()
Syntax

#include <libaudio.h>
void alBnkfNew(ALBankFile *ctl, u8 *tbl);

Arguments
ctl Pointer to the control data (.ctl).
tbl Pointer to the wave table data (.tbl).

Two of the files created by the IC (instrument compiler) are used in sound
playback. One of these is the control file (. ctl), which is responsible for
handling instrument performance information. The other is the wave-
table file (. tbl), responsible for handling wave-table data (waveform
data).
The control file includes the offset address, which references the wave-
table data. To improve runtime performance, the offset is converted to a
virtual address by alBnkfNew.

In general, control data is transferred to DRAM at even an earlier stage
than wave-table data. This is because wave-table data always turns out
to be sizable and, to prevent wasteful use of DRAM, it is transferred to
DRAM using OMA as needed. When the size of the wave-table file is
small, this data is loaded into DRAM in advance to minimize OMA
requests during sequence playback.

36

•

•

•

•

•

•

Sound Playback

Allocation of Sound Resources

Sounds are allocated to the sound player using alSndpAllocate () .

alSndpAllocate()

Syntax
#include <libaudio.h>
ALSndid alSndpAllocate(ALSndPlayer *sndp, ALSound
*sound) ;

Arguments
sndp
sound

Return Value

Pointer to the sound player structure.
Pointer to the sound structure.

A sound ID of the same type as ALSndid.

Example
ALSndid *sndid;
ALSndPlayer sndp;
ALSound *snd

for (i = 0, numAllocated = O; i < inst->soundCound; i++){
snd = inst->soundArray[i];
if (sndid[i] = alSndpAllocate(&sndp, snd) != -1)

numAllocated++;

In the previous example, inst is the ALinstrument structure included in
the audio bank control data (. ctl). The ALSound structure referenced by
soundArray [i J in that structure is allocated to the sound player as
sounds. The number of sounds that are actually allocated is then
substituted for numAllocated. Sndid is used before this and when
sounds are played back or stopped.
AlSndpAllocate allocates the sound specified by sound to the sound
player sndp.

If allocation is successful, AlSndpAllocate returns an ID of 0 or greater,
of the same type as ALSndrd. If the sound player cannot allocate a
sound, -1 is returned.

37 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

Sound Selection

Before sounds are played and before settings such as pan and volume
are configured, the sounds must be selected. alSndpSetsound () is
used for this purpose.

alSndpSetSound()

Syntax
#include <libaudio.h>
void alSndqSetSound(ALSndPlayer *sndp, ALSndid id);

Arguments
sndp Pointer to the sound player.
id A unique value used to identify sounds in the sound player.

id is returned when sounds are allocated to the sound player.

id uses the return value of the previously described alSndpAllocate ().

Sound Playback

alSndpPlay () is used to play sounds.

alSndpPlay()

Syntax
#include <libaudio.h>
void alSndpPlay(ALSndPlayer *sndp);

Arguments
sndp Pointer to the sound player.

If no sounds are being played, calling this function has no effect.

38

•

•

•

Sound Playback

Stopping Sounds

• alsndpStop () is used to stop sounds.

alSndpStop()

•

•

Syntax
#include <libaudio.h>
void alSndpStop(ALSndPlayer *sndp);

Arguments
sndp Pointer to the sound player.

If no sounds are being played, calling this function has no effect.

Sound Player Deletion

The synthesis driver client registration for sound players which are not
needed can be deleted using alSndpDelete () .

alSndpDelete()

Syntax
#include <libaudio.h>
void alSndpDelete(ALSndPlayer *sndp);

Arguments
seqp Pointer to the sound player to be deleted.

All sounds must be stopped before this function is called .

39 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

AUDIO STACK EXECUTION
This section describes the main points of audio stack execution. •

It is assumed in this description that the scheduler is not used. When the
scheduler is used, there are differences in some operations, such as SP
execution.

Note When a game program p
schecluletis aclvised. Fi ffl'l~tion on how
·scheclulet, pl~ase.~f~fto 'f'f#J!ifi,419 ~l'ld G~flhi.
Sphetlt1lpr'rtri thJ1 ~/VJQf6:iJ~o 64 Ri@rafrimfflg Min
the.sEtmple prog~llfnsii;Pl~;

Buffer Preparation (triple buffer)

In general, three buffers (triple buffer) are prepared for sound processing.
In addition, two command list buffers are prepared. These are alternately
used for sample processing. This is done to ensure that sound is not
interrupted due to processing speed.
For details, please refer to the sample programs.

Synchronizing Retrace Events and SP Events

In general, two message cues are prepared for audio task execution.
One indicates retraces (V blank), while the other indicates the completion
of SP tasks.
The first is generally set using osvisetEvent. The second can be
implemented by first using osSetEventMesg and setting the type of event
for OS_EVENT_SP.

Retrace events are essential to reliable frame-by-frame sample
processing. For details, please refer to the sample programs.

Adjusting the Frame Size

In audio processing, it is not always appropriate to process the same
sample quantity. Sample quantity must be regulated according to the
circumstances for each instance.

40

•

•

•

•

•

Sound Playback

This is generally accomplished using ro_READ (AI_LEN_REG) (or
osAiGetLength) to detect the number of unused samples remaining in
the audio buffer and adjusting the number of samples for processing
accordingly.
In sample programs such as playseq, be sure that the constant
EXTRA_SAMPLES is included in this processing. If this is absent, clicking
sounds may be mixed in with music. The number of EXTRA_SAMPLES
required varies depending on the program and sound. A suitable value
must be determined through actual experience.
For more information concerning the regulation of frame size, please
refer to the sample programs.

Creating the Audio Command List

alAudioFrame () is used to create the command list needed for sound
synthesis by the RSP.

alAudioFrame()
Syntax

#include <libaudio.h>
Acmd *alAudioFrame(Acmd *cmdList, s32 *cmdLen, s16
*outBuf, s32 outLen);

Arguments
cmdList

cmdLen

outBuf

outLen

Pointer indicating the start of the area where the audio
command list is to be written.
Pointer indicating the length of the command list
to be generated by alAudioFrame.
Pointer indicating the location in DRAM where the
waveform synthesized by the audio microcode is to
be written when the audio command list generated
by alAudioFrame is executed.
Number of stereo samples to be generated by the audio
microcode .

Executing the Audio Task List

The RSP executes the audio task list and creates sound in the audio
buffer. osSpTaskStart () is used for this purpose.

41 NUS-06-0132-001A
Released: 9/9/97

Nintendo 64 Audio Development Guide

osSpTaskStart()

Syntax
#Include <ultra64.h>
s32 osSpTaskStart(OSTask *task);

Arguments
task Task structure.
The parameters for the task structure are listed below.

t.type
This parameter indicates the type of task. For audio tasks, set this to
M_AUDTASK.

t.flags

This parameter indicates the type of task status bit. This is not needed
for audio tasks.

t.ucode_boot
This is a pointer to the boot microcode. Initialize this to
rspbootTextStart.

t.ucode_boot_size
This is the size of the boot microcode. Initialize this to
((u32)rspbootTextEnd - (u32)rspbootTextStart).

t.ucode
This is a pointer to the task microcode. For audio tasks, set this to
aspMainTextStart or n_aspMainTestStart.

t.ucode_size

This is the size of the microcode. Initialize this to sP_ucooE_srzE.

t.ucode_data
This is a pointer to the microcode data. For audio tasks, set this to
aspMainDataStart or n_aspMainDataStart.

t.ucode_data_size

This is the size of the microcode data. Initialize this to
SP_UCODE_DATA_SIZE.

42

•

•

•

•

•

•

Sound Playback

t.dram_stack
This is a pointer to the DRAM matrix stack. For audio tasks, initialize this
to 0.
t.dram_stack_size
This is the size of the DRAM matrix stack (bytes). For audio tasks,
initialize this to 0.

t.output_buff
This is a pointer to the output buffer. For audio tasks, this can be
ignored.
t.output_buff _size
This is a pointer for output buffer size. For audio tasks, this can be
ignored.
t.data_ptr
This is a pointer for the SP command list. With an audio stack, this
command list is generated by alAudioFrame .

t.data_size
This is the length of the SP command list expressed in bytes.
t.yield_data_ptr
This is a pointer to the buffer used for storing the state of yielding tasks.
For audio tasks, this is always set to 0.
t.yield_data_size
This specifies the size of the yield buffer in bytes. For audio tasks, this is
always set to 0 .

43 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

Examples of task structure settings and osSpTaskstart are shown
below.
OSTask *tlistp;

tlistp->t.type = M_AUDTASK;
tlistp->t.flags = O;
tlistp->t.ucode_boot = (u64 *)rspbootTextStart;
tlistp->t.ucode_boot_size = ((u32)rspbootTestEnd -
(u32)rspbootTextStart);
tlistp->t.ucode = (u64 *)aspMainTextStart;
tlistp->t.ucode_size = SP_UCODE_SIZE;
tlistp->t.ucode_data = aspMainDataStart;
tlistp->t.ucode_data_size = SP_UCODE_DATA_SIZE;
tlistp->t.data_ptr = (u64 *)crndList[curBuf];
tlistp->t.data_size = (crndlp - crndList[curBuf]) *
sizeof (Acrnd) ;

osSpTaskStart(tlistp);

Audio DAC Settings

osAiSetNextBuffer () is used to set the next OMA transfer from
RORAM to the audio interface buffer for the Al buffer.

osAiSetNextBuffer()
Syntax

#include <ultra64.h>
s32 osAiSetNextBuffer(void *vaddr, u32 nbytes);

Arguments
vaddr Buffer in RDRAM.
nbytes Number of transfer bytes.

The buffer address vaddr must have a 64-bit boundary, and nbytes must
be a multiple of 8 bytes. A maximum transfer size of 262144 bytes is
supported. If the interface is busy (AL_STATus_FIFO_FULL is set),
osAiSetNextBuffer returns -1, and OMA fails.

44

•

•

•

•
Use of Audio Tools

USE OF AUDIO TOOLS
This section describes the audio tools included in the N64 OS and
describes the overall flow of the sound development process.

SOUND DEVELOPMENT PROCESS
The tasks performed by musicians in developing sound are as follows.

Create the Wave Table
1. Sample sound generator data and store it in AIFF format. One loop

can be included.
2. Create a code book for ADPCM encoding using the tabledesign

tool.
3. Compress the sample in ADPCM AIFC format using the vadpcm_enc

tool.
4. Create an .inst file (IC source file) using the ic tool.

• 5. Create bank files (. tbl, . ctl, . symic) using the ic tool.

•

Create Bank Files
6. Create a MIDI sequence.
7. If the MIDI file is Type 1, convert it to Type 0 using midicvt.
8. If necessary, convert the file to a compressed MIDI sequence

(compact MIDI file) using midicomp.
9. Create the sequence bank (. sbk) using the sbc tool.
10. Pass the . tbl I • ctl I and . sbk files to the program.
The following paragraphs describe these tools as related to the sound
development process .

45 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

TOOLS FOR CREATING WAVE TABLES

Tabledesign Tool

This tool creates the code book (table of prediction coefficients) needed
for ADPCM compression from AIFF-C(AIFC) or AIFF formatted sample
data. The code book is necessary for the ADPCM encoder {vadcpm_enc)
to optimize sound quality.
The tabledesign tool creates the code book based on a corresponding-
type cluster algorithm.
tabledesign is called using the following command line specifications.

tabledesign [-s book_size] [-f frame_size] [-i
refine_iter] aifcfile

aifcfile is the AIFC or AIFF file from which the code book is to be
created.
The options which can be used in the command line are described below .

-s <value>
The number of code book entries is specified in the value position as a
log base 2 number. Up to 8 entries are currently supported. Thus, the
value of -s can be 0-3 log28 = 3. The default value is 2, or 4 entries. This
number of entries is sufficient for nearly all sounds.

-f <value>
The frame size (number of samples) used for the prediction estimate is
specifed in the value position. The ADPCM encoder uses a frame
consisting of 16 samples. Thus, this number must be a multiple of 16.
The default value is 16. By increasing the frame size, the creation time
for the table can be shortened.

46

•

•

•

•

•

•

Use of Audio Tools

-i <value>
The number of iterations for small-step execution of the clustering
algorithm is specified in the value position. The default value is 2.
Although increasing the value lengthens creation time, it can result in
better sound quality. Two iterations are considered sufficient for nearly
all sounds.
Re-direction is used to write values to the file in which the code book file
is to be written.
Example: tabledesign sample. aiff > sample. table

''vadpcm_enc" Tool

Code books created using tabledesign are then compressed in ADPCM
format. The vadpcm_enc tool is used for this purpose.
vadpcm_enc encodes AIFF-C{AIFC) or AIFF formatted files, creating a
fully compressed binary file. This encoding employs a conversion
ADPCM algorithm to define a prediction coefficient table for the code
book.
During coding, vadpcm_encod selects coefficients from the table to
produce the best sound quality. The N64 compressed format currently
supports only one loop point. This loop point must be defined in the
instrument chunk of the input file {AIFC, AIFF).
When creating an AIFF file, it is probably best to keep in mind that only
one sustain loop can be used.
vacpcm_enc is called using the following command line input.

vadpcm_enc -c codebook [-t] [-1 minLoopLength] aifcFile
codedFile

codebook is the code book file created using tabledesign. AifcFile is
the AIFC or AIFF file to be compressed. codedFile specifies the
ADPCM-compressed output file .

47 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

The options that can be used in the command line are explained below.
-t
Specifying the -t option causes file encoding to end after loop
termination. The portion after sound loop termination is not used in audio
playback.

-I <value>
This option sets the minimum loop length for the encoded file. The
default value is 800 samples.
Compression efficiency for the wave table varies with loop length. The
longer the loop, the greater the efficiency. As indicated above, the length
of the synthesized loop can be set in the AD PCM encoder (vadpcm_enc)
using the -1 option. The default minimum loop length is currently defined
as 800 samples. This value can be changed. However, because the
absolute minimum value is 16 (sample data), the setting must be a
multiple of 16. If a length less than the minimum length is specified, the

•

loop is iterated until the total length exceeds the minimum. If possible, •
please specify a length that is 1 frame longer than the audio frame. The
length of one audio frame is equal to (sample rate)/(frame rate).
Example: vadpcm_enc -c sample.table sample.aiff sample.aifc

The i c (Instrument Compiler)

Once an ADPCM-compressed AIFC file has been created, a wave table
can be prepared.
The N64 audio library synthesizes audio files from MIDI files, based on
information written to . ctl and . tbl files. Together with the . sym file,
these files are collectively called the "bank files." The ic tool is used to
create bank files.
The content of each file is as follows .

. tbl

This is the file into which wave table data, including ADPCM-compressed •
sample data, is written.

48

•

•

•

Use of Audio Tools

.ctl

This is the file into which information concerning the method of wave
table synthesis is written. This information includes the wave table's
envelope, pan, pitch, mapping to the MIDI note number, and velocity.
Also included are the offset addresses of actual ADPCM-compressed
waveforms contained in the . tbl file. For details, please refer to "The
Audio File Format" in the Nintendo 64 Programming Manual .

• sym

This designates the file into which bank file symbolic information is
written. This file is used mainly for development and debugging. The
. sym file is used only by the audio bank tool. It is not used by the audio
library.

ic is called using the following command line input.

ic [-v] [-c cmpfile] [-s midifile] [-pl [-n] -o <output file
pref ix> <source file>

The options that can be used in the command line are explained below.

-v

This option turns on verbose mode. As a result, the compiler compiles a
large amount of non-essential information. This option is used to obtain
information concerning creation of the bank file.

-o <output tile prefix>
This option specifies prefixes (the name to be added to the beginning of
each extension) for the . ctl, . tbl, and . sym files.

<source file>
This is the name of the file containing the instrument bank source code.
The following is a description of this file .

49 NUS-06-0132-001 A
Released: 9/9197

Nintendo 64 Audio Development Guide

-c <compact sequence bank file>
This analyzes the compact sequence bank file (sequence bank file made •
from the compact MIDI file) and determines which sounds and objects
are used. Unused objects are removed from the output bank. The
compact sequence bank file is created using midi comp and sbc.

-s <midi sequence bank file>
This analyzes the sequence bank file and determines which sounds and
objects are used. Unused objects are removed from the output bank.
The sequence bank file (if a standard MIDI file is not Type 0) is created
using rnidicvt and sbc.

-p
This outputs tables related to all programs and displays whether keys are
used. A value of O indicates no key is used. A value of 1 indicates that a
key is used. This option is valid only when used with -c or -s.

-n
This option does not produce sound according to the keymap. The -n •
option is usually used when the sound-effect bank is compiled. This is
because the game program must reference sound according to the
contents of the . inst file. Conversely, with a MIDI bank, sound must be
produced using the keymap. In that case, mapping is performed by
matching the MIDI note number with corresponding sound.

Creating the i c Source File

The source file for the instrument compiler individually defines each
object that makes up the bank, using a language that resembles C. The
source file combines these elements into a single object. Composing the
bank requires objects that represent the bank, instrument, sound,
keymap, and envelope. These objects are described in the following
paragraphs.

50

•

•

•

•

Use of Audio Tools

Bank Object
The bank object begins with the keyword bank. In addition to instrument
array and sample rate specifications, a default percussion instrument can
optionally be specified for this object. The following example shows a
bank object named GenMidiBank, which has one instrument named
GrandPiano at instrument location 0. This bank is played at 44.1 KHz.
bank GenMidiBank
{

sampleRate = 44100;
instrument [0] = GrandPiano;

bank GenMidiBank
{

sampleRate
percussionDefault
instrument [0]

44100;
Standard_kit;
GrandPiano;

The sequence player specifies standard_Ki t as the default instrument
for channel 10.

Instrument Object
The instrument object specifies the instrument's total volume and pan,
and the sound list that makes up the instrument. It is referenced by the
object bank.
The following example defines the instrument object GrandPiano which
contains eight sounds (GrandPianoOO, GrandPianoOl, GrandPiano02,
GrandPiano03, GrandPiano04, GrandPianoOS, GrandPiano06,and
GrandPiano07).

51 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

The total volume instrument is 127, and its central pan location is
specified as 64.
instrument GrandPiano
{

volume = 127;
pan = 64;

sound
sound
sound
sound
sound
sound
sound
sound

GrandPianoOO;
GrandPianoOl;
GrandPiano02;
GrandPiano03;
GrandPiano04;
GrandPiano05;
GrandPiano06;
GrandPiano07;

Sound Object
The sound object is used to specify the sound volume and pan, keyboard
mapping, and the envelope. In addition, an ADPCM AIFC sound file

•

containing an ADPCM-compressed wave table can be specified in this •
object. For information on the ADPCM AIFC file (created using the
ADPCM encoding tool) format that can be used with the ic, please refer
to "The Audio File Format" in the Nintendo 64 Programming Manual .

. Note: . J'he s.~que;/'1(;,,;pl~nf colllf!'!~~ thj ~ ··
rgultlplyl~g t~11 in~trtimE?nt.~!Jl:I Stf'Ufl. > •....•. ·. ·. · .. ·.·• ..

. ···.compqt11s. th11 tQtfl/pifn pyat:19fag .. th, .i~#tt':uln".·· sequence tfiiilu,,$~ · · · · · · / <··· < \f/ +
The next example defines the sound object GrandPianoOO. This sound
receives wave table data from the file .. /sounds/GMPiano_c2 .18k. aifc
and uses a pan setting at the center (64) of full volume (127). The
keyboard is arranged according to map specified by pianoOOkey. The
object uses the envelope specified by GrandPianoEnv.

•
52

•

•

•

sound GrandPianoOO
{

Use of Audio Tools

use (" .. /sounds/GMPiano_C2.18k.aifc");
pan 64;
volume 127;
keymap pianoOOkey;
envelope GrandPianoEnv;

Refer to the following section for a detailed description of the keymap and
envelope.

f'!oJflL W~f}I? s9t1nqeffeds ar~ .arrangedusing multiple banks, a
1¢iij~f> entryis.notheediid. ·

Keymap Object
The keymap object specifies the MIDI velocity and the number of keys to
use for its sounds. It is referenced by the sound object. Based on this
object, the sequence player determines the sounds to map to designated
MIDI note numbers and the pitch of these sounds.
The following example defines the keymap object pianoOOkey. This
keymap object specifies MIDI Note On, a velocity range of 0-127, and
note numbers of 0-43.
Because 41 is specified as KeyBase in this example, the sounds
referenced by this keymap are generated at original pitch when the MIDI
Note On message for this key is issued. If the MIDI Note On message
for key 42 is issued, the pitch is shifted upward by a half tone and the
same sound is generated.

Note: . f:iUtslde rf e defined by Key}(in. afjd KeyMfix
bes .t{'ey.aasei WheliJtis·desirabli>to
··.asmu spaceaspossibler .. adjustthe·•······

by r~'aml>fil)(J the wave table and sp11eif}l a
~ tfte ~ve range for keyBaSe; . F9texainple,

'fl a<4J#li taqle at 22.05 .KHz ifnd . can Cpfupensat!!fOr sample

53

~. nowever, that $Cllnd >
. . of Jh~ pitch7"s1J/f:t l$J06

NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

In the following definition, detune is the parameter that specifies the
number of cents added to the default tuning. A half-note corresponds to
100 cents.
keyrnap pianoOOkey
{

velocityMin O;
velocityMax 127;
keyMin O;
keyMax 43;
keyBase 41;
detune O;

Envelope Object
The envelope object specifies the ADS,R envelope contour of the sound.
Specify a volume of 0-127 and a time in microseconds.
The following example of an entire bank definition includes an envelope
object with the following time and volume settings.

Attack: O microseconds and a volume of 0-127
Decay: 400 milliseconds and a volume to O
Release: 200 milliseconds and volume to O

The envelope also includes a MIDI Note Off message (sustain). The
decay portion of this envelope sets decay to 0. This envelope provides
the most realistic sounds for many acoustic instruments, particularly
percussion instruments.

Note: Qse·.olthe squnct,player@nr~lppe·h~s cf}~~ect,
number Qf ways~ For clet~f~~~ p/efi4sfl: reterto ~ ,, ...
Ubrary'' inthe Nintendo 64 Progtarnmf11g Manual.

54

•

•

•

•

•

•

Use of Audio Tools

Example: Definition of an Entire Bank
The following example defines an entire bank. This is the General MIDI
bank provided with the N64 OS/Library. It defines one instrument, the
GrandPiano.
envelope GrandPianoEnv
{

attackTime
attackVolume
decayTime
decayVolume
releaseTime
releaseVolume

keymap pianoOOkey
{

velocityMin
velocityMax
key Min
key Max
keyBase
detune

sound GrandPianoOO
{

O;
127;
4000000;
0;
200000;
O;

O;
127;
O;
41;
51;
O;

use ("./sounds/GMPiano_C2.18k.aifc");
pan 64;
volume 127;
keymap pianoOOkey;
envelope GrandPianoEnv;

keymap pianoOlkey
{

velocityMin
velocityMax
keyMin
key Max
keyBase
detune

O;
127;
42;
49;
63;
O;

55 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

sound GrandPiano01
{

use ("./sounds/GMPiano_Bb2.16k.aifc");
pan 64;
volume 127;
keymap piano01key;
envelope GrandPianoEnv;

keymap piano02key
{

velocityMin
velocityMax
keyMin
key Max
keyBase
detune

sound GrandPiano02
{

0;
127;
50;
57;
67;
O;

use ("./sounds/GMPiano_F3.19k.aifc");
pan 64;
volume 127;
keymap piano02key;
envelope GrandPianoEnv;

}

keymap piano03key
{

}

velocityMin
velocityMax
key Min
key Max
key Base
detune

O;
127;
58;
63;
72;
O;

sound GrandPiano03
{

use ("./sounds/GMPiano_C4.22k.aifc");
pan 64;
volume 127;
keymap piano03key;
envelope GrandPianoEnv;

56

•

•

•

•

•

•

keymap piano04key
{

velocityMin
velocityMax
keyMin
key Max
key Base
detune

sound GrandPiano04
{

0;
127;
64;
69;
79;
0;

use ("./sounds/GMPiano_G4.22k.aifc");
pan 64;
volume 127;
keymap piano04key;
envelope GrandPianoEnv;

keymap pianoOSkey
{

velocityMin
velocityMax
keyMin
key Max
keyBase
detune

sound GrandPianoOS
{

O;
127;
70;
75;
84;
0;

use ("./sounds/GMPiano_C5.22k.aifc");
pan 64;
volume 127;
keymap pianoOSkey;
envelope GrandPianoEnv;

keymap piano06key
{

velocityMin
velocityMax
keyMin
key Max
key Base
detune

0;
127;
76;
81;
91;
0;

57

Use of Audio Tools

NUS-06-0132-001A
Released: 9/9/97

Nintendo 64 Audio Development Guide

sound GrandPiano06
{

use ("./sounds/GMPiano_G5.22k.aifc");
pan 64;
volume 127;
keymap piano06key;
envelope GrandPianoEnv;

keymap piano07key
{

velocityMin
velocityMax
keyMin
key Max
key Base
detune

sound GrandPiano07
{

O;
127;
82;
111;
99;
O;

use("./sounds/GMPiano_C6.18k.aifc");
pan 64;
volume 127;
keymap piano07key;
envelope GrandPianoEnv;

instrument GrandPiano
{

volume
pan

sound
sound
sound
sound
sound
sound
sound
sound

127;
64;

GrandPianoOO;
GrandPianoOl;
GrandPiano02;
GrandPiano03;
GrandPiano04;
GrandPianoOS;
GrandPiano06;
GrandPiano07;

bank GenMidiBank
{

sarnpleRate
instrument[O]

44100;
GrandPiano;

58

•

•

•

•

•

•

Use of Audio Tools

Other Tools

The following are other types of tools used to create wave tables .

vadpcm_dec
vadpcm_dec decodes sound files encoded in N64 ADPCM format by
vadpcm_enc and rewrites these in standard output format as raw
monaural 16-bit samples.
To call vadpcm_dec, specify the following code in the command line.
vadpcm_dec [-1] codedFile

The following options can be used in the command line.

-I
When sound is looped, the loop continues until a key is pressed using
standard input.
To actually apply sound, use re-direction to create a sample file
containing the sample data, then run playraw (tool for playing raw
sample data), as shown in the following example.
vadpcm_dec sample.aifc > sample.raw
playraw < sample.raw

Or use the pipe specification, as shown below.
vadpcm_dec sample.aifc I playraw

playraw
playraw receives files from standard output and plays these on SGI
workstations as raw 16-bit monaural or stereo audio sample data. A
stereo input file must alternately contain UR sample data. By piping the
output from the previously described vadpcm_dec to this tool, AD PCM
compact files can be opened.
To call playraw, input the following on the command line.
playraw [-h] [-s] [-f rate] < infile

The following options can be used in the command line .

59 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

-h

This option displays the help functions.

-s
This option treats the input as UR stereo sample data.

-f <value>
This option specifies the sample rate during playback. The default value
is 44, 100 Hz.

infile
This option provides the raw data from the ADPCM AIFC-formated data,
decoded by the vadpcm_dec tool.

TOOLS FOR CREATING THE SEQUENCE BANK

The midicvt Tool

If the sequence data (standard MIDI file) created are saved as Type 1,
the midicvt tool must first be used to convert them to Type 0. This is
because the audio library can play only Type O standard MIDI files.
To call midicvt, enter the following in the command line.
midicvt [-v] [-s] [-o] <input file> <output file>

The following options can be used in the command line.

-v
This option turns on verbose mode.
-s

This option deletes all messages not used by the audio library.

-o
This option organizes MIDI events, in order.
input file
This option specifies the name of a Type O or Type 1 standard MIDI file.

60

•

•

•

•

•

•

Use of Audio Tools

output tile
The name of the Type O file to be output is entered using this option .
Execution Example: midicvt sample .mid sample. seq

The midicomp Tool

To play a sequence using the compact sequence player, the sequence
must be converted to compact MIDI format. midi comp is used for this
purpose.
The midi comp tool converts Type O or Type 1 standard MIDI files to
compact MIDI format.
To call midicomp, specify the following in the command line.
midicomp [-o] <input file> <output file>

The following options can be used in the command line.
-o
This option organizes MIDI events logically. This is particularly important
when processing loops.

<input file>

This option specifies the name of a Type O or Type 1 standard MIDI file.
This file is compressed .

61 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

<output file>
The name of the Type 0 file to be output is entered using this option.

The data compression ratio for compressed files varies with file content.
Except for very small files, all files are compressed to some degree. The
midicomp tool compresses by recognizing patterns. Therefore, the
greater the number of iterations in a file, the higher the data compression
ratio. If numerous sections in a sequence are created using the copy and
paste functions, the data compression ratio becomes very high.
Execution Example: midi comp -o sample. seq sample. cmp

The sbc Tool

•
Sequence data is arranged in the MIDI sequence bank. sbc is used for
this task. sbc gathers any number of MIDI sequences into a single MIDI
sequence bank (.sbk bank). The sbc tool attaches a header to the
beginning of each sequence and lines each one up in 8-byte units, then
writes them to the . sbk file in succession. The header at the beginning
of each sequence serves as an index when a sequence search is •
performed.
To call sbc, input the following at the command line.
sbc [-o <output file>] fileO [filel file2 file3 ...]

The following options can be used in the command line.

-o <output file>
This option specifies the name of the sequence bank file to be output.
The default output is tst. sbk.

fileO filel file2 ...
This option specifies the names of the sequence files contained in the
sequence bank.

Execution example: sbc -o sample. sbk sampleO. seq samplel. seq
sample2.seq

62

•

Use of Audio Tools

Other Tools

• The following are other tools used to create the sequence bank.

midi print

•

•

The rnidiprint tool prints, as a text list, the time-based events written in
Type 0 or Type 1 standard MIDI files.
To call rnidiprint, use the following command line input.
rnidiprint [-v] [-o <output file>] <input file>

The following options can be used in the command line.
-v
This option turns on verbose mode.

-o <output file>
This option specifies the output file using the option for MIDI event text.

<input file>
This option specifies a Type O or Type 1 standard MIDI file to be passed
to the list.
Execution example: rnidiprint sample. seq > out. txt

midistat
The rnidistat tool displays the key numbers and MIDI channels
contained in a MIDI sequence file, along with the number of notes for
each MIDI program number contained in the file.
To call rnidistat, use the following command line input.
rnidistat [-v] <MIDI file>

63 NUS-06-0132-001 A
Released: 9/9197

Nintendo 64 Audio Development Guide

The following options can be used in the command line.

-v
This option turns on verbose mode.

<MIDI file>
This option specifies the name of a Type O or Type 1 standard MIDI file.

Execution example: midis tat sample. seq > out. txt

64

•

•

•

•

•

Programming Cautions

PROGRAMMING CAUTIONS
This section discusses items that the user must keep in mind when
developing audio for the N64.

COMMON VALUES
Throughout this section, the following three types of values are
considered fixed for files such as .inst and MIDI files.
1. C4 indicates middle C (MIDI note 60).
2. The range of pan values is 0-127. O corresponds to the left extreme,

64 to the center, and 127 to the right extreme.
3. The range of volume values is 0-127. 0 represents no sound and 127

represents maximum volume.

MANAGING RESTRICTIONS AND ALLOCATING
RESOURCES
When the N64 is used, several choices must be made. Nearly all of
these choices are made to minimize the resources used while
maintaining acceptable quality. If the necessary resources can be used
without restriction, the N64 can create fantastic audio.
Nearly all software restrictions can be easily overcome. However, the
amount of time required for a development project can be greatly
reduced if settings and values are decided upon in advance through
discussions between the programmer, game designer, and musician.
Resource restrictions can be classified into the following four categories.

• Determining hardware playback rates
• Limitations on voice number and processing time

• Sound and music bank partitioning

• ROM space limitations
• These categories are addressed in the following paragraphs.

65 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

Determining Hardware Playback Rates

The most important of the software-related decisions is what settings
should be used for the hardware playback rate. Standard choices range
from 22.05 KHz to 44.1 KHz. Selecting a high rate increases the number
of samples created by the software. As a result, RSP processing time
increases.
There are no rigid restrictions on hardware playback rates. Although the
rate for music CDs is 44.1 KHz, large losses in sound quality do not occur
even at 32 KHz or 22 KHz. The N64 analog filter is designed based upon
a rate of 32 KHz. Consequently, at rates above 32 KHz, there is an
extreme decrease in treble resulting from filtering. In other words, when
rates higher than this are used, there is little noticeable change.
However, at rates less than 22.05 KHz, the sampling size becomes
pronounced and sound quality suddenly begins to decline.

•

In addition, if output and sample rates are brought as close together as
possible, the sample sound quality is good. When game sounds are
sampled at 22.05 KHz, a playback rate of 22.05 KHz results in the best
output quality. If playback rates cannot be decided upon in the planning •
stage, it is probably better to first perform sampling tasks at a higher rate
and convert to a lower rate, rather than the alternative.

Limitations on Voice and Processing Time

The number of voices that can be used in playback is limited by the
processing time available for audio. The greater the number of voices
and the higher the audio playback rate, the longer the processing time
required. Although it is not possible to calculate exactly the time
required, the approximate time required per voice with a playback rate of
44.1 KHz is estimated to be 1 % of ASP time. Therefore, assuming that
20% of RSP processing time is provided for audio, 15-20 voices can be
used. Assuming that 40% of RSP processing time is given to audio
increases this to 30-40 voices. It must also be kept in mind that
processing time shortens as the output playback rate is decreased,
increasing the number of voices that can be used for playback.

66

•

•

•

•

Programming Cautions

Sound and Music (BGM) Bank Partitioning

There are no formal rules regulating sound and BGM composition .
However, in nearly all cases, except for BGM sample data, it is advisable
to construct one or more banks.
Sequences can be stored in a game using two methods. Individual
sequences can be stored as independent sequences. Or multiple
sequences can be compiled and stored as a . sbk file. Please ensure
that BGM sample data and MIDI files construction is such that each MIDI
file sequence or bank (only at time of use) corresponds to a bank of BGM
sample data. Store all sample data shared by multiple MIDI files in the
same bank. If these files are not stored in the same bank, copies of
sample data will be created in several bank files.

ROM Space Limitations

This problem should be considered by the game developer.

CREATING SAMPLE DATA
The method for creating N64 sample data is essentially the same as that
for creating samples used for sound players in general. However,
attention should be given to several points in this process.
Samples that the ADPCM tool can recognize are monaural samples of
AIFF files or uncompressed AIFC files.
If the sampling rate is the same as the output rate, sample data quality is
high. Because all sample data is compressed using ADPCM, playing
sample data at a rate which is appreciably different from the sampling
rate increases the possibility that undesirable noise will become
pronounced .

67 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

For example, if data which is sampled at 22.05 KHz and played at an
output rate of 44.1 KHz using the original pitch, the sample converter
must create two elements of data from each input element. Moreover, if
these samples are played at a pitch even one octave lower than the
original pitch, the sample converter must create four samples from each
input sample. Because of noise and distortion caused by ADPCM, the
quality of samples deteriorates to a point where output quality does not
compare with input quality when sampled at 44.1 KHz or output at 22.05
KHz. In such cases, it is recommended that all sampling be performed at
the output sample rate before ADPCM conversion.
Loops can be used at any point in sample data. In many ADPCM
systems, sample data must be looped at specific boundaries. When
using the Super NES for example, the loop point must be a multiple of
16. The N64, however, has no restrictions on loop placement. If a sound
is looped, it will continue to loop as long as playback continues. Even if
the envelope enters the release stage, the sound will continue to loop as
before.
Even after completion of a loop, all loop samples are played until the next
multiple of 16 is reached. This is because the ADPCM encoder
considers 16 to be one block when storing sample data. Consequently, it
is recommended that at least 16 items of sample data be left after the
end of the loop for all loop samples. The ADPCM tool includes an option
to shorten sample data to the minimum variable length.

In other words, it is sufficient only to decide on loop location placement
when creating looping sample data. It is not necessary to consider
sample data release points. Reducing the volume of sample data to
store on a hard disk by shortening the sample data poses no problems.
However, please remember to leave at least 16 items of sample data
after the end of a loop. When the sample is later encoded, specifying the
-t option will cause the system to shorten the sample automatically.

68

•

•

•

•

•

•

Programming Cautions

PLAYBACK PARAMETERS AND THE INSTALL
(. INST) FILE
The following paragraphs describe creation of the .inst file.

Sample Parameter Settings for the Install File

To accurately play sample data, the N64 audio system must provide
control element information, such as pitch and volume. These
parameters are set by creating and editing the . inst file. The playback
parameters are described in detail below. First, however, an example of
an . inst file will be examined.
The . inst file is a collection of objects defined by text that uses C
language syntax. These objects are of the following types.

• Envelopes

• Keymaps

• Sounds

• Instruments

• Banks
These objects are related in the following ways. The basic unit of sample
audio is a sound. Corresponding to the sound are keymaps that specify
a sample's velocity ranges, key ranges, and tuning. Similarly, envelope
ADSR parameters are also associated with the sound for control of
sample volume.
Several sounds can be collected to create an instrument, and several
instruments can be collected to create a bank. Because program control
change is restricted to values of 1-128, the MIDI sequence can use only
the first 128 instruments in a bank. Values of 129 or greater can be
selected if the audio API is called from a game application .

69 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

Use of the Install File

The sound player and sequence player both use bank files created from
. inst files. However, the ways in which they use the . inst file are
completely different. The sequence player uses the bank to discriminate
between instruments. It uses the keymap to identify which sound
(waveform) to play in correspondence with a MIDI note. In contrast, the
sound player does not use the bank structure, instrument structure, or
keymap parameters. To enable the sound player to be compiled,
however, each . inst file requires a bank and instrument. In addition,
each sound must indicate a keymap. This keymap can be shared by all
sounds in an . inst file. Therefore, only one keymap is required.

For these reasons, an . inst SE file, for example, consists of one bank
and one instrument that describes the sounds in succession. Because
the sound player ignores keymaps, overlapping them is not necessary.
However, the . inst file does contain one default keymap for file
compilation. When setting SE pitch, the setting is made from the
application rather than by the . inst file, except for the rate at the time
the sample was recorded.

Envelopes

For volume control, the N64 audio system supports the ADSR envelope
function. Envelope time is expressed in microseconds. Because a
microsecond is much shorter than the control unit of typical synthesizers
and samplers, musicians must adjust their concept of time so that they
can handle values even larger than those commonly used by samplers.

Please remember, for example, that an Attack Time setting of 100,000
corresponds to 1/10 of 1 second.) The maximum volume value is 127.
To prevent popping and clicking noises from occurring at the end of a
sound, always end the envelope with a release volume setting of 0. This
becomes an important point when looping a sample.

•

•

When the sound player is used to apply sound to sound effects, the
envelope will not enter the release stage if the delay time is set to O (it will •
loop infinitely). The game must call alsndpstop () to stop the sound.

70

•

•

•

Programming Cautions

Keymap

f'i/Qtf: Qnly tflf) $'9:1J~nee·playetuseskeyfY11;1ps. .me .·$cund
······ <> ... p'ayerigndf~$Jhemc.· · ····· ······· ···· · · ···

In addition to an envelope, all samples have keymaps. The keymap
defines to which keys and velocities the sample responds. Through
various keymap changes, instruments can be created that play a variety
of samples using various keys and velocities.

The keymap object sets the upper and lower limits of the range for
sample response velocities and the upper and lower limits for response
keys. Please be careful to ensure that keymap ranges are not
overlapped. When the sequence player maps a note to be played, it
searches for a usable keymap and stops searching at the first usable
keymap found.

Note: i··theH~sets•.t#e v~1ue·at·th~1r1pper.11it;lt ofkeyMax•911e
oCtave abOv~ key1'c;t.$e.

Tuning Samples Recorded at the Hardware Playback Rate

In addition to velocity and key range information, parameters included in
the keymap structure are keyBase and detune. keyBase sets the
sample pitch in half-note (semitone) units. detune is used to fine tune
samples in cent units (1/100 of a half-note). If the sample rate for a
sound and the hardware playback rate are the same, keyBase is the
same as the MIDI note number of the sample's original pitch. If the two
rates are different, keyBase must be changed to compensate for the
difference.

For example, if an F4 note is recorded and played at 44.1 kHz, keyBase
is 65 (= MIDI note F4), and detune is 0 .

71 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

Tuning Samples Recorded at a Rate Other than the Hardware
Playback Rate

Handling the . inst file becomes somewhat complicated when tuning
samples recorded at a rate different from the hardware output rate. {The
hardware output rate is determined by software and can be changed.)
Although the sample rate is automatically extracted from AIFF files, the
user must set the keyBase and detune parameters manually, if samples
are to be played at the correct pitch.
The formulas for computing the keyBase and detune parameters from a
given sample rate are as follows.
N
N

semitones to add to keyBase
12 log2 (hardware rate/sample rate)

To simplify the tuning problem, please use Table 1.
1. Select an appropriate rate from the column for the hardware rate

used.
2. Record a sample at that rate (or resample a sample at that rate).
3. Add the semitone number in the leftmost column to the note number

of the sample pitch. If this is done, detune always becomes 0.
For example, consider a case in which the hardware playback rate is 44.1
KHz and a sample of a trumpet playing a 84 note is re-sampled at
approximately 32 KHz. Re-sampling will be performed at 33,037 .67 Hz,
the closest rate to 32,000 Hz. When this file is played at a rate of 44.1
KHz, the pitch that can actually be heard is the keyBase written in the
. inst file. A look at the leftmost column of the table shows that 5
semitones should be added. The MIDI note number for a 84 note is 70.
Adding 5 to this shows that a value of 75 should be assigned to keyBase .

72

•

•

•

•

•

•

Programming Cautions

Table 1 Hardware Playback Rates
Add to MIDI Hardware Playback Rate Hardware Playback Rate Hardware Playback Rate

Value (Hz) (Hz) (Hz)
44,100 32,000 22,050

0 semitones 44100 32000 22050
1 semitone 41624.857 30203.978 20812.429
2 semitones 39288.633 28508.759 19644.317
3 semitones 37083.532 26908.685 18541.766
4 semitones 35002.193 25398.417 17501.097
5 semitones 33037.671 23972.913 16518.836
6 semitones 31183.409 22627.417 15591.705
7 semitones 29433.219 21357.438 14716.609
8 semitones 27781.259 20158.737 13890.626
9 semitones 26222.017 19027.314 13111.008
10 24750.288 17959.393 12375.144
semitones
11 23361.161 16951.410 11680.581
semitones
12 22020 16000 11025
semitones

If the user wishes to expand Table 1 or calculate the value for hardware
rates other than those given, please use the following formula .

Where:
S = Sample rate
H = Hardware rate
N = Added semitones

Sounds

The sound structure references samples, keymaps, envelopes, pan
values, and volume values. The range of pan values is 0-127, with O
corresponding to the left extreme, 64 the center, and 127 the right
extreme. The range of volume values can also be specified as 0-127 .

73 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

Instruments

Written in the instrument structure is a list of sounds grouped by •
instrument. If the instrument is an instrument that uses the sequence
player, the number of sounds is limited to 128, the maximum number of
MIDI notes. With an instrument that uses the sound player, however,
several sounds or as many as desired, can be written. In addition to the
sound list, all volume values and pan values can be written to the
instrument structure. (The sound player ignores volume and pan values
written in the instrument structure. Instead, it uses the pan and volume
values specified in the sound object.)
The instrument structure can also be used to create a drum kit. In this
case, an instrument that uses multiple sounds can be created, and
keymaps can be applied to each sound. (Please refer to the General
MIDI Bank of the development package.)

Banks

Located at the top level of the . inst file is the bank structure. Several
banks can be kept in the . inst as needed. Currently, there are no
means available to switch banks from MIDI, so banks must be selected
by the application.

Making a Bank File

The procedure for creating a sample bank file is as follows.
1. Record the sample and save it as an AIFF file.
2. Compress the sample using tabledesign and vadpcm_enc.
3. Create an . inst file.
4. Compile a bank using ic.

74

•

•

•

•

•

Programming Cautions

MIDI FILES
All sequences can be stored in a game as in Type O MIDI file format or
compact MIDI file format. When using the Type O MIDI file format, run
the midicvt tool to save a file as a Type 0 or Type 1 MIDI file. When
using the compact sequence format, run the midicomp tool to save a file
as a Type O or Type 1 MIDI file.
The procedure for creating a MIDI sequence bank file is listed below.
1. Create the sequences and store them as Type O or Type 1 MIDI files.
2. Convert the sequences using midicvt or midi comp.
3. Compile the sequences using sbc.

The following MIDI messages are supported.

• Note On

• Note Off
• Polyphonic key pressure

• MIDI controller:
a) Controller 07: channel volume
b) Controller 1 O: channel pan
c) Controller 64: sustain
d) Controller 91: FXMix

• Program controller change (0-127)

• Pitch-bend change
In addition to the above messages, MIDI file meta tempo events are also
supported.

Loops in a Sequence

The means of creating a loop varies greatly with sequence format. When
Type O MIDI format is adopted for use in a game, the program must
create the loop by executing an audio library call from within the game
code. When the compact sequence format is used, the musician inserts
loops using MIDI controllers.

75 NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

With the compact sequence format, loops can be created in tracks. A
maximum of 128 sequential or nested loops can be created for a single
track. Each loop must be allocated a number, and its beginning and end •
points must be specified. In addition, a loop count (number of times the
loop section is played) can be arbitrarily specified. A value of 1-255 can
be specified for the loop count. If O (default) is specified, the section will
loop endlessly.
Although the compact MIDI file format will not be explained in detail here,
it should be noted that, if a file is compressed, attention must be given to
the fact that MIDI events are repositioned by the channel base. That is,
MIDI events are repositioned so that all channel 1 MIDI events are placed
in track 1, all channel 2 events are placed in track 2, and so forth. When
creating loops, please be particularly mindful of this point. If a loop is
placed in a track, all MIDI events in that channel will loop.
Loops are inserted in compact MIDI sequences using controllers. These
controllers serve as loop markers. Controller 102 defines the start of a
loop; controller 103 defines the end of the loop.
Each loop start/end pair in a single channel must be assigned a unique
number between O and 127. Please set these numbers as controller
values for the start and end of a loop.
Define loop counts of O to 127 by setting a value of 0-127 for controller
104. Define loop counts 128 to 255 by setting a value of 0-127 for
controller 105. (When the system encounters loop count controller 105, it
adds its value to 128 to compute loop counts of 128 to 255.)
A simple sequence is shown in the following example.

loop 0 start
loop count of 6
loop 0 end

(controller 102, value: 0)
(controller 104, value: 6)
(controller 103, value: 0)

In the above example, the section between the loop start and end is
played 6 times.
An important point to note is that there is no correspondence between

•

loop count and start/end pairs. If the end of a loop is reached, the •
system will use the most recent loop count setting and continue looping,
regardless of whether the end of the preceding loop was passed. As an
example of this, consider the following sequence.

76

•

•

•

Programming Cautions

loop 0 start (controller 102, value: 0)
loop count of 8 {controller 104, value: 8)
loop 0 end {controller 103, value: 0)
loop 1 start {controller 102, value: 1)
loop 1 end (controller 103, value: 1)

In this case, the loop count of the first loop (loop 0) is set to 8. Once set,
however, the loop count will retain the same setting until the user
explicitly changes it. Thus, if left as it is, the loop count for the second
loop (loop 1) will be 8.
If the user does not define the loop count in a sequence, the system will
set the count to the default value of O and loop that section endlessly.

Nested Loops

Loops can easily be nested in the compact sequence format. The
following example shows a sequence with nested loops .

loop 0 start (controller 102, value: 0)
loop 1 start (controller 102, value: 1)
loop count of 8 (controller 104, value: 8)
loop 1 end (controller 103, value: 1)
loop 2 start (controller 102, value: 2)
loop 2 end (controller 103, value: 2)
loop 3 start (controller 102, value: 3)
loop count of 4 (controller 104, value: 4)
loop 3 end (controller 103, value: 3)
loop forever ·(controller 104, value: 0)
loop 0 end (controller 103, value: 0)

In this case, loop 1 loops 8 times. Then loop 2 starts and it also loops 8
times. Loop 3 starts and loops 4 times. The entire sequence loops
endlessly.

77

. iP i ·~'

.·.r;

NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

Creating a Compact MIDI File that Contains Loops

When creating a compact MIDI format with loops using the midicomp •
tool, remember that the -o option must be used. This option organizes
'MIDI events in a logical order. Without this, problems arise, such as
audio at loop points sounding flat or sound becoming inaudible.

Problems Related to Loops

When constructing a loop using a Type O sequence player, note that the
Note On which occurs just before the return to the top of the loop remains
in effect.
For example, when a sound for which Note On occurs at the top of the
16th bar is changed to Note Off at the top of the 18th bar, and if the
sequence is set so that at the top of the 17th bar there is a return to the
top of the 2nd bar; this sound will not be able to obtain a Note Off event
and will consequently result in an "endless sound" state. If this sequence
continues and approaches the 16th bar, a Note On event will again occur, •
requiring a new voice. The sequence will finally result in an "insufficient
number of voices" status.

To avoid this situation, be sure to execute a Note Off prior to looping
back to the point before the piece of music. Or, using the same key
(height), prepare a Note Off for the same channel before the loop return.

CREATING THE MAKEFILE
Batch processing using make is a convenient means of creating sample
and sequence banks from wave files (AIFF) and MIDI files.
The protocols and file dependencies for these processes are written in
Makefile in the N64 OS directory /usr/src/PR/assets. Please refer to
this file when creating a new Makefile.

78

•

•

•

•

Programming Cautions

GENERAL MIDI AND N64
Although the N64 itself is not a General MIDI device, it can be configured
like one. An example of the structure of a General MIDI bank is included
in /usr/lib/PR/soundbanks in the IRIX version of the N64 OS/Library
and in \ultra\Usr\Lib\PR\soundbanks in the PC version of the N64
OS/Library. All of the sound files used by this bank are provided,
enabling license-holding developers to use these in any project.
The current default setting for MIDI channel 10 is program 128. In the
General MIDI bank, this is the setting for the standard drum kit. The
standard program can be changed to a note other than that of the · ·.;. ·
standard drum kit if the user sends a program change for channel 10 .

79

, .

NUS-06-0132-001 A
Released: 9/9/97

Nintendo 64 Audio Development Guide

•

•

•
80

