Contents

List of Figures xvii

List of Tables xxi

PART I Getting Started

1. Hardware and Software Installation Notes 27
Hardware Installation 28
Software Installation 30
READMEs and Release Notes 30
Other Sources 30
Executables 31

2. Troubleshooting Software Bringup 33
Operating System 33
Graphics 34
Audio 36
Integration 37
Debugging CPU Faults 37

Contents

PART II Ultra 64 System Overview

3. Hardware Architecture 41
Execution Overview 42
RCP: Reality CoProcessor 43
RSP: Reality Signal Processor 44
RDP: Reality Display Processor 45
R4300 CPU 46
Memory Issues 47
Clock Speeds and Bus Bandwidth 48
Development Hardware 48

4. Runtime Software Architecture 51

Resource Access and Management 52

CPU Access 54
Message Passing Priority Scheduled Threads 54
CPU Data Cache 54
No Default Memory Management 55
Timers 55
Variable TLB Page Sizes 55
MIPS Coprocesser 0 Access 56
Pl Manager 56
VI Manager 57

Memory Management 58
No Default Dynamic Memory Allocation 58
Region Library 58
Memory Buffer Placement 58
Memory Alignment 58

RCP Access and Management 60

Graphics Interface 61
Graphics Binary Interface 61
GBI Geometry and Attribute Hierarchy 61
GBI Feature Set 62
RSP Geometry Microcode 63

Contents

Audio Interface 64
RCP Task Management 65
The “Simple” Example 65
GameShop Debugger 67
WorkShop Debugger Heritage 67
Debugger Components 67

Compile Time Overview 69
Database Modeling 70
NinGen 70
Alias 71
Other Modeling Tools 71
Custom Modeling Tools 71
Model to Render Space Database Conversion 72
Existing Convertors 72
Custom Convertors 72
Conversion Considerations 72
Gamma Correction 74
Music Composition 75
Wavetable Construction 76
Building ROM Images 77
C Compiler Suite 77
ROM Image Packer 77
Headers and Libraries 78
Host Side Functionality 79

Contents

PART I11

6.

7.

Ultra 64 Operating System

Operating System Overview 83
Overview 83
Threads 84
Messages 84
Events 85
Memory Management 85
Input and Output 86
Timers 87
Controller Pack File System 87
Debugging Support 87
Boot Procedure 87

Operating System Functionality 89
Overview 89
System Threads, Application Threads, and the Idle Thread 90
Thread Data Structure 90
Thread State 90
Scheduling and Preemption 91
Thread Functions 92
Exceptions and Interrupts 93
Events 94
Event and Interrupt Functions 96
Non-Maskable Interrupts and PRENMI 96
Internal OS Functions 98

Contents

8. Input/Output Functionality 101
Overview 101
Design Approach 103
Synchronous 1/0 vs. Asynchronous I/0 104
Mutual Exclusion 105
1/0 Components 105
System Exception Handler 106
Device Manager 106
Device-Dependent System Interface 108

9. Basic Memory Management 113
Introduction 113
Hardware Overview 113
CPU Addressing 114
Mixing CPU and SP Addresses 116
Flushing the CPU Data Cache 118
Clearing uninitialized data (Bss) section 119
Physical Memory Allocation 119

10. Advanced Memory Management 121
Introduction 121
Mixing CPU and SP Data 121
Using Overlays 122
Using Multiple Waves 124
Using the Region Allocation Routines 125
Managing the Translation Lookaside Buffer 126

Contents

PART IV Ultra 64 Graphics

11. Graphics Microcode 131
Microcode Functionality 132
gspFast3D 132
gSpF3DNoON 132
gspLine3D 132
gspTurbo3D 132
gspSprite2D 133
gspSuper3D 133
RSP to RDP command passing 134

12. RSP Graphics Programming 135
RSP Overview 137
Display List Format 137
Segmented Memory and the RSP Memory Map 138
Interaction Between the RSP and R4300 Memory Caching 139
Display List Processing 141
Connecting Display Lists 141
Branching Display Lists 142
Ending Display Lists 142
A Few Words about Optimal Display Lists 142
Matrix State 144
Insert a Matrix 145
Pop a Matrix 145
Perspective Normalization 145
Note on Coordinate Systems and Big Numbers 146
A Few Words About Matrix Precision 147
Vertex State 149
Texture State 150
Clipping and Culling 152

Vi

Contents

13.

Vertex Lighting State 156
RSP Microcode 156
Normal Vector Normalization 157
Ambient and Directional Lighting 157
Specular Highlights 161
Reflection Mapping 165

Vertex Fog State 169

Primitives 171

Controlling the RDP State 174

RDP Programming 175
RDP Pipeline Blocks 176
One-Cycle-per-Pixel Mode 177
Two-Cycles-per-Pixel Mode 178
Fill Mode 180
Copy Mode 180
RDP Global State 181
Cycle Type 181
Synchronization 181
Span Buffer Coherency 182
RS: Rasterizer 184
Scissoring 184
TX: Texture Engine 186
Texture Tiles 186
Multiple Tile Textures 187
Texture Image Types and Format 188
Texture Loading 188
Color-Indexed Textures 190
Texture-Sampling Modes 191
Synchronization 192
TF: Texture Filter 193
Filter Types 193
Color Space Conversion 194

vii

Contents

CC: Color Combiner 195
Color and Alpha Combiner Inputs Sources 195
CC Internal Color Registers 197
One-Cycle Mode 198
Two-Cycle Mode 200
Custom Modes 200
Chroma Key 201

BL: Blender 203
Surface Types 203
Antialiasing Modes 204
BL Internal Color Registers 205
Alpha Compare 205
Using Fog 206
Depth Source 208

MI: Memory Interface 210
Image Location and Format 210
Fill Color 211
Dithering 211

14. Texture Mapping 213

Graphics Binary Interface for Texture 216
Primitive Commands 216
Tile Related Commands 216
Load Commands 216
Sync Commands 216
Mode Commands 216

Example Display List 218

Texture Image Space 219

viii

Contents

Tile Attributes 221
Format 221
Size 221
Line 222
Tmem Address 222
Palette 222
Mirror Enable S,T 222
Mask S,T 223
Shift S,T 223
SL,TL 224
SH,TH 224
Clamp S,T 224
Tile Descriptor Loading 225
Texture Pipeline 226
Tile Selection 228
Functionality 228
LOD Disabled 228
LOD Enabled 229
MIP Mapping 232
Magnification 233
Texture Memory 239
Memory Organization 239
Texel Formatting 247
Texture Loading 248
Examples 255
Restrictions 259
Texture Types and Modes 259
Alignment 259
Tiles 260
Coordinate Range 260
Applications 261
Multiple Tile Effects 261
Appendix A: LoadBlock Line Limits 264

Contents

15.

16.

Texture Rectangles (Hardware Sprites)
Sampling Overview 271

Simple Texture Effects 279

Texture Types 288

Multi-Tile Effects 292

Tiling Large Images 297

Color Index Frame Buffer 298
Z-Buffering Texture Rectangles 299

Antialiasing and Blending 301

Antialiasing 302

Coverage Unit 306

Z Stepper 308

Blender 310
Color Blend Hardware 310
Fog 313
Coverage Calculation 314
Alpha Compare Calculation 315
Blender ADD Mode 317
Color Image Format 318

Image Alignment Requirements 320

Z Calculation 320

Z Image Format 322

Z Accuracy 325
Video Filter 326

269

Contents

Blender Modes and Assumptions 327
Opaque Surface Antialiased Z-Buffer Algorithm, OPA_SURF 327
Transparent Surfaces, XLU_SURF 329
Transparent Lines, XLU_LINE 331
Texture Edge Mode, TEX_EDGE 332
Decal Surfaces, OPA_DECAL, XLU_DECAL 333
Decal Lines, DEC_LINE 334
Interpenetration, OPA_INTER, XLU_INTER 335
Particle System Mode, PCL_SURF 336
Blender Modes Truth Table 337
Creating New Blender Modes 345
Visualizing Coverage 346

Sprites 349

Application Program Interface (API) 351
Making Sprites 351
Manipulating Sprites 351
Drawing Sprites 353

Data Structures and Attributes 354
Bitmap Structure 354
Sprite Structure 354
Attributes 355

Tricks and Techniques 358
Sparse Sprites 358
Early-Ending Sprites 358
Variable Size Bitmaps 358
Explosions 358
Bitmap Re-use 358
Sprite Re-use 359

Examples 360
Backgrounds 360
Text (Fonts) 360
Simple Game 360

Xi

Contents

18. Sprite Microcode 361
Sprite Microcode Functionality 362
Sprite Microcode APl 363

PART V Ultra 64 Audio

19. The Audio Library 369
Generating Audio Output 372
Sampled Sound Playback 373
Representing Sound 373
Playing Sounds 373
Sequenced Sound Playback 376
Representing the Sequence 376
Representing Instruments 377
Playing Sequences 378
Loops in Sequence Players 380
Controllers in Sequence Players 381
The Synthesis Driver 382
Initializing the Driver 382
Building and Executing Command Lists 383
Synthesis Driver Sound Data Callbacks 383
Assigning Players to the Driver 384
Allocating and Controlling Voices 384
Effects and Effect Busses 385
Creating Your Own Effects 386
Parameter Description 388
Summary of Driver Functions 393
Writing Your Own Player 394
Initializing the Player 394
Implementing a Voice Handler 395
Implementing Vibrato and Tremolo 397

Xii

Contents

20.

21.

Audio Tools 401
The Instrument Compiler: ic 402
Invoking ic 402
Writing ic Source Files 403
The ADPCM Tools: tabledesign, vadpcm_enc, vadpcm_dec 412
tabledesign 412
vadpcm_enc 413
vadpcm_dec 414
The MIDI File Tools: midicvt, midiprint & midicomp 416
midicvt 416
midiprint 416
midicomp 417
Midi Receiving with Midi Daemon: midiDmon 419
Instrument Editor 420
Midi and the Indy 421
The sbc Tool 423
sbc 423

Audio File Formats 425
Bank Files 426
ALBankFile 426
ALBank 427
ALInstrument 428
ALSound 429
ALEnvelope 430
ALKeyMap 431
ALWavetable 432
ADPCM AIFC Format 435
Sequence Banks 438
Compressed Midi File Format 439

Xiii

Contents

22. Nintendo 64 Audio Memory Usage 441
Overview of audio RDRAM usage. 442
Audio Buffers 442
Sample Rate, Frame Rate, and Other Factors 443
Optimizing Buffer Sizes. 444
Audio DMA Buffers 444
Command List Size 446
Output Buffer Size 446
Audio Thread Stacksize 446
Synthesizer Update Buffers and Sequencer Event Buffers 446
The Audio Heap 447
The Sequence Buffer 447
The Bank Control File Buffer 447

23. Using The Audio Tools 449

Overview of Audio System 450
Typical Development Process 451
Common Values 452

Dealing With Constraints and Allocating Resources 453
Determining Hardware Playback Rate 453
Limits of Voices and Processing Time 454
Division of Sounds and Music Into Banks 454
Limits of ROM 454

Creating Samples 455

Xiv

Contents

24.

Playback Parameters and .inst Files 457
Setting Sample Parameters in the .inst File 457

Differences Between Sound Player and Sequence Player Use of .inst Files
457

Envelopes 458
Keymaps and Velocity Zones 458
Tuning for Samples Recorded at the Hardware Playback Rate 459
Tuning for Samples Recorded at Varying Rates 459
Sounds 461
Instruments 461
Banks 462
Creating Bank Files 462
MIDI Files 463
Loops in the sequences. 463
Putting Things Together Into Makefiles 466
General MIDI and the Nintendo 64 467

Scheduling Audio and Graphics 469

Scheduling Issues 470
Command List Generation 470
Command List Processing 470

Using the Scheduler 472
Creating the Scheduler: osCreateScheduler() 472
Adding Clients to the Scheduler: osScAddClient() 472
Creating Scheduler Tasks: The OSScTask Structure 473

474

Sending Tasks to the Scheduler: 0sScGetTaskQ() 476

XV

Contents

PART VI Ultra 64 Development Tools

25. GameShop Debugger 479
Hardware Environment 479
Software Environment 479
Rmon Theory of Operation 481
Programming Model 482
Using the Debugger 484

PART VII Ultra 64 Performance Tuning

26. Performance Tuning Guide 491
Data Reduction 492
Game World Organization 492
Hierarchical Culling 495
Geometry Tuning (gspFast3D - Precise Microcode) 496
Vertex Grouping 496
Pre Lighting 496
Clipping and Lighting 496
Kinds of Polygons 497
Textures instead of Geometry 497
Geometric Level of Detail 497
Geometry Tuning (Turbo Microcode) 498
Raster Tuning (Fillrate) 499
Disable Atomic Primitives 499
Partial Sorting for Z-Buffer 499
No Z-Buffer 499
No Antialiasing 501
Reduced Aliasing 501
CPU Tuning 502
Parallel Execution of the CPU and the RCP 502
Sorting 502

PART VIII Index

XVi

List of Figures

Figure 1-1
Figure 2-1
Figure 2-2
Figure 3-1
Figure 3-2
Figure 3-3
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 6-1
Figure 8-1

Figure 8-2

Figure 8-3

Figure 12-1
Figure 12-2
Figure 13-1
Figure 13-2
Figure 13-3
Figure 13-4
Figure 13-5
Figure 13-6
Figure 13-7
Figure 13-8

Nintendo 64 GIO Card 28

CPU KSEGO0-3 Addresses 34

RSP Addresses 35

Nintendo 64 Hardware Block Diagram 42

Block Diagram of the RCP 44

Development System 49

Application Resources 53

1/0 Access and Management Software Components 56
Graphics Pipeline 61

Graphics Binary Interface (GBI) of an Airplane 62
Debugger Components 67

Nintendo 64 System Kernel 83

Logical View of RCP Internal Major Devices and Interface
Modules 103

Interactions Between 1/0 Components Servicing Simple
1/0 Request 106

Interaction Between I/0 Components and a Shared Device
108

Nintendo 64 Graphics Pipeline 135

Perspective Normalization Calculation 146
One-Cycle Mode RDP Pipeline Configuration 177
Two Cycle Mode RDP Pipeline configuration 178
RS State and Input/Output 184
Scissor/Clipping/Screen Rectangles 185

TX State and Input/Output 186

Tile Descriptors and TMEM 187

Cl TMEM Partition 190

Texture Filter State and Input/Output 193

XVii

XViii

Figure 13-9
Figure 13-10
Figure 13-11
Figure 13-12
Figure 13-13
Figure 13-14
Figure 13-15
Figure 13-16
Figure 13-17
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 14-6
Figure 14-7
Figure 14-8
Figure 14-9
Figure 14-10
Figure 14-11
Figure 14-12
Figure 14-13
Figure 14-14
Figure 14-15
Figure 14-16

Figure 14-17
Figure 14-18
Figure 14-19
Figure 14-20
Figure 14-21
Figure 14-22
Figure 14-23

Color Combiner State and Input/Output 195
RGB Color Combiner Input Selection 196
Alpha Combiner Input Selection 197

Chroma Key Equations 201

Blender State and Input/Output 203

Surface Types 203

Memory Interface State and Input/Output 210
Color and Z Image Pixel Format 210

Fill Color Register LSB Replication 211
Texture Unit Block Diagram 214

Image Space and Tile Space 219

Texture Pipeline 226

Texture Pipeline, contd. 227

MIP Map Tile Descriptors 232

Magnification Interval Relative to LOD 233
MIP Map With Detail Texture Tile Descriptors 235
Sharpen Extrapolation 238

Physical Tmem Diagram 239

Tmem Loading 240

Four-Bit Texel Layout in Tmem 241

Eight-Bit Texel Layout in Tmem 241
Sixteen-Bit Texel Layout in Tmem 242

YUV Texel Layout in Tmem 243

Thirty-Two Bit RGBA Texel Layout in Tmem 243

Tmem Organization for Eight-Bit Color Index Textures
245

Tmem Organization for Four-Bit Cl textures 246
Texel Formats in DRAM 249

Example of LoadTile Command Parameters 250
Wrapping a Large Texture Using Two Tiles 251
Wrapping a Large Texture Using One Tile 252
Example of LoadBlock Command Parameters 253
Wrapping, Mirroring, and Clamping 256

Figure 14-24
Figure 14-25
Figure 15-1
Figure 15-2
Figure 15-3
Figure 15-4
Figure 15-5
Figure 15-6
Figure 15-7
Figure 15-8
Figure 15-9
Figure 15-10
Figure 15-11
Figure 15-12
Figure 15-13
Figure 15-14
Figure 15-15
Figure 15-16
Figure 15-17
Figure 16-1
Figure 16-2
Figure 16-3
Figure 16-4
Figure 16-5
Figure 16-6
Figure 16-7
Figure 16-8
Figure 16-9
Figure 16-10
Figure 16-11
Figure 16-12
Figure 16-13
Figure 16-14

Wrapping Within a Texture Tile 257
Example of Texture Decals 258
Texture Rectangle Definition 270
Aliasing in a Sampled Image 271
Point Sampling Scaling Problem 272
Bilinear Filtering 274
Triangular Filtering 275
Copy Mode 277
Flipping Texture Rectangles 279
TextureRectangleFlip Command 281
Mirrored Tree 281
Wrapping on Several Boundaries of the Same Texture 282
Wrapped and Mirrored Tree 283
Effect of Changing SL, TL 284
Biasing Texture Coordinates for Positive SL, TL 285
Texture Billboard 287
Shrinking a Sprite 294
Texture Decals 296
Modulation 296
Edge With and Without Antialiasing 302
Unweighted Area Sampling 303
Antialiasing Data Flow 304
Coverage Calculation 306
Complementary Edges 307
Z-Buffer Planes 308
Subpixel Correction of Z 309
Alpha Compare in Copy Mode for 8-bit Framebuffer 316
Alpha Compare in One/Two-Cycle Mode 317
Hidden Bits 319
Color Image Formats 320
Z Encoding 322
Z Memory Format 324
Z Worst-Case Error 325

XiX

XX

Figure 19-1
Figure 19-2
Figure 19-3
Figure 19-4
Figure 26-1
Figure 26-2
Figure 26-3
Figure 26-4

Audio Software Architecture 370

Effects Primitives 387

A simple echo effect 390

A nested all-pass inside a comb effect 391
Fixed Size Grid Database Organization 492
Quadtrees 493

Portals Connectivity Visibility 494
Bounding Sphere Test 495

List of Tables

Table 4-1 GBI Feature Set 62

Table 7-1 94

Table 7-2Events Defined for the Nintendo 64 System 95

Table 9-1 32 Bit Kernel Mode Addressing 114

Table 12-1 gsSPDisplayList(Gfx *dl) 141

Table 12-2 gsSPBranchList(Gfx *dl) 142

Table 12-3 gsSPEndDisplayList(void) 142

Table 12-4 gsSPMatrix(Mtx *m, unsigned int p) 145

Table 12-5 gsSPPopMatrix(unsigned int n) 145

Table 12-6 gsSPPerspNormalize(unsigned short ints) 146
Table 12-7 gsSPVertex(Vtx *v, unsigned int n, unsigned int v0) 149
Table 12-8 gsSPTexture(int s, int t, int levels, int tile, inton) 150
Table 12-9 gsSPSetGeometryMode(unsigned int n) 154

Table 12-10 gsSPClearGeometryMode(unsigned int n) 154
Table 12-11 gsSP1Triangle(int v0, int v1, int v2, int flag) 171
Table 12-12 gsSPLine3D(int v0, int vl, int flag) 171

Table 12-13 gsDPFillRectangle(unsigned int ulx, unsigned int uly, unsigned
int Irx, unsigned int Iry) 172

Table 12-14 gsSPTextureRectangle(unsigned int ulx, unsigned int uly,
unsigned int Irx, unsigned int Iry, int tile, short int s, short
int t, short int dsdx, short int dtdy) 172

Table 12-15 gsSPTextureRectangleFlip(unsigned int ulx, unsigned int uly,
unsigned int Irx, unsigned int Iry, int tile, short int s, short
int t, short int dtdx, short int dsdy) 173

Table 13-1Cycle Types 175

Table 13-2Basic Operations of RDP Subblocks 176

Table 13-3RDP Pipeline Block Functionality in One-Cycle Mode 177
Table 13-4RDP Pipeline Block Functionality for Two-Cycle Mode 178

XXi

XXii

Table 13-5gsDPSetCycleType(type) 181

Table 13-6gsDPPipeSync() 181

Table 13-7gsDPFullSync() 182

Table 13-8gsDPPipelineMode(mode) 183
Table 13-9gsDPSetScissor(ulx, uly, Irx, Iry) 185
Table 13-10Texture Format and Sizes 188

Table 13-11gsDPLoadTextureTile(timg, fmt, siz, width, height, uls, ult, Irs,
Irt, pal, cms, cmt, masks, maskt, shifts, shiftt) 189

Table 13-12gsDPLoadTextureTile_4b(pkt, timg, fmt, width, height, uls, ult,
Irs, Irt, pal, cms, cmt, masks, maskt, shifts, shiftt) 189

Table 13-13gsLoad TLUT(count, tmemaddr, dramaddr) 191
Table 13-14gsDPSetTexturePersp(mode) 191

Table 13-15gsDPSetTextureDetail(mode) 192

Table 13-16gsDPSetTextureLOD(mode) 192

Table 13-17gsSetTextureLUT(type) 192

Table 13-18gsSetTextureFilter(type) 194

Table 13-19gsSetTextureConvert(mode) 194

Table 13-20gsSetConvert(k0,k1,k2,k3,k4,k5) 194

Table 13-21gsSetPrimColor(minlevel, frac, r, g, b, a), gsDPSetEnvColor(r, g,
b,a) 198

Table 13-220ne-Cycle Mode Using gsDPSetCombineMode(model, mode2)
198

Table 13-23Two-Cycle Mode Using gsDPSetCombineMode(model, mode2)
200

Table 13-240ne-Cycle Mode gsDPSetRenderMode(model, mode2) 204
Table 13-25Two-Cycle Mode gsDPSetRenderMode(model, mode2) 205
Table 13-26gsDPSetFogColor(r, g, b, a) gsDPSetBlendColor(r, g, b, a) 205
Table 13-27gsDPSetAlphaCompare(mode) 206

Table 13-28gsSetFillColor(data32bits) NEED READABLE TITLEFOR THIS!
211

Table 14-1 Tile Format Encodings 221

Table 14-2 221

Table 14-3 Shift Encoding 223

Table 14-4 Tile Descriptor Index Generation with LOD Disabled 228

Table 14-5 Example of Tile Address and LOD Index Relationship 230

Table 14-6 Generation of Tile Descriptor Index With LOD Enabled and
Magnifying 231

Table 14-7 Generation of Tile Descriptor Index With LOD Enabled and Not
Magnifying 231

Table 14-8 Maximum tile sizes in TMEM 240

Table 14-9 Texel Output Formatting 247

Table 14-10 Limits on Number of Lines for LoadBlock Command 264

Table 16-1 P and M Mux Inputs 310

Table 16-2 A Mux Inputs 311

Table 16-3 B Mux Inputs 311

Table 16-4 Fog Mux Controls 313

Table 16-5 Antialiased Z-buffered Rendering Modes, G RM_AA ZB 339

Table 16-6 Antialiased Non-Z-Buffered Rendering Modes, G RM_AA 341

Table 16-7 Point-Sampled Z-Buffered Rendering Modes, G RM_ZB 343

Table 16-8 Point-Sampled Non-Z-Buffered Rendering Modes, G_RM 345

Table 19-1Sound Player Functions 375

Table 19-2Sequence Functions 377

Table 19-3Bank Functions 378

Table 19-4Sequence Player Functions 379

Table 19-5Synthesizer Functions 393

Table 20-1ic Command Line Options 403

Table 20-2tabledesign Command Line Options 413

Table 20-3vadpcm_enc Command Line Options 414

Table 20-4vadpcm_dec Command Line Options 415

Table 20-5midicvt Command Line Options 416

Table 20-6midiprint Command Line Options 417

Table 20-7midicomp Command Line Options 417

Table 21-1ALBankFile Structure 427

Table 21-2ALBank Structure 427

Table 21-3ALInstrument Structure 428

Table 21-4ALSound STructure 429

Table 21-5ALEnvelope Structure 430

XXiii

Table 21-6ALKeyMap Structure 431

Table 21-7ALWavetable Structure 433

Table 21-8ALADPCMWavelnfo structure 433
Table 21-9ALRawWavelnfo structure 434
Table 21-10ALADPCMLoop structure 434
Table 21-11ALADPCMBook structure 434
Table 21-12ALRawLoop structure 434

Table 22-1 DMA Buffer Length. 445

Table 23-1 Tuning to hardware playback rates. 460
Table 24-10SScTask structure fields 473
Table 24-20STask structure fields 474

XXiv

NINTENDO DRAFT GETTING STARTED |

PART

Getting Started

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO

DRAFT HARDWARE AND SOFTWARE INSTALLATION NOTES

Chapter 1

Hardware and Software Installation Notes

This chapter describes how to install the Nintendo 64 development board
into a Silicon Graphics Indy workstation. It also describes how to install the
Nintendo 64 development software and where the software components
are. located

This chapter is not a complete installation guide. You must be familiar with

the standard SGI software installation procedures and GIO board
installation in an Indy workstation.

27

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Hardware Installation

28

The Nintendo 64 Development Board is installed in the Indy workstation as
described in the /ndy Workstation Owner’s Guide (see the chapter
“Installing the GIO Option Board”). The following instructions supplement
that chapter and serve as an errata. Figure 1-1 shows the placement of the
Nintendo 64 Development board in the Indy workstation.

The board is secured in the workstation by four screws that attach it to the
standoffs on the base board. When you install the board, be careful not to
damage any jumper wires that may be present on the board.

The Nintendo 64 Development board is not supported by the Ainv
command. Once the board and software have been successfully installed,
the boot monitor will echo “U64 Device found” during the power-up
procedure. The application ginvin /usr/scr/PR/ginv can be used to print
information about the installed development board such as the RCP version
number, clock speed, and video mode.

Figure 1-1 Nintendo 64 GIO Card

game controller

ports AV out

GIO A “
I HH\HHH\HHNHHHN\H
\H\\\H\\\H\\\H\\\H\\\H\\\H\\\H\\\H\H\HHHHHHHNH
i

NINTENDO

DRAFT HARDWARE AND SOFTWARE INSTALLATION NOTES

The AV out port connector type is the same as that used on the current Super
Nintendo Entertainment System. The cable that connects this port to an
external television can be obtained from most stores that sell the SNES
device. You can buy different cables to support Composite, S-Video RGB, or
other formats that are standard in your country.

Note that the AV out can optionally be routed back to the Indy video input
and audio inputs, allowing you to view and hear the gameboard on the local
Indy workstation. The workstation accepts composite or S-video input as
provided on separate SNES cables.

The game controller ports accept RJ-11 connectors (available on the U64
Development game controllers provided by Nintendo). There are
connectors for six ports, though only connectors 1 through 4 are active. The
connectors are named 1 through 6, and are numbered from left to right
(when you view the connector from the back of the workstation). Plugging
a controller into port 5 will cause the machine to hang.

29

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Software Installation

30

The Nintendo 64 development software image is not the only software
required for development. Your Indy workstation must also contain the
following 5.3 products:

e dev

e ¢ _dev

e compiler_dev

e gl _dev

= CaseVision, version 2.4

< WorkShop, version 2.4

Three products are bundled with the Nintendo 64 development software:
e GameShop

= ultra

< dmedia_eoe (version 5.5)

Note: Casevision and Workshop need to be installed before Gameshop.
Workshop needs to be version 2.4 or earlier.

READMEs and Release Notes

After installation of Nintendo 64 development software, You will find a
collection of sample demonstration applications in /usr/src/PR. A
README_DEMOS file which describes each applications key features. You
will also find the release notes in Zusr/src/PR/relnotes. The release notes
summerizes the differences from the last release and various bugs,
workarounds and caveats of the system.

Other Sources
In Zusr/src/PR/assets, you will find the source files for building the general

MIDI bank. We created an initial complete general MIDI bank for testing
purposes. For a game, we assume that you will gut the bank down to

NINTENDO

DRAFT HARDWARE AND SOFTWARE INSTALLATION NOTES

including only those instrument and sounds that you need. Therefore, this
directory gives you a starting point to do that.

In Zusr/src/PR/libultra, you will find some pieces of the Nintendo 64
system library code (libultra.a). These are supplied to give a starting point
on writing your own custom versions of these sub components. However,
these sources require extensive SGI source tree build environment tools to
actually build. Therefore, only the non buildable sources are shipped
currently.

Executables

The first piece of software you will need to use is g/oad. This program
downloads the ROM image onto the Nintendo 64 development board and
starts execution. Soon after, you will need to use dbgifand gvdto debug
your program.

e /usr/sbin/gload
e /usr/sbin/dbgif
e /usr/sbin/gvd

There are also conversion tools that help in converting data into Nintendo 64
format. For example, f/t2c convertss a MultiGen database into a C data
structure that can be compiled into binary form. Most of these tools reside in
/usr/shin but some are suppiled in source form in Zusr/src/PR/conv.
Keep in mind that these are templates for your own custom database
conversion tools. We can not possibly address the need of all developers.

31

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

32

NINTENDO

DRAFT TROUBLESHOOTING SOFTWARE BRINGUP

Chapter 2

Troubleshooting Software Bringup

This chapter describes common problems that you might encounter when
you start bringing up your Nintendo 64 software. The potential problem
areas are:

e operating system
= graphics
= audio

= integration

Operating System

Game locks up immediately.

A common error is to start the rmon thread at the same priority as the
spawning thread. Rmon then immediately goes to sleep and locks up the
system. The recommended way for starting the system is to create an idle
thread in the boot procedure at a high priority. From the idle thread start all
the other application threads, then lower the priority to zero and loop
forever to become the idle thread. Note that the rmon thread is not needed
for printfs. See the osSyncPrintf (3P) man page.

Game encounters a CPU exception.

During the development of your game, you may (intentionally or
unintentionally) encounter various CPU exceptions (or faults) such as TLB

33

NINTENDO 64 PROGRAMMING MANUAL DRAFT

34

miss, address error, or divide-by-zero. Currently, the system fault handler
saves the context of the faulted thread, stops the faulted thread from
execution, sends a message to any thread registered for the
OS_EVENT_FAULT event, and dispatches the next runnable thread from
the system run queue. If rmon is running, it would register for the
OS_EVENT_FAULT event, receive the message from the exception handler,
stop all user threads (except the idle thread), and send the faulted thread
context to the host. If gload is running on the host, it would receive the
faulted thread context and print its content to the screen. If gvd is running
on the host, it would receive the fault notification and point you to where the
fault occurred. If rmon is not running on the target, you probably experience
a strange behavior (i.e. hang) in your game since the faulted thread can no
longer run.

If you want to catch the OS_EVENT_FAULT event (instead of using rmon),
you can use two internal OS functions to find the faulted thread and handle
the exception yourself. They are __ osGetCurrFaultedThread (3P)and
__osGetNextfraultedThread (3P). Please refer to their man pages for more
information.

Graphics

There is no picture on the screen, but the drawing loop is running.

You are probably handing a bad segment address to the RSP graphics
pipeline. This problem is easy to overlook, as there are no warnings. Make
sure you thoroughly understand how a MIPS family processor performs
addressing and how KSEGO0 works (most games run in KSEGO). It allows
cached access with no TLB translation. All CPU registers are accessible.
KSEG addresses use the most significant bits of the address to indicate the
addressing modes.

Figure 2-1 CPU KSEGO0-3 Addresses

31 0

1

NINTENDO

DRAFT TROUBLESHOOTING SOFTWARE BRINGUP

The RSP uses a segment addressing scheme with base pointers. It is very
easy to hand a CPU KSEGO address to the RSP by mistake and spend hours
locating a simple error. Note that KSEG0O CPU address would reference a
invalid segment if decoded as an RSP address.

Figure 2-2 RSP Addresses

31 24 0

RSP RSP
segment] offset

For example, if you have the following code, the RSP/RDP pipeline will
receive garbage:

Mx matrix;
gSPMat ri x(gdl ++, &matrix, G MIX_.....)
mat ri x is a KSEGO CPU address 0x8xxxxxxx. When this is handed to RSP,
it fetches garbage. Below is a list of common commands with pointers:
e gDPSetColorimage
= gDPSetTexturelmage
e gDPSetMaskimage
e gSPMatrix
e gSPViewport
= gSPVertex
e gSPDisplayList

Keep in mind that CPU addresses and RSP/RDP addresses uses different
addressing schemes and are not interchangeable.

One useful way to debug possible display list problems is to link with the
GBI dumping routines in libgu, and print out the display list. This will
immediately show bad pointers and garbage matrices. See the man page for
guParseGbIDL (3P)and guParseRapDL (3P).

35

NINTENDO 64 PROGRAMMING MANUAL DRAFT

36

Ending a Display List

Make sure that your recent gbi display edit has gSPEndDisplayList in each
display list. Without this, the RSP will probably hang. The RDP requires a
gDPFullSync at the end of the entire display list sequence to make the DP
interrupt the CPU for notification.

Flaky Video

The beginning of the framebuffer and z-buffer addresses must be 64 byte
aligned.

Audio
Alignment Issues

The audio system shares several data structures between the 4300 and the
RCP. In order to avoid alignment problems, any buffer used by both the
4300 and the RCP should be allocated using the alHeapAlloc() routine. This
will generate buffers with 16 byte alignment, avoiding all alignment issues
as well as cache tearing issues.

Size and Number of buffers

A common error is to run out of buffers, particularly DMA buffers. Because
the number of buffers needed is largely dependent on the music and sound
effects used, it is not possible to provide guidelines. As music and sound
effect complexity increases, the number of buffers needed will increase.

Audio Pops and Clicks

To avoid audio pops and clicks, all samples should start with at least one
value of zero. Upon receiving a pre-nmi message it is important that the
audio fade to zero output, or on subsequent bootup, there is a potential for
a pop. If audio does not run at a high enough priority, the audio may not be
generated before the previous buffer has completed. If this occurs there will
be a period where no samples are played. This will usually generate a clear

pop.

NINTENDO

DRAFT TROUBLESHOOTING SOFTWARE BRINGUP

Integration

DMA Alignment

All DMA transactions in the Nintendo 64 must use 64 bit aligned for data in
RDRAM. DMA transactions for data in ROM must use 16 bit aligned
addresses.

Debugging CPU Faults

The “gdis” disassembler is a powerful debugging aide that can help you
turn a cryptic crash dump (i.e the text that is printed in your gload window
when your program takes an exception) into useful debugging information.

For example, you can disassemble the section named “code” (as specified in
the spec file) in the “chrome” example application executable as follows:

%gdis -S -t .code.text letters

Here is a portion of the output ...

[144] 0x80200050: 27 bd ff 90 addi u sp, sp, -112
[144] 0x80200054: af bf 00 1c sw ra, 28(sp)
145: int i, *pr;
146: char *ap;
147: u32 *argp;
148: u32 argbuf[16];
149:
150: /* notice that you can’t call rmonPrintf()
until you set
151: * up the rnon thread.
152: */
153:
154: oslnitialize();
[154] 0x80200058: Oc 08 04 c4 jal
oslnitialize
[154] 0x8020005c: 00 00 00 00 nop
155:
156: argp = (u32 *) RAMROM APP_WRI TE_ADDR;
[156] 0x80200060: 3c Oe 00 ff | ui t 6, Oxf f
[156] 0x80200064: 35 ce b0 00 ori

t6,t6, 0xb000

37

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

[156] 0x80200068: af ae 00 60 SW t 6, 96(sp)
157: for (i=0; i<sizeof(argbuf)/4; i++ argp++) {
[157] 0x8020006c: af a0 00 6¢c SW
zer o, 108(sp)
158: osPi RawReadl o((u32)argp, &argbuf[i]); /* Assume no
DVA */
[158] 0x80200070: 8f af 00 6¢C I w t7,108(sp)
[158] 0x80200074: 8f a4 00 60 I w a0, 96(sp)
[158] 0x80200078: 27 b9 00 20 addi u t9, sp, 32
[158] 0x8020007c: 00 Of cO 80 sl | t8,t7,2
[158] 0x80200080: Oc 08 05 4c ja
osPi RawReadl o
[158] 0x80200084: 03 19 28 21 addu al,t8,t9
[157] 0x80200088: 8f a8 00 6¢ I w t 0, 108(sp)
[157] 0x8020008c: 8f aa 00 60 | w t 2, 96(sp)
[157] 0x80200090: 25 09 00 01 addi u t1,t0,1
[157] 0x80200094: 2d 21 00 10 sltiu at,t1,16
[157] 0x80200098: 25 4b 00 04 addi u t3,t2,4
[157] 0x8020009c: af ab 00 60 sw t 3, 96(sp)
[157] 0x802000a0: 14 20 ff f3 bne
at, zero, 0x80200070
[157] 0x802000a4: af a9 00 6¢ sw t1, 108(sp)

159: }

Notice that the C source is interleaved with the disassembled code, and that
the PC is given in the second column.

When your program crashes, you can look up the error PC listed in the crash
dump (it is identified as “epc”) to determine where the program crashed and
find the corresponding line in the source/disassembly listing.

38

NINTENDO DRAFT ULTRA 64 SYSTEM OVERVIEW |

PART

Ultra 64 System Overview

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO

DRAFT HARDWARE ARCHITECTURE

Chapter 3

Hardware Architecture

This chapter describes the hardware architecture of the Nintendo 64 game
machine, in order to help you write software for the machine. Later sections
of this manual describe the details you need to know to program each
component.

The Nintendo 64 game consists of a number of hardware components that
work together to produce the graphics and audio for the game. The heart of
the system is the Reality CoProcessor (RCP). Attached to the RCP are
memory chips, the MIPS R4300 CPU, and some miscellaneous 170 chips.

The RCP is the center of the game; all data must pass through it. It acts as the
memory controller for the CPU. The RCP runs the graphics and audio
microcode. The display portion of the RCP renders into the graphics
framebuffer located in main memory. The video and audio portions of the
RCP, DMA framebuffer, and audio data from main memory to drive the
video and audio DACs. Figure 3-1, “Nintendo 64 Hardware Block
Diagram,” on page 42 is a block diagram of the Nintendo 64 system.

41

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Figure 3-1 Nintendo 64 Hardware Block Diagram

R4300 CPU
Game Cartridge 1 MBUS
PBUS VBUS
Cartridge Video
Interface [P) P bac
Reality CoProcessor
(RCP)
Audio
PIF —P —Poac
SBUS ABUS
Game Controllers
RBUS
Memory
4 Meg

Execution Overview

The CPU and RCP are both processors that can execute at the same time.
Threadsexecute on the CPU and fasksexecute on the RCP. Accesses to main
memory from threads and tasks also occur in parallel.

The game program runs on the R4300 CPU as a collection of threads, each of
which has its own stack. The operating system is a collection of routines that

42

NINTENDO

DRAFT HARDWARE ARCHITECTURE

can be called in a thread. The operating system controls which thread is
running on the CPU. A thread can access all of physical memory. See
Chapter 6, “Operating System Overview,” for more information.

Tasks run on the RCP, which is a microcode engine that processes a task /ist.
Task lists are generated by a thread running on the R4300 CPU and are
stored in main memory. The game program creates the task list, calls an OS
routine to load the appropriate microcode, and then starts the RCP running
to process the task list. The microcode on the RCP reads the task list from
main memory. The RCP task can also write into main memory.

RCP: Reality CoProcessor

The RCP is really a collection of processors, memory interfaces, and control
logic. The Reality Signal Processor (RSP) is the microcode engine that
executes audio and graphics tasks. The Reality Display Processor (RDP) is
the graphics display pipeline that renders into the framebuffer. The memory
interfaces provide access to main memory for the CPU, RSP, RDP, video
interface, audio interface, peripherial devices, and serial game controllers. It
is very important to remember that these interfaces may be active at the
same time and that the RSP and RDP are running in parallel.

43

NINTENDO 64 PROGRAMMING MANUAL DRAFT

44

Figure 3-2 Block Diagram of the RCP

RSP

IMEM ‘
:
DMEM
RDP +—F>
s
; TMEM » Memory
a
E
v
MEM | < >

CPU | VI Al Pl Sl

A i y

v

R4300 ¥ Audio ¥ Game Contollers
Video Cartridge

RCP

<4—P

RSP: Reality Signal Processor

The RSP is the processor used by the graphics and audio microcode. The RSP
consists of a Scalar Unit (SU), a Vector Unit (VU), instruction memory
(IMEM), and data memory (DMEM). The microcode is fetched from IMEM
and has direct access to DMEM. The RSP can also access main memory using
DMA. All memory references in the RSP are physical. However, the
microcode uses a segment address table to translate segmented addresses
provided in the task lists into physical addresses. The IMEM and DMEM are
both 4 KB. The SU implements a subset of the R4000 instruction set. The VU
has eight 16-bit elements.

NINTENDO

DRAFT HARDWARE ARCHITECTURE

For information on how the RSP is used to implement part of the graphics
pipeline, see Chapter 12, “RSP Graphics Programming”. Chapter 19, “The
Audio Library,” describes how the RSP is used in audio processing

RDP: Reality Display Processor

The RDP is the graphics display pipeline that executes an RDP display list
generated by the RSP and CPU. The RDP consists of a Rasterizer (RS), a
Texture Unit (TX), 4 KB of texture memory (TMEM), a Texture Filter Unit
(TF), a Color Combiner (CC), a Blender (BL), and a Memory Interface (Ml).

The RS rasterizes triangles and rectangles. The TX samples textures loaded
in TMEM. The TF filters the texture samples. The CC combines and
interpolates between two colors. The BL blends the resulting pixels with
pixels in the framebuffer and performs z-buffer and anitaliasing operations.
The MI performs the read, modify, and write operations for the individual
pixels at either one pixel per clock or one pixel for every two clocks. The Ml
also has special modes for loading the TMEM, filling rectangles (fast clears),
and copying multiple pixels from the TMEM into the framebuffer (sprites).

The RDP accesses main memory using physical addresses to load the
internal TMEM, to read the framebuffer for blending, to read the z-buffer for
depth comparison, and to write the z and framebuffers. The microcode on
the RSP translates the segmented addresses in the task list into physical
addresses.

The global state registers are used by all stages of the pipeline. There are a
number of syrnccommands to provide synchronization. For example, a pipe
sync is used before changing one of the rendering modes. This ensures that
all previous rendering affected by the mode change occurs before the mode
change.

The command list for the RDP usually comes directly from the RSP.
However, it is possible to feed the RDP pipeline from a command list that
has been stored in main memory.

See Chapter 13, “RDP Programming,” for more information on the RDP.

45

NINTENDO 64 PROGRAMMING MANUAL DRAFT

46

Video Interface

The video interface reads the data out of the framebuffer in main memory
and generates the composite, S-video, and RGB signals. The video interface
also performs the second pass of the antialias algorithm. The video interface
works in either NTSC or PAL mode, and can display 15- or 24-bit color
pixels, with or without filtering, at both high and low resolutions. The video
interface can also scale up a smaller image to fill the screen. For more
information on how to set one of the 28 video modes and control the special
features, see the man page for osViSetMode (3P). Chapter 8, “Input/Output
Functionality” also contains information on the video interface.

Audio Interface

The audio interface reads audio data out of main memory and generates the
stereo audio signal. See Chapter 19, “The Audio Library” and Chapter 8,
“Input/Output Functionality” for more information.

Parallel Interface

The parallel interface is the DMA engine that connects to the ROM cartridge.
The PiManager thread is used to set up the actual DMA commands for all
other threads. See Chapter 8, “Input/Output Functionality” for the list of
Pl functions.

Serial Interface

The serial interface connects the RCP with the game controllers through the
PIF chip. To get the current state of the controllers, the application must
send acommand to query all the game controllers. The data will be available
later. See Chapter 8, “Input/Output Functionality” for a list of all the
controller functions.

R4300 CPU

The R4300 CPU is part of the MIPS R4000 family of processors. The R4300
consists of an execution unit with a 64-bit register file for integer and
floating-point operations, a 16 KB instruction cache, an 8 KB writeback data
cache, and a 32-entry TLB for virtual-to-physical address calculation. The

NINTENDO

DRAFT HARDWARE ARCHITECTURE

Nintendo 64 game runs in kernel mode with 32-bit addressing. 64-bit integer
operations are available in this mode. However, the 32-bit C calling
convention is used to maximize performace.

For more information on the R4300 and the operating system control of the
CPU see the MIPS Microprocessor R4000 User’s Manual and Chapter 6,
“Operating System Overview”.

Memory Issues

The main memory in the system is used in parallel by the R4300 CPU, the
RSP microcode engine, the RDP graphics pipeline, and the other 1/0
interfaces of the RCP. The software is responsible for defining the memory
map. See Chapter 9, “Basic Memory Management” for more details.

Addressing

The R4300 CPU can use physical or virtual addresses. The TLB maps virtual
addresses into physical addresses. It is anticipated that programs will
mainly use KSEGO (cached, unmapped) addresses for instructions and data.
The RSP hardware uses physical addresses. The microcode imposes a
segmented addressing scheme to generate the physical addresses. Bits 24
through 27 of the segmented address are used to index into a 16-entry table
to obtain the base address of the segment. The upper 4 bits are masked off.
The lower bits are an offset into the segment. This scheme is used to create
dynamic RSP task lists easily. The RDP hardware uses physical addresses.
The RSP microcode translates the segmented addresses stored in the task list
into physical addresses. The segment table in the RSP is initialized to all
zeros. Every segment initially references memory starting at zero.

Data Cache

The R4300 CPU has an 8 KB writeback data cache. This means that when the
CPU writes a variable, it may not be written to main memory until later.
Since the RSP reads the task list directly from main memory, the dynamic
portion of the task list must be flushed from the data cache before the RSP
starts.

47

NINTENDO 64 PROGRAMMING MANUAL DRAFT

48

Take care in DMA operations also. The data buffer must be flushed from the
cache before the write from memory occurs. The data buffer must be
invalidated in the cache before a read into memory occurs. If the cache
invalidate does not occur, a writeback from the cache may destroy data that
has just been transfered into main memory by a read DMA. It is also a good
idea to align 170 buffers on the 16-byte data cache line size, to avoid cache
line tearing. Tearing occurs when a buffer and a unrelated variable share a
cache line. The potential writeback of the variable could destroy data read
into the 170 buffer.

Alignment

Note the various alignment restrictions:

< 8 byte alignment for most DMA

= 8 byte alignment for main memory, 2 byte alignement in ROM for Pl
= 64 byte alignment for color framebuffers (cfb) and z-buffer

< 8 byte alignment for textures

Clock Speeds and Bus Bandwidth

Various system statistics and bandwidths:

e CPU-94.0 Mhz

< RDRAM - 250 Mhz (9 bit bytes at 500 M/sec)

e RCP-62.6 Mhz

= Al - variable, 3000-368000hz on NTSC, 3050-376000 on PAL
e VI - (depends on mode) NTSC, PAL, MPAL

< PI-50 Meg/sec peak, 5 Meg/sec from typical slow ROMs

e Sl -really slow

Development Hardware

The development system consists of an Nintendo 64 game card on a GIO
card for the Indy workstation. The ROM cartridge is replaced by 16

NINTENDO

DRAFT

HARDWARE ARCHITECTURE

megabytes of RAM, called the ramrom, that is accessible from both the Indy
workstation over the GIO bus and the RCP over the PBUS. The workstation
downloads the game software onto the GIO card and then the Nintendo 64

executes the game. The ramrom is also used to pass information by the

debugger. The 4 Megabytes of main memory uses the 9 bit RDRAMs. The
color and framebuffers can be placed anywhere in memory.

Figure 3-3 Development System

GIO Card for A
Indy Workstation

|
| R4300 CPU

16 Meg |

Memory |
| Game Cartridge MBUS

< | g | Cartricige| "°2°
ge|
Interface [.
GIO | Reality CoProcessor
-t | (RCP)
Bus | PIF |-
SBUS
| Game Controllers
| ¢RBUS
“RAMROM” | |
Interrupts | Memory
and = BlkE
Control |
Lo
Connectors for controllers, audio, and video

49

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

50

NINTENDO

DRAFT RUNTIME SOFTWARE ARCHITECTURE

Chapter 4

Runtime Software Architecture

This chapter describes the runtime Nintendo 64 software architecture. It is
intended as a brief tour of the overall architecture and discusses the basic
design guidelines. More specific details are provided in subsequent
chapters.

This chapter briefly covers the following topics:

CPU: threads, messages, interrupts, cache coherency, tlbs
10: device library, device manager

Memory: static allocation, region library

RCP: tasks, command lists, yielding

Graphics: graphics interface

Audio: sequencer, audio player, driver, wavetable synthesis
Application: typical application framework

Debugger: debugger support for CPU and RSP

51

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Resource Access and Management

52

The Nintendo 64 game machine is made up of a variety of resources. These
resources include the CPU, memory, memory bus bandwidth, 10 devices,
the RSP, the RDP, and peripheral devices. The software is designed to
provide raw access to all of the resources. The software layer basically
translates logical functions and arguments into exact hardware register
settings.

Management of most resources is left up to the game itself. Resources such
as processor access and memory usage are too precious to waste by using
some general management algorithm that is not tailored to a particular
game’s requirement. The only management layers provided are the audio
playback and 170 device access.

The audio playback mechanism is fairly consistent from game to game. Only
the sounds themselves are different. Therefore, a general tool to stream
audio playback is useful. The 1/0 devices can be managed to provide
simultaneous multiple access contexts for different threads. For example,

NINTENDO

DRAFT RUNTIME SOFTWARE ARCHITECTURE

streaming audio data and paging in graphics database might require sharing

access to the ROM.

Figure 4-1 Application Resources

game applica-
tion

io mgmt
cpu mgmt

53

NINTENDO 64 PROGRAMMING MANUAL DRAFT

CPU Access

54

Message Passing Priority Scheduled Threads

To provide access to CPU compute cycles, Silicon Graphics provides a
simple CPU scheduler to help the game manage multiple threads of control.
These are the attributes of this scheduling scheme:

= Non-preemptive execution: The currently running thread will continue
to run on the CPU until it wishes to yield. Preemption does occur if
there is a need to service another, higher-priority thread awakened by
an interrupt event. The interrupt service thread must not consume
extensive CPU cycles. In other words, preemption is only caused by
interrupts. Preemption can also occur explicitly with a yield, or
implicitly while waiting to receive a message.

= Priority scheduling: A simple numerical priority determines which
thread runs when a currently executing thread yields or an interrupt
causes rescheduling.

= Message passing: Threads communicate with each other through
messages. One thread writes a message into a queue for another thread
to retrieve.

= Interrupt messages: An application can associate a message to a
particular thread with an interrupt.

CPU Data Cache

The R4300 has a write back data cache to improve CPU performance. That
means that when the CPU reads data, the cache may satisfy the read request
eliminating the extra cycles needed to access main memory. When the CPU
writes data, the data is written to the cache first and then flushed to main
memory at some point in the future. Therefore, when CPU modifies data for
the RCP’s or IO DMA engine’s consumption via memory, the software must
perform explicit cache flushing. The application can choose to flush the
entire cache or just a particular memory segment. If the cache is not flushed,
the RCP or DMA may get stale data from main memory.

NINTENDO

DRAFT RUNTIME SOFTWARE ARCHITECTURE

Before the RCP or IO DMA engines produce data for the CPU to process, the
internal CPU caches must be explicitly invalidated. You don’t want the CPU
to be examining old stale data that is in the cache. The invalidation must
occur before the RCP or DMA engine place the data in main memory.
Otherwise, there is a chance that a write back of data in the cache will clobber
the new data in main memory.

Since the software is responsible for cache coherency, keeping data regions
on cache line boundaries is a good idea. A single cacheline containing
multiple data produced by multiple processors can be difficult to keep
coherent.

No Default Memory Management

As shown above, the Nintendo 64 operating system provides
multi-threaded message-passing execution control. The operating system
does not impose a default memory management model. It does provide a
generic Translation Lookaside Buffer (TLB) access. The application can use
the TLB to provide for a variety of operations such as virtual contiguous
memory or memory protection. For example, an application can use TLBs to
protect against stack overflows.

Timers

Simple timer facilities are provided, useful for performance profiling,
real-time scheduling, or game timing. See the man page for osGetTime (3P)
for more information.

Variable TLB Page Sizes

The R4300 also has variable translation lookaside buffer (TLB) page size
capability. This can provide additional, useful functionality such as the
“poorman’s two-way set-associative cache,” because the data cache is 8 KB
of direct-mapped memory and TLB pages size can be set to 4 KB. The
application can roll a 4 KB cache window through a contiguous chunk of
memory without wiping out the other 4 KB in cache.

55

NINTENDO 64 PROGRAMMING MANUAL DRAFT

56

MIPS Coprocesser 0 Access

A set of application programming interfaces (APIs) are also provided for
coprocessor 0 register access, including CPU cycle accurate timer, cause of
exception, and status.

1/0 Access and Management

The 1/0 subsystem provides functional access to the individual 1/0
hardware subcomponents. Most functions provide for logical translation to
raw physical access to the 1/0 device.

Figure 4-2 1/0 Access and Management Software Components

game application

audio DAC video DAC controllers peripherals (ROM)

Pl Manager

Nintendo 64 also provides a peripheral interface (PI) device manager for
multiple threads to access the peripheral device. For example, the audio
thread may want to page in the next set of audio samples, while the graphics
thread needs to page in a future database. The Pl manager is a thread that
waits for commands to be placed in a message queue. At the completion of
the command, a message is sent to the thread that requested the DMA.

NINTENDO

DRAFT RUNTIME SOFTWARE ARCHITECTURE

VI Manager

A simple video interface (VI) device manager keeps track of when vertical
retrace and graphics rendering is complete. It also updates the proper video
modes for the new video field. The VI manager can send a message to the

game application on a vertical retrace. The game can use this to synchronize
rendering the next frame.

57

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Memory Management

58

No Default Dynamic Memory Allocation

The Nintendo 64 software does not impose a memory map on the game. The
Nintendo 64 system leaves the memory allocation problem up to the game
application. It assumes that the application knows the memory partitioning
scheme most suitable for the particular game. However, the Nintendo 64
library does have a heap library that is available.

Region Library

The Nintendo 64 system does provide a region allocation library that can
partition a memory region specified by the application into a number of
fixed-sized blocks. This gives the application the capability of using a
dynamic memory allocation scheme. However, the game application must
be able to handle the case when memory in the region has run out.

Memory Buffer Placement

There are some optimizations on the placement of memory buffers. For
example, it is best to keep the color and depth buffers on separate 1 MB
memory banks. The RDRAM has an active page register for each megabyte.
Spliting the color and z-buffers into seperate megabytes, prevents the
memory system from constantly having to change the page register. This
technique minimizes page misses.

Memory Alignment

The DMA engines responsible for shuffling data around in the hardware all
require the 64-bit aligned source address, the destination address, and
lengths. Addresses in ROM do not have this 64 bit alignment restriction.
ROM addresses only need to be 16-bit aligned. The loader from the compiler
suite (see the man page for /d (1)) makes sure that all C-language | ong

| ong types are 64-bit aligned.

NINTENDO

DRAFT RUNTIME SOFTWARE ARCHITECTURE

Using C language, the stack for a thread must also be 64-bit aligned.
Therefore, all stacks should be defined as | ong | ong and type-casted
when calling osCreateThread. See the man page for more details.

59

NINTENDO 64 PROGRAMMING MANUAL DRAFT

RCP Access and Management

60

The CPU has control over access to the RCP. The RSP and RDP portions of
the RCP can be used individually, or as a group. The CPU creates a task list
that specifies what microcode to run and what command list to execute. The
task is then run on the RSP. There are OS commands to start the task and to
yield (ie preempt) a task. The RDP usually receives graphics rendering
commands directly from the RSP. However, it is also possible to drive the
RDP from a list that is in DRAM.

NINTENDO

DRAFT RUNTIME SOFTWARE ARCHITECTURE

Graphics Interface

Nintendo 64 uses a display list hierarchy to describe what to render. 3D
geometry transformation and rasterization are accelerated by RSP and RDP
respectively. There is no immediate mode rendering. The R4300 CPU
generates the display list in memory, then the RCP fetches the displaylist
and renders the graphics.

Graphics Binary Interface

Nintendo 64 renders graphics using a display list interface called graphics
binary interface (GBI). The CPU assembles the GBI structure in RDRAM for
the RSP/RDP to render. The RSP must first be downloaded with graphics
microcode to perform geometry transformation. The RDP performs polygon
rasterization. RSP and RDP state machines are described in more detail in
Chapter 12, “RSP Graphics Programming” and Chapter 13, “RDP
Programming”.

Figure 4-3 Graphics Pipeline

R4300 RSP RDP

game processing P 3D geometry polygon
animation transformation + rasterization +
GBI assembly lighting texturing

GBI Geometry and Attribute Hierarchy

The GBI structure describes a hierarchy of geometry and its attributes. This
tree is traversed depth first and the graphics pipeline attributes are
sequentially modified during traversal. Both geometry (RSP) and raster
(RDP) attributes are contained in a GBI structure.

61

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Figure 4-4 Graphics Binary Interface (GBI) of an Airplane

xform fuselage | left right
wing wing
vertexes | triangles xform generic xform generic
left wing right wing
wing wing

l

geometry raster vertexes | triangles
attributeq attributeg

GBI Feature Set

The graphics binary interface (GBI) contains many 3D graphics features. An
algorithmic description of many of these features is in the OpenGL
Programmer’s Guide. Table 4-1, “GBI Feature Set,” on page 62 lists the basic
features of the GBI pipeline.

Table 4-1 GBI Feature Set

Processor Functionality

CPU GBI assembly

62

NINTENDO

DRAFT RUNTIME SOFTWARE ARCHITECTURE

Table 4-1 GBI Feature Set

Processor Functionality

RSP matrix stack operations
3D transformations
frustum clipping and back-face rejection
lighting and reflection mapping
polygon and line rasterization setup

RDP polygon rasterization
texturing/filtering
blending
z-buffering
antialiasing

RSP Geometry Microcode

There are three different versions of RSP geometry microcode: gspFast3D,
gspLine3D, and gspTurbo3D. The gspFast3D microcode is the optimized,
full-featured 3D polygonal geometry microcode. The gspLine3D is the
optimized, full-featured 3D line geometry microcode. The gspTurbo3D is
the optimized, reduced-featured 3D polygonal geometry microcode. All of
these microcode types come in two versions. One version of the microcode
has the RSP output the rasterization and attribute commands directly to the
RDP. The other version outputs RDP commands to DRAM. Writing the
RDP commands to DRAM could be used to overlap graphics and audio. For
example, you could use the RSP for audio processing while the RDP is
processing commands stored in DRAM. Storing the RDP commands in
DRAM may also be useful for debugging.

63

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Audio Interface

Access to the audio subsystem is provided through the functions in the
Audio Library. The Audio Library supports both sampled sound playback
for sound effects and wavetable synthesis from MIDI files for background
music. For more information on the Audio Library, please refer to

Chapter 19, “The Audio Library”.

64

NINTENDO

DRAFT RUNTIME SOFTWARE ARCHITECTURE

RCP Task Management

Both the audio and graphics libraries provide support for generating
command lists to be executed on the RCP, but they do not handle the
command list execution. It is therefore necessary for the application to
manage the scheduling and execution of RCP tasks (command lists and
microcode) on the RCP. To facilitate this, the development package includes
an example RCP scheduler.

The “Simple” Example

The structure of the scheduler included with the “Simple” application is
described briefly below. Please refer to the example code in the “Simple”
directory for more details.

The Scheduler Thread

The scheduler thread is responsible for collecting display/command lists
from other threads and assigning them to RCP tasks for scheduling and
execution so that real-time constraints are met. This thread has the highest
priority of the application threads, to insure that scheduling occurs
periodically.

The scheduler executes task on the RCP based on the retrace interrupt and
then monitors the progress, yielding the graphics tasks periodically to
interleave audio tasks, if necessary.

Other Application Threads

The next highest priority application thread is the Audio Manager thread. It
is responsible for creating audio display lists, sending them to the scheduler
for execution, and transferring the finished audio to the codecs. It has a
higher priority than the game thread, to prevent audio clicks caused when
the audio thread can’t meet its real-time constraints.

Note: The Audio Manager thread is essentially a low-level wrapper around

the alAudioFrame call (see “The Synthesis Driver” on page 382 for details).
Higher-level Audio Library calls are made from the game thread.

65

NINTENDO 64 PROGRAMMING MANUAL DRAFT

The game thread is responsible for generating graphics display lists and
sending them to the scheduler for execution. In addition, the game thread
handles the controller input, makes calls to the Audio Library, and performs
other tasks traditionally found in the game’s “main loop.”

66

NINTENDO

DRAFT RUNTIME SOFTWARE ARCHITECTURE

GameShop Debugger

WorkShop Debugger Heritage

The GameShop debugger (gvd) derived its heritage from the Silicon
Graphics WorkShop application development tools. It is a source level
windowing debugger environment that enables debugging of both the CPU
and RSP software.

Debugger Components

The debugger is actually composed of several different components shown
in Figure 4-5, “Debugger Components,” on page 67

There are two debugging paths. The first path is a C source level windowing
debugger, gvd, which has most of the features of common multi-threaded
debuggers. It talks to dbgif, which interfaces to the rmon debug thread
through the Nintendo 64 device driver in IRIX.

The second path is the popular printf traces within the application.
rmonPrintf() display the messages in the shell that executed dbgif.

Figure 4-5 Debugger Components

UNIX host machine Nintendo64 development board

IRIX
kernel

u64 rmon

device remote Application
driver monitor

debugger
interface

67

NINTENDO 64 PROGRAMMING MANUAL DRAFT

The rmon debugger thread is actually a high-priority thread in the game
application and uses many operating system resources. Therefore, the
debugger and rmonPrintf cannot be used to debug system-level code.

For information on using GameShop Debugger see Chapter 25, “GameShop
Debugger.”

68

NINTENDO DRAFT COMPILE TIME OVERVIEW

Chapter 5

Compile Time Overview

This chapter describes the flow of tools required to go from 3D model design
and music composition to cutting the actual ROM cartridge. In addition to
the standard C compiler suite, the Nintendo 64 software release supplies a
number of other tools particular to the Nintendo 64 software development
environment. The source code to some of these tools is provided as an
example to help you create your own customized tools that give your game
an advantage in the game marketplace. This chapter includes the following
sections:

= database modeling

< model space to render space database conversion
= music composition

= wavetable construction

« building ROM images

= host side functionality

69

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Database Modeling

70

To do real-time 3D graphics, you need modeling tools to create geometry.
Because many off-the-shelf modeling tools are available, there is no
modeling package in the Nintendo 64 development kit from Silicon
Graphics. Nintendo has contracted two top modeling package companies to
provide the database modeling solution (MultiGen and Alias).

For texture-map images and traditional 2D sprite-type games, you may
desire image conversion, editing, and paint software. These are not
provided as part of the Nintendo 64 development kit.

All of the example applications and source code, including sample image
conversion programs, use the popular SGI RGB image format. Additional
related, but unsupported software, may be obtained from SGI via the
4Dgifts product, anonymous ftp via sgi . com or from the user community
on the internet (see conp. gr aphi cs or the conp. sys. sgi hierarchy).
One of the more popular publicly available packages containing image
conversion and manipulation software is PBMPLUS, widely available on the
internet.

NinGen

NinGen is a 3D modeling package from MultiGen. It is a derivative of their
traditional 3D modeling software, together with an Nintendo 64 database
format convertor. The traditional key strength of MultiGen is their ability to
provide 3D modeling tools for the real-time commercial and military
flight/vehicle simulation market.

For this market, many database techniques developed for a real-time flight
simulator are available in NinGen. Some basic features include:
e Geometric level of detail.

= Binary separating planes for depth-ordered rendering. This is required
if you don’t use the z-buffer.

= Many polygon count reduction tools. The goal is the best model with
the lowest polygon count.

NINTENDO

DRAFT COMPILE TIME OVERVIEW

Alias

Historically, Alias has provided 3D animation and modeling tools for the
computer-generated film and animation market segment. Beautiful models,
sophisticated motion paths, and fast development time are all vital to
success in this marketplace. Here is a sample of some of the strong features
of the Alias software package:

< NURBs based modeler provides smooth surfaces on models.
= Motions paths and inverse kinematics give complex motion.

= Special effects such as particle systems, many different kinds of lights,
and texturing capabilities improve picture quality.

Other Modeling Tools

Besides Alias and MultiGen, there are other modeling packages on the
market. Softimage and Nichimen Graphics are also traditional film and
animation market tool suppliers. On the PC, the Autodesk 3DStudio is
entering the animation market from the very low end of the price spectrum.

Film and animation tools have many features that can be extracted for
real-time animation. Figuring out how to extract these special features out of
theses tools can help you give your game application an advantage. For
example, you might be able to use particle system tools to generate texture
maps. Flipping this texture book on some morphing geometry to
approximate the group motion of a system of particles. This may give you
fire, water, and other interesting objects.

Custom Modeling Tools

For special game application requirements, you may need to create your
own custom modeling packages. Obviously, it is time-consuming to build
such a software package in house. The advantage, however, is that you can
customize the databases to the requirements of your game. For example, you
might be able to gain rendering display performance if you are able to give
hints to your modeler about how to order geometry.

71

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Model to Render Space Database Conversion

72

This section outlines issues you may face when converting from a modeling
database to a rendering database.

Existing Convertors

Both NinGen and Alias software packages have database convertors to
convert to the Nintendo 64 format (Graphics Binary Interface).

Custom Convertors

Some of you may want to write your own database convertors because you
want to manage a certain resource or attribute in a different way, tailored to
your game. Silicon Graphics provides a sample convertor, /t2¢(1P), from the
MultiGen flt file format to the Nintendo 64 format. In addition, Silicon
Grapics provides a converter from the SGI IRIS image format to the
Nintendo 64 texture memory format, rgb2c(1P).These sample convertors are
not complete, nor are they designed to be totally efficient; they are just meant
to be a template to help you understand what a convertor is and what it
needs to do.

Conversion Considerations

There are many efficiency considerations to keep in mind when you are
writing a database convertor. Here are a few:

= Redundant hierarchical transformations should be eliminated.
Transformations should be used for articulated parts or instancing, not
for preserving modeling hierarchy.

= Since the geometry transformation subsystem has a vertex cache, block
loading 16 vertexes to render as many triangles as possible has better
performance.

= On-chip texture memory is not large (4 KB). If you are stamping trees in
your scene, you should render in texture order. Keep in mind that
texture order may require a z-buffer, which requires additional dram

NINTENDO DRAFT COMPILE TIME OVERVIEW

bandwidth. You may need to experiment to find the best trade-off for
your game.

= The display pipeline has many attribute states. You may want to
determine which sets are global and local to an object. Learn how to
manage these attributes to best fit the kind of game you are creating.

73

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Gamma Correction

74

The SNES and Super Famicom do not have gamma correction hardware but
the Nintendo 64 does. Some developers have indicated that the colors on the
Nintendo 64 look “washed out” with gamma correction turned on.

If you are currently writing games for SNES or Super Famicom (or any
machine that does not have gamma correction), your production path is
likely to be setup to compensate for the lack of gamma correction hardware.
In other words, you are probably picking pre gamma corrected colors. If you
use this same production path and turn Nintendo 64 gamma correction on,
you will get the wash out effect because you would have gamma corrected
twice.

To undo the first gamma correction, square and shift down by 8 each color
component (assuming 8 bit color) or rework your path to exclude the gamma
correction stop, leaving gamma correction to the hardware.

Every step in your production path must be involved in the color selection
process: modeling/paint software, computer monitors, image conversion
software, the game software, and the Nintendo 64 hardware.

Gamma correction on the Nintendo 64 is recommended; the antialiasing and
video hardware work best when it is enabled.

NINTENDO

DRAFT COMPILE TIME OVERVIEW

Music Composition

Music composition involves the creation of midi sequences and then
importing them into the game. Midi sequences can be created using any of a
variety of sequencer applications. (Performer, Vision, Cubase,
MasterTracks, to name a few) After the sequences are saved as Midi files,
they should be converted before being included in the game. If you are
planning to use the compact Midi sequence player, the sequences should be
run through midicmp. If you are using the regular sequence player, the
sequences are run through midicvt. After the sequences are converted, they
can be assembled into sequence banks with the sbk tool. This is optional,
midi sequences can be used without being part of a sequence bank. To
actually include the sequences in the game, a segment containing the
sequence data should added to the spec file. (See the demo app. simple for
an example of this.)

For information on how to use sequences in a game see,Chapter 19, “The
Audio Library,”

75

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Wavetable Construction

76

The audio library can use either compressed or uncompressed wavetables
for sound reproduction. In either case, the wavetables are first created using
the digital recording/editing system of the sound designer’s choice. The
wavetables are then stored as AIFF files. If the samples are to be
compressed, the first step is to produce a compression table using
tabledesign. After the compression table has been built, the wavetable is
compressed using vadpcm_enc. This will generate a type of AIFC file that is
unique to the Nintendo. (Note that AIFC files created with other software
tools are not compatible with the compression scheme used by the
Nintendo.)

After the wavetables have been converted to AIFC files, (or left as AIFF files
if no data compression is desired) they need to be assembled into banks so
that the Audio Library can reference them correctly. To accomplish this, the
sound designer must first create a .inst file, which is a text file that specifies
the parameters for sound playback and the wavetable files. The .inst file is
then used by ic to create the bank files. The bank files can then be included
in the game by placing them in segments in the applications spec file. (The
creation of .inst files and the use of ic is covered in detail in Chapter 20,
“Audio Tools,”)

NINTENDO

DRAFT COMPILE TIME OVERVIEW

Building ROM Images

A final set of tools, headers and libraries are available to pack your database
and code into a final ROM images for the Nintendo 64. The Nintendo 64
development environment heavily leverages the C compiler and
preprocessor tools to process symbolic data into binary objects. A ROM
packing tool, makerom(1P) packs these objects into a single monolithic ROM
images according to a specification of where these objects go.

C Compiler Suite

Currently, the Nintendo 64 development environment has only been
verified with the IRIX 5.3 MIPS C-compiler suite. The interfaces provided do
not rely on proprietary features of this compiler; however backend tools
such as makerom may rely on specifics of the MIPS symbol table format.

It is required that all modules be compiled or assembled with the
-non_shared and - G 0 compilation flags; neither position independent
code or a global data area is supported. Since the MIPS R4300 supports the
MIPS Il instruction set, the - mi ps2 flag is also recommended, as well as
optimization flags (- O and - C8).

ROM Image Packer

The ROM image packer (rmakerom) takes as input relocatable objects created
by the compiler and performs the final relocations of code symbols. To
perform these relocations, it invokes a next generation link editor that allows
objects to be linked at arbitrary addresses specified by the developer. After
these relocations, makeromextracts the code and initialized data portions of
the resulting binary and packs them onto a ROM image. The makerom tool
can also copy raw data files to the ROM as desired.

Note: When building a ROM image for the console (as opposed to the
development system), be sure to
< link with libultra.a and not libultra_d.a

= remove all calls to printf and its variations from your application.

1

NINTENDO 64 PROGRAMMING MANUAL DRAFT

78

= remove any functions specific to the development board (such as
command line parsing or logging) from your application.

Headers and Libraries

Although the Nintendo 64 API includes interfaces for a wide variety of
areas, the interfaces are made available by including a single header file,
susr/include/ultrab4.h, and by linking with a single library,
susr/lib/libultra.a (or Zusr/1ib/libultra_d.a).The library routines are
broken into their finest level of granularity, so applications “pay as they go”,
only including routines they actually use.

Note there are two versions of the Nintendo 64 library: a debug version
(Zusr/lib/libultra_d.a) and a non-debug version (Lusr/1ib/libultra.a). The
debug version of the library provides additional run time checks at the
expense of some space on the ROM and DRAM, as well as some
performance. The kinds of checks performed include argument checking
(especially hard to find alignment problems), improper use of interfaces,
audio resource problems, etc. It is recommended that the debug library be
used in initial development, and then replaced by the non-debug library
later in the development cycle.

In case of error, the game loading program g/oad(1P) will interpret and
display the errors on the host.

NINTENDO

DRAFT COMPILE TIME OVERVIEW

Host Side Functionality

During development, it may be desirable to copy data to and from the Indy
host to the game. For example, a MIDI sequence could be repeatedly edited
on the host and them played on the Nintendo 64. Of course this could be
accomplished by recreating and downloading the image repeatedly, but the
design cycle could be reduced significantly by simply copying the new
sequence to the Nintendo 64 while the application is still running.

For these applications, a host side, as well as a game side API is provided.
The game side interfaces are, as always defined by including
susr/includesultrab4.hand linking with Zusr/1ib/1ibultral dj.a. The host
side interfaces are declared in Zusr/include/ultrahost.h and defined in

susr/1ib/ultrahost.a.

79

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

80

NINTENDO DRAFT ULTRA 64 OPERATING SYSTEM |

PART

Ultra 64 Operating System

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO

DRAFT OPERATING SYSTEM OVERVIEW

Chapter 6

Operating System Overview

Overview

The Nintendo 64 system runs under a small, real-time, preemptive kernel. It
is supplied as a set of run-time library functions, so that only those portions
that are actually used are included in the game’s run-time image. In the
remainder of this document, it is referred to as the operating system,
although it is so minimal that it has not been given an official name.

The kernel can be considered as being layered into core functionality and
higher-level system services, as illustrated in Figure 6-1.

VI/Timer Mgr

Threads
Messages
Events

Raw /O

Controller
Interface

Figure 6-1 Nintendo 64 System Kernel

83

NINTENDO 64 PROGRAMMING MANUAL DRAFT

84

Threads, messages, events, and raw [/0Ocompose the kernel of the Nintendo
64 operating system. Upon this base are built some additional services that
facilitate access to the raw hardware.

In this introductory section, a brief overview of these services will be
provided.

Threads

All code that runs under the operating system runs in the same address
space.That is, the game runs as one process. While it is possible to structure
a game application as one monolithic program, it is usually advantageous to
subdivide it into smaller, more manageable subprograms called threads.
With its own stack, each thread usually performs one function, often
repetitively. This subdivision leads to simplicity for each thread; thus, it is
easier to “get it right” and to minimize interference between threads. The
threads section describes these threads, how they are scheduled, and how
various operations may be performed on them.

Threads may be created, destroyed, stopped, or blocked (the latter by
waiting on a message). Threads normally run until they require some
resource or event to continue, at which point they yield the CPU to another
thread. Each thread has an assigned priority level, used to determine which
thread gets the CPU at any given time. In response to an external event, a
thread may be forced to yield control of the CPU. The operating system
preserves the state of the thread properly for restarting at a later time. Thus,
the system can properly be described as preemptive. Threads may even be
preempted during system calls when it is safe to do so.

However, there is no concept of a swap clock or “round-robin” scheduling
as is found in UNIX and other time-sharing systems. Thus, two or more
threads that run at the same priority level do not alternate in use of the CPU.
The thread that “has” the CPU runs until it yields or is preempted by a
higher priority thread in response to an exception.

Messages

Since the operating system is message-based, messages are among the most
important of the resources available to the user. Unlike many popular

NINTENDO

DRAFT OPERATING SYSTEM OVERVIEW

real-time kernels, no semaphores or event flags are provided. All
synchronization is provided via sending and receiving messages. This has
deliberately been made very efficient, and the lack of other synchronization
primitives should not be a problem. In fact, there are advantages to using
only this mechanism. The operating system code itself is smaller and less
intrusive on game space than it would be if it had to provide multiple
facilities for thread synchronization. Also, since it is often the case that
information must be transferred when threads synchronize, we get more
usage out of a single operation.

Of course, messages are also useful in simply transferring information from
one thread to another. In this operating system, they are also used to transfer
information when a system event occurs.

Events

The operating system manages interrupts and exceptions on behalf of the
game system in a relatively unobtrusive way. Some interrupts must be
handled by the system code itself. Others require further decoding to
determine which event has actually occurred when the CPU is interrupted.

The exception handler built into the operating system performs the
decoding of interrupts and other exceptions and maps them to system
events. If the system event is one that may be handled by the game itself,
then a message is sent to an associated event mailbox and the game
application is notified. In this way, the game designer can provide an
interrupt handler to deal with the exception as required by the game
requirements.

Memory Management

In this operating system, the responsibility of memory management is left
up to the game. That is, the operating system provides no heap or dynamic
memory allocation mechanism for the game. Since the game can access the
entire memory map, it has total control on how memory is partitioned and
used. The operating system simply runs in the kernel mode (kseg0) with
cache and direct mapping enabled. In this mode, the virtual address
0x80000000 is mapped directly to physical address 0x0. Translation
Lookaside Buffer (TLB) is not used by the operating system to provide

85

NINTENDO 64 PROGRAMMING MANUAL DRAFT

86

virtual memory support. However, low-level routines are available for game
developers to program the TLBs directly. Furthermore, a region library is
provided to simplify the task of allocating and de-allocating fixed-size
memory buffers.

Game developers should also be aware of the importance of invalidating

and flushing caches before transferring data between either cartridge ROM
or RCP and main memory. The operating system provides useful functions
to invalidate both instruction and data caches and to write back data cache.

Input and Output

The Nintendo 64 system spends a good deal of its time performing 1/0
operations. The operating system provides an optimized 170 interface layer
that directly communicates with the hardware. Some of these interfaces
include:

= VI—the video interface. The interface routines communicate with a
video manager system thread, called the VI/Timer manager. This
thread receives all vertical retrace interrupts and programs the video
hardware. In addition, it also receives all counter interrupt messages
and implements timer services.

= Pl—the peripheral interface. The Pl also has an associated 1/0 manager
thread, the Pl manager. It manages access to the ROM cartridge so that
two threads do not attempt to DMA from ROM to RAM at the same
time.

= Al—the audio interface. This interface programs the audio hardware to
output the desired sample rate and manages access to the audio data
buffer.

e DP—This is the RDP interface. It is mostly of interest because it has an
associated system event when a DP operation is complete.

= Cont—the controller interface. This interface resets, detects, obtains
status, queries and reads data from the game controllers.

NINTENDO

DRAFT OPERATING SYSTEM OVERVIEW

Timers

The operating system provides convenient functions to start and stop both
countdown and interval timers. These timers are expressed in CPU count
register cycles, which depend on the video clock. That is, a counter tick in a
PAL system occurs more frequently than the one in a NTSC system.
Developers can also set and get real time counter value.

Controller Pack File System

The Nintendo 64 controller supports an add-on RAM pack that can store
either 32 KB or 64 KB of data. The operating system implements a simple file
system on this pack where developers can find, create, delete, read and write
files.

Debugging Support

In addition to the support for the high-level GameShop debugger gva(1P),
the operating system also provides additional useful facilities for
debugging. Developers can use convenient routines to log messages to
pre-allocated buffer for delay transfer to the host Indy. Since this logging
utility has low performance impact, it may be well suited for debugging
real-time problems or running performance analysis. Developers can also
use the printf-like utility osSyncPrintf(3P)to display text formatted
messages on the host Indy.

Boot Procedure

When using the Nintendo 64 development system, the developer needs to
run the game loader g/oad(1P)program to download his prepared ROM
image into the cartridge memory on the development board. After the
memory image is loaded, gload can optionally read back the memory and
verifies the contents. Then, it generates a reset signal to the development
board, causing the R4300 to jump to the reset vector where it starts executing
the boot code from the PIF rom.

Some of the important tasks performed by the boot code include:

87

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

88

A w0 D oE

o

Initialize the R4300 CPO registers
Initialize the RCP (such as halt RSP, reset PI, blank video, stop audio)
Initialize RDRAM and CPU caches

Load 1 MB of game from ROM to RDRAM at physical address
0x00000400

Clear RCP status
Jump to game code

Execute game preamble code (which is similar to crt0.0 and is linked to
game during makerom process)

= clear BSS for boot segment (as defined in the spec file)
= set up boot segment stack pointer,
< jump to boot entry routine

Boot entry routine should call os/nitialize(3P)

NINTENDO

DRAFT OPERATING SYSTEM FUNCTIONALITY

Chapter 7

Operating System Functionality

Overview

Threads, messages, and events work together to form the core of the
Nintendo 64 operating system. Nintendo 64 applications run under a small,
multithreaded operating system. Simply put, this means that the R4300 CPU
switches between several independent components called threads. Each
thread consists of a sequence of instructions, a stack, and (possibly) static
data that is used only by the thread. Subdividing an application into threads
has several advantages. You can effectively isolate each part of the
application to avoid interference. You can divide your application into
small, easily-debugged modules. Since each thread can be written
independently to perform exactly one function, complexity is reduced.

Messages are a mechanism by which threads communicate with one
another. While this could be done using shared global variables, such an
approach is often unsafe. One thread must know when it is safe to read data
that is being written by another. Message passing makes communication
between threads an atomic operation; a message is either available or not
available, and the associated data arrives at the receiving thread at one time.

A second, perhaps more important function of messages is to provide
synchronization between threads. Often a thread reaches a point in its
execution where it cannot continue until another thread has completed some
task. In this case, the running thread has no useful work to do, so it should
yield the processor until the task is completed. You use messages to provide
the mechanism for the thread to wait until that time.

89

NINTENDO 64 PROGRAMMING MANUAL DRAFT

90

Often a thread needs to wait for an exception such as an interrupt.
Exceptions are trapped by the operating system and turned into events.
Threads may register to receive notification of system events by requesting
that the operating system send them a message whenever a system event
occurs.

System Threads, Application Threads, and the Idle Thread

There are several types of threads in a typical application. There is a
distinction (using priority) between system threads, application threads,
and the idle thread.

The Pl manager, described in the 10 section, is typical of system threads. It
acts as a resource manager, allowing multiple user threads to share a critical
resource safely—in this case, the cartridge ROM.

The idle thread, which has the lowest priority (a priority of 0) of any thread
in the system, runs only when all other threads are blocked awaiting some
event. Note that the idle thread is required; the system will not run without
it. The game application itself is composed of user threads. User threads are
defined as those threads having priorities between 1 and 127.

Thread Data Structure

Each thread is associated with a data structure of type OSThread declared
by the user. The address of this structure is the only identifier used in thread
system calls. Since the thread data structure is essentially part of the
application itself, you should take care not to overwrite it inadvertently. The
structure contains the thread’s context (mostly, this consists of its register
contents) when the thread is not running. Each thread has a priority used in
scheduling, and an identifier used only by the debugger. These are also
maintained in the thread data structure.

Thread State

A thread is always in one of four states. The state of the thread is maintained
in its thread data structure for use by the operating system. A good

NINTENDO

DRAFT OPERATING SYSTEM FUNCTIONALITY

understanding of thread state is helpful in designing your application, since
it leads to a better understanding of how the operating system will behave.

= Running. Only one thread in the system is in running state at a time.
This is the thread that is currently executing on the CPU.

< Runnable. A thread in runnable state is ready to run, but it is not
running because some other thread has higher priority. It will gain
control of the CPU once it becomes the highest-priority runnable
thread.

= Stopped. A stopped thread will not be scheduled for execution. Newly
created threads are in this state. Threads are frequently stopped by the
debugger, and an application may stop a thread at any time. Stopped
threads become runnable via an osStartThread system call.

= Waiting. Waiting threads are not runnable because they are waiting for
some event to occur. A thread that is blocked on a message queue is in
waiting state. Arrival of a message returns a waiting thread to runnable
or running state.

Scheduling and Preemption

Once the OS is running, the highest-priority runnable thread in the system
always has control of the CPU. When a thread gains control of the CPU, it
continues to run until it requires some resource or event to continue. It then
relinquishes control of the CPU and the next highest priority thread gets to
run. Typically, this happens as a result of the running thread calling the
function to receive a message. If no message is present in the message queue,
the running thread will block until a message arrives. Note that the thread is
no longer runnable when it is blocked on a message queue, so it no longer
fits the criterion of being the highest-priority runnable thread.

More frequently, the running thread loses control of the CPU through
preemption. In response to an exception (for example, an interrupt), a higher
priority thread becomes runnable. Since that thread should now be the
running thread, the state of the interrupted thread will be saved in its thread
data structure, the state of the newly-runnable thread will be loaded to the
CPU, and the new thread will resume execution at the point where it last ran.
The preempted thread is still runnable; it just doesn’t have the highest
priority. When it once again becomes the highest priority thread, it will run
again from the point where the interrupt occurred.

91

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Note that the running thread does not need to be at a sequence point (for
example, a system call) to lose control of the CPU. Thus, this fits the classical
description of a preemptive system.

Multiple threads within an application frequently need to synchronize their
execution. For example, thread A cannot continue until thread B has
performed some operation. The message-passing functions provide the
needed synchronization mechanism, and are described in the chapter on
messages.

Thread Functions

There are eight functions associated with threads. Please refer to the
reference (man) pages for specifics about the arguments, return values, and
behavior of these functions.

e o0sCreateThread

This function is called once per thread to notify the system that a thread
is to be created. Creating a thread initializes its thread data structure
with the starting program counter, initial stack pointer, and other
information. Once the thread data structure has been initialized, the
thread can be run.

= osDestroyThread

This function removes a thread from the system. Once called, the
thread cannot be run any more.

e osYieldThread

This function notifies the operating system that the running thread
wishes to yield the CPU to any other thread with higher or equal
priority. If all other runnable threads have lower priority, the running
thread will continue. (In practice, it is not possible for a runnable thread
to have higher priority than the running thread.)

e osStartThread

This function call makes a thread runnable. If the specified thread is of
higher priority than the running thread, the running thread will yield
the CPU. If not, the running thread will continue and the started thread
will wait until it becomes the highest priority thread in the system.

92

NINTENDO

DRAFT OPERATING SYSTEM FUNCTIONALITY

« osStopThread

This function call changes the state of a thread to stopped, after which
the thread will not be able to run until restarted. If the thread was
waiting on a message queue, it will be removed from that queue.

e 0sGetThreadld

This function returns the ID of a thread assigned when the thread was
created. It is used only by the debugger.

e 0sSetThreadPri

This function changes the priority of a thread. If the running thread is
no longer the highest-priority runnable thread in the system as a result
of this change, it will yield the CPU to the new highest-priority thread.

e 0sGetThreadPri

This function returns the running thread’s priority level.

Exceptions and Interrupts

The R4300 CPU used in the Nintendo64 processes a number of exception
types. Most share a common vector, where the operating system receives
them, reads the CAUSE register, and determines which of the 16 legal causes
occurred. With the exception of the Interrupt cause (which may be either
internal or external), all exceptions are internally generated within the CPU.
For example, an attempt to fetch a word from an odd address will generate
an address error exception.

The operating system has exception handlers for Coprocessor Unusable,
Breakpoint, and Interrupt exceptions. All other exceptions are considered to
be faults and are passed to the fault handler. The fault handler stops the
faulted thread, sends a message to any thread (i.e., rmon) registered for the
OS_EVENT_FAULT event, and dispatches the next runnable thread from
the system run queue. If the debugger is present, a message is sent from the
target to the host and the debugger can show you exactly where the fault
occurred. Breakpoint exceptions are also handled in this way. The debugger
will stop all user threads in the event of a breakpoint or a fault.

93

NINTENDO 64 PROGRAMMING MANUAL DRAFT

94

When an interrupt occurs, the CAUSE register is examined to see which
interrupt caused the exception. The R4300 supports eight interrupts
described below.

Table 7-1

Name Cause Description

Software 1 |CAUSE_SW1 Software generated interrupt 1

Software 2 (CAUSE_SW2 Software generated interrupt 2

RCP CAUSE_IP3 |RCP interrupt asserted

Cartridge [CAUSE_IP4 |A peripherial has generated an interrupt

Pre-nmi CAUSE_IP5 |User has pushed reset button on console

RDB Read |CAUSE_IP6 [Indy has read the value in the RDB port.

RDB Write |CAUSE_IP7 [Indy has written a value to the RDB port.

Counter CAUSE_IP8 |Internal counter has reached its terminal count

If the RCP interrupts the R4300, then an RCP register is read to see which of
the RCP interrupts is being asserted. Thus, processing RCP interrupts is a
two stage process - first the cause of the CPU interrupt is determined, then
the cause of the RCP interrupt is isolated.

Normally, the Nintendo 64 game threads run with all interrupts enabled. It
is possible to change the interrupt masks of the R4300 and RCP via a system
call. Clearly, this must be used with great caution, as disabling a critical
interrupt can cause the system to lock up or prevent real time response.

Events

Once the cause of the interrupt (or other exception) has been determined, it
is mapped to one of 14 events defined for the Nintendo 64 system. Table 7-1

NINTENDO

DRAFT OPERATING SYSTEM FUNCTIONALITY

shows the events, why they occur, and who normally registers to receive a
message when each event occurs.

Table 7-2Events Defined for the Nintendo 64 System

Event Name Event Description Owner

SWi1 System software interrupt 1
asserted

SW2 System software interrupt 2
asserted

CART Peripherial has generated an oS
interrupt.

COUNTER Internal counter reached terminal VI/Timer
count manager

SP RCP SP interrupt; Task Done/Task Game
Yield

Sl RCP Sl interrupt; controller input Game
available

Al RCP Al interrupt; audio buffer Game
swap

VI RCP VI interrupt; vertical retrace VI/Timer

manager

Pl RCP PI interrupt; ROM to RAM Pl manager
DMA done

DP RCP DP interrupt; RDP processing Game
done

PRENMI An NMI has been requested and Game
will occur in 0.5 seconds

CPU_BREAK R4300 has hit a breakpoint Rmon

SP_BREAK RCP SP interrupt; RCP has hit a Rmon
breakpoint

FAULT R4300 has faulted Rmon

THREAD_STATUS Thread created or destroyed Rmon

95

NINTENDO 64 PROGRAMMING MANUAL DRAFT

96

Event and Interrupt Functions
= 0sSetEventMesg

This function call specifies a message queue and message to be sent in
response to a system event.

e 0sGetIntMask

This function returns the current interrupt mask (including both the
R4300 and RCP masks).

« o0sSetIntMask

This function specifies a new interrupt mask (including both the R4300
and RCP masks).

Non-Maskable Interrupts and PRENMI

When the console RESET switch is pushed, the hardware generates a HW2
interrupt to the R4300 CPU. The interrupt is serviced by the OS event
handler which sends a message of type OS_EVENT_PRENMI to the
message queue associated with that event.

The HW2 interrupt will be followed in 0.5 seconds by a non-maskable
interrupt (NMI) to the R4300 CPU (unless the RESET switch is pushed and
held for more than 0.5 seconds, in which case the NMI will occur when the
switch is released).

After the NMI occurs, the hardware is reinitialized, and:

= The first Meg of the game in ROM is copied into the first megabyte
of RAM after the boot address

= The BSS for the boot segment is cleared
< The boot procedure is called.

Note: There are some minor differences between power on reset and
NMI reset. After power on reset, the caches are invalidated. After NMI
reset, the caches are flushed and then invalidated. Also, the power on
reset configures the RAM, while NMI reset leaves the RAMs alone.

NINTENDO

DRAFT OPERATING SYSTEM FUNCTIONALITY

After NMI reset, the contents of memory, except for the 1 Meg that is copied
in, are the same as before the NMI occured. The global variable,
osResetType, is set to 0 on a power up reset and to 1 on a NMI.

If your game does not use the scheduler (see Chapter 24, “Scheduling Audio
and Graphics”), it should set up to respond to the OS_EVENT_PRENMI
event by associating a message queue with the event early in the game code.
This is accomplished as follows:

osSet Event Mesg(OS_EVENT_PRENM , <sone_nessage_queue>)

If your game does use the scheduler, it needs only to test for a message of
type PRE_NMI_MSG on its client message queue. The scheduler performs
the event initialization, and forwards the OS_EVENT_PRENMI message to
the client message queue as soon as it is received.

Exactly how a game should behave when it receives OS_EVENT_PRENMI
includes Nintendo policies on game consistency (such as fading the screen
to black or ramping the audio volume down), but from a technical
standpoint, when the game receives the OS_EVENT_PRENMI message it
should do the following:

= Stop issuing graphics tasks to prevent the RDP from being stopped
in a non-restartable state.

= Stop issuing audio tasks to prevent audio “pops”
= Stop issuing ROM (PI) DMAs
To test this, you can generate an NMI on development board by running the

following program on the Indy. This is equivalent to pushing the RESET
switch on the Nintendo 64 machine.

/
Programto simulate pressing and rel easing the RESET
switch on the Utra 64.

Copy this code to resetu64.c and type “nake resetu64”

L D A .

/

#i ncl ude <uni std. h>

#i ncl ude <fcntl. h>

#i ncl ude <stdi o. h>

#i ncl ude <sys/nmman. h>
#i ncl ude <sys/u64gi o. h>

97

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

#i ncl ude <PR/ R4300. h>

#defi ne G OBUS_BASE 0x1f 400000
#defi ne A OBUS_SI ZE 0x200000 /[* 2 MB */
mai n()
{
i nt nenfd;

unsi gned char *mapbase;
struct u64_board *pBoard;

if ((menFd = open(“/dev/mment, 2)) < 0) {
perror(“open of /dev/memfailed”);
return(l);

}

if ((mapbase = (unsigned char *)muap(0, d OBUS_SI ZE,
PROT_READ| PROT_WRI TE, (MAP_PRI VATE) ,
mrenfd, PHYS_TO K1(d OBUS_BASE))) ==
(unsigned char *)-1) {
perror (“nmap”);

return(l);
}
pBoard = (struct u64_board *)(nmapbase);
pBoar d->reset _control = _U64_RESET_CONTROL_NM ;
sgi nap(10);
pBoar d- >reset _control = O;

Internal OS Functions

Some of the internal OS functions are briefly described below. Broken into
three groups, these functions are mentioned here with the purpose to reduce
potential duplicate effort from developers. Most of these functions are
simple routines to access various R4300 registers, Translation-Lookaside
Buffer (TLB) information, and internal active thread queue. Please refer to
the reference (man) pages for specifics about the arguments, return values,
and behavior of these functions.

The first group provide functions to access various common R4300 registers:

98

__osGetCause, __osSetCause

NINTENDO

DRAFT OPERATING SYSTEM FUNCTIONALITY

These functions returns and specifies the content of the R4300 Cause
register, respectively.

__osGetCompare, __osSetCompare

These functions returns and specifies the content of the R4300 Compare
register, respectively.

__0sGetConfig, _ osSetConfig

These functions returns and specifies the content of the R4300
Configuration register, respectively.

__0sGetSR, __ 0sSetSR

These functions returns and specifies the content of the R4300 Status
register, respectively.

__0sGetFpcCsr, __o0sSetFpcCsr

These functions returns and specifies the content of the R4300
floating-point Control/Status register, respectively.

The second group provide functions to access TLB information:

__0sGetTLBASID

This function returns the TLB Application Space ID in the R4300
EntryHi register.

__0sGetTLBPageMask

For a specified TLB entry, this function returns the content of the R4300
PageMask register.

__0sGetTLBHi

For a specified TLB entry, this function returns the content of the R4300
EntryHi register.

__0sGetTLBLO0O

For a specified TLB entry, this function returns the content of the R4300
EntryLoO register.

__0sGetTLBLo1

For a specified TLB entry, this function returns the content of the R4300
EntryLol register.

99

NINTENDO 64 PROGRAMMING MANUAL DRAFT

The third group provide functions to access internal active thread queue to
find faulted thread(s):

e _ 0sGetCurrFaultedThread
This function returns the most recent faulted thread.
e 0sGetNextFaultedThread

This function returns the next faulted thread from the internal active
thread queue.

100

NINTENDO

DRAFT INPUT/OUTPUT FUNCTIONALITY

Chapter 8

Input/Output Functionality

Overview

The Input/Output (1/0) subsystem exists on most operating systems for
three main reasons:

= to hide device-specific details in device drivers through which the
operating system transfers data and control

= to provide a fair and safe access scheme to the devices, since most of
them are shared resources

= to provide a consistent, uniform, and flexible interface to all devices,
allowing programs to reference devices by name and perform
high-level operations without knowing the device configuration.

Usually, the 1/0 software is structured in layers:

9. device-independent system interface

10. device drivers

11. interrupt handlers

The interrupt handler is mainly responsible for waking up a device driver
after an 1/0 operation completes. The device driver performs
device-specific operations, such as setting up registers for DMA and
checking device status. The device-independent system interface provides a
uniform interface to user-level software and common 170 functions (that is,

protection, blocking, buffering) that can be performed across different
devices.

101

NINTENDO 64 PROGRAMMING MANUAL DRAFT

For the RCP, there are two modes of 1/0 operations:

= DMA provides a minimum of 64-bit transfer between the RDRAM and
any of the devices

= 10 provides a 32-bit transfer between the CPU and any of the devices

The RCP consists of the following major devices and interfaces (see
Figure 8-1):

= Reality Signal Processor (RSP). This internal processor supports both
DMA and 10 operations between RDRAM and I/Dmem addresses.

= Reality Display Processor (RDP). This internal processor supports only
DMA from either RDRAM or Dmem addresses to its internal buffer.

= Video Interface (VI). This write-only interface connects to the video
DAC. It supports only DMA from RDRAM to a specific video buffer
address and allows you to change video modes and configurations.

= Audio Interface (Al). This write-only interface connects to the audio
DAC. It supports only DMA from RDRAM to a specific audio buffer
address and allows you to set the audio frequency.

= Peripheral Interface (PI). This read-write interface connects to the ROM
cartridge and other mass storage devices. It supports DMA as well as
10 Read/Write to ROM addresses.

= Serial Interface (Sl). This read-write module interfaces to the PIF, which
connects to the game controller and modem devices. It supports DMA
as well as 10 Read/Write to PIF RAM addresses.

102

NINTENDO DRAFT INPUT/OUTPUT FUNCTIONALITY

Figure 8-1 Logical View of RCP Internal Major Devices and Interface Modules

A
RDRAM
] CPU
SP <
Video]
» Interface p| Video
(VD) DAC
DP
Audio .
R Audio
E'r&tﬁrface > DAC
Plertipf%era ROM
< q (Bﬁr act < »| Cartridge
Serial
< Interface PIF Game
RCP - (Sh ~ Controller
v

Design Approach

Since Nintendo 64 operates in a real-time environment, its /0 subsystem is
one of the most time-critical areas. Furthermore, the customized Nintendo
64 environment contains a well-known set of device interfaces that remains
unchanged for some time to come. Therefore, its I/0 subsystem is mainly
designed for optimal throughput and response, and not for portability and
generality. This design approach coincides with the main Nintendo 64
design philosophy, which has always been (and still is) to follow the
minimal approach.

The Nintendo 64 1/0 subsystem contains these components:
= adevice-dependent system interface

= adevice manager for shared devices

103

NINTENDO 64 PROGRAMMING MANUAL DRAFT

104

= asystem exception handler

These components represent a much trimmed-down version of the typical
170 layers. All overhead associated with device-independent interfaces
(that is, naming and buffering) has been removed; protection is
implemented only on shared devices. Low-level (raw) 1/0 interface is also
available, allowing you to customize device interfaces based upon your
specific needs. The result is a very lightweight and optimized interface that
allows you to access (in most cases) the devices directly.

Each of these components is described further in the sections below.
However, first it is important to discuss some properties (such as synchrony
and mutual exclusion) that the Nintendo 64 1/0 subsystem should exhibit.

Synchronous I/O vs. Asynchronous 1/0

Synchronous 170 and asynchronous are two fundamental methods of
servicing 1/0 requests. In synchronous systems, the calling process is
blocked after issuing an 1/0 request, thus allowing 1/0 to overlap with the
execution of other processes. In asynchronous systems, the process is
allowed to continue execution after initiating an 1/0 operation. Most
systems implement the synchronous I/0 method since it is easier to use and
generally preferred by high-level language programmers.

However, in the Nintendo 64 environment, asynchronous 1/0 is the
preferred choice, mainly because of the asynchronous nature of the real-time
game environment. For example, a game might want to start paging in the
next scene data in the background while working on the graphics task list.
Therefore, asynchronous 1/0 has the potential to enhance the throughput
on athread basis. Furthermore, synchronous I/0 can be easily implemented
on top of the asynchronous facility by having the calling process blocks on a
message queue immediately after initiating the 1/0 operation.

Therefore, all interrupt-based DMA operations are asynchronous operations
and all asynchronous notification is handled via the message queue facility.

NINTENDO

DRAFT INPUT/OUTPUT FUNCTIONALITY

Mutual Exclusion

On most systems, some devices such as disks and printers are shared
resources. The 1/0 subsystem must ensure that only one process can use a
device at any one time, thus excluding other requesting processes and
forcing them to wait.

In the Nintendo 64 environment, each device can process only one 1/0
transaction at any given time. For example, if there is a DMA transfer in
progress between ROM and RDRAM, you cannot issue an I/0 read from a
different ROM location. If such a read is issued, the current DMA transaction
will probably fail. Therefore, protection (or mutual exclusion) should be
provided for devices that support both DMA operation and 1/0 read/write.

In this system, mutual exclusion is not implemented as a general scheme for
all devices, but rather as a specific scheme for each identified shared device.

I/O Components

The Nintendo 64 1/0 software subsystem consists of the following major
components: system exception handler, device manager for shared devices,
and device-dependent system interface. Figure 8-2 shows the interaction
between some of these components to service an 1/0 request. This
interaction assumes that the device is not shared, and therefore, requires no
mutual exclusion.

105

NINTENDO 64 PROGRAMMING MANUAL DRAFT

106

Figure 8-2 Interactions Between I/0 Components Servicing Simple 170 Request

1) App registers an event, a message queue,
and a message with the system

Application

Thread 2) App requests 1/0 operation

(DMA) via the system interface

4) Exception Handler

notifies App by send- Device

ing the registered mes- (PN

sage to message queue
System_ Avice interrupts CPU upon 170
Exception completion

Handler

System Exception Handler

The Nintendo 64 system contains a system-wide exception handler that
traps all exceptions and interrupts. This handler is simply an optimized
event notifier. That is, upon receiving an event (either a supported exception
or interrupt), the handler searches the event table for an associated message
queue and message, sends the message to the queue, and simply returns.
The handler does not perform any device-specific operations. The

0sSet Event Mesg system call is provided to register a message queue and
a message with a specified event.

Device Manager

Depending on the user application, a device in the Nintendo 64 environment
may be shared between two or more threads. Furthermore, if you want to
utilize both DMA and 10 operations on a device, you must ensure that these
two operations cannot overlap. For each device that requires protection, you
can use the concept of a device manager to implement mutual exclusion.

NINTENDO

DRAFT INPUT/OUTPUT FUNCTIONALITY

The Device Manager (DM) is simply a thread that runs at a high priority. The
main purpose of this manager is to process all DMA requests to and from a
device (that is, ROM devices), thus guaranteeing safe and orderly usage of
the device. Upon start-up, the manager registers an event, its event message
queue, and a message with the system. The manager is then blocked
listening on its input command queue for request messages. The manager
simply reads from the front of the queue and processes one request of a time.

After calling the corresponding low-level device routine to initiate the 1/0
operation, the manager then blocks on listening on the input event queue,
waiting for the event sent from the exception handler, signaling 1/0
completion. Once awakened, the manager then notifies the calling thread
(170 requestor) by simply sending the request message to a pre-registered
message queue. The manager, then, returns to listen on the input command
gueue for new requests.

The reason for alternating the listening between these two queues
(command and event queues) is that there can be only one outstanding 1/0
transaction at any given time. Figure 8-3 summarizes the interaction
between various I/0 components to service an I/0 request on a shared
device.

107

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Figure 8-3 Interaction Between 1/0 Components and a Shared Device

2) App sends 1/0 request to 1) Device Manager registers an event,
Device Manager (via API) a message queue, and a message with
the system

Application
Thread

\ Device
Manager
6) DM sends event back (DM)
to App, notifying 170
completion 3) DM calls

low-level API to

initiate the 170

5) Exception Handler
notifies DM by sending
the registered message
to message queue

System
Exception

4) Device interrupts CPU upon 1I/0
Handler

completion

Device-Dependent System Interface

The device-dependent system interface is actually composed of two layers
of function calls: a high-level abstraction layer and a low-level, raw 1/0
layer. In addition to providing mutual exclusion on devices that support
both DMA and 10 operations, the high-level layer also uses the lower layer
to initiate raw 1/0 operation. The reason for exposing the raw 170 layer is
to allow you to construct your own custom 1/0 software interface.
Furthermore, if the user application requires no protection for accessing
devices, using the low-level layer directly is the optimal way to request 1/0
operation.

108

NINTENDO

DRAFT INPUT/OUTPUT FUNCTIONALITY

In the following sections, the functions are partitioned and described under
each device/interface separately. For high-level operation, each function
name starts with os<Devi ceName> for easy identification. For low-level
operation, the function name starts with os<Devi ceNanme>Raw. Please refer
to the appropriate reference (man) pages for specifics about the arguments,
return values, and behavior of these functions.

Signal Processor (SP) Functions

osSpTaskStart

This function loads a task and starts it running.
osSpTaskYield

This function asks a task running on the SP to yield.
osSpTaskYielded

This function checks to see if a recently completed task has yielded.

Display Processor (DP) Functions

osDpGetStatus

This function returns the value of the DP status register. The include
file rcp.h contains bit patterns that can be used to interpret the device
status.

osDpSetStatus

This function allows you to set various features in the DP command
register. Refer to the include file rcp.h for bit patterns and their usage.

osDpSetNextBuffer

This function sets up the proper registers to initiate a DMA transfer
from RDRAM address to the DP command buffer.

Video Interface (VI) Functions

osCreateVViManager
This function creates and starts the VI manager (VIM) system thread.

osViGetStatus

109

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

110

This function returns the value of the video interface status register.
The include file rcp.h contains bit patterns that can be used to interpret
the device status.

osViGetCurrentLine

This function returns the current half line.
osViGetCurrentMode

This function returns the current VI mode type.
osViGetCurrentFramebuffer

This function returns the currently displaying frame buffer.
osViGetNextFramebuffer

This function returns the next frame buffer to be displayed.
osViGetCurrentField

This function returns the current field (either 0 or 1) being access by VI
manager.

osViSetMode

This function sets the VI mode to one of the possible 28 modes. The
new mode takes effect at the next vertical retrace interrupt.

osViSetEvent

This function registers a message queue with the VI manager to receive
the notification of a vertical retrace interrupt.

osViSet[X/Y]Scale

These two functions allow you to change the horizontal scale-up factor
(x-scale) and vertical scale-up factor (y-scale), respectively.

osViSetSpecialFeatures

This function enables/disables various special mode bits in the control
register.

osViSwapBuffer

This function registers the frame buffer with the VI manager to be
displayed at the next vertical retrace interrupt.

NINTENDO

DRAFT INPUT/OUTPUT FUNCTIONALITY

Audio Interface (Al) Functions

osAiGetStatus

This function simply returns the value of the audio interface status
register. The include file rcp.h contains bit patterns that can be used to
interpret the device status.

0sAiGetLength

This function simply returns the number of bytes remained in the audio
interface DMA length register.

osAiSetFrequency

This function configures the audio interface to support the requested
frequency (in Hz). It calculates necessary values to program internal
divisors and returns the closest frequency that the divisors can
generate.

osAiSetNextBuffer

This function programs the next DMA transfer based on the input
length and starting buffer address.

Peripheral Interface (PI) Functions

osCreatePiManager
This function creates and starts the Pl manager (PIM) system thread.
osPiGetStatus

This function simply returns the value of the hardware status register.
The include file rcp.h contains bit patterns that can be used to interpret
the peripheral status (that is, DMA busy and 10 busy).

osPiRawsStartDma

This low-level function sets up the proper registers to initiate a DMA
transfer between ROM and RDRAM.

osPiRaw[Read/Write]lo

These two low-level functions perform an 10 (32-bit) read/write
from/to ROM address space, respectively.

osPi[Read/Write]lo

111

NINTENDO 64 PROGRAMMING MANUAL DRAFT

These two functions perform 10 (32-bit) read/write from/to ROM
address space, respectively. Since they provide mutual exclusion for
accessing the Pl device, these routines are both blocked 170 calls.

e osPiStartDma

This function generates an asynchronous 170 request to the Pl manager
to initiate a DMA transfer between RDRAM and ROM address space.
Upon 170 completion, Pl manager notifies the requestor by returning
the 1/0 request message to the message queue specified by the
requestor.

Controller Functions
e osContlnit

This function initializes all the game controllers and returns a bit
pattern to indicate which game controllers are connected.

e osContReset

This function resets all game controllers and returns their joysticks to
neutral position.

= osContStartQuery

This function issues a query command to all game controllers to obtain
their status and type.

= 0sContGetQuery
This function returns the game controllers’ status and type.
e osContStartReadData

This function issues a read data command to all game controllers to
obtain their input settings.

e osContGetReadData

This function returns the game controllers’ joystick data and button
settings.

112

NINTENDO

DRAFT BASIC MEMORY MANAGEMENT

Chapter 9

Basic Memory Management

Introduction

This chapter

= describes the hardware and software features of the Nintendo 64
platform that relate to memory management, and

= discusses how an application may use them for efficient, correct
memory utilization and access.

The software interface of the Nintendo 64 platform allows you to take
advantage of the hardware capabilities of the machine, which include high
flexibility and high performance. However, with this flexibility comes a
corresponding decrease in ease of programming, which this chapter
addresses.

Hardware Overview

Recall that the primary processing elements of the machine are the MIPS
R4300 CPU and the Reality CoProcessor (RCP). The CPU executes
application code directly from the DRAM, transparently caching instruction
and data references in on-chip caches. The code itself makes references to
CPU virtual addresses, which are translated by on-chip hardware to
physical memory addresses.

113

NINTENDO 64 PROGRAMMING MANUAL DRAFT

114

The RCP is primarily composed of two elements: the Signal Processor (SP)
and the Display Processor (DP). The SP is a microcoded engine that
processes task lists for audio and graphics. The DP is, for the most part,
driven by the SP. The RCP can be treated as a single processor for the
purposes of memory management.

Finally, a number of DMA engines also access DRAM directly: the DP, as
well as the Audio Interface (Al), Serial Interface (SI), and Parallel Interface

(PI).

Atthe hardware level, all of these agents make references to physical DRAM
addresses. These physical addresses are derived in very different ways,
however.

CPU Addressing

CPU virtual address translation takes place in either of two ways: either via
direct mapping or through the translation lookaside buffer (TLB). When
running in kernel mode (as applications do on the Nintendo 64 platform) the
address ranges have the behavior described in Table 9-1.

Table 9-1 32 Bit Kernel Mode Addressing

Beginning Ending Name Behavior

0x00000000 OXTfffffff KUSEG TLB mapped

0x80000000 OxOfffffff KSEGO0 Direct mapped, cached
0xa0000000 OXbfffffff KSEG1 Direct mapped, uncached
0xc0000000 Oxdfffffff KSSEG TLB mapped

0xe0000000 OxFFTFfff KSEG3 TLB mapped

The KSEGO address space is expected to be the most popular, if not only,
address space used. In this address space, the physical memory locations
corresponding to be KSEGO address can be determined by stripping off the
upper three bits of the virtual address. For example, virtual address
0x80000000 corresponds to physical address 0x0000000, and so on.

NINTENDO

DRAFT BASIC MEMORY MANAGEMENT

SP Addressing

The SP microcode makes address references also, but these references are
only to the local memory (IMEM and DMEM) on the chip. With the current
software architecture, the application does not program the SP directly, and
need not concern itself with IMEM and DMEM accesses.

DRAM references, however, concern the application, because large data
structures stored in DRAM are passed by reference. These include matrices,
vertex lists, textures, and the display lists themselves. As for the CPU, the
addresses given to be SP for these data objects are also virtual addresses, but
the mapping from virtual to physical address is significantly different. The
SP microcode maintains 16 locations in DMEM that act as segment base
registers. An “SP virtual” address is presented to the SP microcode in the
form of a <segment number, segment offset> pair encoded into a 32-bit
word. To compute a physical DRAM address, the microcode adds the
contents of the corresponding segment base register to the given offset.

DMA Engine Addressing

As indicated above, the Nintendo 64 includes DMA engines that access
DRAM directly. Since these DMA operations are initiated by the CPU, the
DRAM addresses passed to the interface routines are CPU virtual addresses.
These routines perform the mapping from virtual to physical addresses and
give the resulting physical DRAM address to be appropriate hardware
registers.

Makerom and Memory Management

In addition to its more obvious role of creating the application ROM image,
makerom (1P) is a powerful tool for both memory and symbol table
management. Segments to makerom mean more than SP addressable
memory regions. To makerom, a segment is any contiguous, coherent
region of bytes in memory or on the ROM.

The ROM specification file given to makerom provides virtual or segment

addresses to segments. A segment consisting of MIPS 4300 code or data to

run on the CPU can be given a virtual address with an addr ess statement.

A segment consisting of static display list data is given a segment address by
specifying the segment number with a nunber statement.

115

NINTENDO 64 PROGRAMMING MANUAL DRAFT

116

Briefly, makerom does the following:
= scans the input specification file for syntax errors;

= sizes the segments, creating absolute symbols for segment addresses
and ROM locations;

- performs final relocations of relocatables that comprise the segment,
using a link editor that can link an arbitrary number of segments to
different addresses;

= extracts the text and initialized data portions for each segment from the
resulting fully linked binary, and packs these portions of the segment
onto the ROM image.

Mixing CPU and SP Addresses

It is permissible to link segments given a CPU virtual address with those
given a SP segment address. It may appear counter-intuitive and
error-prone to link relocatables of entirely incompatible address spaces. As
it turns out, the benefits outweigh the potential risks, because it allows the
application code to address SP display list data symbolically.

For example, suppose a segment is composed of the following display list
data:

static Vp vp = {
SCREEN WD*2, SCREEN HT*2, G MAXZ/2, 0,/* scale */
SCREEN WD*2, SCREEN HT*2, G MAXZ/2, 0,/* translate */
b

Gx rspinit_di[] = {
gsSPVi ewport (&vp),
gsSPC ear Geonet ryMode(Oxffffffff),
gsSPSet Geonet r yMode(G_SHADE | G_SHADI NG_SMOOTH) ,
gsSPEndDi spl ayLi st (),

The beginning of the display listr spi ni t _dl isembedded somewhere in the
segment. Rather than computing its offset into the segment, the display list
is simply provided symbolically:

NINTENDO

DRAFT BASIC MEMORY MANAGEMENT

gSPDi spl ayLi st (glistp++, rspinit_dl);

The compiler and linker do the work of computing the address of

rspi nit_dl within the segment. Thus, if the relative location of the display
listrspi nit _dl changes, the code will still remain valid (and more
readable). Note that the CPU does not reference any of the data in this
display list; the CPU just passes a reference to the display list data to the SP.

A more complicated example involves using the mixed symbol table to work
with memory regions created by the CPU and read by the SP. In this case, a
single SP segment refers to two different underlying DRAM regions. This
technique can be useful when static display lists need to refer to dynamic
data that is double buffered. The actual DRAM location currently being
pointed to is swapped by setting the appropriate SP segment register.

The actual memory for the dynamic data can be declared and created within
a KSEGO code segment as follows:

typedef struct {
M x projection;
M x nodel i ng;
G x glist[2048];
} Dynamic_t;

Dynami c_t dynami cBuffer[2];
Dynami c_t *dynam cPoi nter = &dynamni cBuffer[0];

The segment contents can then be modified by the CPU directly:

guOr t ho(&lynani cp- >proj ecti on,

- SCREEN_ WY 2. 0, SCREEN WYY 2. 0,

SCREEN_HT/ 2.0, SCREEN _HT/2.0, 1, 10, 1.0);
guRot at e(&dynam cp- >nodel i ng, theta, 0.0, 0.0, 1.0);

The SP view of the dynamic segment is created by creating a relocatable with

the following parallel definition and assigned to, for example, segment
register 4 in the ROM specification file:

117

NINTENDO 64 PROGRAMMING MANUAL DRAFT

118

Dynami c_t rspdynami c;

Since the relocatable contains only uninitialized data (bss), no actual bits on
the ROM are used. But more importantly, the symbol rspdynamicis made
available to other objects. Its value is the segment address of the dynamic
segment.

The SP segment register 4 is then mapped to the actual memory for the
dynamic segment with the following command:

gSegrent (gl i st p++, 4, osVirtual ToPhysi cal (dynam cp);

Then the SP addresses of the dynamic structure can be used, even from static
display lists, to build display lists that reference components of the dynamic
section:

gsSPMat ri x(&ynami c. proj ecti on,
G_MIrX_PRQIECTI ON| G_MI'X_LOAD| G_MIX_NOPUSH) ;

gsSPMat ri x(&ynami c. nodel i ng,
G_MIX_MODELVI EW G_MTIX_LOAD| G_MI'X_NOPUSH) ;

As with the previous example, using the compiler and linker to generate
addresses allows the data structures to be modified, reordered, and so on,
without changes to unaffected areas of the application.

Flushing the CPU Data Cache

The MIPS R4300 CPU transparently caches data accesses on a onboard data
cache. Ordinarily this cache is of no concern to the application, but when an
external agent such as the SP or DMA engine is involved, the application
must be aware of the caching implications.

The data cache implements a “write back” replacement policy which means
that data stores are held in the cache until the entire cache line is written
back, usually due to a cache miss thatrequires the same cache line. The cache
is not coherent with respect to physical memory and thus cache lines must
be explicitly written back to memory prior to their use by another processor
such as the SP.

NINTENDO

DRAFT BASIC MEMORY MANAGEMENT

Using the above example, the dynamic data can be written with a single
procedure call as follows. It is expected that this will be done prior to the
task list being executed by the SP.

osW it ebackDCache(dynam cp, sizeof (Dynamic_t));

Clearing uninitialized data (Bss) section

Prior to loading a segment into memory, the application must invalidate the
corresponding cache lines. The makerom(1P) makes appropriate symbols
available to the application that can be used to construct the arguments to
the os/nvalDCache(3P)routines. Then the actual DMA from ROM to DRAM
may be performed, as well as the clearing of the uninitialized data (bss)
section of the segment. It is important that the clearing be performed before
the Bss section can be used. Again, makerom(1P)generated symbols may be
used for the bzero() call. Here is some sample code that illustrates the
process:

extern char _newSegnentRonStart[], _newSegnent RonEnd[];
extern char _newSegnentStart[];

extern char _newSegnentDataStart[], _newSegnent DataEnd[];
extern char _newSegnmentBssStart[], _newSegnentBssEnd[];

osl nval DCache(_newSegnent Dat aStart,
_newSegnent Dat aEnd- _pl ai nSegnent Dat aStart) ;

osPi St art Dma(&drmal OvessageBuf, OS_MESG PRI _NORMAL, CS_READ,
(u32) _newSegnment RonfSt art, _newSegnent Start,
(u32) _newSegnent RonEnd - (u32) _newSegnent Ronfstart,
&dmaMessageQ ;

bzer o(_newSegnent BssStart,
_newSegnent BssEnd- _newSegnent BssStart);

(voi d) osRecvMesg(&dmaMessageQ NULL, OS_MESG BLOCK) ;
Physical Memory Allocation

The Nintendo 64 hardware contains four megabytes of “nine bit” DRAMS.
The normally hidden ninth bit is used for antialiasing and z-buffering

119

NINTENDO 64 PROGRAMMING MANUAL DRAFT

120

hardware. It is recommended that the framebuffer and z-buffer reside on
different megabyte banks to take advantage of caching in the DRAM
circuitry

By default, the boot location resides at directed mapped address 0x80000400.
(or physical address 0x400). The first 1024 (0x400) bytes of physical memory
are reserved for exception vectors and configuration parameters. This boot
location can be changed by simply inserting an address statement in the boot
segment of the makerom (1P) specification file. For example, the following

code specifies the boot location to be at 0x80200000, which is the beginning
of the third megabyte of memory.

begi nseg
name “code”
fl ags BOOT OBJECT
entry boot
addr ess 0x80200000
stack boot Stack + STACKSI ZE
i ncl ude “codesegnent. o0”
i ncl ude “$(ROOT)/ usr/lib/ PR rspboot.o”
i ncl ude “$(ROOT)/usr/lib/ PR gspFast3D. 0"
i ncl ude “$(ROOT)/usr/lib/ PR gspFast3D. dram 0”
i ncl ude “$(ROOT)/usr/lib/ PR aspMain. 0"
endseg

The boot process of the Nintendo 64 will copy one megabyte of data
beginning with the boot segment specified in the specification file to the boot
location.

NINTENDO

DRAFT ADVANCED MEMORY MANAGEMENT

Chapter 10

Advanced Memory Management

Introduction

This chapter explores techniques and features that are not required in the
simplest of applications. It contains useful information and tricks that may
be used in certain situations, but it is not expected that all applications will
use all the techniques described here.

Mixing CPU and SP Data

In the previous chapter it was implied that CPU and SP data should be in
separate segments as they are addressed differently. This is not mandatory,
however, as the addressing can be easily reconciled. Suppose the application
defines a display list and includes it in a segment given a CPU addressable
KSEGO address. The physical address of this display list can be easily
determined with the OS KO0 TO PHYSICAL(3P) macro or the

osVirtual ToPhysical(3P) routine. The resulting physical address
corresponds to an SP address with segment number if 0, and a segment
offset equal to the physical address. This is because the encoding of the SP
segment address is as follows:

31 28 24 0
XXXX | seg ID segment offset

121

NINTENDO 64 PROGRAMMING MANUAL DRAFT

122

If the application creates a mapping using segment 0 to a beginning physical
address of 0x0, the SP can correctly access objects in DRAM when given a
physical address.

This simplifies the situation somewhat, but the SP microcode takes it a step
further: Since the upper four bits of a segment address are not used, they are
ignored. Thus an implicit mapping is done from a KSEGO address to a
physical address, and no explicit conversion need be done by the
application.

To summarize, as long as an SP segment table mapping is done from
segment number 0 to offset 0, CPU KSEGO0 addresses can be interpreted
correctly by the SP.

Using Overlays

The total application code size and data will probably be greater than what
is actively being used at any point in time. To conserve DRAM, applications
may choose to only have active code and data resident. To facilitate this, the
application can be partitioned into a number of segments, where some
segments share the same memory region during different phases of
execution. Here is an excerpt from a specification file that contains a kernel
code segment that can call routines in either of two overlay segments,
texture and plain:

NINTENDO

DRAFT ADVANCED MEMORY MANAGEMENT

begi nseg
nane “kernel”
flags BOOT OBJECT
entry boot
stack boot Stack + STACKSI ZE
i nclude “kernel.o”
i ncl ude “$(ROOT)/usr/lib/ PR rspboot. 0"
i ncl ude “$(ROOT)/usr/lib/ PR/ gspFast 3D. 0"

endseg
begi nseg
nane “plain”
flags OBJECT
after “kernel”
i ncl ude “plain.o”
endseg
begi nseg
nane “texture”
flags OBJECT
after “kernel”
i nclude “texture.o”
endseg
begi nwave

nane “overl ay”

i nclude “kernel”

i nclude “plain”

include “texture”
endwave

Note the use of the after keyword to place both of the overlay segments at
the same address.

Prior to loading a segment into memory, the application must invalidate the
corresponding instruction and data cache lines. The makerom(1P) makes
appropriate symbols available to the application that can be used to
construct the arguments to the os/nvallCache(3P)and osinvalDCache(3P)
routines. Then the actual DMA from ROM to DRAM may be performed, as
well as the clearing of the uninitialized data (bss) section of the segment.
Again, makerom(1P)generated symbols may be used for the bzero() call.

123

NINTENDO 64 PROGRAMMING MANUAL DRAFT

124

After the segment is loaded, any procedure in the segment may be called or
any data in the segment referenced. Here is some sample code that illustrates
the entire process:

extern char _plainSegnment RonStart[], _pl ai nSegnent RonEnd[];
extern char _plainSegnmentStart[];

extern char _pl ai nSegnent Text Start[], _pl ai nSegnment Text End[];
extern char _pl ai nSegnent DataStart[], _pl ai nSegnment Dat aEnd[];
extern char _plainSegnment BssStart[], _plai nSegnent BssEnd[];

osl nval | Cache(_pl ai nSegnent Text Start,
_pl ai nSegnent Text End- _pl ai nSegnent Text Start);

osl nval DCache(_pl ai nSegnent Dat aSt art
_pl ai nSegnent Dat aEnd- _pl ai nSegnent Dat aSt art) ;

osPi St art Dma(&drmal OvessageBuf, OS_MESG PRI _NORMAL, CS_READ,
(u32) _pl ai nSegnent Ronstart, _pl ai nSegnent Start,
(u32) _pl ai nSegnent RomEnd - (u32) _pl ai nSegnment Rontt art,
&dnmaMessageQ ;

bzer o(_pl ai nSegnment BssStart,
_pl ai nSegnent BssEnd- _pl ai nSegnent BssStart);
(voi d) osRecvMesg(&dnmaMessageQ NULL, OS_MESG BLOCK);

Using Multiple Waves

The previous example linked both overlays into a single, fully relocated
binary. This binary is used for two purposes. First, the text and data sections
are extracted from this binary and packed on the ROM. Second, this binary
can be given to the Nintendo 64 debugger, gvad(1P). Although the
specification file above will create an operationally correct ROM image, the
binary will confuse the debugger. This is because multiple symbols will map
to the same address, and gvdmay err when it tries to find the correct source
line for a given program counter value, for example.

This problem can be circumvented by creating multiple binaries, or waves,
each with a distinct symbol table. The following specification file excerpt
illustrates this:

begi nwave
name “plai n_wave”
i nclude “kernel”
include “plain”

NINTENDO

DRAFT ADVANCED MEMORY MANAGEMENT

endwave

begi nwave
nane “texture_wave”
include “kernel”
include “texture”
endwave

Using this technique, procedure and variable names from the p/ainsegment
are kept distinct from those of the fexturesegment. The “Switch Executable”
menu entry from the gvd*“Admin” menu can be used to select the symbol to
use while debugging.

There is one significant caveat when using multiple waves. The contents of
each segment must be identical in each of the waves the segment is included
in. For example, the kernel segment above is included in both p/ain_wave
and fexture_wave, so its relocated image must be identical in both. The usual
consequence of this rule is that the segment procedure entry point in both of
the overlay segments must be at the same location. This requirement can be
easily met by ensuring that the segment procedure is always the first
procedure of the first relocatable that comprises the overlay segment. Then
the calling segment code can always jump to the beginning address of the
overlay segment(s) and execute valid code there.

Using the Region Allocation Routines

Previous examples were primarily concerned with static memory allocation;
many applications may find it necessary to do some form of dynamic
allocation. For situations where the allocation is always done in fixed size
chunks, a family of region allocation routines are provided. These routines
will carve up a larger buffer into fixed some memory regions that are
managed by the library. The routines of interest are:

= osCreateRegion

This function initializes an allocation arena given a memory address,
size, and alignment.

e osMalloc

125

NINTENDO 64 PROGRAMMING MANUAL

DRAFT

126

This function allocates and returns the address to a single fixed sized
and properly aligned buffer from a given region. This function will fail
and return NULL is there is no available free buffer in the region.

osFree

This routine returns a previously allocated buffer to the given region
pool.

0sGetRegionBufCount
This function returns the total number of buffers in the region.
0sGetRegionBufSize

This function returns the actual buffer size, after having been possibly
padded to the given alignment.

The following code sample creates a region, allocates a buffer, and then frees

it.

voi d *region;
char regi onMenory[REA ON_SI ZF] ;
u64 *buffer;

regi on = osCreat eRegi on(regi onMenory,
si zeof (regi onMenory),
BUFFER_SI ZE, OS_RG ALI GN_16B);
buf fer = osMal | oc(region);

/* do sonme work that uses ‘buffer’ */

osFree(region, buffer);

Incidentally, if the fixed size regions are intended to hold entire segments,
the maxsize keyword of the makerom specification file may be of interest.
See makerom(1P)for details.

Managing the Translation Lookaside Buffer

Although most applications will find the direct mapped KSEGO0 address
space of the CPU sufficient, it is possible to use the mapped address space
by setting appropriate Translation Lookaside Buffer (TLB) entries.

NINTENDO

DRAFT ADVANCED MEMORY MANAGEMENT

Perhaps the biggest restriction with using the TLB is that individual entries
operate only on relatively large, aligned memory regions (pages).
Nevertheless, it may be helpful for memory protection or relocation of CPU
addresses. In addition, TLBs can be used as yet another method to reconcile
SP segment addresses with CPU addresses, since SP addresses fall within
the range of the mapped CPU address space.

The translation lookaside buffer (TLB) of the R4300 has 32 entries, each of
which maps two physical pages. The TLB is fully associative, which means
each entry is essentially independent—the index number implies nothing
about the mapping and any entry can hold any mapping. A number of page
sizes are supported: 4 KB, 16 KB, 64 KB, 256 KB, 1MB, and 16MB. Each TLB
entry may map a different page size. The following routines are used to
manage the TLB:

= osMapTLB

This function sets the contents of a single TLB entry to the given virtual
address, even and odd physical address, page size, and address space
identifier.

= osUnmapTLB

This function invalidates both the odd and even physical page
mappings of a given TLB entry.

= osUnmapTLBALL

This function invalidates all mappings in the TLB. This should be done
by the application prior to using the TLB.

e 0SSetTLBASID

This function sets the current address space identifier register.
Using the TLB requires some care. The following paragraphs describe some
problem areas.

< Two TLB entries cannot map the same virtual address space. If this
occurs, accesses to the address will cause a TLB refill exception. Any
overlapping mapping creates this condition, even when a mapping
with a smaller page size is a subset of another mapping with a larger
page size:

osMapTLB(0, OS_PM 16K, (voi d *) 0x0, 0xa0000, -1, -1);
osMapTLB(1, OS_PM 4K, (void *)0x2000, 0xb000, -1, -1);

127

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Another case involves different TLB entries, each of which map
different pages of an odd/even pair. The following mappings, which
individually map an even and an odd physical page, will create an
overlap condition:

osMapTLB(0, OS _PM 4K, (void *)0x2000, 0xa000,-1, -1);
osMapTLB(1, OS _PM 4K, (void *)0x2000, -1, 0xb000, -1);

Instead, the application should set a single entry with both mappings:

osMapTLB(1, OS PM 4K, (void *)0x2000, 0xa000, Oxb000, -1);

< The mapped addresses must be aligned to the page size. This applies to
both the virtual and physical pages mapped.

This implies that if one intends to map SP segment addresses via the
TLB, the SP segment must be loaded at a page-aligned address.

= Multiple mappings of a cached address must be of the same “color.”
CPU caches are physically tagged, but virtually indexed, which
introduces a situation in which more than one cache line references the
same physical memory locations. Avoid the problem by using the same
virtual address consistently for a particular physical address.

If you cannot use the same virtual address, the mappings should all be
the same color, where the “color” is defined as bits [14..6] of the
instruction address (for instruction fetches) or bits [15 ..5] of the data
address (for data accesses).

Finally, no support is provided for handling and recovering from TLB
misses. A TLB miss is an unrecoverable fault to the Nintendo 64 system.

More information about these topics can be found in the MIPS R4300
documentation.

128

NINTENDO DRAFT ULTRA 64 GRAPHICS |

PART

Ultra 64 Graphics

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO

DRAFT GRAPHICS MICROCODE

Chapter 11

Graphics Microcode

Graphics are rendered in Nintendo64 games by creating a graphics display
list, and passing this display list to the RSP. In order for the RSP to process
this display list, the application, using system calls, loads graphics
microcode. This section discusses the different microcode object files
available to applications.

There are six basic versions of the graphics microcode, and each basic
version has up to three subtypes. The basic versions are know as, gspFast3D,
gspF2DNOoN, gspLine3D, gspTurbo3D, gspSuper3D, gspSprite2D. Each
basic version has a different set of graphics rendering features. Each subtype
has the same set of graphics features, but varies according to how the RSP
passes commands to the RDP. The three subtypes are regular, .dram and
fifo. The object files for the microcode are labeled, <basicType>.o,
<basicType>.dram.o, and <basicType>.fifo.o.

131

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Microcode Functionality

132

gspFast3D

gspFast3D microcode is the most full-featured of the microcode objects. It is
also the microcode used in the majority of the demo applications. gspFast3D
supports 3D triangles, 3D clipping, z-buffering, near and far clipping,
lighting, mip-mapped textures, perspective textures, fog, and matrix stack
operations. It does not support the GBI command, gSPLine3D.

gspF3DNoN

The gspF3DNoN microcode is similar to the gspFast3D microcode, except it
does not handle near plane clipping in the same manor. When using the
gspFast3D microcode, objects between the eye and the near plane are
clipped. When using the gspF3DNoN microcode, objects between the eye
and the near plane are not clipped. However, the area between the eye and
the near clipping plane does not implement zbuffering. This means that
objects that fall into this area must be drawn in order from far to near.

gspLine3D

gspLine3d microcode features many of the features of gspFast3D, except
instead of drawing triangles, it draws 3D lines. This is useful for producing
wireframe effects. If a gSP1Triangle command is encountered it will draw
the three edges of the triangle, but not the center portion of the triangle.

gspTurbo3D

gspTurbo3D microcode is a reduced-feature, reduced-precision, microcode
that delivers significantly faster performance. The features not supported by
gspTurbo3D are: Clipping, lighting, perspective-corrected textures, and
matrix stack operations. The quality of the anti-aliasing also suffers, due to
the lack of precision used by gspTurbo3D. This loss of precision can also
manifest itself as various visual artifacts, depending on the content.
gspTurbo3D uses a different format for the display list.

NINTENDO

DRAFT GRAPHICS MICROCODE

gspSprite2D

gspSprite2D microcode is optimized for drawing 2D sprite images. Sprites
are implemented as textured screen rectangles. gspSprite2D does not
support 3D lines 3D triangles, vertices operations, matrix operations,
lighting, or fog. All of the DP commands such as blender modes, and color
combiner modes are supported. Zbuffering can be used to arrange the order
of the sprites from front to back

gspSuper3D

gspSuper3D is a reduced precision microcode that supports the same
display list format as gspFast3D. This reduced precision will increase
performance, but can cause visual artifacts. Although gspSuper3D uses the
same display lists as gspFast3D, gspSuper3D does not support perspective
corrected textures.

133

NINTENDO 64 PROGRAMMING MANUAL DRAFT

RSP to RDP command passing

134

All types of RSP microcode generate commands for the RDP. The method
used to pass the commands from the RSP to the RDP determines the suffix
used to name the microcode object. In the “regular” method the commands
are written to a buffer in dmem, which can hold up to six RDP commands.
If the buffer fills, the next time the RSP tries to write a command it will stall
until there is space in the buffer. Microcode versions that use this type of
command passing have no special suffix, just a “.0” appended to their name.

Alternatively, the RSP can write all the commands to a larger fifo buffer in
rdram. This helps to prevent the RSP from stalling when the RDP gets bound
by processing large triangles. Microcode that uses this method has the
“fifo.o” suffix appended to its name.

When using the fifo version of a microcode, the application must pass a
pointer to a buffer to be used as the fifo buffer, in the task output_buff field.
The size of the fifo buffer is put in the output_buff_size field. In order for fifo
to have a positive effect on performance the size of the buffer should be
greater than 1K.

The microcode also provides another option for the RSP to write all of the
RSP commands to an rdram buffer. In this case the application must start the
RDP task separately with a call to osDpSet Next Buf f er () . (This form of
command passing is very useful for debugging in conjunction with the tool
diprint which can print display lists in a human readable form.) Microcode
designed to use this method has the “.dram.o” suffix appended to its name.

Tasks using the .dram microcode need a pointer to a buffer in the
output_buff field of the task structure, and a size in the output_buff_size.
Because RSP commands usually expand when converted into RDP
commandes, this buffer needs to be larger than the size of the RSP display list.

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

Chapter 12

RSP Graphics Programming

This document describes the graphics state machine of the RCP, with a
particular focus on the RSP (see “RSP: Reality Signal Processor” on page 44).

The RSP is an R4000-like CPU with an 8-element vector unit, featuring a
small instruction memory, IMEM (4K bytes or 1K instructions) and small
data memory, DMEM (4K bytes). Software running on this processor
implements a large portion of the geometry display pipeline.

In addition, the RSP provides visibility for all of the RCP functionality,
through a variety of software conventions and hardware exposure. All
“display lists” for the RCP graphics features must pass through the RSP.
There are several important features which require the application
programmer to be consciously aware of the distinctions between the RSP
and the RDP (and program each of them separately), but for the most part,
the RSP serves as the single interface between the application program and
the graphics pipeline:

Figure 12-1 Nintendo 64 Graphics Pipeline

R4300 RSP RDP

game processing » 3D geometry > polygon
animation transformation + rasterization +
GBI assembly lighting texturing

135

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Topics covered in this document include:
< RSP overview
= display list processing
= matrix state
= vertex state
= vertex lighting state
- texture state
= clipping and culling
= primitives

= controlling the RDP state

136

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

RSP Overview

A program which runs on the RSP is called a fask; the application is
completely responsible for scheduling and invoking tasks on the RSP.

The interface between the application and the RSP task is accomplished with
a series of operating system calls, and a structure called the task /ist (or task
header) which is type OST7ask (defined in sptask.f). The task list contains all
the information necessary to begin task execution, including pointers to the
microcode to run. This structure is filled in by the application program.

A detailed description of invocation of a task on the RSP is beyond the scope
of this section (see “RCP Task Management” on page 65), but the essential
procedure is straightforward:

« the RSP is assumed to be halted (or the R4300 halts it).

= the R4300 DMA'’s the boot microcode into the RSP IMEM.
= the R4300 DMA'’s the ‘task header’ into the RSP DMEM.
= the R4300 sets the RSP PC to 0.

= the R4300 clears the RSP halt status (allowing it to run).

From this point, the boot microcode takes over, loading the task microcode
(and data) specified in the task list, and jumping to the beginning of the task.

One item in the task header is a pointer to the initial data to process (in the
case of a graphics task, this is a display list pointer).

Display List Format

The display list which the gspFast3D, gspF3DNoN, or gspLine3Dmicrocode
running on the RCP interprets is defined as a stream of 64-bit commands.

Applications written in C will usually use the interface from the file gbi.A.,
which will be included via inclusion of wltra64.h. Although the construction
of display lists looks like a familiar series of function calls, they are actually
just bit-packing macros. These macros are described in detail in their
individual man pages.

137

NINTENDO 64 PROGRAMMING MANUAL DRAFT

138

Each macro has two forms, i.e. gSPTexture() and gsSPTexture(). The
difference between ‘g’and gs’ is that the ‘g’form is an in-line form which
requires an additional argument (pointer of the display list being
constructed). The display list pointer must be of the form “ptr++”, in order
for the macros to work properly.

The ‘gs’form is for static declarations, and generates the appropriate C
structure initialization sequence.

Throughout this document, only the ‘gs’form is mentioned, however the ‘g’
form also applies, and could always be substituted.

All of the display list building macros also embed an ‘SP’or a ‘DP’to
describe the functional unit of the RCP which will operate on this command.
This is certainly confusing, especially to application programmers familiar
with higher-level graphics API’s such as OpenGL. In order to achieve
maximum performance, it is necessary to expose the two major units of the
RCP to the application programmer. The primary reason for this is resource
constraints; there is simply not enough RSP IMEM to build a display list
processor that is rich enough to hide these details from the application
programmer. In addition, given the dedicated application of the RCP (video
games), any CPU cycles spent “gift-wrapping” the graphics API are a waste
of time. The binary encoding of most of the display list commands /s the
lowest possible level: they are the bits that control the hardware.

Exposing the two functional units of the RCP also limits the amount of state
shared between them. The major drawback of this design decision is that
you must often tell the same thing to the RSP and the RDP. For example, in
order to “turn on texture mapping” you must turn it on in the RSP and'turn
iton in the RDP. This may seem clumsy at first, and indeed this is a common
source of display list bugs, but the parallel execution of the RSP and RDP,
plus the lean display list processing machine make this trade-off
worthwhile.

Segmented Memory and the RSP Memory Map

All DRAM addresses in the display list are segmented addresses. The
mapping of segments and their base addresses is provided using the
gsSPSegnent () macro. It is the responsibility of the application to maintain
this mapping and inform the RSP via the display list.

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

The RSP maintains an associative table of up to 16 segment ID’s and their
base addresses. Any DRAM address in the display list is ‘physical-ized’
using this table.

The RDP only uses physical addresses, and one of the chores of the RSP is to
do the address translation necessary for the RDP.

Note: By convention, segment table entry 0 is reserved for physical
addressing, and should be set to 0x0.

The RSP software can only access DMEM. All data must first be transferred
into DMEM using DMA operations, which must be 64-bit aligned.
Invocation of the DMA engine is handled by the RSP software, but the
application programmer needs to be aware of the boundary requirements.
Any data structure that is to be passed to the RSP must be aligned to a 64-bit
boundary. The structures in gbi./1use C unions to guarantee this.

Since the DMA engine is shared between the R4300 and the RSP, the
application program should also avoid unnecessary DMA activity while the
RSP is running.

Interaction Between the RSP and R4300 Memory Caching

The most prevalent example of communication between the CPU and the
RSP is that of the CPU creating a display list in DRAM for eventual
interpretation by the RSP. The display list data is read from DRAM via a
DMA mechanism. Unfortunately, DRAM locations may be “stale” with
respect to newer data being held in the R4300’s data cache. The R4300 cache
mechanism implements a “write-back” caching policy which means
individual stores to memory are not immediately written to memory. To
update the memory contents with more recent cached data, the CPU must
first write back cached data to the DRAM. Then, and only then, will the RSP
be able to DMA the correct data for display list processing.

Conversely, the contents of memory may be more recent than cached data in
some situations when the RSP modifies memory (an obvious example is
updating the color frame buffer). In this case, the CPU’s cache may contain
stale data and the CPU should invalidate the cached data to force an access
directly to DRAM and get the most recent data.

139

NINTENDO 64 PROGRAMMING MANUAL DRAFT

As a practical note, this second scenario only arises in advanced
applications.

140

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

Display List Processing

Understanding the basics of the RSP display list processing is necessary to
construct efficient, compact display lists for an application.

The display list (or command list) can be thought of as a hierarchical
structure, up to 10 levels deep. A display list may contain a pointer to
another display list, and so on. The RSP processes the display list using a
stack, pushing and popping the current display list pointer.

For animation, it will be desirable to “double-buffer” parts of the display list;
rendering one frame while the data for the next frame is updated. In this
case, only the minimum amount of data need be duplicated; only the data
which will change for each frame. Swapping between doubled buffers is
efficiently done by changing the segment base addresses (and organizing
your display list appropriately).

During computation by the RSP, all display lists and their data must remain
in the same location until the RSP is finished. This sounds obvious, but is a
very common bug, usually the result of incorrect usage of double-buffering
techniques. In addition, if the RSP task is interrupted (see “Signal Processor
(SP) Functions” on page 109), all of the data must remain in the same
location when/if the task is restarted

Connecting Display Lists
Hierarchical display list connection can be made with the gsSPDisplay!l ist()
macro. The current display list location is pushed on the display list stack

and processing begins with the new display list.

Table 12-1 gsSPDisplayList(Gfx *dl)

Parameter Values

di pointer to the display list to attach.

141

NINTENDO 64 PROGRAMMING MANUAL DRAFT

142

Branching Display Lists

A display list branch without a push allows you to “chain” together
fragments of display lists for more efficient memory utilization.

Table 12-2 gsSPBranchList(Gfx *dl)

Parameter Values

di pointer to the display list to attach.

Ending Display Lists
All display lists must terminate with an “end” command.

Table 12-3 gsSPEndDisplayList(void)

Parameter Values

none none

A Few Words about Optimal Display Lists

The display list processor running on the RSP caches display list commands
in groups of about 32. This means the optimal display list size is a multiple
of 32. A display list of 33 commands (or 65, etc.) would require the display
list cache to be refilled during processing, possibly causing a wait state
(depending on the DMA engine activity). Obviously not all display lists can
keep the list processor running 100% optimally, but it is something to keep
in mind when tuning your application.

Another form of display lists which cause less than optimal processing are
display lists that look like this:

//

-

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

Since the display list engine is stack-based, a display list that has lots of
unnecessary indirect pointers will cause lots of unnecessary pushes and
pops, which do have a cost.

Constructs like this are unavoidable sometimes, like when sharing

geometries among objects, but if you have a choice try not to group indirect
display list pointers together.

143

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Matrix State

144

The “geometry engine” in the RSP implements a fixed-point matrix engine
with the following matrix state:

A 10-deep modeling matrix stack. New matrices can be loaded onto the
stack, multiplied with the top of the stack, popped off of the stack, etc. This
matrix stack is primarily used for manipulating objects within the world
coordinate system (often combinations of rotations, translations, and
sometimes scales).

A 1-deep projection and viewing matrix “stack”. New matrices can be
loaded onto the stack, multiplied with the top of the stack, but cannot be
pushed or popped. This matrix “stack” is primarily used for the projection
matrix and the viewing matrix. The projection matrix (often created with the
guPerspective or the guOrtho functions) is loaded onto the stack, and then
the viewing matrix (often created with the guLookAt function) is multiplied
on top of it.

A “perspective normalization” factor. This is used to improve precision of
the fixed-point perspective computation.

When a group of vertices is loaded, they are first transformed by the matrix
MP (the current top of the modeling stack multiplied by the projection
matrix). All vertex transformations are done only when they are loaded;
sending a new matrix down later will not change any points already in the
points buffer.

The modeling matrix stack resides in DRAM. It is the application’s
responsibility to allocate enough memory for this stack and provide a
pointer to this stack area in the task list.

The format of a matrix is a bit unusual. It is optimized for the RSP’s vector
unit (used during the multiplies and transformations.) This format groups
all of the integer parts of the elements, followed by all of the fractional parts
of the elements. This unusual format is not exposed to the user, unless
he/she chooses not to use the matrix utilities in the libraries.

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

Insert a Matrix
Inserts a new matrix into the display list.

Table 12-4 gsSPMatrix(Mtx *m, unsigned int p)

Parameter Values
m pointer to the new matrix.
p G_MTX_MODELVIEW or G_MTX_PROJECTION,

G_MTX_MUL or G_MTX_LOAD,
G_MTX_PUSH or G_MTX_NOPUSH

Pop a Matrix
This command pops the matrix stack.

Table 12-5 gsSPPopMatrix(unsigned int n)

Parameter Values

n unused

Perspective Normalization
This scale value is used to scale the transformed wcoordinate down, prior

to dividing out wto compute the screen coordinates (which are similarly
scaled). The effect of this is to maximize the precision of this divide.

145

NINTENDO 64 PROGRAMMING MANUAL DRAFT

146

The library function guPerspective() returns one approximation for this
scale value, which is a good estimate for most cases:

Figure 12-2 Perspective Normalization Calculation
near plane far plane

-

1 _ (near+ far)
s 2

SO = 2 (represented as an unsigned 16-bit fraction)
(near+ far)

This approximation normalizes w=1.0 halfway between the near
and far planes.

Table 12-6 gsSPPerspNormalize(unsigned short int s)

Parameter Values

S 16-bit unsigned fractional perspective normalization scale.

Note on Coordinate Systems and Big Numbers

The RSP is a fixed point machine, so keeping coordinate systems within a
certain range is important. If numbers in the final coordinate system (or
intermediate coordinate systems) are too big, then the geometry of objects
can be distorted, textures can shift erratically, and clipping can fail to work
correctly. In order to avoid these problems keep the following notes in
mind:

1) No coordinate componant (X, y, z, or w) should ever be greater than
32767.0 or less than -32767.0

2) The difference between any 2 vertices of a triangle should not have
any componants greater than 32767.0

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

3) The sum of the difference of w’s of any 2 vertices plus the sum of the
differneces of any of the x, y, or z componants should be less than
32767.0. In other words for any 2 vertices in a triangle,
v1=(x1,y1,z1,wl), and v2=(x2,y2,22,w?2) , these should all be true:

abs(x1-x2) + abs(wl-w2) < 32767.0

abs(yl-y2) + abs(wl-w2) < 32767.0

abs(z1-z2) + abs(wl-w2) < 32767.0

One way to check this is to take the largest vertices that you have and run
them throught the largest matrices you are likely to have, then check to make
sure that these conditions are met.

A reccommended way of avoiding trouble is to never allow any componant
to get larger than 16383.0 or smaller than -16383.0. To ensure this find:

M = the largest componant (x, y, or z) of the largest model in your
database.

S = The largest scale (ie number in the upper 3 rows of the matrix) in
the matrix made up of the concatenation of the largest modeling matrix,
the largest LookAt matrix, and the largest Perspective matrix you will
use.

T = the largest translation (ie number in the 4th row of the matrix) in
the

matrix made up of the concatenation of the largest modeling matrix, the
largest LookAt matrix, and the largest Perspective matrix you will use.

Now M *S + T < 16383.0 should be true. If you experience textures
wobbling or shifting over a surface, clipping not working correctly, or
geometry behaving erratically, this is a good place to check.

A Few Words About Matrix Precision
The RSP uses fixed-point 32-bit multiplies during matrix operations. Since
the product of two 32-bit numbers is a 64-bit number, only the middle 32 bits

of the answer is retained. Overflow of intermediate terms is possible,
especially in large coordinate systems or unusual projection matrices.

147

NINTENDO 64 PROGRAMMING MANUAL DRAFT

In order to avoid fixed-point precision problems, in some cases it may be
desirable to compute the matrix in floating point on the R4300 and just load

it.

Matrix multiplies are very fast on the RSP, but they are not free. If possible,
reduce matrix operations by pre-multiplying the matrices at modeling time
or compile time.

148

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

Vertex State

The RSP state includes a vertex buffer, holding up to 16 vertices. This buffer
can be loaded with any number of consecutive vertices, beginning at any
location.

Table 12-7 gsSPVertex(Vtx *v, unsigned int n, unsigned int v0)

Parameter Values

\% pointer to a list of vertices.

n number of vertices

vO0 vertex buffer location to load vertices into.

At the time the vertices are loaded, they are transformed by the current
matrix state and possibly shaded by the current lighting state.

Vertices are not re-transformed again, if the matrix state changes, the old
(previously-transformed) vertices are not affected. This feature can be
exploited to construct data that is knit together between two groups of
points with different transformations (such as an elbow joint of a character).

Since the vertex processing is heavily vectorized and pipelined, it is
important that each load loads as many vertices as possible.

Since the vertex loading is a relatively slow operation, it is also important
that any triangles that share vertices be rendered using the same vertex state,
rather than re-loading these same vertices later.

See the “Note on Coordinate Systems and Big Numbers” on page 146 for
info on keeping your coordinates from becoming too big.

149

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Texture State

150

The following command sets the RSP texture state:

Table 12-8 gsSPTexture(int s, int t, int levels, int tile, int on)

Parameter Values

S S-coordinate texture scale (16-bit unsigned fraction)
t t-coordinate texture scale (16-bit unsigned fraction)
levels (maximum number of mip-map levels) - 1

tile which tile in the TMEM

on G_ON or G_OFF

As explained previously, a vertex’s sand tcoordinates are texel-space
coordinates in a S10.5 format. The texture coordinate usually ranges from 0
to (texel_size - 1), possibly larger to implement “wrapped” textures. The
maximum number of times that a texture may be wrapped is limited by the
number of integer bits in this coordinate.

Since the sand tcoordinate texture scale parameters are only fractional
numbers, they cannot represent values >= 1.0. For non-scaled textures,
applications typically use a vertex texture coordinate format of S9.6, and a
scale value of 0.5 (0x8000 in 16-bit unsigned format).

The /evels parameter tells the pipeline the maximum number of mipmap
levels to use, if mip-mapping is enabled.

The tile parameter tells the pipeline which of the 8 possible tiles in the RCP
texture memory to use when texturing the following primitives

The onparameter turns texturing on or off in the RSP. If texturing is turned
off in the RSP, textured primitives will not be generated, regardless of the
RDP state.

Likewise, setting the RSP state is necessary, but not sufficient to generate
textured primitives. The RDP state must also be set in the appropriate
manner, see “TX: Texture Engine” on page 186.

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING

Texturing is sensitive to large numbers and overflows. Refer to the
Note on Coordinate Systems and Big Numbers in the Matrix State
section for notes on how to avoid texturing problems such as textures
shifting across surfaces, textures tearing, and edges between polygons
becoming visible in the texture.

151

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Clipping and Culling

152

3D clipping is automatically enabled all the time. There are two modes
which can be adjusted for performance and appearance: ClipRatio and
NearClipping. See also “Scissoring” on page 184.

3D clipping is expensive and should be avoided. Methods employed by the
host application which can reduce the amount of geometry that gets clipped
are a good idea. Crude visibility determination algorithms, geometric
level-of-detail, and careful scene construction can help improve clipping
performance dramatically.

The clipping algorithm is sensitive to large numbers and overflows. Refer to
the Note on Coordinate Systems and Big Numbers in the Matrix State
section for notes on how to avoid clipping problems.

Clip Ratio
The Clip Ratio feature helps the application to clip less.

Generally (ie when ClipRatio is set to FRUSTRATIO_1) the RSP clips to the
clipping frustrum which is defined by the projection and viewing matrices
(often created using guPerspective and guLookAt respectively). This is the
area which is mapped by the gSPViewport command and usually
corresponds to the entire frame buffer. Objects outside this area are
scissored by the RDP, so clipping them is not neccessary. The ClipRatio
command can set the area which is clipped between 1 and 6 times the size of
the viewing frustrum. Polygons which are completely on the screen are
drawn without clipping. Polygons which are partially onscreen but
completely within the enlarged frustrum are drawn without clipping (the
extra portions are scissored away). Polygons which are entirely offscreen
are trivially rejected (whether they are inside or outsid the frustrum). The
only polygons which are clipped are the large polygons which stretch all the
way from onscreen to outside the enlarged clipping boundary. There is
some overhead for drawing sections of polygons which are then scissored
away, but itis much smaller than the time to draw actual onscreen pixels and
is usually faster than clipping. Different values of ClipRatio can be tried to
obtain the best performance. High values of ClipRatio are suspected to be
associated with “texture shuffle” bugs, so if you see the texture shuffling you
could try lower values of ClipRatio.

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

To set the ClipRatio so that the clipping frustrum is 3x the size of the screen:
gsSPClipRatio(FRUSTRATIO_3),

You can use values of FRUSTRATIO 1, FRUSTRATIO 2, ...,
FRUSTRATIO_6

Near Clipping and gspF3DNoN microcode

3D clipping causes geometry which is outside of a 3D box called the
“clipping Frustrum? to be clipped away (ie not rendered). The left, right, top
and bottom of this clipping frustrum box correspond to the left, right, top,
and bottom of the screen. However the side facing towards the viewer and
the side facing away from the viewer do not correspond to physical parts of
the screen. The “far plane” is the side of the box farthest from the viewer.
Objects which are farther away than this plane are not rendered. Likewise
the “near plane” is the side of the box closest to the viewer. Objects which
are closer to the viewer than this plane are not rendered. The near and far
clipping planes can cause visual problems. Objects which get too far away
will suddenly dissappear as the cross the far clipping plane. Also, objects
which get too close to the viewer will suddenly dissappear as the cross the
near clipping plane.

There is a solution to these problems. The near plane problem can be
partially solved by using the gspF3DNoN microcode (which is an acronym
for Fast 3D No Near clipping). The gspF3DNoN microcode will not clip
objects between the viewer and the near clipping plane (objects which
would have been clipped away by the gspFast3D microcode). However, Z
buffering will not work correctly in this area. Objects between the viewer
and the near plane will hide objects which are behind the near plane, but
objects between the viewer and the near plane will not correcly hide other
objects between the viewer and the near plane. For this reason it is
important for the application to ensure that only one object at a time comes
closer to the viewer than the near plane.

There is a solution to the far plane problem too. Obijects which get farther
away from the viewer than the far plane visually “pop” out of view, and
objects approaching the viewer “pop” into view. The Fog effect can be used
to make objects gradually fade into a distant fog, or slowly appear through
a distant fog, instead of popping into and out of view. See the Vertex Fog
State section for details.

153

NINTENDO 64 PROGRAMMING MANUAL DRAFT

154

Back-Face Polygon Culling

The geometry engine of the RSP implements a flexible polygon culling
algorithm; either the front-facing, the back-facing, neither, or both types of
polygons can be culled before rasterization.

This offers the programmer the most database flexibility. Geometry can be
ordered in any direction or re-used with different culling flags in order to
achieve effects such as interior surfaces, 2-sided polygons, etc..

Table 12-9 gsSPSetGeometryMode(unsigned int n)

Parameter Values

n G_CULL_FRONT
G_CULL_BACK
G_CULL_BOTH

Table 12-10 gsSPClearGeometryMode(unsigned int n)

Parameter Values

n G_CULL_FRONT
G_CULL_BACK
G_CULL_BOTH

Volume Culling

The RCP can perform volume culling. The volume of an object is described
to the RCP and the RCP only draws the object if the described volume is
entirely or partially onscreen. If the volume is entirely offscreen then the
display list is quickly skipped.

The volume of an object is described with a number of vertices surrounding
the object. The vertices may be part of the object or not. They can be 4
vertices describing a pyramidal volume, 8 points describing a cube, or any
other convex shape. These vertices should be sent to the RCP using a
gSPVertex command just like regular vertices (note: you may want to turn
lighting and fog off when these vertices are sent for better performance).
Then the gsSPCullDisplayList command is sent. If the volume is entirely off
the screen then the command acts like gsSPEndDisplayList and the rest of

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING

the display list is skipped. Otherwise the command acts asa NOOP and the
display list processing continues.

155

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Vertex Lighting State

156

The RCP graphics pipeline provides a number of sophisticated real-time
lighting effects, including ambient (uniform) lighting, diffuse (directional)
lights, specular highlights, and automatic texture coordinate generation (fog
is discussed in its own section later). To achieve these effects and perform
the lighting operations, the following steps must be carried out:

1) Reference the gspFast3D microcode in the “spec” file.

2) Replace colors with normal components in the vertices of objects to
be rendered.

3) Define light structures with the parameters of the directional and
ambient lights and send them to the RCP.

4) Modify the state of the RCP to “turn on” lighting.

5) Define a texture map of the shape of the specular highlights to be
used and describe them to the RCP.

6) Define structures with the parameters of specular highlights and
send them to the RCP.

7) Render the objects.

Steps 1), 2), 3), 4), and 7) are required for diffuse and ambient lighting. All
steps are required for specular lighting. These steps are described in further
detail below.

RSP Microcode

Lighting requires the gspFast3D or gspF3DNoN microcode. This microcode
must be referenced in the “spec” file when the rom image is created. The part
of the microcode that performs the lighting calculations is not normally
resident, but is brought in through an overlay when lighting calls are made.
This has performance implications for rendering scenes with some objects
lighted and others colored statically. Moreover, the lighting overlay
overwrites the clipping microcode, so to achieve highest performance, it is
best to minimize or avoid completely clipped objects in lighted scenes.

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

Normal Vector Normalization

To light an object, the vertices which make up the object must have normals
instead of colors specified. The normal consists of 3 signed 8-bit numbers
representing the x, y, and z components of the normal. Each component
ranges in value from -128 to +127. The x component goes in the position of
the red color of the vertex, the y into the green, and the z into the blue. Alpha
remains unchanged. The normal vector must be normalized. This means
that square_root(x*x + y*y + z*z)== 127. To normalize the normal (x,y,z)
determine d=127/square_root(x*x + y*y + z*z). Then form XN=x*d;
YN=y*d; ZN=z*d. The normalized normal vector is (XN,YN,ZN). (Note the
libultra/gu square_root function is sqrtf().)

Ambient and Directional Lighting

Lighting helps achieve the effect of depth by altering the way objects appear
as they change their orientation. The RSP microcode supports up to 7
directional lights and 1 ambient light in a scene. Each directional light has a
direction and a color. Ambient lights have color only. Regardless of the
orientation of the object and the viewer, each directional light will continue
to shine in the same direction (relative to the “world”) until the light
direction is changed. In addition, one ambient light provides uniform
illumination. Shadows are not explicitly supported.

Important note on Matrix Manipulation

It is important, when lighting, that the projection matrix and the viewing
matrix (ie matrices which describe the view into the world coordinate
system) be placed on the projection matrix stack(G_MTX_PROJECTION),
while matrices used to describe the position and orientation of objects within
the world coordinate system are placed on the modeling matrix stack
(G_MTX_MODELVIEW).

Light Structure Definition

Lighting information is passed to the RSP in light structures. Since the
number of diffuse lights can vary from 0 to 7, there are 8 macros used to
define lights: gdSPDefLights0, gdSPDefLightsl, gdSPDefLights2, ...,
gdSPDefLights7. The number which is the last character in the macro

157

NINTENDO 64 PROGRAMMING MANUAL DRAFT

signifies the number of diffuse lights in the scene. Correspondingly, the
number of diffuse lights to be rendered determines which macro to use in
defining the light structure. There is always one ambient light.

To define a light structure use gdSPDefLights# where # is the number of
diffuse lights to be turned on. For example, for 3 lights:

Li ghts3 light_structurel = gdSPDef Li ght s3(

anbi ent _red, anbi ent_green, anbient_bl ue,

lightilred, |ightlgreen, |ight1lblue,
lightix, lightly, lightlz,

Iight2red, |ight2green, |ight2blue,
l'ight2x, light2y, light2z,

I'ight3red, |ight3green, |ight3blue,
l'ight3x, light3y, |ight3z);

will define a structure called light_structurel with an ambient light and 3
directional lights. The variables with red, green, blue suffixes represent the
color of the light and take on values ranging from 0 to 255. The variables
with the x, y, z suffixes represent the direction of the light and take on the
range from -128 to +127. The light direction does not need to be normalized.
The convention is that the light direction points toward the light. This means
the light direction indicates the direction TO the lightand NOT the direction
that the light is shining. Note the direction the light is shining is the negative
of the light direction. For example if the light is coming from the upper left
of the world, the direction might be x=-80, y=80, z=0. If this diffuse light is
green, and the ambient light is red, this structure would be defined by:

Li ghts1 my_light = gdSPDef Li ght s1(

/* anbient color red */

255, 0, O,
/* green light fromthe upper left */
0, 255, 0, -80, 80, 0);

To avoid any ambient light, make the ambient light black (0,0,0). To include
only ambient light, and no diffuse directional light, use gdSPDefLights0:

Li ght sO nmy_anbi ent _only_light = gdSPDef Li ght sO(

[* blue anmbient Iight */
0, 0, 255);

158

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

Note on Light Direction

The light direction does not need to be normalized. However, there are
some problems that can arise from using light directions with magnitudes
that are too large or too small. The Light direction is multiplied times the
Modelview Matrix (actually the transpose of the model matrix). If the
Modelview matrix has a scale associated with it then the light direction
might overflow or underflow. If the Modelview matrix has a scale S
associated with it and the magnitude of the light direction is L then you
should ensure that

1 < L*S < 23040

in order to keep the light working consistantly. If L*S is too big then the
normalization of the lights will overflow and you will get lights that are too
bright. If L*S is too small then the nortmalization will underflow and you
will get lights that are too dim. Note the number 23040 comes from the
formula: (L/128)*S < sqrt(32768) because the result of the matrix multiply of
L (which is as.7 number, thus the /128) times the matrix (thus S, the scale of
the matrix, which is an s15.16 matrix) must produce a number which can be
squared (thus the square root) to produce a number which is s.15 (up to
32768).

Lighting State Set Up

To activate a set of lights in a display list use the macros: gsSPSetLights0,
gsSPSetLightsl, gsSPSetLights2, ..., gsSPSetLights7. For example, the
following macros would activate the lights defined in the examples above

gsSPSet Li ght s3(1i ght _structurel), or
gsSPSet Li ghts1(my_light), or
gsSPSet Li ght sO(my_anbi ent _only_light),

in a static display list. (To activate the lights in a display list dynamically the
corresponding gSPSetLights# macros would be used.) Once lights are
activated, they will remain on until the next set of lights is activated. This
implies that setting up a new structure of lights overwrites the old structure
of lights in the RSP.

159

NINTENDO 64 PROGRAMMING MANUAL DRAFT

160

To turn on the lighting computation so that the lights can take effect, the
lighting mode bit needs to be turned on. This is accomplished using the
macro:

gsSPSet Geonet r yMode(G_LI GHTI NG

Object Rendering

Objects are rendered by issuing geometric primitive commands (see
Primitives section). The objects drawn will use lighted colors instead of
vertex colors. This means any color combiner mode will use lighted colors in
the combination operation in a manner exactly analogous to vertex color use
in non-lighted rendering. Note that lighting is performed at Vertex
processing time. Therefore it is important that lighting state be established
prior to gSPVertex and gsSPVertex commands describing vertices in a lit
primitive. Lighting state established between a gSPVertex command and a
gSP1Triangle command will have no effect on that triangle.

NOTE ON MATERIAL PROPERTIES

Material properties are not explicitly supported. Instead material colors and
light colors have been combined in the Light structure. To obtain the correct
light color in a particular situation, multiply the the color of the material
times the color of the light foreach light source and use the result as the lights
color. Since colors range from 0 to 255, the result will have to be normalized
by dividing by 255 in order to obtain a resulting light color in the 0 to 255
range. In other words, if your material color is (mr, mg, mb) and your light
is (Ir,1g,Ib), then the light color you would use would be (mr*lr/255,
mg*lg/255, mb*Ib/255). For example to light a purple object
(color=255,0,255) with yellow ambient light (color=255,255,0) and cyan
directional light (color=0,255,255) you could use:

Lightsl material 1_|ight = gdSPDefLi ght s1(
/* anbient color red = purple * yellow */

255, 0, O,
/* blue directional light = purple * cyan */
0, 0, 255, -80, -80, 0);

If you then want to change the material color (eg to light an object of
different color) you can define a 2nd Light structure with different light
colors but the same directions and send it to the RCP after the first object’s

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

vertices and before the second objects vertices. For example to light a second
object which is yellow (color=255,255,0) with the same yellow and cyan light
as above you could use:

Lightsl material 2_|ight = gdSPDef Li ght s1(
/* anbi ent color yellow = yellow * yellow */

255, 255, 0,
/* green directional light = yellow * cyan */
0, 255, 0, -80, -80, 0),

PERFORMANCE NOTE: the gsSPSetLights# macros incur a certain
overhead when they are called in order to recalculate the new position of the
light. If the colors of the lights are being altered but the directions will
remain the same you can use the gSPLight macro to send the new light
structure after the 1st primitives vertex command and before the second
primitive’s. Note that the directional lights are always referred to as lights
1-N (where N is the number of directional lights in the scene) and the
ambient light is always referred to as light N+1. For the example above, the
entire sequence would look like:

gsSPSet Geonet r yMode(G_LI GHTI NG ,

gsSPSet Li ght s3(material 1_|ight),

gsSPVertex(/* define vertices for object 1 */);
/* render object 1 here */

gsSPLi ght (&raterial 2_light.I[0], LIGHT_1),

gsSPLi ght (&raterial 2_light.a, LIGHT_2),
gsSPVertex(/* define vertices for object 2 */);
/* render object 2 here */

Specular Highlights

A specular highlight is the bright spot that shiny objects exhibit when the
viewing direction lines up properly with a highly directional light source.It
is caused by the light from the light source being directly reflected into the
eye of the observer. A specular highlight appears on a shiny object wherever
the normal of the object bisects the angle between the direction of the light
and the direction of the eye. The gspFast3D microcode can support zero,
one, or two specular highlights on an object. If there are more than 2 lights
in a scene, a quite impressive specular highlight effect can still be achieved
by choosing the two most important lights and rendering the highlights
from them. Specular highlights use texture mapping so specular highlights

161

NINTENDO 64 PROGRAMMING MANUAL DRAFT

162

cannot usually be used with texture mapped surfaces. Specular highlighting
when combined with diffuse lighting (described above) can produce very
realistic looking surfaces. While specular highlighting is not required to be
on when diffuse lighting is on, diffuse lighting must be on when specular
lighting is on. However, the specular highlights do not neccessarily have to
correspond to the diffuse lights at all.

A specular highlight is basically a reflection of a light source. To render it on
the RCP requires a texture map of an image of the light. The specular
highlight from most lights can be represented by a round dot with an
exponential or gaussian function representing the intensity distribution. If
the scene contains highlights from other, oddly shaped lights such as
fluorescent tubes or glowing swords, the difficulty in rendering is no greater
provided a texture map of the highlight can be obtained. The center of the
image of the light should be in the center of the texture map and the texture
map must be a power of 2 in width and height. In general shinier objects
reflect smaller, sharper highlights. A dull object might have a large white
dot for a specular highlight whether it is lit by a glowing sphere or a flaming
sword. A shiny metallic object would reflect the sword as a picture of the
sword and the texture map used for highlighting different types of objects
can portray this difference. Note that many objects, such as human skin and
cloth, which reflect specular highlights to some extent, often can benefit
more from a regular texture map (eg hair on the body or a pattern on the
cloth. Since these materials are not shiny the texture mapping ability may be
better spent on a conventional textutre map.

Specular Highlight Structure Definition

Specular lighting information is passed to the RSP in structures, analogous
to the diffuse light case. The utility procedure guLookAtHilite fills in the
elements of 2 structures, Hilite and LookAt, for use in highlighting. To
accomplish this, the two structures must be part of the dynamic segment,
declared as

Hlite hilite;
LookAt | ookat;

and guLookAtHilite must be called for each object in the following manner:

guLookAtHilite(& hrow away_matri x, & ookat, &hilite,
Eyex, Eyey, Eyez,

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

oj ect x, oj ecty, Ohjectz,

Upx, Upy, Upz,
I'i ght 1x, lightly, lightlz,
I'i ght 2x, I'ight2y, light2z,

tex_width, tex_height);

where the arguments in common with guLookAt have the same meaning.
Objectx, Objecty, and Objectz are the world coordinates of the center of the
object. lightlx, lightly, and lightlz are the direction of the light which is
reflected in the 1st highlight (should be the same as the direction specified in
the gdSPDefLights# macro). light2x, light2y, and light2z are the direction of
the light which causes the second highlight (if you are only using one
highlight these may be zero). tex_width and tex_height are the size of the
texture to be used for the highlight and must be powers of 2.

The information in the LookAt structure is sent to the RSP with the LookAt
macro:

gsSPLookAt (& ookat),

Texture Loading

The texture for the highlights must be loaded with gsDPLoadTextureBlock
or similar loadblock command. For example, the following call loads a
tex_width by tex_height 4-bit intensity texture:

gsDPLoadText ur eBl ock_4b(hilight_texture, G IMFM_I,
tex_width, tex_height, O,
G TX_WRAP | G_TX_NOM RROR,
G TX_WRAP | G_TX_NOM RROR,
t ex_wi dt h_power 2,
t ex_hei ght _power 2,
G TX_NOLOD, G TX NOLOD),

where tex_width_power2, tex_height_power2 are the logarithms to the base
2 of the texture width and height. Note that wrapping must be turned on,
and the texture sizes must be a power of 2 for proper operation. The texture
loadblock macro sets a texture tile with the parameters necessary for
rendering one texture, and thereby one of the specular highlights. Setting a
second texture tile with the parameters for rendering a second specular
highlight can be done by loading another texture, but generally the same
texture can be used for both highlights. Instead, setting up a second tile if the

163

NINTENDO 64 PROGRAMMING MANUAL DRAFT

164

specular highlights are sharing one texture map can be accomplished with a
set tile call. The example following assumes the same 4 bit intensity texture
as used for the first highlight:

gsDPSet Til e(G_IMFMI_I, G IMSIZ 4b,
((tex_wi dth/2)+7)>>3,
0, G_TX RENDERTI LE+1, O,
G TX_ WRAP | G_TX_NOM RROR,
tex_wi dth_power2, G TX NOLCD,
G TX_WRAP | G_TX_NOM RROR,
t ex_hei ght _power2, G _TX_NOLOD),

Texture Coordinate Transformations

Specular highlighting utilizes the projection of the vertex normals in the x
and y directions in screen space to derive the s and t indices respectively for
referencing the texture. The normals must be normalized as described
above. The normal projections are scaled to obtain the actual s and t values
for the reference. The scaling is applied in the RSP. It maps the negative most
projection of a unit normal, or -1, into zero. It maps the positive most
projection, or +1, into a scale value passed in through the gsSPTexture
command. Suppose the maximum texture s, t coordinates are tex_s_max and
tex_t_max. The following command sets the scale, so that a normal project
of +1 in the x direction in screen space will be mapped with the texel with s
coordinate tex_s_max:

gsSPTexture((tex_s_max) <<6, (tex_t_nax)<<6, O,
G _TX_RENDERTI LE, G ON),

The left shift of argument by 6 bits is done to account for the S10.5 16-bit
internal representation of the texture coordinates (see Texture State below)
and a multiplication by one-half in the microcode.

Highlight Position Description

After the texture is loaded, the highlight position information must be sent
to the RSP. This information is contained in the Hilite structure, and is sent
to the RSP with the following macros:

gsDPSet Hi | i t elTi | e(G_TX_RENDERTI LE, &hilite,
tex_width, tex_height),
gsDPSet Hi | i t e2Ti | e(G_TX_RENDERTI LE+1, &hilite,

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

tex_width, tex_height),

where both highlights share the same texture.

Lighting State Set Up

Specular highlighting requires the lighting and texture generation mode bits
to be turned on using the macro:

gsSPSet Geonet r yMode(G_LI GHTI NG | G TEXTURE_CEN),

Object Rendering

As with diffuse lighting, objects are rendered by issuing geometric primitive
commands (see Primitives section). For two specular highlights, the 2 cycle
mode can be used, with a cycle devoted to each highlight. In addition, since
each highlight can have a different color, two registers are needed to hold
the colors for combining. The Primitive Color register holds the first
highlight’s color and the Environment register holds the second highlight’s
color. As an example, the following calls:

gsDPSet Cycl eType(G_CYC 2CYCLE),

gsDPSet EnvCol or (0, 255, 255, 255), /* cyan */
gsDPSet Pri nCol or (0, 0, 255, 255, 0, 255), [* yellow */
gsDPSet Render Mode(G_RM PASS, G RM AA ZB OPA SURF2),
gsDPSet Conbi neMode(G_CC_HI LI TERGBA, G _CC _Hi LI TERGBA2),

set up rendering of a cyan and an yellow highlight in opaque z-buffered
antialiased mode. Note that for most materials the highlight color is the same
as the light’s color, in contrast to the diffuse light case where the resultant
color is often affected by the color of the object it is striking (although
metallic objects like gold and brass usually have material-colored
highlights).

Reflection Mapping
Reflection mapping maps a texture onto an object using the normals of the
object to specify where on the object the texture will be mapped. If this

texture is an image of the surroundings of the object, then this rendering will
make the object appear to reflect its surroundings. This effect simulates the

165

NINTENDO 64 PROGRAMMING MANUAL DRAFT

166

rendering of objects made of chrome or having a highly reflecting,
mirror-like surface.

Structure Definition

As with diffuse and specular lighting, information for reflection mapping is
passed to the RSP in a structure. The utility procedure guLookAtReflect fills
in the elements of a LookAt structure for use in reflection mapping. To
accomplish this, the structure must be part of the dynamic segment,
declared as

LookAt lookat;

and guLookAtReflect must be called for each object in the following manner:

guLookAt Ref | ect (& hrow_away_matri x, & ookat,

Eyex, Eyey, Eyez,
oj ect x, oj ecty, Objectz,
Upx, Upy, Upz)

where the arguments in common with guLookAt have the same meaning.
Objectx, Objecty, and Objectz are the world coordinates of the center of the
object.

The LookAt structure contains information about the orientation of the
object relative to the viewing direction. This information is sent to the RSP
with the LookAt macro:

gsSPLookAt (& ookat)

Texture Loading

The texture for reflection mapping must be loaded with a loadblock
command such as gsDPLoadTextureBlock, described in the example above.
As in the specular highlighting case, wrapping must be turned on, and the
texture sizes must be a power of 2 for proper operation.

Texture Coordinate Transformations

Reflection mapping utilizes the projection of the vertex normals in the x and
y directions in screen space to derive the s and t indices respectively for

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

referencing the texture. The normals must be normalized as described
above. The normal projections are scaled to obtain the actual s and t values
for the reference. The scaling is applied in the RSP. It maps the negative most
projection of a unit normal, or -1, into zero. It maps the positive most
projection, or +1, into a scale value passed in through the gsSPTexture
command. Suppose the maximum texture s, t coordinates are tex_s_max and
tex_t_max. The following command sets the scale, so that a normal project
of +1 in the x direction in screen space will be mapped with the texel with s
coordinate tex_s_max:

gsSPTexture((tex_s_max) <<6, (tex_t_nax)<<6, O,
G_TX_RENDERTI LE, G ON),

The left shift of argument by 5 bits is done to account for the S10.5 16-bit
internal representation of the texture coordinates (see Texture State below)
after a multiplication by one-half in the microcode.

The texture coordinate transformation depends on the geometry mode of
the RSP. Two modes are supported, regular and linear.

The first mode (regular) derives the texture coordinates from the x and y
projection values, multiplied by the above mentioned scale. In this mode
the S coordinate represents the x componant in world coordinates of the
direction from the object to the point which should be reflected. The T
coordinate represents the Y componant. This means that your texture map
should represent the following mapping: 1) The center of the texture map is
what is directly behing you. 2) The circle inscribed in the texture map
boundaries is what is directly in front of you. 3) The circle with a radius of
0.707 times the radius of the circle in 2) is the objects directly to your left,
right, up, down, etc. 4) other points map respectively.

The second mode (linear) derives the texture coordinates from the inverse
cosine of the x and y projection values, multiplied by the scale. In this mode
the S coordinate is the angle of the direction of the reflected vector in the XZ
plane. The T coordinate is the angle of the direction in the YZ plane. This
mode is useful because you can use a panoramic picture of the horizon for
your texture map. The center og the texture map should be the horizon
directly behind you. The extremes of the texture map to the left and right
should be the horizon in the direction which is directly in front of you. The
top of the panoramic texture map should be a constant sky color, and the
bottom a constant ground color. When the yaw of the viewing angle

167

NINTENDO 64 PROGRAMMING MANUAL DRAFT

168

changes it is a simple matter to adjust the S position of the texture map so
that the new “directly behind” position is the new center of the texture map.

Reflection mapping requires the lighting and texture generation mode bits
to be turned on. The first mode (regular) is set using the macro

gsSPSet Geonet r yMode(G_LI GHTI NG | G TEXTURE_GEN) ,
while the second mode (linear) is set with

gsSPSet Geonet r yMode(G_LI GHTI N§ G TEXTURE_GEN
G _TEXTURE_GEN_LI NEAR) ,

Compatibility with Specular Highlighting

Reflection mapping uses texture mapping so it cannot be used with objects
which are otherwise texture mapped. However, reflection mapping can be
used in conjunction with one specular highlight. This is analogous to
rendering two specular highlights, and utilizes the 2 cycle mode. The
specular highlight texture is set for a second tile and accessed in the second
cycle. Alternatively, specular highlights can be combined with reflection
mapping by incorporating the specular highlights (as bright dots) into the
reflection map texture wherever the lights are located. This technique
permits an unlimited number of specular highlights.

Environment Mapping

Reflection mapping provides a simple means for carrying out environment
mapping. The texture map needs to be an image of the environment as seen
from the “viewpoint” of the reflecting object. The main difficulty with this
procedure is, of course, generating a suitably realistic texture map.

One simple, yet effective, way to generate an environment map is to first
render the scene as viewed by the object. Render all the objects in the scene
using a viewing matrix obtained from a guLookAt call where the Eyex,
Eyey,Eyez is at the center of the object and Atx, Aty, Atz is at the eyepoint.
Render this scene into a 16 bit, 32 pixel x 32 pixel framebuffer which is not
part of the main framebuffer. Then re-render the entire scene into the main
framebuffer using the previously rendered 32x32 pixel texture map as an
environment map for the reflective object. Larger texture maps can be used
by playing with tiling. This is not a mathematically perfect way to generate

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING

an environment map. but it is relatively cheep, and very effective. Try using
different aperature angles in the perspective call while rendering the texture
map and turning G_TEXTURE_GEN_LINEAR on or off to tweak the effect.

169

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Vertex Fog State

170

Fog alters the color of objects based on their distance from the eye position.
Fog can be used to make objects blend into the background color as they get
farther away. One problem which can be fixed by fog is that when an object
goes beyond the far clipping boundary and is clipped away it suddenly
dissapears. If fog is enabled the object can be made to look more and more
like the background color until, when the object reaches the far clipping
plane, the object is exactly the same color as the background and no one
notices when it dissappears.

The use of fog requires that the following steps be taken:
1) run in two cycle mode.
2) Set the render mode to blend the fog color with the primitive color.
3) Set the fog position.
4) Enable fog.
5) Set the Fog Color.

For example:

/* 2 cycle node */

gsDPSet Cycl eType(G _CYC 2CYCLE),

/* blend fog in AA ZB node */

gsDPSet Render Mode(G_RM FOG_SHADE A, G RM AA_ZB OPA_SURF2),
/* set fog position and enable fog */

gsSPFogPosi ti on(FOG_ M N, FOG_MAX)

gsSPSet Geonet r yMode(G_FOG) ,

/* set the fog color */

gsDPSet FogCol or (RED, GREEN, BLUE, ALPHA),

FOG_MIN specifies the position where fog begins and FOG_MAX
represents where fog is thickest. Both values are integers and are mapped
linearly such that 0={at the near clipping plane}, and 1000={at the far
clipping plane}. FOG_MAX is generally set to 1000 so that objects are
completely “fogged out” when they hit the far plane, but not before then.
FOG_MIN is set to the position where fog starts. A value of 0 will make the
object slowly change to fog color as it retreats from the viewer, while a larger

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

value (eg 800) will make the object clearly visible until it gets 80% of the way
to the far plane where it will finally begin to “fog out.” Note that
perspective makes distant objects look *much* farther away than nearby
objects. Because of this some objects which don’t appear to be very far away
may be more affected by fog than expected even though the FOG_MIN
value is fairly high. To remedy this problem simply increase the FOG_MIN
value until you get the desired effect. For example if you set FOG_MIN to
500, but objects which are about midway between the far and near planes
look foggier than they should, just increase the value of FOG_MIN until they
look better.

Fog works well when the horizon is a constant color (the same as the fog
color). When the horizon color is complicated (eg clouds, gradient colors,
etc), you can make objects become transparent when they are distant. To do
thisdon’tsetthe G_RM_FOG_SHADE_A render mode or the Fog color. Just
enable fog, use a transparent render mode, and swap FOG_MAX and
FOG_MIN. FOG_MIN should be set to 1000 to make the object completely
transparent when it is at the far clipping plane. FOG_MAX should be a large
enough value that fog has no effect until the object is farther away than any
other objects are likely to be (ie beyond mountains and other terrain, etc.).
Because transparency is used, the z-buffer will not keep things behind the
transparent-fogged object from being hidden, so it should only be enabled
for objects which are already fairly far from the viewer. This special
transparent-fog mode should be used with caution (as compared with the
regular fog effect described in the preceding paragraphs which should work
consistantly).

Fog is independant of lighting and texture mapping so it may be used in
conjunction with any, all, or none of these other effects.

171

NINTENDO 64 PROGRAMMING MANUAL DRAFT

Primitives

172

Availability of different geometry primitives depends on the version of the
RSP microcode which has been loaded for execution.

Triangles

Table 12-11 gsSP1Triangle(int v0, int v1, int v2, int flag)

Parameter Values

v0 vertex buffer index of the first coordinate. (0-15)

vl vertex buffer index of the second coordinate. (0-15)

V2 vertex buffer index of the third coordinate. (0-15)

flag used for flat shading; ordinal id of the vertex parameter to use for

shading: 0, 1, or 2

Other bits of the flag field are currently reserved.
Lines

Table 12-12 gsSPLine3D(int v0, int v1, int flag)

Parameter Values

vO0 vertex buffer index of the first coordinate. (0-15)
vl vertex buffer index of the second coordinate. (0-15)
flag unused (should be 0)

Lines are only available when running the line microcode. All the normal
vertex attributes (color, texture, z) are also available for lines. Lines however
require separate rdp rendermodes to be set than for polygons. Consult the
man pages for more details. Z-buffered lines will only do reads of the
z-buffer, and not writes. Thus z-buffered lines should be drawn after
z-buffered polygons.

Rectangles

All rectangles are 2D primitives, specified in screen-coordinates. They are
not clipped, but they are scissored in a limited fashion. In 1ICYCLE and

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

2CYCLE mode, rectangles are scissored in the same way as triangles. In
COPY and FILL modes, rectangles are scissored to four pixel boundaries;
meaning that additional scissoring may be necessary in the application
program.

Filled rectangles are implemented entirely in the RDP, as “pass-through”
commands with respect to the RSP. They are mentioned here for
completeness:

Table 12-13 gsDPFillRectangle(unsigned int ulx, unsigned int uly, unsigned int Irx,
unsigned int Iry)

Parameter Values

ulx screen coordinate of upper-left x (10.2 format)
uly screen coordinate of upper-left y (10.2 format)
Irx screen coordinate of lower-right x (10.2 format)
Iry screen coordinate of lower-right y (10.2 format)

Textured rectangles require minimal RSP intervention, and are thus an SP
operation:

Table 12-14 gsSPTextureRectangle(unsigned int ulx, unsigned int uly, unsigned int
Irx, unsigned int Iry, int tile, short int s, short int t, short int dsdx, short

int dtdy)
Parameter Values
ulx screen coordinate of upper-left x (10.2 format)
uly screen coordinate of upper-left y (10.2 format)
Irx screen coordinate of lower-right x (10.2 format)
Iry screen coordinate of lower-right y (10.2 format)
tile which tile in TMEM to use
S s coordinate of upper-left corner (S10.5 format)
t t coordinate of upper-left corner (510.5 format)
dsdx change in s per change in x coordinate (S5.10 format)
dtdy change in t per change in y coordinate (S5.10 format)

There is a related macro, gsSPTextureRectangleFlip(), that is identical to
gsSPTextureRectangle(), except that the texture is flipped so that the s

173

NINTENDO 64 PROGRAMMING MANUAL DRAFT

coordinate changes in the y direction, and the t coordinate changes in the x
direction:

Table 12-15 gsSPTextureRectangleFlip(unsigned int ulx, unsigned int uly, unsigned
int Irx, unsigned int Iry, int tile, short int s, short int t, short int dtdx,
short int dsdy)

Parameter Values

ulx screen coordinate of upper-left x (10.2 format)

uly screen coordinate of upper-left y (10.2 format)

Irx screen coordinate of lower-right x (10.2 format)

Iry screen coordinate of lower-right y (10.2 format)

tile which tile in TMEM to use

S s coordinate of upper-left corner (510.5 format)

t t coordinate of upper-left corner (S10.5 format)

dtdx change in t per change in x coordinate (S5.10 format)
dsdy change in s per change in y coordinate (S5.10 format)

174

NINTENDO

DRAFT RSP GRAPHICS PROGRAMMING

Controlling the RDP State

The RSP performs two functions to support programming the RDP:
segmented address fix-up and handling setothermode.

Segmented address fix-up. Since the RDP is a physical address machine, the
RSP must translate the segmented addresses present in the display list into
physical addresses for the RDP. It does so by filtering out any RDP
command with an address (the ‘set image’ commands) and patching the
address before passing it to the RDP.

The RDP setothermode register is a collection of state bits, affecting many
different functions of the RDP. In order to simplify programming the RDP
state, the RSP caches the SETOTHERMODE command, and presents a
simpler “set/clear” interface through the display list. See Chapter 13, “RDP
Programming” for more details of these macros.

175

NINTENDO 64 PROGRAMMING MANUAL DRAFT

176

NINTENDO

DRAFT RDP PROGRAMMING

Chapter 13

RDP Programming

The Reality Display Processor (RDP) rasterizes triangles and rectangles, and
produces high-quality, Silicon Graphics style pixels that are textured,
antialiased, and z-buffered.

The RDP has four main configurations where all the individual blocks work
together to generate pixels. These main configurations are called “cycle
types,” because they indicate how many pixels are generated per cycle. The
following table indicates their peak performance. Keep in mind that these
peak numbers are typically realized on large rectangle primitives. Triangles
have variable short and long spans and these numbers degrade rapidly. The
following table lists the RDP’s performance.

Table 13-1Cycle Types

Type Performance

FILL 4 16 bit pixels/cycle
2 32 bit pixels/cycle

COPY 4 pixels/cycle

1CYCLE 1 pixel/cycle

2CYCLE 1 pixel/2 cycles

Note: These are theoritical peak performances. In reality, due the memory
latency and buffering overhead, actual perfor