
Contents

List of Figures xvii

List of Tables xxi

PART I Getting Started

1. Hardware and Software Installation Notes 27
Hardware Installation 28
Software Installation 30

READMEs and Release Notes 30
Other Sources 30
Executables 31

2. Troubleshooting Software Bringup 33
Operating System 33
Graphics 34
Audio 36
Integration 37
Debugging CPU Faults 37
i

Contents
PART II Ultra 64 System Overview

3. Hardware Architecture 41
Execution Overview 42
RCP: Reality CoProcessor 43
RSP: Reality Signal Processor 44
RDP: Reality Display Processor 45
R4300 CPU 46
Memory Issues 47
Clock Speeds and Bus Bandwidth 48
Development Hardware 48

4. Runtime Software Architecture 51
Resource Access and Management 52
CPU Access 54

Message Passing Priority Scheduled Threads 54
CPU Data Cache 54
No Default Memory Management 55
Timers 55
Variable TLB Page Sizes 55
MIPS Coprocesser 0 Access 56
PI Manager 56
VI Manager 57

Memory Management 58
No Default Dynamic Memory Allocation 58
Region Library 58
Memory Buffer Placement 58
Memory Alignment 58

RCP Access and Management 60
Graphics Interface 61

Graphics Binary Interface 61
GBI Geometry and Attribute Hierarchy 61
GBI Feature Set 62
RSP Geometry Microcode 63
ii

Contents
Audio Interface 64
RCP Task Management 65

The “Simple” Example 65
GameShop Debugger 67

WorkShop Debugger Heritage 67
Debugger Components 67

5. Compile Time Overview 69
Database Modeling 70

NinGen 70
Alias 71
Other Modeling Tools 71
Custom Modeling Tools 71

Model to Render Space Database Conversion 72
Existing Convertors 72
Custom Convertors 72
Conversion Considerations 72

Gamma Correction 74
Music Composition 75
Wavetable Construction 76
Building ROM Images 77

C Compiler Suite 77
ROM Image Packer 77
Headers and Libraries 78

Host Side Functionality 79
iii

Contents
PART III Ultra 64 Operating System

6. Operating System Overview 83
Overview 83
Threads 84
Messages 84
Events 85
Memory Management 85
Input and Output 86
Timers 87
Controller Pack File System 87
Debugging Support 87
Boot Procedure 87

7. Operating System Functionality 89
Overview 89
System Threads, Application Threads, and the Idle Thread 90
Thread Data Structure 90
Thread State 90
Scheduling and Preemption 91
Thread Functions 92
Exceptions and Interrupts 93
Events 94
Event and Interrupt Functions 96
Non-Maskable Interrupts and PRENMI 96
Internal OS Functions 98
iv

Contents
8. Input/Output Functionality 101
Overview 101
Design Approach 103
Synchronous I/O vs. Asynchronous I/O 104
Mutual Exclusion 105
I/O Components 105
System Exception Handler 106
Device Manager 106
Device-Dependent System Interface 108

9. Basic Memory Management 113
Introduction 113
Hardware Overview 113
CPU Addressing 114
Mixing CPU and SP Addresses 116
Flushing the CPU Data Cache 118
Clearing uninitialized data (Bss) section 119
Physical Memory Allocation 119

10. Advanced Memory Management 121
Introduction 121
Mixing CPU and SP Data 121
Using Overlays 122
Using Multiple Waves 124
Using the Region Allocation Routines 125
Managing the Translation Lookaside Buffer 126
v

Contents
PART IV Ultra 64 Graphics

11. Graphics Microcode 131
Microcode Functionality 132

gspFast3D 132
gspF3DNoN 132
gspLine3D 132
gspTurbo3D 132
gspSprite2D 133
gspSuper3D 133

RSP to RDP command passing 134

12. RSP Graphics Programming 135
RSP Overview 137

Display List Format 137
Segmented Memory and the RSP Memory Map 138
Interaction Between the RSP and R4300 Memory Caching 139

Display List Processing 141
Connecting Display Lists 141
Branching Display Lists 142
Ending Display Lists 142
A Few Words about Optimal Display Lists 142

Matrix State 144
Insert a Matrix 145
Pop a Matrix 145
Perspective Normalization 145
Note on Coordinate Systems and Big Numbers 146
A Few Words About Matrix Precision 147

Vertex State 149
Texture State 150
Clipping and Culling 152
vi

Contents
Vertex Lighting State 156
RSP Microcode 156
Normal Vector Normalization 157
Ambient and Directional Lighting 157
Specular Highlights 161
Reflection Mapping 165

Vertex Fog State 169
Primitives 171
Controlling the RDP State 174

13. RDP Programming 175
RDP Pipeline Blocks 176
One-Cycle-per-Pixel Mode 177
Two-Cycles-per-Pixel Mode 178
Fill Mode 180
Copy Mode 180

RDP Global State 181
Cycle Type 181
Synchronization 181
Span Buffer Coherency 182

RS: Rasterizer 184
Scissoring 184

TX: Texture Engine 186
Texture Tiles 186
Multiple Tile Textures 187
Texture Image Types and Format 188
Texture Loading 188
Color-Indexed Textures 190
Texture-Sampling Modes 191
Synchronization 192

TF: Texture Filter 193
Filter Types 193
Color Space Conversion 194
vii

Contents
CC: Color Combiner 195
Color and Alpha Combiner Inputs Sources 195
CC Internal Color Registers 197
One-Cycle Mode 198
Two-Cycle Mode 200
Custom Modes 200
Chroma Key 201

BL: Blender 203
Surface Types 203
Antialiasing Modes 204
BL Internal Color Registers 205
Alpha Compare 205
Using Fog 206
Depth Source 208

MI: Memory Interface 210
Image Location and Format 210
Fill Color 211
Dithering 211

14. Texture Mapping 213
Graphics Binary Interface for Texture 216

Primitive Commands 216
Tile Related Commands 216
Load Commands 216
Sync Commands 216
Mode Commands 216

Example Display List 218
Texture Image Space 219
viii

Contents
Tile Attributes 221
Format 221
Size 221
Line 222
Tmem Address 222
Palette 222
Mirror Enable S,T 222
Mask S,T 223
Shift S,T 223
SL,TL 224
SH,TH 224
Clamp S,T 224

Tile Descriptor Loading 225
Texture Pipeline 226
Tile Selection 228

Functionality 228
 LOD Disabled 228
LOD Enabled 229
MIP Mapping 232
Magnification 233

Texture Memory 239
Memory Organization 239
Texel Formatting 247

Texture Loading 248
Examples 255
Restrictions 259

Texture Types and Modes 259
Alignment 259
Tiles 260
Coordinate Range 260

Applications 261
Multiple Tile Effects 261

Appendix A: LoadBlock Line Limits 264
ix

Contents
15. Texture Rectangles (Hardware Sprites) 269
Sampling Overview 271
Simple Texture Effects 279
Texture Types 288
Multi-Tile Effects 292
 Tiling Large Images 297
Color Index Frame Buffer 298
Z-Buffering Texture Rectangles 299

16. Antialiasing and Blending 301
Antialiasing 302
Coverage Unit 306
Z Stepper 308
Blender 310

Color Blend Hardware 310
Fog 313
Coverage Calculation 314
Alpha Compare Calculation 315
Blender ADD Mode 317
Color Image Format 318
Image Alignment Requirements 320
Z Calculation 320
Z Image Format 322
Z Accuracy 325

Video Filter 326
x

Contents
Blender Modes and Assumptions 327
Opaque Surface Antialiased Z-Buffer Algorithm, OPA_SURF 327
Transparent Surfaces, XLU_SURF 329
Transparent Lines, XLU_LINE 331
Texture Edge Mode, TEX_EDGE 332
Decal Surfaces, OPA_DECAL, XLU_DECAL 333
Decal Lines, DEC_LINE 334
Interpenetration, OPA_INTER, XLU_INTER 335
Particle System Mode, PCL_SURF 336
Blender Modes Truth Table 337
Creating New Blender Modes 345
Visualizing Coverage 346

17. Sprites 349
Application Program Interface (API) 351

Making Sprites 351
Manipulating Sprites 351
Drawing Sprites 353

Data Structures and Attributes 354
Bitmap Structure 354
Sprite Structure 354
Attributes 355

Tricks and Techniques 358
Sparse Sprites 358
Early-Ending Sprites 358
Variable Size Bitmaps 358
Explosions 358
Bitmap Re-use 358
Sprite Re-use 359

Examples 360
Backgrounds 360
Text (Fonts) 360
Simple Game 360
xi

Contents
18. Sprite Microcode 361
Sprite Microcode Functionality 362
Sprite Microcode API 363

PART V Ultra 64 Audio

19. The Audio Library 369
Generating Audio Output 372
Sampled Sound Playback 373

Representing Sound 373
Playing Sounds 373

Sequenced Sound Playback 376
Representing the Sequence 376
Representing Instruments 377
Playing Sequences 378
Loops in Sequence Players 380
Controllers in Sequence Players 381

The Synthesis Driver 382
Initializing the Driver 382
Building and Executing Command Lists 383
Synthesis Driver Sound Data Callbacks 383
Assigning Players to the Driver 384
Allocating and Controlling Voices 384
Effects and Effect Busses 385
Creating Your Own Effects 386
Parameter Description 388
Summary of Driver Functions 393

Writing Your Own Player 394
Initializing the Player 394
Implementing a Voice Handler 395

Implementing Vibrato and Tremolo 397
xii

Contents
20. Audio Tools 401
The Instrument Compiler: ic 402

Invoking ic 402
Writing ic Source Files 403

The ADPCM Tools: tabledesign, vadpcm_enc, vadpcm_dec 412
tabledesign 412
vadpcm_enc 413
vadpcm_dec 414

The MIDI File Tools: midicvt, midiprint & midicomp 416
midicvt 416
midiprint 416
midicomp 417

Midi Receiving with Midi Daemon: midiDmon 419
Instrument Editor 420
Midi and the Indy 421
The sbc Tool 423

sbc 423

21. Audio File Formats 425
Bank Files 426

ALBankFile 426
ALBank 427
ALInstrument 428
ALSound 429
ALEnvelope 430
ALKeyMap 431
ALWavetable 432

ADPCM AIFC Format 435
Sequence Banks 438
Compressed Midi File Format 439
xiii

Contents
22. Nintendo 64 Audio Memory Usage 441
Overview of audio RDRAM usage. 442

Audio Buffers 442
Sample Rate, Frame Rate, and Other Factors 443

Optimizing Buffer Sizes. 444
Audio DMA Buffers 444
Command List Size 446
Output Buffer Size 446
Audio Thread Stacksize 446
Synthesizer Update Buffers and Sequencer Event Buffers 446
The Audio Heap 447
The Sequence Buffer 447
The Bank Control File Buffer 447

23. Using The Audio Tools 449
Overview of Audio System 450

Typical Development Process 451
Common Values 452

Dealing With Constraints and Allocating Resources 453
Determining Hardware Playback Rate 453
Limits of Voices and Processing Time 454
Division of Sounds and Music Into Banks 454
Limits of ROM 454

Creating Samples 455
xiv

Contents
Playback Parameters and .inst Files 457
Setting Sample Parameters in the .inst File 457
Differences Between Sound Player and Sequence Player Use of .inst Files
457
Envelopes 458
Keymaps and Velocity Zones 458
Tuning for Samples Recorded at the Hardware Playback Rate 459
Tuning for Samples Recorded at Varying Rates 459
Sounds 461
Instruments 461
Banks 462
Creating Bank Files 462

MIDI Files 463
Loops in the sequences. 463
Putting Things Together Into Makefiles 466

General MIDI and the Nintendo 64 467

24. Scheduling Audio and Graphics 469
Scheduling Issues 470

Command List Generation 470
Command List Processing 470

Using the Scheduler 472
Creating the Scheduler: osCreateScheduler() 472
Adding Clients to the Scheduler: osScAddClient() 472
Creating Scheduler Tasks: The OSScTask Structure 473
 474
Sending Tasks to the Scheduler: osScGetTaskQ() 476
xv

Contents
PART VI Ultra 64 Development Tools

25. GameShop Debugger 479
Hardware Environment 479
Software Environment 479
Rmon Theory of Operation 481
Programming Model 482
Using the Debugger 484

PART VII Ultra 64 Performance Tuning

26. Performance Tuning Guide 491
Data Reduction 492

Game World Organization 492
Hierarchical Culling 495

Geometry Tuning (gspFast3D - Precise Microcode) 496
Vertex Grouping 496
Pre Lighting 496
Clipping and Lighting 496
Kinds of Polygons 497
Textures instead of Geometry 497
Geometric Level of Detail 497

Geometry Tuning (Turbo Microcode) 498
Raster Tuning (Fillrate) 499

Disable Atomic Primitives 499
Partial Sorting for Z-Buffer 499
No Z-Buffer 499
No Antialiasing 501
Reduced Aliasing 501

CPU Tuning 502
Parallel Execution of the CPU and the RCP 502
Sorting 502

PART VIII Index
xvi

List of Figures

Figure 1-1 Nintendo 64 GIO Card 28
Figure 2-1 CPU KSEG0-3 Addresses 34
Figure 2-2 RSP Addresses 35
Figure 3-1 Nintendo 64 Hardware Block Diagram 42
Figure 3-2 Block Diagram of the RCP 44
Figure 3-3 Development System 49
Figure 4-1 Application Resources 53
Figure 4-2 I/O Access and Management Software Components 56
Figure 4-3 Graphics Pipeline 61
Figure 4-4 Graphics Binary Interface (GBI) of an Airplane 62
Figure 4-5 Debugger Components 67
Figure 6-1 Nintendo 64 System Kernel 83
Figure 8-1 Logical View of RCP Internal Major Devices and Interface

Modules 103
Figure 8-2 Interactions Between I/O Components Servicing Simple

I/O Request 106
Figure 8-3 Interaction Between I/O Components and a Shared Device

108
Figure 12-1 Nintendo 64 Graphics Pipeline 135
Figure 12-2 Perspective Normalization Calculation 146
Figure 13-1 One-Cycle Mode RDP Pipeline Configuration 177
Figure 13-2 Two Cycle Mode RDP Pipeline configuration 178
Figure 13-3 RS State and Input/Output 184
Figure 13-4 Scissor/Clipping/Screen Rectangles 185
Figure 13-5 TX State and Input/Output 186
Figure 13-6 Tile Descriptors and TMEM 187
Figure 13-7 CI TMEM Partition 190
Figure 13-8 Texture Filter State and Input/Output 193
xvii

Figure 13-9 Color Combiner State and Input/Output 195
Figure 13-10 RGB Color Combiner Input Selection 196
Figure 13-11 Alpha Combiner Input Selection 197
Figure 13-12 Chroma Key Equations 201
Figure 13-13 Blender State and Input/Output 203
Figure 13-14 Surface Types 203
Figure 13-15 Memory Interface State and Input/Output 210
Figure 13-16 Color and Z Image Pixel Format 210
Figure 13-17 Fill Color Register LSB Replication 211
Figure 14-1 Texture Unit Block Diagram 214
Figure 14-2 Image Space and Tile Space 219
Figure 14-3 Texture Pipeline 226
Figure 14-4 Texture Pipeline, contd. 227
Figure 14-5 MIP Map Tile Descriptors 232
Figure 14-6 Magnification Interval Relative to LOD 233
Figure 14-7 MIP Map With Detail Texture Tile Descriptors 235
Figure 14-8 Sharpen Extrapolation 238
Figure 14-9 Physical Tmem Diagram 239
Figure 14-10 Tmem Loading 240
Figure 14-11 Four-Bit Texel Layout in Tmem 241
Figure 14-12 Eight-Bit Texel Layout in Tmem 241
Figure 14-13 Sixteen-Bit Texel Layout in Tmem 242
Figure 14-14 YUV Texel Layout in Tmem 243
Figure 14-15 Thirty-Two Bit RGBA Texel Layout in Tmem 243
Figure 14-16 Tmem Organization for Eight-Bit Color Index Textures

245
Figure 14-17 Tmem Organization for Four-Bit CI textures 246
Figure 14-18 Texel Formats in DRAM 249
Figure 14-19 Example of LoadTile Command Parameters 250
Figure 14-20 Wrapping a Large Texture Using Two Tiles 251
Figure 14-21 Wrapping a Large Texture Using One Tile 252
Figure 14-22 Example of LoadBlock Command Parameters 253
Figure 14-23 Wrapping, Mirroring, and Clamping 256
xviii

Figure 14-24 Wrapping Within a Texture Tile 257
Figure 14-25 Example of Texture Decals 258
Figure 15-1 Texture Rectangle Definition 270
Figure 15-2 Aliasing in a Sampled Image 271
Figure 15-3 Point Sampling Scaling Problem 272
Figure 15-4 Bilinear Filtering 274
Figure 15-5 Triangular Filtering 275
Figure 15-6 Copy Mode 277
Figure 15-7 Flipping Texture Rectangles 279
Figure 15-8 TextureRectangleFlip Command 281
Figure 15-9 Mirrored Tree 281
Figure 15-10 Wrapping on Several Boundaries of the Same Texture 282
Figure 15-11 Wrapped and Mirrored Tree 283
Figure 15-12 Effect of Changing SL, TL 284
Figure 15-13 Biasing Texture Coordinates for Positive SL, TL 285
Figure 15-14 Texture Billboard 287
Figure 15-15 Shrinking a Sprite 294
Figure 15-16 Texture Decals 296
Figure 15-17 Modulation 296
Figure 16-1 Edge With and Without Antialiasing 302
Figure 16-2 Unweighted Area Sampling 303
Figure 16-3 Antialiasing Data Flow 304
Figure 16-4 Coverage Calculation 306
Figure 16-5 Complementary Edges 307
Figure 16-6 Z-Buffer Planes 308
Figure 16-7 Subpixel Correction of Z 309
Figure 16-8 Alpha Compare in Copy Mode for 8-bit Framebuffer 316
Figure 16-9 Alpha Compare in One/Two-Cycle Mode 317
Figure 16-10 Hidden Bits 319
Figure 16-11 Color Image Formats 320
Figure 16-12 Z Encoding 322
Figure 16-13 Z Memory Format 324
Figure 16-14 Z Worst-Case Error 325
xix

Figure 19-1 Audio Software Architecture 370
Figure 19-2 Effects Primitives 387
Figure 19-3 A simple echo effect 390
Figure 19-4 A nested all-pass inside a comb effect 391
Figure 26-1 Fixed Size Grid Database Organization 492
Figure 26-2 Quadtrees 493
Figure 26-3 Portals Connectivity Visibility 494
Figure 26-4 Bounding Sphere Test 495
xx

List of Tables

Table 4-1 GBI Feature Set 62
Table 7-1 94
Table 7-2Events Defined for the Nintendo 64 System 95
Table 9-1 32 Bit Kernel Mode Addressing 114
Table 12-1 gsSPDisplayList(Gfx *dl) 141
Table 12-2 gsSPBranchList(Gfx *dl) 142
Table 12-3 gsSPEndDisplayList(void) 142
Table 12-4 gsSPMatrix(Mtx *m, unsigned int p) 145
Table 12-5 gsSPPopMatrix(unsigned int n) 145
Table 12-6 gsSPPerspNormalize(unsigned short int s) 146
Table 12-7 gsSPVertex(Vtx *v, unsigned int n, unsigned int v0) 149
Table 12-8 gsSPTexture(int s, int t, int levels, int tile, int on) 150
Table 12-9 gsSPSetGeometryMode(unsigned int n) 154
Table 12-10 gsSPClearGeometryMode(unsigned int n) 154
Table 12-11 gsSP1Triangle(int v0, int v1, int v2, int flag) 171
Table 12-12 gsSPLine3D(int v0, int v1, int flag) 171
Table 12-13 gsDPFillRectangle(unsigned int ulx, unsigned int uly, unsigned

int lrx, unsigned int lry) 172
Table 12-14 gsSPTextureRectangle(unsigned int ulx, unsigned int uly,

unsigned int lrx, unsigned int lry, int tile, short int s, short
int t, short int dsdx, short int dtdy) 172

Table 12-15 gsSPTextureRectangleFlip(unsigned int ulx, unsigned int uly,
unsigned int lrx, unsigned int lry, int tile, short int s, short
int t, short int dtdx, short int dsdy) 173

Table 13-1Cycle Types 175
Table 13-2Basic Operations of RDP Subblocks 176
Table 13-3RDP Pipeline Block Functionality in One-Cycle Mode 177
Table 13-4RDP Pipeline Block Functionality for Two-Cycle Mode 178
xxi

Table 13-5gsDPSetCycleType(type) 181
Table 13-6gsDPPipeSync() 181
Table 13-7gsDPFullSync() 182
Table 13-8gsDPPipelineMode(mode) 183
Table 13-9gsDPSetScissor(ulx, uly, lrx, lry) 185
Table 13-10Texture Format and Sizes 188
Table 13-11gsDPLoadTextureTile(timg, fmt, siz, width, height, uls, ult, lrs,

lrt, pal, cms, cmt, masks, maskt, shifts, shiftt) 189
Table 13-12gsDPLoadTextureTile_4b(pkt, timg, fmt, width, height, uls, ult,

lrs, lrt, pal, cms, cmt, masks, maskt, shifts, shiftt) 189
Table 13-13gsLoadTLUT(count, tmemaddr, dramaddr) 191
Table 13-14gsDPSetTexturePersp(mode) 191
Table 13-15gsDPSetTextureDetail(mode) 192
Table 13-16gsDPSetTextureLOD(mode) 192
Table 13-17gsSetTextureLUT(type) 192
Table 13-18gsSetTextureFilter(type) 194
Table 13-19gsSetTextureConvert(mode) 194
Table 13-20gsSetConvert(k0,k1,k2,k3,k4,k5) 194
Table 13-21gsSetPrimColor(minlevel, frac, r, g, b, a), gsDPSetEnvColor(r, g,

b, a) 198
Table 13-22One-Cycle Mode Using gsDPSetCombineMode(mode1, mode2)

198
Table 13-23Two-Cycle Mode Using gsDPSetCombineMode(mode1, mode2)

200
Table 13-24One-Cycle Mode gsDPSetRenderMode(mode1, mode2) 204
Table 13-25Two-Cycle Mode gsDPSetRenderMode(mode1, mode2) 205
Table 13-26gsDPSetFogColor(r, g, b, a) gsDPSetBlendColor(r, g, b, a) 205
Table 13-27gsDPSetAlphaCompare(mode) 206
Table 13-28gsSetFillColor(data32bits) NEED READABLE TITLE FOR THIS!

211
Table 14-1 Tile Format Encodings 221
Table 14-2 221
Table 14-3 Shift Encoding 223
Table 14-4 Tile Descriptor Index Generation with LOD Disabled 228
xxii

Table 14-5 Example of Tile Address and LOD Index Relationship 230
Table 14-6 Generation of Tile Descriptor Index With LOD Enabled and

Magnifying 231
Table 14-7 Generation of Tile Descriptor Index With LOD Enabled and Not

Magnifying 231
Table 14-8 Maximum tile sizes in TMEM 240
Table 14-9 Texel Output Formatting 247
Table 14-10 Limits on Number of Lines for LoadBlock Command 264
Table 16-1 P and M Mux Inputs 310
Table 16-2 A Mux Inputs 311
Table 16-3 B Mux Inputs 311
Table 16-4 Fog Mux Controls 313
Table 16-5 Antialiased Z-buffered Rendering Modes, G_RM_AA_ZB 339
Table 16-6 Antialiased Non-Z-Buffered Rendering Modes, G_RM_AA 341
Table 16-7 Point-Sampled Z-Buffered Rendering Modes, G_RM_ZB 343
Table 16-8 Point-Sampled Non-Z-Buffered Rendering Modes, G_RM 345
Table 19-1Sound Player Functions 375
Table 19-2Sequence Functions 377
Table 19-3Bank Functions 378
Table 19-4Sequence Player Functions 379
Table 19-5Synthesizer Functions 393
Table 20-1ic Command Line Options 403
Table 20-2tabledesign Command Line Options 413
Table 20-3vadpcm_enc Command Line Options 414
Table 20-4vadpcm_dec Command Line Options 415
Table 20-5midicvt Command Line Options 416
Table 20-6midiprint Command Line Options 417
Table 20-7midicomp Command Line Options 417
Table 21-1ALBankFile Structure 427
Table 21-2ALBank Structure 427
Table 21-3ALInstrument Structure 428
Table 21-4ALSound STructure 429
Table 21-5ALEnvelope Structure 430
xxiii

Table 21-6ALKeyMap Structure 431
Table 21-7ALWavetable Structure 433
Table 21-8ALADPCMWaveInfo structure 433
Table 21-9ALRawWaveInfo structure 434
Table 21-10ALADPCMLoop structure 434
Table 21-11ALADPCMBook structure 434
Table 21-12ALRawLoop structure 434
Table 22-1 DMA Buffer Length. 445
Table 23-1 Tuning to hardware playback rates. 460
Table 24-1OSScTask structure fields 473
Table 24-2OSTask structure fields 474
xxiv

NINTENDO DRAFT GETTING STARTED
PART

Getting Started I
Chapter 1

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO DRAFT HARDWARE AND SOFTWARE INSTALLATION NOTES
Chapter 1

1. Hardware and Software Installation Notes

This chapter describes how to install the Nintendo 64 development board
into a Silicon Graphics Indy workstation. It also describes how to install the
Nintendo 64 development software and where the software components
are. located

This chapter is not a complete installation guide. You must be familiar with
the standard SGI software installation procedures and GIO board
installation in an Indy workstation.
27

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Hardware Installation

The Nintendo 64 Development Board is installed in the Indy workstation as
described in the Indy Workstation Owner’s Guide (see the chapter
“Installing the GIO Option Board”). The following instructions supplement
that chapter and serve as an errata. Figure 1-1 shows the placement of the
Nintendo 64 Development board in the Indy workstation.

The board is secured in the workstation by four screws that attach it to the
standoffs on the base board. When you install the board, be careful not to
damage any jumper wires that may be present on the board.

The Nintendo 64 Development board is not supported by the hinv
command. Once the board and software have been successfully installed,
the boot monitor will echo “U64 Device found” during the power-up
procedure. The application ginv in /usr/scr/PR/ginv can be used to print
information about the installed development board such as the RCP version
number, clock speed, and video mode.

Figure 1-1 Nintendo 64 GIO Card

GIO
connectors

game controller
ports

AV out

1
6

28

NINTENDO DRAFT HARDWARE AND SOFTWARE INSTALLATION NOTES
The AV out port connector type is the same as that used on the current Super
Nintendo Entertainment System. The cable that connects this port to an
external television can be obtained from most stores that sell the SNES
device. You can buy different cables to support Composite, S-Video RGB, or
other formats that are standard in your country.

Note that the AV out can optionally be routed back to the Indy video input
and audio inputs, allowing you to view and hear the gameboard on the local
Indy workstation. The workstation accepts composite or S-video input as
provided on separate SNES cables.

The game controller ports accept RJ-11 connectors (available on the U64
Development game controllers provided by Nintendo). There are
connectors for six ports, though only connectors 1 through 4 are active. The
connectors are named 1 through 6, and are numbered from left to right
(when you view the connector from the back of the workstation). Plugging
a controller into port 5 will cause the machine to hang.
29

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Software Installation

The Nintendo 64 development software image is not the only software
required for development. Your Indy workstation must also contain the
following 5.3 products:

• dev

• c_dev

• compiler_dev

• gl_dev

• CaseVision, version 2.4

• WorkShop, version 2.4

Three products are bundled with the Nintendo 64 development software:

• GameShop

• ultra

• dmedia_eoe (version 5.5)

 Note: Casevision and Workshop need to be installed before Gameshop.
Workshop needs to be version 2.4 or earlier.

READMEs and Release Notes

After installation of Nintendo 64 development software, You will find a
collection of sample demonstration applications in /usr/src/PR. A
README_DEMOS file which describes each applications key features. You
will also find the release notes in /usr/src/PR/relnotes. The release notes
summerizes the differences from the last release and various bugs,
workarounds and caveats of the system.

Other Sources

In /usr/src/PR/assets, you will find the source files for building the general
MIDI bank. We created an initial complete general MIDI bank for testing
purposes. For a game, we assume that you will gut the bank down to
30

NINTENDO DRAFT HARDWARE AND SOFTWARE INSTALLATION NOTES
including only those instrument and sounds that you need. Therefore, this
directory gives you a starting point to do that.

In /usr/src/PR/libultra, you will find some pieces of the Nintendo 64
system library code (libultra.a). These are supplied to give a starting point
on writing your own custom versions of these sub components. However,
these sources require extensive SGI source tree build environment tools to
actually build. Therefore, only the non buildable sources are shipped
currently.

Executables

The first piece of software you will need to use is gload. This program
downloads the ROM image onto the Nintendo 64 development board and
starts execution. Soon after, you will need to use dbgif and gvd to debug
your program.

• /usr/sbin/gload

• /usr/sbin/dbgif

• /usr/sbin/gvd

There are also conversion tools that help in converting data into Nintendo 64
format. For example, flt2c convertss a MultiGen database into a C data
structure that can be compiled into binary form. Most of these tools reside in
/usr/sbin but some are suppiled in source form in /usr/src/PR/conv.
Keep in mind that these are templates for your own custom database
conversion tools. We can not possibly address the need of all developers.
31

NINTENDO 64 PROGRAMMING MANUAL DRAFT
32

NINTENDO DRAFT TROUBLESHOOTING SOFTWARE BRINGUP
Chapter 2

2. Troubleshooting Software Bringup

This chapter describes common problems that you might encounter when
you start bringing up your Nintendo 64 software. The potential problem
areas are:

• operating system

• graphics

• audio

• integration

Operating System

Game locks up immediately.

A common error is to start the rmon thread at the same priority as the
spawning thread. Rmon then immediately goes to sleep and locks up the
system. The recommended way for starting the system is to create an idle
thread in the boot procedure at a high priority. From the idle thread start all
the other application threads, then lower the priority to zero and loop
forever to become the idle thread. Note that the rmon thread is not needed
for printfs. See the osSyncPrintf (3P) man page.

Game encounters a CPU exception.

During the development of your game, you may (intentionally or
unintentionally) encounter various CPU exceptions (or faults) such as TLB
33

NINTENDO 64 PROGRAMMING MANUAL DRAFT
miss, address error, or divide-by-zero. Currently, the system fault handler
saves the context of the faulted thread, stops the faulted thread from
execution, sends a message to any thread registered for the
OS_EVENT_FAULT event, and dispatches the next runnable thread from
the system run queue. If rmon is running, it would register for the
OS_EVENT_FAULT event, receive the message from the exception handler,
stop all user threads (except the idle thread), and send the faulted thread
context to the host. If gload is running on the host, it would receive the
faulted thread context and print its content to the screen. If gvd is running
on the host, it would receive the fault notification and point you to where the
fault occurred. If rmon is not running on the target, you probably experience
a strange behavior (i.e. hang) in your game since the faulted thread can no
longer run.

If you want to catch the OS_EVENT_FAULT event (instead of using rmon),
you can use two internal OS functions to find the faulted thread and handle
the exception yourself. They are __osGetCurrFaultedThread (3P) and
__osGetNextFaultedThread (3P). Please refer to their man pages for more
information.

Graphics

There is no picture on the screen, but the drawing loop is running.

You are probably handing a bad segment address to the RSP graphics
pipeline. This problem is easy to overlook, as there are no warnings. Make
sure you thoroughly understand how a MIPS family processor performs
addressing and how KSEG0 works (most games run in KSEG0). It allows
cached access with no TLB translation. All CPU registers are accessible.
KSEG addresses use the most significant bits of the address to indicate the
addressing modes.

Figure 2-1 CPU KSEG0-3 Addresses

1

031
34

NINTENDO DRAFT TROUBLESHOOTING SOFTWARE BRINGUP
The RSP uses a segment addressing scheme with base pointers. It is very
easy to hand a CPU KSEG0 address to the RSP by mistake and spend hours
locating a simple error. Note that KSEG0 CPU address would reference a
invalid segment if decoded as an RSP address.

Figure 2-2 RSP Addresses

For example, if you have the following code, the RSP/RDP pipeline will
receive garbage:

Mtx matrix;
gSPMatrix(gdl++, &matrix, G_MTX_.....);

matrix is a KSEG0 CPU address 0x8xxxxxxx. When this is handed to RSP,
it fetches garbage. Below is a list of common commands with pointers:

• gDPSetColorImage

• gDPSetTextureImage

• gDPSetMaskImage

• gSPMatrix

• gSPViewport

• gSPVertex

• gSPDisplayList

Keep in mind that CPU addresses and RSP/RDP addresses uses different
addressing schemes and are not interchangeable.

One useful way to debug possible display list problems is to link with the
GBI dumping routines in libgu, and print out the display list. This will
immediately show bad pointers and garbage matrices. See the man page for
guParseGbiDL (3P) and guParseRdpDL (3P).

031 24

 RSP
segment

 RSP
offset
35

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Ending a Display List

Make sure that your recent gbi display edit has gSPEndDisplayList in each
display list. Without this, the RSP will probably hang. The RDP requires a
gDPFullSync at the end of the entire display list sequence to make the DP
interrupt the CPU for notification.

Flaky Video

The beginning of the framebuffer and z-buffer addresses must be 64 byte
aligned.

Audio

Alignment Issues

The audio system shares several data structures between the 4300 and the
RCP. In order to avoid alignment problems, any buffer used by both the
4300 and the RCP should be allocated using the alHeapAlloc() routine. This
will generate buffers with 16 byte alignment, avoiding all alignment issues
as well as cache tearing issues.

Size and Number of buffers

A common error is to run out of buffers, particularly DMA buffers. Because
the number of buffers needed is largely dependent on the music and sound
effects used, it is not possible to provide guidelines. As music and sound
effect complexity increases, the number of buffers needed will increase.

Audio Pops and Clicks

To avoid audio pops and clicks, all samples should start with at least one
value of zero. Upon receiving a pre-nmi message it is important that the
audio fade to zero output, or on subsequent bootup, there is a potential for
a pop. If audio does not run at a high enough priority, the audio may not be
generated before the previous buffer has completed. If this occurs there will
be a period where no samples are played. This will usually generate a clear
pop.
36

NINTENDO DRAFT TROUBLESHOOTING SOFTWARE BRINGUP
Integration

DMA Alignment

All DMA transactions in the Nintendo 64 must use 64 bit aligned for data in
RDRAM. DMA transactions for data in ROM must use 16 bit aligned
addresses.

Debugging CPU Faults

The “gdis” disassembler is a powerful debugging aide that can help you
turn a cryptic crash dump (i.e the text that is printed in your gload window
when your program takes an exception) into useful debugging information.

For example, you can disassemble the section named “code” (as specified in
the spec file) in the “chrome” example application executable as follows:

% gdis -S -t .code.text letters

Here is a portion of the output ...

[144] 0x80200050: 27 bd ff 90 addiu sp,sp,-112
[144] 0x80200054: af bf 00 1c sw ra,28(sp)
 145: int i, *pr;
 146: char *ap;
 147: u32 *argp;
 148: u32 argbuf[16];
 149:
 150: /* notice that you can’t call rmonPrintf()
until you set
 151: * up the rmon thread.
 152: */
 153:
 154: osInitialize();
[154] 0x80200058: 0c 08 04 c4 jal
osInitialize
[154] 0x8020005c: 00 00 00 00 nop
 155:
 156: argp = (u32 *)RAMROM_APP_WRITE_ADDR;
[156] 0x80200060: 3c 0e 00 ff lui t6,0xff
[156] 0x80200064: 35 ce b0 00 ori
t6,t6,0xb000
37

NINTENDO 64 PROGRAMMING MANUAL DRAFT
[156] 0x80200068: af ae 00 60 sw t6,96(sp)
 157: for (i=0; i<sizeof(argbuf)/4; i++, argp++) {
[157] 0x8020006c: af a0 00 6c sw
zero,108(sp)
 158: osPiRawReadIo((u32)argp, &argbuf[i]); /* Assume no
DMA */
[158] 0x80200070: 8f af 00 6c lw t7,108(sp)
[158] 0x80200074: 8f a4 00 60 lw a0,96(sp)
[158] 0x80200078: 27 b9 00 20 addiu t9,sp,32
[158] 0x8020007c: 00 0f c0 80 sll t8,t7,2
[158] 0x80200080: 0c 08 05 4c jal
osPiRawReadIo
[158] 0x80200084: 03 19 28 21 addu a1,t8,t9
[157] 0x80200088: 8f a8 00 6c lw t0,108(sp)
[157] 0x8020008c: 8f aa 00 60 lw t2,96(sp)
[157] 0x80200090: 25 09 00 01 addiu t1,t0,1
[157] 0x80200094: 2d 21 00 10 sltiu at,t1,16
[157] 0x80200098: 25 4b 00 04 addiu t3,t2,4
[157] 0x8020009c: af ab 00 60 sw t3,96(sp)
[157] 0x802000a0: 14 20 ff f3 bne
at,zero,0x80200070
[157] 0x802000a4: af a9 00 6c sw t1,108(sp)
 159: }

...

Notice that the C source is interleaved with the disassembled code, and that
the PC is given in the second column.

When your program crashes, you can look up the error PC listed in the crash
dump (it is identified as “epc”) to determine where the program crashed and
find the corresponding line in the source/disassembly listing.
38

NINTENDO DRAFT ULTRA 64 SYSTEM OVERVIEW
PART

Ultra 64 System Overview II
Chapter 1

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO DRAFT HARDWARE ARCHITECTURE
Chapter 3

3. Hardware Architecture

This chapter describes the hardware architecture of the Nintendo 64 game
machine, in order to help you write software for the machine. Later sections
of this manual describe the details you need to know to program each
component.

The Nintendo 64 game consists of a number of hardware components that
work together to produce the graphics and audio for the game. The heart of
the system is the Reality CoProcessor (RCP). Attached to the RCP are
memory chips, the MIPS R4300 CPU, and some miscellaneous I/O chips.

The RCP is the center of the game; all data must pass through it. It acts as the
memory controller for the CPU. The RCP runs the graphics and audio
microcode. The display portion of the RCP renders into the graphics
framebuffer located in main memory. The video and audio portions of the
RCP, DMA framebuffer, and audio data from main memory to drive the
video and audio DACs. Figure 3-1, “Nintendo 64 Hardware Block
Diagram,” on page 42 is a block diagram of the Nintendo 64 system.
41

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Figure 3-1 Nintendo 64 Hardware Block Diagram

Execution Overview

The CPU and RCP are both processors that can execute at the same time.
Threads execute on the CPU and tasks execute on the RCP. Accesses to main
memory from threads and tasks also occur in parallel.

The game program runs on the R4300 CPU as a collection of threads, each of
which has its own stack. The operating system is a collection of routines that

R4300 CPU

Reality CoProcessor

(RCP)

Memory
4 Meg

ABUS

VBUS
Video
DAC

Audio
DAC

Game Controllers

PBUS

SBUS

PIF

Cartridge
Interface

MBUS

RBUS

Game Cartridge
42

NINTENDO DRAFT HARDWARE ARCHITECTURE
can be called in a thread. The operating system controls which thread is
running on the CPU. A thread can access all of physical memory. See
Chapter 6, “Operating System Overview,” for more information.

Tasks run on the RCP, which is a microcode engine that processes a task list.
Task lists are generated by a thread running on the R4300 CPU and are
stored in main memory. The game program creates the task list, calls an OS
routine to load the appropriate microcode, and then starts the RCP running
to process the task list. The microcode on the RCP reads the task list from
main memory. The RCP task can also write into main memory.

RCP: Reality CoProcessor

The RCP is really a collection of processors, memory interfaces, and control
logic. The Reality Signal Processor (RSP) is the microcode engine that
executes audio and graphics tasks. The Reality Display Processor (RDP) is
the graphics display pipeline that renders into the framebuffer. The memory
interfaces provide access to main memory for the CPU, RSP, RDP, video
interface, audio interface, peripherial devices, and serial game controllers. It
is very important to remember that these interfaces may be active at the
same time and that the RSP and RDP are running in parallel.
43

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Figure 3-2 Block Diagram of the RCP

RSP: Reality Signal Processor

The RSP is the processor used by the graphics and audio microcode. The RSP
consists of a Scalar Unit (SU), a Vector Unit (VU), instruction memory
(IMEM), and data memory (DMEM). The microcode is fetched from IMEM
and has direct access to DMEM. The RSP can also access main memory using
DMA. All memory references in the RSP are physical. However, the
microcode uses a segment address table to translate segmented addresses
provided in the task lists into physical addresses. The IMEM and DMEM are
both 4 KB. The SU implements a subset of the R4000 instruction set. The VU
has eight 16-bit elements.

RSP

SU VU

IMEM

DMEM

IO

RDP

CPU VI AI PI SI

R4300 Audio Game Contollers
 Video Cartridge

Memory

RCP

S
T
A
T
E

RS

TX

CC

BL MEM

TMEM
TF

CP0
44

NINTENDO DRAFT HARDWARE ARCHITECTURE
For information on how the RSP is used to implement part of the graphics
pipeline, see Chapter 12, “RSP Graphics Programming”. Chapter 19, “The
Audio Library,” describes how the RSP is used in audio processing

RDP: Reality Display Processor

The RDP is the graphics display pipeline that executes an RDP display list
generated by the RSP and CPU. The RDP consists of a Rasterizer (RS), a
Texture Unit (TX), 4 KB of texture memory (TMEM), a Texture Filter Unit
(TF), a Color Combiner (CC), a Blender (BL), and a Memory Interface (MI).

The RS rasterizes triangles and rectangles. The TX samples textures loaded
in TMEM. The TF filters the texture samples. The CC combines and
interpolates between two colors. The BL blends the resulting pixels with
pixels in the framebuffer and performs z-buffer and anitaliasing operations.
The MI performs the read, modify, and write operations for the individual
pixels at either one pixel per clock or one pixel for every two clocks. The MI
also has special modes for loading the TMEM, filling rectangles (fast clears),
and copying multiple pixels from the TMEM into the framebuffer (sprites).

The RDP accesses main memory using physical addresses to load the
internal TMEM, to read the framebuffer for blending, to read the z-buffer for
depth comparison, and to write the z and framebuffers. The microcode on
the RSP translates the segmented addresses in the task list into physical
addresses.

The global state registers are used by all stages of the pipeline. There are a
number of sync commands to provide synchronization. For example, a pipe
sync is used before changing one of the rendering modes. This ensures that
all previous rendering affected by the mode change occurs before the mode
change.

The command list for the RDP usually comes directly from the RSP.
However, it is possible to feed the RDP pipeline from a command list that
has been stored in main memory.

See Chapter 13, “RDP Programming,” for more information on the RDP.
45

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Video Interface

The video interface reads the data out of the framebuffer in main memory
and generates the composite, S-video, and RGB signals. The video interface
also performs the second pass of the antialias algorithm. The video interface
works in either NTSC or PAL mode, and can display 15- or 24-bit color
pixels, with or without filtering, at both high and low resolutions. The video
interface can also scale up a smaller image to fill the screen. For more
information on how to set one of the 28 video modes and control the special
features, see the man page for osViSetMode (3P). Chapter 8, “Input/Output
Functionality” also contains information on the video interface.

Audio Interface

The audio interface reads audio data out of main memory and generates the
stereo audio signal. See Chapter 19, “The Audio Library” and Chapter 8,
“Input/Output Functionality” for more information.

Parallel Interface

The parallel interface is the DMA engine that connects to the ROM cartridge.
The PiManager thread is used to set up the actual DMA commands for all
other threads. See Chapter 8, “Input/Output Functionality” for the list of
PI functions.

Serial Interface

The serial interface connects the RCP with the game controllers through the
PIF chip. To get the current state of the controllers, the application must
send a command to query all the game controllers. The data will be available
later. See Chapter 8, “Input/Output Functionality” for a list of all the
controller functions.

R4300 CPU

The R4300 CPU is part of the MIPS R4000 family of processors. The R4300
consists of an execution unit with a 64-bit register file for integer and
floating-point operations, a 16 KB instruction cache, an 8 KB writeback data
cache, and a 32-entry TLB for virtual-to-physical address calculation. The
46

NINTENDO DRAFT HARDWARE ARCHITECTURE
Nintendo 64 game runs in kernel mode with 32-bit addressing. 64-bit integer
operations are available in this mode. However, the 32-bit C calling
convention is used to maximize performace.

For more information on the R4300 and the operating system control of the
CPU see the MIPS Microprocessor R4000 User’s Manual and Chapter 6,
“Operating System Overview”.

Memory Issues

The main memory in the system is used in parallel by the R4300 CPU, the
RSP microcode engine, the RDP graphics pipeline, and the other I/O
interfaces of the RCP. The software is responsible for defining the memory
map. See Chapter 9, “Basic Memory Management” for more details.

Addressing

The R4300 CPU can use physical or virtual addresses. The TLB maps virtual
addresses into physical addresses. It is anticipated that programs will
mainly use KSEG0 (cached, unmapped) addresses for instructions and data.
The RSP hardware uses physical addresses. The microcode imposes a
segmented addressing scheme to generate the physical addresses. Bits 24
through 27 of the segmented address are used to index into a 16-entry table
to obtain the base address of the segment. The upper 4 bits are masked off.
The lower bits are an offset into the segment. This scheme is used to create
dynamic RSP task lists easily. The RDP hardware uses physical addresses.
The RSP microcode translates the segmented addresses stored in the task list
into physical addresses. The segment table in the RSP is initialized to all
zeros. Every segment initially references memory starting at zero.

Data Cache

The R4300 CPU has an 8 KB writeback data cache. This means that when the
CPU writes a variable, it may not be written to main memory until later.
Since the RSP reads the task list directly from main memory, the dynamic
portion of the task list must be flushed from the data cache before the RSP
starts.
47

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Take care in DMA operations also. The data buffer must be flushed from the
cache before the write from memory occurs. The data buffer must be
invalidated in the cache before a read into memory occurs. If the cache
invalidate does not occur, a writeback from the cache may destroy data that
has just been transfered into main memory by a read DMA. It is also a good
idea to align I/O buffers on the 16-byte data cache line size, to avoid cache
line tearing. Tearing occurs when a buffer and a unrelated variable share a
cache line. The potential writeback of the variable could destroy data read
into the I/O buffer.

Alignment

Note the various alignment restrictions:

• 8 byte alignment for most DMA

• 8 byte alignment for main memory, 2 byte alignement in ROM for PI

• 64 byte alignment for color framebuffers (cfb) and z-buffer

• 8 byte alignment for textures

Clock Speeds and Bus Bandwidth

Various system statistics and bandwidths:

• CPU - 94.0 Mhz

• RDRAM - 250 Mhz (9 bit bytes at 500 M/sec)

• RCP - 62.6 Mhz

• AI - variable, 3000-368000hz on NTSC, 3050-376000 on PAL

• VI - (depends on mode) NTSC, PAL, MPAL

• PI - 50 Meg/sec peak, 5 Meg/sec from typical slow ROMs

• SI - really slow

Development Hardware

The development system consists of an Nintendo 64 game card on a GIO
card for the Indy workstation. The ROM cartridge is replaced by 16
48

NINTENDO DRAFT HARDWARE ARCHITECTURE
megabytes of RAM, called the ramrom, that is accessible from both the Indy
workstation over the GIO bus and the RCP over the PBUS. The workstation
downloads the game software onto the GIO card and then the Nintendo 64
executes the game. The ramrom is also used to pass information by the
debugger. The 4 Megabytes of main memory uses the 9 bit RDRAMs. The
color and framebuffers can be placed anywhere in memory.

Figure 3-3 Development System

R4300 CPU

Reality CoProcessor

(RCP)

Memory
 4 Meg

ABUS

VBUS
Video
DAC

Audio
DAC

Game Controllers

PBUS

SBUS
PIF

Cartridge
Interface

MBUS

RBUS

Game Cartridge

GIO Card for
Indy Workstation

16 Meg
Memory

“RAMROM”

Connectors for controllers, audio, and video

Interrupts
 and
 Control

GIO

Bus
49

NINTENDO 64 PROGRAMMING MANUAL DRAFT
50

NINTENDO DRAFT RUNTIME SOFTWARE ARCHITECTURE
Chapter 4

4. Runtime Software Architecture

This chapter describes the runtime Nintendo 64 software architecture. It is
intended as a brief tour of the overall architecture and discusses the basic
design guidelines. More specific details are provided in subsequent
chapters.

This chapter briefly covers the following topics:

• CPU: threads, messages, interrupts, cache coherency, tlbs

• IO: device library, device manager

• Memory: static allocation, region library

• RCP: tasks, command lists, yielding

• Graphics: graphics interface

• Audio: sequencer, audio player, driver, wavetable synthesis

• Application: typical application framework

• Debugger: debugger support for CPU and RSP
51

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Resource Access and Management

The Nintendo 64 game machine is made up of a variety of resources. These
resources include the CPU, memory, memory bus bandwidth, IO devices,
the RSP, the RDP, and peripheral devices. The software is designed to
provide raw access to all of the resources. The software layer basically
translates logical functions and arguments into exact hardware register
settings.

Management of most resources is left up to the game itself. Resources such
as processor access and memory usage are too precious to waste by using
some general management algorithm that is not tailored to a particular
game’s requirement. The only management layers provided are the audio
playback and I/O device access.

The audio playback mechanism is fairly consistent from game to game. Only
the sounds themselves are different. Therefore, a general tool to stream
audio playback is useful. The I/O devices can be managed to provide
simultaneous multiple access contexts for different threads. For example,
52

NINTENDO DRAFT RUNTIME SOFTWARE ARCHITECTURE
streaming audio data and paging in graphics database might require sharing
access to the ROM.

Figure 4-1 Application Resources

game applica-
tion

io mgmt
cpu mgmt

au
dio re

so
urce

 ac
ce

ss

au
dio play

-

bac
k m

gm
t

io resource access
cp

u re
so

urce
 ac

ce
ss

graphics resource access

device

m
gm

t

53

NINTENDO 64 PROGRAMMING MANUAL DRAFT
CPU Access

Message Passing Priority Scheduled Threads

To provide access to CPU compute cycles, Silicon Graphics provides a
simple CPU scheduler to help the game manage multiple threads of control.
These are the attributes of this scheduling scheme:

• Non-preemptive execution: The currently running thread will continue
to run on the CPU until it wishes to yield. Preemption does occur if
there is a need to service another, higher-priority thread awakened by
an interrupt event. The interrupt service thread must not consume
extensive CPU cycles. In other words, preemption is only caused by
interrupts. Preemption can also occur explicitly with a yield, or
implicitly while waiting to receive a message.

• Priority scheduling: A simple numerical priority determines which
thread runs when a currently executing thread yields or an interrupt
causes rescheduling.

• Message passing: Threads communicate with each other through
messages. One thread writes a message into a queue for another thread
to retrieve.

• Interrupt messages: An application can associate a message to a
particular thread with an interrupt.

CPU Data Cache

The R4300 has a write back data cache to improve CPU performance. That
means that when the CPU reads data, the cache may satisfy the read request
eliminating the extra cycles needed to access main memory. When the CPU
writes data, the data is written to the cache first and then flushed to main
memory at some point in the future. Therefore, when CPU modifies data for
the RCP’s or IO DMA engine’s consumption via memory, the software must
perform explicit cache flushing. The application can choose to flush the
entire cache or just a particular memory segment. If the cache is not flushed,
the RCP or DMA may get stale data from main memory.
54

NINTENDO DRAFT RUNTIME SOFTWARE ARCHITECTURE
Before the RCP or IO DMA engines produce data for the CPU to process, the
internal CPU caches must be explicitly invalidated. You don’t want the CPU
to be examining old stale data that is in the cache. The invalidation must
occur before the RCP or DMA engine place the data in main memory.
Otherwise, there is a chance that a write back of data in the cache will clobber
the new data in main memory.

Since the software is responsible for cache coherency, keeping data regions
on cache line boundaries is a good idea. A single cacheline containing
multiple data produced by multiple processors can be difficult to keep
coherent.

No Default Memory Management

As shown above, the Nintendo 64 operating system provides
multi-threaded message-passing execution control. The operating system
does not impose a default memory management model. It does provide a
generic Translation Lookaside Buffer (TLB) access. The application can use
the TLB to provide for a variety of operations such as virtual contiguous
memory or memory protection. For example, an application can use TLBs to
protect against stack overflows.

Timers

Simple timer facilities are provided, useful for performance profiling,
real-time scheduling, or game timing. See the man page for osGetTime (3P)
for more information.

Variable TLB Page Sizes

The R4300 also has variable translation lookaside buffer (TLB) page size
capability. This can provide additional, useful functionality such as the
“poorman’s two-way set-associative cache,” because the data cache is 8 KB
of direct-mapped memory and TLB pages size can be set to 4 KB. The
application can roll a 4 KB cache window through a contiguous chunk of
memory without wiping out the other 4 KB in cache.
55

NINTENDO 64 PROGRAMMING MANUAL DRAFT
MIPS Coprocesser 0 Access

A set of application programming interfaces (APIs) are also provided for
coprocessor 0 register access, including CPU cycle accurate timer, cause of
exception, and status.

I/O Access and Management

The I/O subsystem provides functional access to the individual I/O
hardware subcomponents. Most functions provide for logical translation to
raw physical access to the I/O device.

Figure 4-2 I/O Access and Management Software Components

PI Manager

Nintendo 64 also provides a peripheral interface (PI) device manager for
multiple threads to access the peripheral device. For example, the audio
thread may want to page in the next set of audio samples, while the graphics
thread needs to page in a future database. The PI manager is a thread that
waits for commands to be placed in a message queue. At the completion of
the command, a message is sent to the thread that requested the DMA.

ai access

pi mgr

game application

audio DAC

vi access

video DAC

si access

controllers

pi access

peripherals (ROM)

vi mgr
56

NINTENDO DRAFT RUNTIME SOFTWARE ARCHITECTURE
VI Manager

A simple video interface (VI) device manager keeps track of when vertical
retrace and graphics rendering is complete. It also updates the proper video
modes for the new video field. The VI manager can send a message to the
game application on a vertical retrace. The game can use this to synchronize
rendering the next frame.
57

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Memory Management

No Default Dynamic Memory Allocation

The Nintendo 64 software does not impose a memory map on the game. The
Nintendo 64 system leaves the memory allocation problem up to the game
application. It assumes that the application knows the memory partitioning
scheme most suitable for the particular game. However, the Nintendo 64
library does have a heap library that is available.

Region Library

The Nintendo 64 system does provide a region allocation library that can
partition a memory region specified by the application into a number of
fixed-sized blocks. This gives the application the capability of using a
dynamic memory allocation scheme. However, the game application must
be able to handle the case when memory in the region has run out.

Memory Buffer Placement

There are some optimizations on the placement of memory buffers. For
example, it is best to keep the color and depth buffers on separate 1 MB
memory banks. The RDRAM has an active page register for each megabyte.
Spliting the color and z-buffers into seperate megabytes, prevents the
memory system from constantly having to change the page register. This
technique minimizes page misses.

Memory Alignment

The DMA engines responsible for shuffling data around in the hardware all
require the 64-bit aligned source address, the destination address, and
lengths. Addresses in ROM do not have this 64 bit alignment restriction.
ROM addresses only need to be 16-bit aligned. The loader from the compiler
suite (see the man page for ld (1)) makes sure that all C-language long
long types are 64-bit aligned.
58

NINTENDO DRAFT RUNTIME SOFTWARE ARCHITECTURE
Using C language, the stack for a thread must also be 64-bit aligned.
Therefore, all stacks should be defined as long long and type-casted
when calling osCreateThread. See the man page for more details.
59

NINTENDO 64 PROGRAMMING MANUAL DRAFT
RCP Access and Management

The CPU has control over access to the RCP. The RSP and RDP portions of
the RCP can be used individually, or as a group. The CPU creates a task list
that specifies what microcode to run and what command list to execute. The
task is then run on the RSP. There are OS commands to start the task and to
yield (ie preempt) a task. The RDP usually receives graphics rendering
commands directly from the RSP. However, it is also possible to drive the
RDP from a list that is in DRAM.
60

NINTENDO DRAFT RUNTIME SOFTWARE ARCHITECTURE
Graphics Interface

Nintendo 64 uses a display list hierarchy to describe what to render. 3D
geometry transformation and rasterization are accelerated by RSP and RDP
respectively. There is no immediate mode rendering. The R4300 CPU
generates the display list in memory, then the RCP fetches the displaylist
and renders the graphics.

Graphics Binary Interface

Nintendo 64 renders graphics using a display list interface called graphics
binary interface (GBI). The CPU assembles the GBI structure in RDRAM for
the RSP/RDP to render. The RSP must first be downloaded with graphics
microcode to perform geometry transformation. The RDP performs polygon
rasterization. RSP and RDP state machines are described in more detail in
Chapter 12, “RSP Graphics Programming” and Chapter 13, “RDP
Programming”.

Figure 4-3 Graphics Pipeline

GBI Geometry and Attribute Hierarchy

The GBI structure describes a hierarchy of geometry and its attributes. This
tree is traversed depth first and the graphics pipeline attributes are
sequentially modified during traversal. Both geometry (RSP) and raster
(RDP) attributes are contained in a GBI structure.

R4300
game processing
animation

RSP
3D geometry
transformation +
lighting

RDP
polygon
rasterization +
texturingGBI assembly
61

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Figure 4-4 Graphics Binary Interface (GBI) of an Airplane

GBI Feature Set

The graphics binary interface (GBI) contains many 3D graphics features. An
algorithmic description of many of these features is in the OpenGL
Programmer’s Guide. Table 4-1, “GBI Feature Set,” on page 62 lists the basic
features of the GBI pipeline.

Table 4-1 GBI Feature Set

Processor Functionality

CPU GBI assembly

fuselage left
wing

xform

vertexes triangles

vertexes triangles

xform
left

xform
right

generic
wing

generic
wing

right
wing

geometry
attributes

raster
attributes

wingwing
62

NINTENDO DRAFT RUNTIME SOFTWARE ARCHITECTURE
RSP Geometry Microcode

There are three different versions of RSP geometry microcode: gspFast3D,
gspLine3D, and gspTurbo3D. The gspFast3D microcode is the optimized,
full-featured 3D polygonal geometry microcode. The gspLine3D is the
optimized, full-featured 3D line geometry microcode. The gspTurbo3D is
the optimized, reduced-featured 3D polygonal geometry microcode. All of
these microcode types come in two versions. One version of the microcode
has the RSP output the rasterization and attribute commands directly to the
RDP. The other version outputs RDP commands to DRAM. Writing the
RDP commands to DRAM could be used to overlap graphics and audio. For
example, you could use the RSP for audio processing while the RDP is
processing commands stored in DRAM. Storing the RDP commands in
DRAM may also be useful for debugging.

RSP matrix stack operations

3D transformations

frustum clipping and back-face rejection

lighting and reflection mapping

polygon and line rasterization setup

RDP polygon rasterization

texturing/filtering

blending

z-buffering

antialiasing

Table 4-1 GBI Feature Set

Processor Functionality
63

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Audio Interface

Access to the audio subsystem is provided through the functions in the
Audio Library. The Audio Library supports both sampled sound playback
for sound effects and wavetable synthesis from MIDI files for background
music. For more information on the Audio Library, please refer to
Chapter 19, “The Audio Library”.
64

NINTENDO DRAFT RUNTIME SOFTWARE ARCHITECTURE
RCP Task Management

Both the audio and graphics libraries provide support for generating
command lists to be executed on the RCP, but they do not handle the
command list execution. It is therefore necessary for the application to
manage the scheduling and execution of RCP tasks (command lists and
microcode) on the RCP. To facilitate this, the development package includes
an example RCP scheduler.

The “Simple” Example

The structure of the scheduler included with the “Simple” application is
described briefly below. Please refer to the example code in the “Simple”
directory for more details.

The Scheduler Thread

The scheduler thread is responsible for collecting display/command lists
from other threads and assigning them to RCP tasks for scheduling and
execution so that real-time constraints are met. This thread has the highest
priority of the application threads, to insure that scheduling occurs
periodically.

The scheduler executes task on the RCP based on the retrace interrupt and
then monitors the progress, yielding the graphics tasks periodically to
interleave audio tasks, if necessary.

Other Application Threads

The next highest priority application thread is the Audio Manager thread. It
is responsible for creating audio display lists, sending them to the scheduler
for execution, and transferring the finished audio to the codecs. It has a
higher priority than the game thread, to prevent audio clicks caused when
the audio thread can’t meet its real-time constraints.

Note: The Audio Manager thread is essentially a low-level wrapper around
the alAudioFrame call (see “The Synthesis Driver” on page 382 for details).
Higher-level Audio Library calls are made from the game thread.
65

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The game thread is responsible for generating graphics display lists and
sending them to the scheduler for execution. In addition, the game thread
handles the controller input, makes calls to the Audio Library, and performs
other tasks traditionally found in the game’s “main loop.”
66

NINTENDO DRAFT RUNTIME SOFTWARE ARCHITECTURE
GameShop Debugger

WorkShop Debugger Heritage

The GameShop debugger (gvd) derived its heritage from the Silicon
Graphics WorkShop application development tools. It is a source level
windowing debugger environment that enables debugging of both the CPU
and RSP software.

Debugger Components

The debugger is actually composed of several different components shown
in Figure 4-5, “Debugger Components,” on page 67

There are two debugging paths. The first path is a C source level windowing
debugger, gvd, which has most of the features of common multi-threaded
debuggers. It talks to dbgif, which interfaces to the rmon debug thread
through the Nintendo 64 device driver in IRIX.

The second path is the popular printf traces within the application.
rmonPrintf() display the messages in the shell that executed dbgif.

Figure 4-5 Debugger Components

UNIX host machine Nintendo64 development board

U64
device
driver

IRIX
kernel

gvd
window
debugger

dbgif
debugger
interface

rmon
remote
monitor

Application
67

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The rmon debugger thread is actually a high-priority thread in the game
application and uses many operating system resources. Therefore, the
debugger and rmonPrintf cannot be used to debug system-level code.

For information on using GameShop Debugger see Chapter 25, “GameShop
Debugger.”
68

NINTENDO DRAFT COMPILE TIME OVERVIEW
Chapter 5

5. Compile Time Overview

This chapter describes the flow of tools required to go from 3D model design
and music composition to cutting the actual ROM cartridge. In addition to
the standard C compiler suite, the Nintendo 64 software release supplies a
number of other tools particular to the Nintendo 64 software development
environment. The source code to some of these tools is provided as an
example to help you create your own customized tools that give your game
an advantage in the game marketplace. This chapter includes the following
sections:

• database modeling

• model space to render space database conversion

• music composition

• wavetable construction

• building ROM images

• host side functionality
69

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Database Modeling

To do real-time 3D graphics, you need modeling tools to create geometry.
Because many off-the-shelf modeling tools are available, there is no
modeling package in the Nintendo 64 development kit from Silicon
Graphics. Nintendo has contracted two top modeling package companies to
provide the database modeling solution (MultiGen and Alias).

For texture-map images and traditional 2D sprite-type games, you may
desire image conversion, editing, and paint software. These are not
provided as part of the Nintendo 64 development kit.

All of the example applications and source code, including sample image
conversion programs, use the popular SGI RGB image format. Additional
related, but unsupported software, may be obtained from SGI via the
4Dgifts product, anonymous ftp via sgi.com, or from the user community
on the internet (see comp.graphics or the comp.sys.sgi hierarchy).
One of the more popular publicly available packages containing image
conversion and manipulation software is PBMPLUS, widely available on the
internet.

NinGen

NinGen is a 3D modeling package from MultiGen. It is a derivative of their
traditional 3D modeling software, together with an Nintendo 64 database
format convertor. The traditional key strength of MultiGen is their ability to
provide 3D modeling tools for the real-time commercial and military
flight/vehicle simulation market.

For this market, many database techniques developed for a real-time flight
simulator are available in NinGen. Some basic features include:

• Geometric level of detail.

• Binary separating planes for depth-ordered rendering. This is required
if you don’t use the z-buffer.

• Many polygon count reduction tools. The goal is the best model with
the lowest polygon count.
70

NINTENDO DRAFT COMPILE TIME OVERVIEW
Alias

Historically, Alias has provided 3D animation and modeling tools for the
computer-generated film and animation market segment. Beautiful models,
sophisticated motion paths, and fast development time are all vital to
success in this marketplace. Here is a sample of some of the strong features
of the Alias software package:

• NURBs based modeler provides smooth surfaces on models.

• Motions paths and inverse kinematics give complex motion.

• Special effects such as particle systems, many different kinds of lights,
and texturing capabilities improve picture quality.

Other Modeling Tools

Besides Alias and MultiGen, there are other modeling packages on the
market. SoftImage and Nichimen Graphics are also traditional film and
animation market tool suppliers. On the PC, the Autodesk 3DStudio is
entering the animation market from the very low end of the price spectrum.

Film and animation tools have many features that can be extracted for
real-time animation. Figuring out how to extract these special features out of
theses tools can help you give your game application an advantage. For
example, you might be able to use particle system tools to generate texture
maps. Flipping this texture book on some morphing geometry to
approximate the group motion of a system of particles. This may give you
fire, water, and other interesting objects.

Custom Modeling Tools

For special game application requirements, you may need to create your
own custom modeling packages. Obviously, it is time-consuming to build
such a software package in house. The advantage, however, is that you can
customize the databases to the requirements of your game. For example, you
might be able to gain rendering display performance if you are able to give
hints to your modeler about how to order geometry.
71

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Model to Render Space Database Conversion

This section outlines issues you may face when converting from a modeling
database to a rendering database.

Existing Convertors

Both NinGen and Alias software packages have database convertors to
convert to the Nintendo 64 format (Graphics Binary Interface).

Custom Convertors

Some of you may want to write your own database convertors because you
want to manage a certain resource or attribute in a different way, tailored to
your game. Silicon Graphics provides a sample convertor, flt2c(1P), from the
MultiGen flt file format to the Nintendo 64 format. In addition, Silicon
Grapics provides a converter from the SGI IRIS image format to the
Nintendo 64 texture memory format, rgb2c(1P).These sample convertors are
not complete, nor are they designed to be totally efficient; they are just meant
to be a template to help you understand what a convertor is and what it
needs to do.

Conversion Considerations

There are many efficiency considerations to keep in mind when you are
writing a database convertor. Here are a few:

• Redundant hierarchical transformations should be eliminated.
Transformations should be used for articulated parts or instancing, not
for preserving modeling hierarchy.

• Since the geometry transformation subsystem has a vertex cache, block
loading 16 vertexes to render as many triangles as possible has better
performance.

• On-chip texture memory is not large (4 KB). If you are stamping trees in
your scene, you should render in texture order. Keep in mind that
texture order may require a z-buffer, which requires additional dram
72

NINTENDO DRAFT COMPILE TIME OVERVIEW
bandwidth. You may need to experiment to find the best trade-off for
your game.

• The display pipeline has many attribute states. You may want to
determine which sets are global and local to an object. Learn how to
manage these attributes to best fit the kind of game you are creating.
73

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Gamma Correction

The SNES and Super Famicom do not have gamma correction hardware but
the Nintendo 64 does. Some developers have indicated that the colors on the
Nintendo 64 look “washed out” with gamma correction turned on.

If you are currently writing games for SNES or Super Famicom (or any
machine that does not have gamma correction), your production path is
likely to be setup to compensate for the lack of gamma correction hardware.
In other words, you are probably picking pre gamma corrected colors. If you
use this same production path and turn Nintendo 64 gamma correction on,
you will get the wash out effect because you would have gamma corrected
twice.

To undo the first gamma correction, square and shift down by 8 each color
component (assuming 8 bit color) or rework your path to exclude the gamma
correction stop, leaving gamma correction to the hardware.

Every step in your production path must be involved in the color selection
process: modeling/paint software, computer monitors, image conversion
software, the game software, and the Nintendo 64 hardware.

Gamma correction on the Nintendo 64 is recommended; the antialiasing and
video hardware work best when it is enabled.
74

NINTENDO DRAFT COMPILE TIME OVERVIEW
Music Composition

Music composition involves the creation of midi sequences and then
importing them into the game. Midi sequences can be created using any of a
variety of sequencer applications. (Performer, Vision, Cubase,
MasterTracks, to name a few) After the sequences are saved as Midi files,
they should be converted before being included in the game. If you are
planning to use the compact Midi sequence player, the sequences should be
run through midicmp. If you are using the regular sequence player, the
sequences are run through midicvt. After the sequences are converted, they
can be assembled into sequence banks with the sbk tool. This is optional,
midi sequences can be used without being part of a sequence bank. To
actually include the sequences in the game, a segment containing the
sequence data should added to the spec file. (See the demo app. simple for
an example of this.)

For information on how to use sequences in a game see,Chapter 19, “The
Audio Library,”
75

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Wavetable Construction

The audio library can use either compressed or uncompressed wavetables
for sound reproduction. In either case, the wavetables are first created using
the digital recording/editing system of the sound designer’s choice. The
wavetables are then stored as AIFF files. If the samples are to be
compressed, the first step is to produce a compression table using
tabledesign. After the compression table has been built, the wavetable is
compressed using vadpcm_enc. This will generate a type of AIFC file that is
unique to the Nintendo. (Note that AIFC files created with other software
tools are not compatible with the compression scheme used by the
Nintendo.)

After the wavetables have been converted to AIFC files, (or left as AIFF files
if no data compression is desired) they need to be assembled into banks so
that the Audio Library can reference them correctly. To accomplish this, the
sound designer must first create a .inst file, which is a text file that specifies
the parameters for sound playback and the wavetable files. The .inst file is
then used by ic to create the bank files. The bank files can then be included
in the game by placing them in segments in the applications spec file. (The
creation of .inst files and the use of ic is covered in detail in Chapter 20,
“Audio Tools,”)
76

NINTENDO DRAFT COMPILE TIME OVERVIEW
Building ROM Images

A final set of tools, headers and libraries are available to pack your database
and code into a final ROM images for the Nintendo 64. The Nintendo 64
development environment heavily leverages the C compiler and
preprocessor tools to process symbolic data into binary objects. A ROM
packing tool, makerom(1P) packs these objects into a single monolithic ROM
images according to a specification of where these objects go.

C Compiler Suite

Currently, the Nintendo 64 development environment has only been
verified with the IRIX 5.3 MIPS C-compiler suite. The interfaces provided do
not rely on proprietary features of this compiler; however backend tools
such as makerom may rely on specifics of the MIPS symbol table format.

It is required that all modules be compiled or assembled with the
-non_shared and -G 0 compilation flags; neither position independent
code or a global data area is supported. Since the MIPS R4300 supports the
MIPS II instruction set, the -mips2 flag is also recommended, as well as
optimization flags (-O and -O3).

ROM Image Packer

The ROM image packer (makerom) takes as input relocatable objects created
by the compiler and performs the final relocations of code symbols. To
perform these relocations, it invokes a next generation link editor that allows
objects to be linked at arbitrary addresses specified by the developer. After
these relocations, makerom extracts the code and initialized data portions of
the resulting binary and packs them onto a ROM image. The makerom tool
can also copy raw data files to the ROM as desired.

Note: When building a ROM image for the console (as opposed to the
development system), be sure to

• link with libultra.a and not libultra_d.a

• remove all calls to printf and its variations from your application.
77

NINTENDO 64 PROGRAMMING MANUAL DRAFT
• remove any functions specific to the development board (such as
command line parsing or logging) from your application.

Headers and Libraries

Although the Nintendo 64 API includes interfaces for a wide variety of
areas, the interfaces are made available by including a single header file,
/usr/include/ultra64.h, and by linking with a single library,
/usr/lib/libultra.a (or /usr/lib/libultra_d.a).The library routines are
broken into their finest level of granularity, so applications “pay as they go”,
only including routines they actually use.

Note there are two versions of the Nintendo 64 library: a debug version
(/usr/lib/libultra_d.a) and a non-debug version (/usr/lib/libultra.a). The
debug version of the library provides additional run time checks at the
expense of some space on the ROM and DRAM, as well as some
performance. The kinds of checks performed include argument checking
(especially hard to find alignment problems), improper use of interfaces,
audio resource problems, etc. It is recommended that the debug library be
used in initial development, and then replaced by the non-debug library
later in the development cycle.

In case of error, the game loading program gload(1P) will interpret and
display the errors on the host.
78

NINTENDO DRAFT COMPILE TIME OVERVIEW
Host Side Functionality

During development, it may be desirable to copy data to and from the Indy
host to the game. For example, a MIDI sequence could be repeatedly edited
on the host and them played on the Nintendo 64. Of course this could be
accomplished by recreating and downloading the image repeatedly, but the
design cycle could be reduced significantly by simply copying the new
sequence to the Nintendo 64 while the application is still running.

For these applications, a host side, as well as a game side API is provided.
The game side interfaces are, as always defined by including
/usr/include/ultra64.h and linking with /usr/lib/libultra[_d].a. The host
side interfaces are declared in /usr/include/ultrahost.h and defined in
/usr/lib/ultrahost.a.
79

NINTENDO 64 PROGRAMMING MANUAL DRAFT
80

NINTENDO DRAFT ULTRA 64 OPERATING SYSTEM
PART

Ultra 64 Operating System III
Chapter 1

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO DRAFT OPERATING SYSTEM OVERVIEW
Chapter 6

6. Operating System Overview

Overview

The Nintendo 64 system runs under a small, real-time, preemptive kernel. It
is supplied as a set of run-time library functions, so that only those portions
that are actually used are included in the game’s run-time image. In the
remainder of this document, it is referred to as the operating system,
although it is so minimal that it has not been given an official name.

The kernel can be considered as being layered into core functionality and
higher-level system service

VI/Timer Mgr

FileThreads
Messages

Events

Controller
 Interface

PI
Mgr

Raw I/ODebug

System

s, as illustrated in Figure 6-1.

Figure 6-1 Nintendo 64 System Kernel
83

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Threads, messages, events, and raw I/O compose the kernel of the Nintendo
64 operating system. Upon this base are built some additional services that
facilitate access to the raw hardware.

In this introductory section, a brief overview of these services will be
provided.

Threads

All code that runs under the operating system runs in the same address
space.That is, the game runs as one process. While it is possible to structure
a game application as one monolithic program, it is usually advantageous to
subdivide it into smaller, more manageable subprograms called threads.
With its own stack, each thread usually performs one function, often
repetitively. This subdivision leads to simplicity for each thread; thus, it is
easier to “get it right” and to minimize interference between threads. The
threads section describes these threads, how they are scheduled, and how
various operations may be performed on them.

Threads may be created, destroyed, stopped, or blocked (the latter by
waiting on a message). Threads normally run until they require some
resource or event to continue, at which point they yield the CPU to another
thread. Each thread has an assigned priority level, used to determine which
thread gets the CPU at any given time. In response to an external event, a
thread may be forced to yield control of the CPU. The operating system
preserves the state of the thread properly for restarting at a later time. Thus,
the system can properly be described as preemptive. Threads may even be
preempted during system calls when it is safe to do so.

However, there is no concept of a swap clock or “round-robin” scheduling
as is found in UNIX and other time-sharing systems. Thus, two or more
threads that run at the same priority level do not alternate in use of the CPU.
The thread that “has” the CPU runs until it yields or is preempted by a
higher priority thread in response to an exception.

Messages

Since the operating system is message-based, messages are among the most
important of the resources available to the user. Unlike many popular
84

NINTENDO DRAFT OPERATING SYSTEM OVERVIEW
real-time kernels, no semaphores or event flags are provided. All
synchronization is provided via sending and receiving messages. This has
deliberately been made very efficient, and the lack of other synchronization
primitives should not be a problem. In fact, there are advantages to using
only this mechanism. The operating system code itself is smaller and less
intrusive on game space than it would be if it had to provide multiple
facilities for thread synchronization. Also, since it is often the case that
information must be transferred when threads synchronize, we get more
usage out of a single operation.

Of course, messages are also useful in simply transferring information from
one thread to another. In this operating system, they are also used to transfer
information when a system event occurs.

Events

The operating system manages interrupts and exceptions on behalf of the
game system in a relatively unobtrusive way. Some interrupts must be
handled by the system code itself. Others require further decoding to
determine which event has actually occurred when the CPU is interrupted.

The exception handler built into the operating system performs the
decoding of interrupts and other exceptions and maps them to system
events. If the system event is one that may be handled by the game itself,
then a message is sent to an associated event mailbox and the game
application is notified. In this way, the game designer can provide an
interrupt handler to deal with the exception as required by the game
requirements.

Memory Management

In this operating system, the responsibility of memory management is left
up to the game. That is, the operating system provides no heap or dynamic
memory allocation mechanism for the game. Since the game can access the
entire memory map, it has total control on how memory is partitioned and
used. The operating system simply runs in the kernel mode (kseg0) with
cache and direct mapping enabled. In this mode, the virtual address
0x80000000 is mapped directly to physical address 0x0. Translation
Lookaside Buffer (TLB) is not used by the operating system to provide
85

NINTENDO 64 PROGRAMMING MANUAL DRAFT
virtual memory support. However, low-level routines are available for game
developers to program the TLBs directly. Furthermore, a region library is
provided to simplify the task of allocating and de-allocating fixed-size
memory buffers.

Game developers should also be aware of the importance of invalidating
and flushing caches before transferring data between either cartridge ROM
or RCP and main memory. The operating system provides useful functions
to invalidate both instruction and data caches and to write back data cache.

Input and Output

The Nintendo 64 system spends a good deal of its time performing I/O
operations. The operating system provides an optimized I/O interface layer
that directly communicates with the hardware. Some of these interfaces
include:

• VI—the video interface. The interface routines communicate with a
video manager system thread, called the VI/Timer manager. This
thread receives all vertical retrace interrupts and programs the video
hardware. In addition, it also receives all counter interrupt messages
and implements timer services.

• PI—the peripheral interface. The PI also has an associated I/O manager
thread, the PI manager. It manages access to the ROM cartridge so that
two threads do not attempt to DMA from ROM to RAM at the same
time.

• AI—the audio interface. This interface programs the audio hardware to
output the desired sample rate and manages access to the audio data
buffer.

• DP—This is the RDP interface. It is mostly of interest because it has an
associated system event when a DP operation is complete.

• Cont—the controller interface. This interface resets, detects, obtains
status, queries and reads data from the game controllers.
86

NINTENDO DRAFT OPERATING SYSTEM OVERVIEW
Timers

The operating system provides convenient functions to start and stop both
countdown and interval timers. These timers are expressed in CPU count
register cycles, which depend on the video clock. That is, a counter tick in a
PAL system occurs more frequently than the one in a NTSC system.
Developers can also set and get real time counter value.

Controller Pack File System

The Nintendo 64 controller supports an add-on RAM pack that can store
either 32 KB or 64 KB of data. The operating system implements a simple file
system on this pack where developers can find, create, delete, read and write
files.

Debugging Support

In addition to the support for the high-level GameShop debugger gvd(1P),
the operating system also provides additional useful facilities for
debugging. Developers can use convenient routines to log messages to
pre-allocated buffer for delay transfer to the host Indy. Since this logging
utility has low performance impact, it may be well suited for debugging
real-time problems or running performance analysis. Developers can also
use the printf-like utility osSyncPrintf(3P) to display text formatted
messages on the host Indy.

Boot Procedure

When using the Nintendo 64 development system, the developer needs to
run the game loader gload(1P) program to download his prepared ROM
image into the cartridge memory on the development board. After the
memory image is loaded, gload can optionally read back the memory and
verifies the contents. Then, it generates a reset signal to the development
board, causing the R4300 to jump to the reset vector where it starts executing
the boot code from the PIF rom.

Some of the important tasks performed by the boot code include:
87

NINTENDO 64 PROGRAMMING MANUAL DRAFT
1. Initialize the R4300 CP0 registers

2. Initialize the RCP (such as halt RSP, reset PI, blank video, stop audio)

3. Initialize RDRAM and CPU caches

4. Load 1 MB of game from ROM to RDRAM at physical address
0x00000400

5. Clear RCP status

6. Jump to game code

7. Execute game preamble code (which is similar to crt0.o and is linked to
game during makerom process)

• clear BSS for boot segment (as defined in the spec file)

• set up boot segment stack pointer,

• jump to boot entry routine

8. Boot entry routine should call osInitialize(3P)
88

NINTENDO DRAFT OPERATING SYSTEM FUNCTIONALITY
Chapter 7

7. Operating System Functionality

Overview

Threads, messages, and events work together to form the core of the
Nintendo 64 operating system. Nintendo 64 applications run under a small,
multithreaded operating system. Simply put, this means that the R4300 CPU
switches between several independent components called threads. Each
thread consists of a sequence of instructions, a stack, and (possibly) static
data that is used only by the thread. Subdividing an application into threads
has several advantages. You can effectively isolate each part of the
application to avoid interference. You can divide your application into
small, easily-debugged modules. Since each thread can be written
independently to perform exactly one function, complexity is reduced.

Messages are a mechanism by which threads communicate with one
another. While this could be done using shared global variables, such an
approach is often unsafe. One thread must know when it is safe to read data
that is being written by another. Message passing makes communication
between threads an atomic operation; a message is either available or not
available, and the associated data arrives at the receiving thread at one time.

A second, perhaps more important function of messages is to provide
synchronization between threads. Often a thread reaches a point in its
execution where it cannot continue until another thread has completed some
task. In this case, the running thread has no useful work to do, so it should
yield the processor until the task is completed. You use messages to provide
the mechanism for the thread to wait until that time.
89

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Often a thread needs to wait for an exception such as an interrupt.
Exceptions are trapped by the operating system and turned into events.
Threads may register to receive notification of system events by requesting
that the operating system send them a message whenever a system event
occurs.

System Threads, Application Threads, and the Idle Thread

There are several types of threads in a typical application. There is a
distinction (using priority) between system threads, application threads,
and the idle thread.

The PI manager, described in the IO section, is typical of system threads. It
acts as a resource manager, allowing multiple user threads to share a critical
resource safely—in this case, the cartridge ROM.

The idle thread, which has the lowest priority (a priority of 0) of any thread
in the system, runs only when all other threads are blocked awaiting some
event. Note that the idle thread is required; the system will not run without
it. The game application itself is composed of user threads. User threads are
defined as those threads having priorities between 1 and 127.

Thread Data Structure

Each thread is associated with a data structure of type OSThread declared
by the user. The address of this structure is the only identifier used in thread
system calls. Since the thread data structure is essentially part of the
application itself, you should take care not to overwrite it inadvertently. The
structure contains the thread’s context (mostly, this consists of its register
contents) when the thread is not running. Each thread has a priority used in
scheduling, and an identifier used only by the debugger. These are also
maintained in the thread data structure.

Thread State

A thread is always in one of four states. The state of the thread is maintained
in its thread data structure for use by the operating system. A good
90

NINTENDO DRAFT OPERATING SYSTEM FUNCTIONALITY
understanding of thread state is helpful in designing your application, since
it leads to a better understanding of how the operating system will behave.

• Running. Only one thread in the system is in running state at a time.
This is the thread that is currently executing on the CPU.

• Runnable. A thread in runnable state is ready to run, but it is not
running because some other thread has higher priority. It will gain
control of the CPU once it becomes the highest-priority runnable
thread.

• Stopped. A stopped thread will not be scheduled for execution. Newly
created threads are in this state. Threads are frequently stopped by the
debugger, and an application may stop a thread at any time. Stopped
threads become runnable via an osStartThread system call.

• Waiting. Waiting threads are not runnable because they are waiting for
some event to occur. A thread that is blocked on a message queue is in
waiting state. Arrival of a message returns a waiting thread to runnable
or running state.

Scheduling and Preemption

Once the OS is running, the highest-priority runnable thread in the system
always has control of the CPU. When a thread gains control of the CPU, it
continues to run until it requires some resource or event to continue. It then
relinquishes control of the CPU and the next highest priority thread gets to
run. Typically, this happens as a result of the running thread calling the
function to receive a message. If no message is present in the message queue,
the running thread will block until a message arrives. Note that the thread is
no longer runnable when it is blocked on a message queue, so it no longer
fits the criterion of being the highest-priority runnable thread.

More frequently, the running thread loses control of the CPU through
preemption. In response to an exception (for example, an interrupt), a higher
priority thread becomes runnable. Since that thread should now be the
running thread, the state of the interrupted thread will be saved in its thread
data structure, the state of the newly-runnable thread will be loaded to the
CPU, and the new thread will resume execution at the point where it last ran.
The preempted thread is still runnable; it just doesn’t have the highest
priority. When it once again becomes the highest priority thread, it will run
again from the point where the interrupt occurred.
91

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Note that the running thread does not need to be at a sequence point (for
example, a system call) to lose control of the CPU. Thus, this fits the classical
description of a preemptive system.

Multiple threads within an application frequently need to synchronize their
execution. For example, thread A cannot continue until thread B has
performed some operation. The message-passing functions provide the
needed synchronization mechanism, and are described in the chapter on
messages.

Thread Functions

There are eight functions associated with threads. Please refer to the
reference (man) pages for specifics about the arguments, return values, and
behavior of these functions.

• osCreateThread

This function is called once per thread to notify the system that a thread
is to be created. Creating a thread initializes its thread data structure
with the starting program counter, initial stack pointer, and other
information. Once the thread data structure has been initialized, the
thread can be run.

• osDestroyThread

This function removes a thread from the system. Once called, the
thread cannot be run any more.

• osYieldThread

This function notifies the operating system that the running thread
wishes to yield the CPU to any other thread with higher or equal
priority. If all other runnable threads have lower priority, the running
thread will continue. (In practice, it is not possible for a runnable thread
to have higher priority than the running thread.)

• osStartThread

This function call makes a thread runnable. If the specified thread is of
higher priority than the running thread, the running thread will yield
the CPU. If not, the running thread will continue and the started thread
will wait until it becomes the highest priority thread in the system.
92

NINTENDO DRAFT OPERATING SYSTEM FUNCTIONALITY
• osStopThread

This function call changes the state of a thread to stopped, after which
the thread will not be able to run until restarted. If the thread was
waiting on a message queue, it will be removed from that queue.

• osGetThreadId

This function returns the ID of a thread assigned when the thread was
created. It is used only by the debugger.

• osSetThreadPri

This function changes the priority of a thread. If the running thread is
no longer the highest-priority runnable thread in the system as a result
of this change, it will yield the CPU to the new highest-priority thread.

• osGetThreadPri

This function returns the running thread’s priority level.

Exceptions and Interrupts

The R4300 CPU used in the Nintendo64 processes a number of exception
types. Most share a common vector, where the operating system receives
them, reads the CAUSE register, and determines which of the 16 legal causes
occurred. With the exception of the Interrupt cause (which may be either
internal or external), all exceptions are internally generated within the CPU.
For example, an attempt to fetch a word from an odd address will generate
an address error exception.

The operating system has exception handlers for Coprocessor Unusable,
Breakpoint, and Interrupt exceptions. All other exceptions are considered to
be faults and are passed to the fault handler. The fault handler stops the
faulted thread, sends a message to any thread (i.e., rmon) registered for the
OS_EVENT_FAULT event, and dispatches the next runnable thread from
the system run queue. If the debugger is present, a message is sent from the
target to the host and the debugger can show you exactly where the fault
occurred. Breakpoint exceptions are also handled in this way. The debugger
will stop all user threads in the event of a breakpoint or a fault.
93

NINTENDO 64 PROGRAMMING MANUAL DRAFT
When an interrupt occurs, the CAUSE register is examined to see which
interrupt caused the exception. The R4300 supports eight interrupts
described below.

Table 7-1

If the RCP interrupts the R4300, then an RCP register is read to see which of
the RCP interrupts is being asserted. Thus, processing RCP interrupts is a
two stage process - first the cause of the CPU interrupt is determined, then
the cause of the RCP interrupt is isolated.

Normally, the Nintendo 64 game threads run with all interrupts enabled. It
is possible to change the interrupt masks of the R4300 and RCP via a system
call. Clearly, this must be used with great caution, as disabling a critical
interrupt can cause the system to lock up or prevent real time response.

Events

Once the cause of the interrupt (or other exception) has been determined, it
is mapped to one of 14 events defined for the Nintendo 64 system. Table 7-1

Name Cause Description

Software 1 CAUSE_SW1 Software generated interrupt 1

Software 2 CAUSE_SW2 Software generated interrupt 2

RCP CAUSE_IP3 RCP interrupt asserted

Cartridge CAUSE_IP4 A peripherial has generated an interrupt

Pre-nmi CAUSE_IP5 User has pushed reset button on console

RDB Read CAUSE_IP6 Indy has read the value in the RDB port.

RDB Write CAUSE_IP7 Indy has written a value to the RDB port.

Counter CAUSE_IP8 Internal counter has reached its terminal count
94

NINTENDO DRAFT OPERATING SYSTEM FUNCTIONALITY
shows the events, why they occur, and who normally registers to receive a
message when each event occurs.

Table 7-2Events Defined for the Nintendo 64 System

Event Name Event Description Owner

SW1 System software interrupt 1
asserted

SW2 System software interrupt 2
asserted

CART Peripherial has generated an
interrupt.

OS

COUNTER Internal counter reached terminal
count

VI/Timer
manager

SP RCP SP interrupt; Task Done/Task
Yield

Game

SI RCP SI interrupt; controller input
available

Game

AI RCP AI interrupt; audio buffer
swap

Game

VI RCP VI interrupt; vertical retrace VI/Timer
manager

PI RCP PI interrupt; ROM to RAM
DMA done

PI manager

DP RCP DP interrupt; RDP processing
done

Game

PRENMI An NMI has been requested and
will occur in 0.5 seconds

 Game

CPU_BREAK R4300 has hit a breakpoint Rmon

SP_BREAK RCP SP interrupt; RCP has hit a
breakpoint

Rmon

FAULT R4300 has faulted Rmon

THREAD_STATUS Thread created or destroyed Rmon
95

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Event and Interrupt Functions

• osSetEventMesg

This function call specifies a message queue and message to be sent in
response to a system event.

• osGetIntMask

This function returns the current interrupt mask (including both the
R4300 and RCP masks).

• osSetIntMask

This function specifies a new interrupt mask (including both the R4300
and RCP masks).

Non-Maskable Interrupts and PRENMI

When the console RESET switch is pushed, the hardware generates a HW2
interrupt to the R4300 CPU. The interrupt is serviced by the OS event
handler which sends a message of type OS_EVENT_PRENMI to the
message queue associated with that event.

The HW2 interrupt will be followed in 0.5 seconds by a non-maskable
interrupt (NMI) to the R4300 CPU (unless the RESET switch is pushed and
held for more than 0.5 seconds, in which case the NMI will occur when the
switch is released).

After the NMI occurs, the hardware is reinitialized, and:

• The first Meg of the game in ROM is copied into the first megabyte
of RAM after the boot address

• The BSS for the boot segment is cleared

• The boot procedure is called.

Note: There are some minor differences between power on reset and
NMI reset. After power on reset, the caches are invalidated. After NMI
reset, the caches are flushed and then invalidated. Also, the power on
reset configures the RAM, while NMI reset leaves the RAMs alone.
96

NINTENDO DRAFT OPERATING SYSTEM FUNCTIONALITY
After NMI reset, the contents of memory, except for the 1 Meg that is copied
in, are the same as before the NMI occured. The global variable,
osResetType, is set to 0 on a power up reset and to 1 on a NMI.

If your game does not use the scheduler (see Chapter 24, “Scheduling Audio
and Graphics”), it should set up to respond to the OS_EVENT_PRENMI
event by associating a message queue with the event early in the game code.
This is accomplished as follows:

osSetEventMesg(OS_EVENT_PRENMI, <some_message_queue>)

If your game does use the scheduler, it needs only to test for a message of
type PRE_NMI_MSG on its client message queue. The scheduler performs
the event initialization, and forwards the OS_EVENT_PRENMI message to
the client message queue as soon as it is received.

Exactly how a game should behave when it receives OS_EVENT_PRENMI
includes Nintendo policies on game consistency (such as fading the screen
to black or ramping the audio volume down), but from a technical
standpoint, when the game receives the OS_EVENT_PRENMI message it
should do the following:

• Stop issuing graphics tasks to prevent the RDP from being stopped
in a non-restartable state.

• Stop issuing audio tasks to prevent audio “pops”

• Stop issuing ROM (PI) DMAs

To test this, you can generate an NMI on development board by running the
following program on the Indy. This is equivalent to pushing the RESET
switch on the Nintendo 64 machine.

/*
 * Program to simulate pressing and releasing the RESET
 * switch on the Ultra 64.
 *
 * Copy this code to resetu64.c and type “make resetu64”
 *
 */
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/u64gio.h>
97

NINTENDO 64 PROGRAMMING MANUAL DRAFT
#include <PR/R4300.h>

#define GIOBUS_BASE 0x1f400000
#define GIOBUS_SIZE 0x200000 /* 2 MB */

main()
{
 int mmemFd;
 unsigned char *mapbase;
 struct u64_board *pBoard;

 if ((mmemFd = open(“/dev/mmem”, 2)) < 0) {
 perror(“open of /dev/mmem failed”);
 return(1);
 }

 if ((mapbase = (unsigned char *)mmap(0, GIOBUS_SIZE,
 PROT_READ|PROT_WRITE,(MAP_PRIVATE),
 mmemFd, PHYS_TO_K1(GIOBUS_BASE))) ==
 (unsigned char *)-1) {
 perror(“mmap”);
 return(1);
 }

 pBoard = (struct u64_board *)(mapbase);
 pBoard->reset_control = _U64_RESET_CONTROL_NMI;
 sginap(10);
 pBoard->reset_control = 0;
}

Internal OS Functions

Some of the internal OS functions are briefly described below. Broken into
three groups, these functions are mentioned here with the purpose to reduce
potential duplicate effort from developers. Most of these functions are
simple routines to access various R4300 registers, Translation-Lookaside
Buffer (TLB) information, and internal active thread queue. Please refer to
the reference (man) pages for specifics about the arguments, return values,
and behavior of these functions.

The first group provide functions to access various common R4300 registers:

• __osGetCause, __osSetCause
98

NINTENDO DRAFT OPERATING SYSTEM FUNCTIONALITY
These functions returns and specifies the content of the R4300 Cause
register, respectively.

• __osGetCompare, __osSetCompare

These functions returns and specifies the content of the R4300 Compare
register, respectively.

• __osGetConfig, __osSetConfig

These functions returns and specifies the content of the R4300
Configuration register, respectively.

• __osGetSR, __osSetSR

These functions returns and specifies the content of the R4300 Status
register, respectively.

• __osGetFpcCsr, __osSetFpcCsr

These functions returns and specifies the content of the R4300
floating-point Control/Status register, respectively.

The second group provide functions to access TLB information:

• __osGetTLBASID

This function returns the TLB Application Space ID in the R4300
EntryHi register.

• __osGetTLBPageMask

For a specified TLB entry, this function returns the content of the R4300
PageMask register.

• __osGetTLBHi

For a specified TLB entry, this function returns the content of the R4300
EntryHi register.

• __osGetTLBLo0

For a specified TLB entry, this function returns the content of the R4300
EntryLo0 register.

• __osGetTLBLo1

For a specified TLB entry, this function returns the content of the R4300
EntryLo1 register.
99

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The third group provide functions to access internal active thread queue to
find faulted thread(s):

• __osGetCurrFaultedThread

This function returns the most recent faulted thread.

• __osGetNextFaultedThread

This function returns the next faulted thread from the internal active
thread queue.
100

NINTENDO DRAFT INPUT/OUTPUT FUNCTIONALITY
Chapter 8

8. Input/Output Functionality

Overview

The Input/Output (I/O) subsystem exists on most operating systems for
three main reasons:

• to hide device-specific details in device drivers through which the
operating system transfers data and control

• to provide a fair and safe access scheme to the devices, since most of
them are shared resources

• to provide a consistent, uniform, and flexible interface to all devices,
allowing programs to reference devices by name and perform
high-level operations without knowing the device configuration.

Usually, the I/O software is structured in layers:

9. device-independent system interface

10. device drivers

11. interrupt handlers

The interrupt handler is mainly responsible for waking up a device driver
after an I/O operation completes. The device driver performs
device-specific operations, such as setting up registers for DMA and
checking device status. The device-independent system interface provides a
uniform interface to user-level software and common I/O functions (that is,
protection, blocking, buffering) that can be performed across different
devices.
101

NINTENDO 64 PROGRAMMING MANUAL DRAFT
For the RCP, there are two modes of I/O operations:

• DMA provides a minimum of 64-bit transfer between the RDRAM and
any of the devices

• IO provides a 32-bit transfer between the CPU and any of the devices

The RCP consists of the following major devices and interfaces (see
Figure 8-1):

• Reality Signal Processor (RSP). This internal processor supports both
DMA and IO operations between RDRAM and I/Dmem addresses.

• Reality Display Processor (RDP). This internal processor supports only
DMA from either RDRAM or Dmem addresses to its internal buffer.

• Video Interface (VI). This write-only interface connects to the video
DAC. It supports only DMA from RDRAM to a specific video buffer
address and allows you to change video modes and configurations.

• Audio Interface (AI). This write-only interface connects to the audio
DAC. It supports only DMA from RDRAM to a specific audio buffer
address and allows you to set the audio frequency.

• Peripheral Interface (PI). This read-write interface connects to the ROM
cartridge and other mass storage devices. It supports DMA as well as
IO Read/Write to ROM addresses.

• Serial Interface (SI). This read-write module interfaces to the PIF, which
connects to the game controller and modem devices. It supports DMA
as well as IO Read/Write to PIF RAM addresses.
102

NINTENDO DRAFT INPUT/OUTPUT FUNCTIONALITY
Figure 8-1 Logical View of RCP Internal Major Devices and Interface Modules

Design Approach

Since Nintendo 64 operates in a real-time environment, its I/O subsystem is
one of the most time-critical areas. Furthermore, the customized Nintendo
64 environment contains a well-known set of device interfaces that remains
unchanged for some time to come. Therefore, its I/O subsystem is mainly
designed for optimal throughput and response, and not for portability and
generality. This design approach coincides with the main Nintendo 64
design philosophy, which has always been (and still is) to follow the
minimal approach.

The Nintendo 64 I/O subsystem contains these components:

• a device-dependent system interface

• a device manager for shared devices

Video
Interface
(VI)

Audio
Interface
(AI)

Peripheral
Interface
(PI)

RDRAM

SP

DP

RCP
Interface
(SI)

Serial

CPU

Audio

ROM

DAC

Video
DAC

Cartridge

Game
ControllerPIF
103

NINTENDO 64 PROGRAMMING MANUAL DRAFT
• a system exception handler

These components represent a much trimmed-down version of the typical
I/O layers. All overhead associated with device-independent interfaces
(that is, naming and buffering) has been removed; protection is
implemented only on shared devices. Low-level (raw) I/O interface is also
available, allowing you to customize device interfaces based upon your
specific needs. The result is a very lightweight and optimized interface that
allows you to access (in most cases) the devices directly.

Each of these components is described further in the sections below.
However, first it is important to discuss some properties (such as synchrony
and mutual exclusion) that the Nintendo 64 I/O subsystem should exhibit.

Synchronous I/O vs. Asynchronous I/O

Synchronous I/O and asynchronous are two fundamental methods of
servicing I/O requests. In synchronous systems, the calling process is
blocked after issuing an I/O request, thus allowing I/O to overlap with the
execution of other processes. In asynchronous systems, the process is
allowed to continue execution after initiating an I/O operation. Most
systems implement the synchronous I/O method since it is easier to use and
generally preferred by high-level language programmers.

However, in the Nintendo 64 environment, asynchronous I/O is the
preferred choice, mainly because of the asynchronous nature of the real-time
game environment. For example, a game might want to start paging in the
next scene data in the background while working on the graphics task list.
Therefore, asynchronous I/O has the potential to enhance the throughput
on a thread basis. Furthermore, synchronous I/O can be easily implemented
on top of the asynchronous facility by having the calling process blocks on a
message queue immediately after initiating the I/O operation.

Therefore, all interrupt-based DMA operations are asynchronous operations
and all asynchronous notification is handled via the message queue facility.
104

NINTENDO DRAFT INPUT/OUTPUT FUNCTIONALITY
Mutual Exclusion

On most systems, some devices such as disks and printers are shared
resources. The I/O subsystem must ensure that only one process can use a
device at any one time, thus excluding other requesting processes and
forcing them to wait.

In the Nintendo 64 environment, each device can process only one I/O
transaction at any given time. For example, if there is a DMA transfer in
progress between ROM and RDRAM, you cannot issue an I/O read from a
different ROM location. If such a read is issued, the current DMA transaction
will probably fail. Therefore, protection (or mutual exclusion) should be
provided for devices that support both DMA operation and I/O read/write.

In this system, mutual exclusion is not implemented as a general scheme for
all devices, but rather as a specific scheme for each identified shared device.

I/O Components

The Nintendo 64 I/O software subsystem consists of the following major
components: system exception handler, device manager for shared devices,
and device-dependent system interface. Figure 8-2 shows the interaction
between some of these components to service an I/O request. This
interaction assumes that the device is not shared, and therefore, requires no
mutual exclusion.
105

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Figure 8-2 Interactions Between I/O Components Servicing Simple I/O Request

System Exception Handler

The Nintendo 64 system contains a system-wide exception handler that
traps all exceptions and interrupts. This handler is simply an optimized
event notifier. That is, upon receiving an event (either a supported exception
or interrupt), the handler searches the event table for an associated message
queue and message, sends the message to the queue, and simply returns.
The handler does not perform any device-specific operations. The
osSetEventMesg system call is provided to register a message queue and
a message with a specified event.

Device Manager

Depending on the user application, a device in the Nintendo 64 environment
may be shared between two or more threads. Furthermore, if you want to
utilize both DMA and IO operations on a device, you must ensure that these
two operations cannot overlap. For each device that requires protection, you
can use the concept of a device manager to implement mutual exclusion.

Application
Thread

Device
(PI)

System
Exception
Handler

4) Exception Handler
notifies App by send-
ing the registered mes-
sage to message queue

1) App registers an event, a message queue,
and a message with the system

2) App requests I/O operation
(DMA) via the system interface

3) Device interrupts CPU upon I/O
completion
106

NINTENDO DRAFT INPUT/OUTPUT FUNCTIONALITY
The Device Manager (DM) is simply a thread that runs at a high priority. The
main purpose of this manager is to process all DMA requests to and from a
device (that is, ROM devices), thus guaranteeing safe and orderly usage of
the device. Upon start-up, the manager registers an event, its event message
queue, and a message with the system. The manager is then blocked
listening on its input command queue for request messages. The manager
simply reads from the front of the queue and processes one request of a time.

After calling the corresponding low-level device routine to initiate the I/O
operation, the manager then blocks on listening on the input event queue,
waiting for the event sent from the exception handler, signaling I/O
completion. Once awakened, the manager then notifies the calling thread
(I/O requestor) by simply sending the request message to a pre-registered
message queue. The manager, then, returns to listen on the input command
queue for new requests.

The reason for alternating the listening between these two queues
(command and event queues) is that there can be only one outstanding I/O
transaction at any given time. Figure 8-3 summarizes the interaction
between various I/O components to service an I/O request on a shared
device.
107

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Figure 8-3 Interaction Between I/O Components and a Shared Device

Device-Dependent System Interface

The device-dependent system interface is actually composed of two layers
of function calls: a high-level abstraction layer and a low-level, raw I/O
layer. In addition to providing mutual exclusion on devices that support
both DMA and IO operations, the high-level layer also uses the lower layer
to initiate raw I/O operation. The reason for exposing the raw I/O layer is
to allow you to construct your own custom I/O software interface.
Furthermore, if the user application requires no protection for accessing
devices, using the low-level layer directly is the optimal way to request I/O
operation.

Application
Thread

Device
Manager
(DM)

System
Exception
Handler

Device
(PI)

5) Exception Handler
notifies DM by sending
the registered message
to message queue

1) Device Manager registers an event,
a message queue, and a message with
the system

3) DM calls
low-level API to
initiate the I/O

4) Device interrupts CPU upon I/O
completion

2) App sends I/O request to
Device Manager (via API)

6) DM sends event back
to App, notifying I/O
completion
108

NINTENDO DRAFT INPUT/OUTPUT FUNCTIONALITY
In the following sections, the functions are partitioned and described under
each device/interface separately. For high-level operation, each function
name starts with os<DeviceName> for easy identification. For low-level
operation, the function name starts with os<DeviceName>Raw. Please refer
to the appropriate reference (man) pages for specifics about the arguments,
return values, and behavior of these functions.

Signal Processor (SP) Functions

• osSpTaskStart

This function loads a task and starts it running.

• osSpTaskYield

This function asks a task running on the SP to yield.

• osSpTaskYielded

This function checks to see if a recently completed task has yielded.

Display Processor (DP) Functions

• osDpGetStatus

This function returns the value of the DP status register. The include
file rcp.h contains bit patterns that can be used to interpret the device
status.

• osDpSetStatus

This function allows you to set various features in the DP command
register. Refer to the include file rcp.h for bit patterns and their usage.

• osDpSetNextBuffer

This function sets up the proper registers to initiate a DMA transfer
from RDRAM address to the DP command buffer.

Video Interface (VI) Functions

• osCreateViManager

This function creates and starts the VI manager (VIM) system thread.

• osViGetStatus
109

NINTENDO 64 PROGRAMMING MANUAL DRAFT
This function returns the value of the video interface status register.
The include file rcp.h contains bit patterns that can be used to interpret
the device status.

• osViGetCurrentLine

This function returns the current half line.

• osViGetCurrentMode

This function returns the current VI mode type.

• osViGetCurrentFramebuffer

This function returns the currently displaying frame buffer.

• osViGetNextFramebuffer

This function returns the next frame buffer to be displayed.

• osViGetCurrentField

This function returns the current field (either 0 or 1) being access by VI
manager.

• osViSetMode

 This function sets the VI mode to one of the possible 28 modes. The
new mode takes effect at the next vertical retrace interrupt.

• osViSetEvent

This function registers a message queue with the VI manager to receive
the notification of a vertical retrace interrupt.

• osViSet[X/Y]Scale

These two functions allow you to change the horizontal scale-up factor
(x-scale) and vertical scale-up factor (y-scale), respectively.

• osViSetSpecialFeatures

This function enables/disables various special mode bits in the control
register.

• osViSwapBuffer

This function registers the frame buffer with the VI manager to be
displayed at the next vertical retrace interrupt.
110

NINTENDO DRAFT INPUT/OUTPUT FUNCTIONALITY
Audio Interface (AI) Functions

• osAiGetStatus

This function simply returns the value of the audio interface status
register. The include file rcp.h contains bit patterns that can be used to
interpret the device status.

• osAiGetLength

This function simply returns the number of bytes remained in the audio
interface DMA length register.

• osAiSetFrequency

This function configures the audio interface to support the requested
frequency (in Hz). It calculates necessary values to program internal
divisors and returns the closest frequency that the divisors can
generate.

• osAiSetNextBuffer

This function programs the next DMA transfer based on the input
length and starting buffer address.

Peripheral Interface (PI) Functions

• osCreatePiManager

This function creates and starts the PI manager (PIM) system thread.

• osPiGetStatus

This function simply returns the value of the hardware status register.
The include file rcp.h contains bit patterns that can be used to interpret
the peripheral status (that is, DMA busy and IO busy).

• osPiRawStartDma

This low-level function sets up the proper registers to initiate a DMA
transfer between ROM and RDRAM.

• osPiRaw[Read/Write]Io

These two low-level functions perform an IO (32-bit) read/write
from/to ROM address space, respectively.

• osPi[Read/Write]Io
111

NINTENDO 64 PROGRAMMING MANUAL DRAFT
These two functions perform IO (32-bit) read/write from/to ROM
address space, respectively. Since they provide mutual exclusion for
accessing the PI device, these routines are both blocked I/O calls.

• osPiStartDma

This function generates an asynchronous I/O request to the PI manager
to initiate a DMA transfer between RDRAM and ROM address space.
Upon I/O completion, PI manager notifies the requestor by returning
the I/O request message to the message queue specified by the
requestor.

Controller Functions

• osContInit

This function initializes all the game controllers and returns a bit
pattern to indicate which game controllers are connected.

• osContReset

This function resets all game controllers and returns their joysticks to
neutral position.

• osContStartQuery

This function issues a query command to all game controllers to obtain
their status and type.

• osContGetQuery

This function returns the game controllers’ status and type.

• osContStartReadData

This function issues a read data command to all game controllers to
obtain their input settings.

• osContGetReadData

This function returns the game controllers’ joystick data and button
settings.
112

NINTENDO DRAFT BASIC MEMORY MANAGEMENT
Chapter 9

9. Basic Memory Management

Introduction

This chapter

• describes the hardware and software features of the Nintendo 64
platform that relate to memory management, and

• discusses how an application may use them for efficient, correct
memory utilization and access.

The software interface of the Nintendo 64 platform allows you to take
advantage of the hardware capabilities of the machine, which include high
flexibility and high performance. However, with this flexibility comes a
corresponding decrease in ease of programming, which this chapter
addresses.

Hardware Overview

Recall that the primary processing elements of the machine are the MIPS
R4300 CPU and the Reality CoProcessor (RCP). The CPU executes
application code directly from the DRAM, transparently caching instruction
and data references in on-chip caches. The code itself makes references to
CPU virtual addresses, which are translated by on-chip hardware to
physical memory addresses.
113

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The RCP is primarily composed of two elements: the Signal Processor (SP)
and the Display Processor (DP). The SP is a microcoded engine that
processes task lists for audio and graphics. The DP is, for the most part,
driven by the SP. The RCP can be treated as a single processor for the
purposes of memory management.

Finally, a number of DMA engines also access DRAM directly: the DP, as
well as the Audio Interface (AI), Serial Interface (SI), and Parallel Interface
(PI).

At the hardware level, all of these agents make references to physical DRAM
addresses. These physical addresses are derived in very different ways,
however.

CPU Addressing

CPU virtual address translation takes place in either of two ways: either via
direct mapping or through the translation lookaside buffer (TLB). When
running in kernel mode (as applications do on the Nintendo 64 platform) the
address ranges have the behavior described in Table 9-1.

Table 9-1 32 Bit Kernel Mode Addressing

The KSEG0 address space is expected to be the most popular, if not only,
address space used. In this address space, the physical memory locations
corresponding to be KSEG0 address can be determined by stripping off the
upper three bits of the virtual address. For example, virtual address
0x80000000 corresponds to physical address 0x0000000, and so on.

Beginning Ending Name Behavior

0x00000000 0x7fffffff KUSEG TLB mapped

0x80000000 0x9fffffff KSEG0 Direct mapped, cached

0xa0000000 0xbfffffff KSEG1 Direct mapped, uncached

0xc0000000 0xdfffffff KSSEG TLB mapped

0xe0000000 0xffffffff KSEG3 TLB mapped
114

NINTENDO DRAFT BASIC MEMORY MANAGEMENT
SP Addressing

The SP microcode makes address references also, but these references are
only to the local memory (IMEM and DMEM) on the chip. With the current
software architecture, the application does not program the SP directly, and
need not concern itself with IMEM and DMEM accesses.

DRAM references, however, concern the application, because large data
structures stored in DRAM are passed by reference. These include matrices,
vertex lists, textures, and the display lists themselves. As for the CPU, the
addresses given to be SP for these data objects are also virtual addresses, but
the mapping from virtual to physical address is significantly different. The
SP microcode maintains 16 locations in DMEM that act as segment base
registers. An “SP virtual” address is presented to the SP microcode in the
form of a <segment number, segment offset> pair encoded into a 32-bit
word. To compute a physical DRAM address, the microcode adds the
contents of the corresponding segment base register to the given offset.

DMA Engine Addressing

As indicated above, the Nintendo 64 includes DMA engines that access
DRAM directly. Since these DMA operations are initiated by the CPU, the
DRAM addresses passed to the interface routines are CPU virtual addresses.
These routines perform the mapping from virtual to physical addresses and
give the resulting physical DRAM address to be appropriate hardware
registers.

Makerom and Memory Management

In addition to its more obvious role of creating the application ROM image,
makerom (1P) is a powerful tool for both memory and symbol table
management. Segments to makerom mean more than SP addressable
memory regions. To makerom, a segment is any contiguous, coherent
region of bytes in memory or on the ROM.

The ROM specification file given to makerom provides virtual or segment
addresses to segments. A segment consisting of MIPS 4300 code or data to
run on the CPU can be given a virtual address with an address statement.
A segment consisting of static display list data is given a segment address by
specifying the segment number with a number statement.
115

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Briefly, makerom does the following:

• scans the input specification file for syntax errors;

• sizes the segments, creating absolute symbols for segment addresses
and ROM locations;

• performs final relocations of relocatables that comprise the segment,
using a link editor that can link an arbitrary number of segments to
different addresses;

• extracts the text and initialized data portions for each segment from the
resulting fully linked binary, and packs these portions of the segment
onto the ROM image.

Mixing CPU and SP Addresses

It is permissible to link segments given a CPU virtual address with those
given a SP segment address. It may appear counter-intuitive and
error-prone to link relocatables of entirely incompatible address spaces. As
it turns out, the benefits outweigh the potential risks, because it allows the
application code to address SP display list data symbolically.

For example, suppose a segment is composed of the following display list
data:

static Vp vp = {
 SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/2, 0,/* scale */
 SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/2, 0,/* translate */

};

Gfx rspinit_dl[] = {
 gsSPViewport(&vp),
 gsSPClearGeometryMode(0xffffffff),
 gsSPSetGeometryMode(G_SHADE | G_SHADING_SMOOTH),
 gsSPEndDisplayList(),
};

The beginning of the display list rspinit_dl is embedded somewhere in the
segment. Rather than computing its offset into the segment, the display list
is simply provided symbolically:
116

NINTENDO DRAFT BASIC MEMORY MANAGEMENT
gSPDisplayList(glistp++, rspinit_dl);

The compiler and linker do the work of computing the address of
rspinit_dl within the segment. Thus, if the relative location of the display
list rspinit_dl changes, the code will still remain valid (and more
readable). Note that the CPU does not reference any of the data in this
display list; the CPU just passes a reference to the display list data to the SP.

A more complicated example involves using the mixed symbol table to work
with memory regions created by the CPU and read by the SP. In this case, a
single SP segment refers to two different underlying DRAM regions. This
technique can be useful when static display lists need to refer to dynamic
data that is double buffered. The actual DRAM location currently being
pointed to is swapped by setting the appropriate SP segment register.

The actual memory for the dynamic data can be declared and created within
a KSEG0 code segment as follows:

typedef struct {
 Mtx projection;

 Mtx modeling;
 Gfx glist[2048];
} Dynamic_t;

Dynamic_t dynamicBuffer[2];
Dynamic_t *dynamicPointer = &dynamicBuffer[0];

The segment contents can then be modified by the CPU directly:

guOrtho(&dynamicp->projection,
-SCREEN_WD/2.0, SCREEN_WD/2.0,
SCREEN_HT/2.0, SCREEN_HT/2.0, 1, 10, 1.0);

guRotate(&dynamicp->modeling, theta, 0.0, 0.0, 1.0);

The SP view of the dynamic segment is created by creating a relocatable with
the following parallel definition and assigned to, for example, segment
register 4 in the ROM specification file:
117

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Dynamic_t rspdynamic;

Since the relocatable contains only uninitialized data (bss), no actual bits on
the ROM are used. But more importantly, the symbol rspdynamic is made
available to other objects. Its value is the segment address of the dynamic
segment.

The SP segment register 4 is then mapped to the actual memory for the
dynamic segment with the following command:

gSegment(glistp++, 4, osVirtualToPhysical(dynamicp);

Then the SP addresses of the dynamic structure can be used, even from static
display lists, to build display lists that reference components of the dynamic
section:

gsSPMatrix(&dynamic.projection,
 G_MTX_PROJECTION|G_MTX_LOAD|G_MTX_NOPUSH);

gsSPMatrix(&dynamic.modeling,
 G_MTX_MODELVIEW|G_MTX_LOAD|G_MTX_NOPUSH);

As with the previous example, using the compiler and linker to generate
addresses allows the data structures to be modified, reordered, and so on,
without changes to unaffected areas of the application.

Flushing the CPU Data Cache

The MIPS R4300 CPU transparently caches data accesses on a onboard data
cache. Ordinarily this cache is of no concern to the application, but when an
external agent such as the SP or DMA engine is involved, the application
must be aware of the caching implications.

The data cache implements a “write back” replacement policy which means
that data stores are held in the cache until the entire cache line is written
back, usually due to a cache miss thatrequires the same cache line. The cache
is not coherent with respect to physical memory and thus cache lines must
be explicitly written back to memory prior to their use by another processor
such as the SP.
118

NINTENDO DRAFT BASIC MEMORY MANAGEMENT
Using the above example, the dynamic data can be written with a single
procedure call as follows. It is expected that this will be done prior to the
task list being executed by the SP.

osWritebackDCache(dynamicp, sizeof(Dynamic_t));

Clearing uninitialized data (Bss) section

Prior to loading a segment into memory, the application must invalidate the
corresponding cache lines. The makerom(1P) makes appropriate symbols
available to the application that can be used to construct the arguments to
the osInvalDCache(3P) routines. Then the actual DMA from ROM to DRAM
may be performed, as well as the clearing of the uninitialized data (bss)
section of the segment. It is important that the clearing be performed before
the Bss section can be used. Again, makerom(1P) generated symbols may be
used for the bzero() call. Here is some sample code that illustrates the
process:

extern char _newSegmentRomStart[], _newSegmentRomEnd[];
extern char _newSegmentStart[];
extern char _newSegmentDataStart[], _newSegmentDataEnd[];
extern char _newSegmentBssStart[], _newSegmentBssEnd[];

osInvalDCache(_newSegmentDataStart,
 _newSegmentDataEnd-_plainSegmentDataStart);
osPiStartDma(&dmaIOMessageBuf, OS_MESG_PRI_NORMAL,OS_READ,
 (u32)_newSegmentRomStart, _newSegmentStart,
 (u32)_newSegmentRomEnd - (u32)_newSegmentRomStart,
 &dmaMessageQ);

bzero(_newSegmentBssStart,
 _newSegmentBssEnd-_newSegmentBssStart);

(void)osRecvMesg(&dmaMessageQ, NULL, OS_MESG_BLOCK);

Physical Memory Allocation

The Nintendo 64 hardware contains four megabytes of “nine bit” DRAMS.
The normally hidden ninth bit is used for antialiasing and z-buffering
119

NINTENDO 64 PROGRAMMING MANUAL DRAFT
hardware. It is recommended that the framebuffer and z-buffer reside on
different megabyte banks to take advantage of caching in the DRAM
circuitry

By default, the boot location resides at directed mapped address 0x80000400.
(or physical address 0x400). The first 1024 (0x400) bytes of physical memory
are reserved for exception vectors and configuration parameters. This boot
location can be changed by simply inserting an address statement in the boot
segment of the makerom (1P) specification file. For example, the following
code specifies the boot location to be at 0x80200000, which is the beginning
of the third megabyte of memory.

beginseg
 name “code”
 flags BOOT OBJECT
 entry boot
 address 0x80200000
 stack bootStack + STACKSIZE
 include “codesegment.o”
 include “$(ROOT)/usr/lib/PR/rspboot.o”
 include “$(ROOT)/usr/lib/PR/gspFast3D.o”
 include “$(ROOT)/usr/lib/PR/gspFast3D.dram.o”
 include “$(ROOT)/usr/lib/PR/aspMain.o”
endseg

The boot process of the Nintendo 64 will copy one megabyte of data
beginning with the boot segment specified in the specification file to the boot
location.
120

NINTENDO DRAFT ADVANCED MEMORY MANAGEMENT
Chapter 10

10. Advanced Memory Management

Introduction

This chapter explores techniques and features that are not required in the
simplest of applications. It contains useful information and tricks that may
be used in certain situations, but it is not expected that all applications will
use all the techniques described here.

Mixing CPU and SP Data

In the previous chapter it was implied that CPU and SP data should be in
separate segments as they are addressed differently. This is not mandatory,
however, as the addressing can be easily reconciled. Suppose the application
defines a display list and includes it in a segment given a CPU addressable
KSEG0 address. The physical address of this display list can be easily
determined with the OS_K0_TO_PHYSICAL(3P) macro or the
osVirtualToPhysical(3P) routine. The resulting physical address
corresponds to an SP address with segment number if 0, and a segment
offset equal to the physical address. This is because the encoding of the SP
segment address is as follows:

0242831

xxxx seg ID segment offset
121

NINTENDO 64 PROGRAMMING MANUAL DRAFT
If the application creates a mapping using segment 0 to a beginning physical
address of 0x0, the SP can correctly access objects in DRAM when given a
physical address.

This simplifies the situation somewhat, but the SP microcode takes it a step
further: Since the upper four bits of a segment address are not used, they are
ignored. Thus an implicit mapping is done from a KSEG0 address to a
physical address, and no explicit conversion need be done by the
application.

To summarize, as long as an SP segment table mapping is done from
segment number 0 to offset 0, CPU KSEG0 addresses can be interpreted
correctly by the SP.

Using Overlays

The total application code size and data will probably be greater than what
is actively being used at any point in time. To conserve DRAM, applications
may choose to only have active code and data resident. To facilitate this, the
application can be partitioned into a number of segments, where some
segments share the same memory region during different phases of
execution. Here is an excerpt from a specification file that contains a kernel
code segment that can call routines in either of two overlay segments,
texture and plain:
122

NINTENDO DRAFT ADVANCED MEMORY MANAGEMENT
beginseg
 name “kernel”
 flags BOOT OBJECT
 entry boot
 stack bootStack + STACKSIZE
 include “kernel.o”
 include “$(ROOT)/usr/lib/PR/rspboot.o”
 include “$(ROOT)/usr/lib/PR/gspFast3D.o”
endseg

beginseg
 name “plain”
 flags OBJECT
 after “kernel”
 include “plain.o”
endseg

beginseg
 name “texture”
 flags OBJECT
 after “kernel”
 include “texture.o”
endseg

beginwave
name “overlay”
include “kernel”
include “plain”
include “texture”

endwave

Note the use of the after keyword to place both of the overlay segments at
the same address.

Prior to loading a segment into memory, the application must invalidate the
corresponding instruction and data cache lines. The makerom(1P) makes
appropriate symbols available to the application that can be used to
construct the arguments to the osInvalICache(3P) and osInvalDCache(3P)
routines. Then the actual DMA from ROM to DRAM may be performed, as
well as the clearing of the uninitialized data (bss) section of the segment.
Again, makerom(1P) generated symbols may be used for the bzero() call.
123

NINTENDO 64 PROGRAMMING MANUAL DRAFT
After the segment is loaded, any procedure in the segment may be called or
any data in the segment referenced. Here is some sample code that illustrates
the entire process:

extern char _plainSegmentRomStart[], _plainSegmentRomEnd[];
extern char _plainSegmentStart[];
extern char _plainSegmentTextStart[], _plainSegmentTextEnd[];
extern char _plainSegmentDataStart[], _plainSegmentDataEnd[];
extern char _plainSegmentBssStart[], _plainSegmentBssEnd[];

osInvalICache(_plainSegmentTextStart,
 _plainSegmentTextEnd-_plainSegmentTextStart);
osInvalDCache(_plainSegmentDataStart,
 _plainSegmentDataEnd-_plainSegmentDataStart);
osPiStartDma(&dmaIOMessageBuf, OS_MESG_PRI_NORMAL,OS_READ,
 (u32)_plainSegmentRomStart, _plainSegmentStart,
 (u32)_plainSegmentRomEnd - (u32)_plainSegmentRomStart,
 &dmaMessageQ);

bzero(_plainSegmentBssStart,
 _plainSegmentBssEnd-_plainSegmentBssStart);

(void)osRecvMesg(&dmaMessageQ, NULL, OS_MESG_BLOCK);

Using Multiple Waves

The previous example linked both overlays into a single, fully relocated
binary. This binary is used for two purposes. First, the text and data sections
are extracted from this binary and packed on the ROM. Second, this binary
can be given to the Nintendo 64 debugger, gvd(1P). Although the
specification file above will create an operationally correct ROM image, the
binary will confuse the debugger. This is because multiple symbols will map
to the same address, and gvd may err when it tries to find the correct source
line for a given program counter value, for example.

This problem can be circumvented by creating multiple binaries, or waves,
each with a distinct symbol table. The following specification file excerpt
illustrates this:

beginwave
 name “plain_wave”
 include “kernel”
 include “plain”
124

NINTENDO DRAFT ADVANCED MEMORY MANAGEMENT
endwave

beginwave
 name “texture_wave”
 include “kernel”
 include “texture”
endwave

Using this technique, procedure and variable names from the plain segment
are kept distinct from those of the texture segment. The “Switch Executable”
menu entry from the gvd “Admin” menu can be used to select the symbol to
use while debugging.

There is one significant caveat when using multiple waves. The contents of
each segment must be identical in each of the waves the segment is included
in. For example, the kernel segment above is included in both plain_wave
and texture_wave, so its relocated image must be identical in both. The usual
consequence of this rule is that the segment procedure entry point in both of
the overlay segments must be at the same location. This requirement can be
easily met by ensuring that the segment procedure is always the first
procedure of the first relocatable that comprises the overlay segment. Then
the calling segment code can always jump to the beginning address of the
overlay segment(s) and execute valid code there.

Using the Region Allocation Routines

Previous examples were primarily concerned with static memory allocation;
many applications may find it necessary to do some form of dynamic
allocation. For situations where the allocation is always done in fixed size
chunks, a family of region allocation routines are provided. These routines
will carve up a larger buffer into fixed some memory regions that are
managed by the library. The routines of interest are:

• osCreateRegion

This function initializes an allocation arena given a memory address,
size, and alignment.

• osMalloc
125

NINTENDO 64 PROGRAMMING MANUAL DRAFT
This function allocates and returns the address to a single fixed sized
and properly aligned buffer from a given region. This function will fail
and return NULL is there is no available free buffer in the region.

• osFree

This routine returns a previously allocated buffer to the given region
pool.

• osGetRegionBufCount

This function returns the total number of buffers in the region.

• osGetRegionBufSize

This function returns the actual buffer size, after having been possibly
padded to the given alignment.

The following code sample creates a region, allocates a buffer, and then frees
it.
 void *region;
 char regionMemory[REGION_SIZE];
 u64 *buffer;

 region = osCreateRegion(regionMemory,
 sizeof(regionMemory),
 BUFFER_SIZE, OS_RG_ALIGN_16B);
 buffer = osMalloc(region);

 /* do some work that uses ‘buffer’ */

 osFree(region, buffer);

Incidentally, if the fixed size regions are intended to hold entire segments,
the maxsize keyword of the makerom specification file may be of interest.
See makerom(1P) for details.

Managing the Translation Lookaside Buffer

Although most applications will find the direct mapped KSEG0 address
space of the CPU sufficient, it is possible to use the mapped address space
by setting appropriate Translation Lookaside Buffer (TLB) entries.
126

NINTENDO DRAFT ADVANCED MEMORY MANAGEMENT
Perhaps the biggest restriction with using the TLB is that individual entries
operate only on relatively large, aligned memory regions (pages).
Nevertheless, it may be helpful for memory protection or relocation of CPU
addresses. In addition, TLBs can be used as yet another method to reconcile
SP segment addresses with CPU addresses, since SP addresses fall within
the range of the mapped CPU address space.

 The translation lookaside buffer (TLB) of the R4300 has 32 entries, each of
which maps two physical pages. The TLB is fully associative, which means
each entry is essentially independent—the index number implies nothing
about the mapping and any entry can hold any mapping. A number of page
sizes are supported: 4 KB, 16 KB, 64 KB, 256 KB, 1MB, and 16MB. Each TLB
entry may map a different page size. The following routines are used to
manage the TLB:

• osMapTLB

This function sets the contents of a single TLB entry to the given virtual
address, even and odd physical address, page size, and address space
identifier.

• osUnmapTLB

This function invalidates both the odd and even physical page
mappings of a given TLB entry.

• osUnmapTLBALL

This function invalidates all mappings in the TLB. This should be done
by the application prior to using the TLB.

• osSetTLBASID

This function sets the current address space identifier register.

Using the TLB requires some care. The following paragraphs describe some
problem areas.

• Two TLB entries cannot map the same virtual address space. If this
occurs, accesses to the address will cause a TLB refill exception. Any
overlapping mapping creates this condition, even when a mapping
with a smaller page size is a subset of another mapping with a larger
page size:

osMapTLB(0, OS_PM_16K,(void *)0x0,0xa0000,-1,-1);
osMapTLB(1, OS_PM_4K, (void *)0x2000, 0xb000, -1, -1);
127

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Another case involves different TLB entries, each of which map
different pages of an odd/even pair. The following mappings, which
individually map an even and an odd physical page, will create an
overlap condition:

osMapTLB(0, OS_PM_4K, (void *)0x2000,0xa000,-1, -1);
osMapTLB(1, OS_PM_4K, (void *)0x2000,-1,0xb000, -1);

Instead, the application should set a single entry with both mappings:

osMapTLB(1, OS_PM_4K, (void *)0x2000, 0xa000, 0xb000, -1);

• The mapped addresses must be aligned to the page size. This applies to
both the virtual and physical pages mapped.

This implies that if one intends to map SP segment addresses via the
TLB, the SP segment must be loaded at a page-aligned address.

• Multiple mappings of a cached address must be of the same “color.”
CPU caches are physically tagged, but virtually indexed, which
introduces a situation in which more than one cache line references the
same physical memory locations. Avoid the problem by using the same
virtual address consistently for a particular physical address.

If you cannot use the same virtual address, the mappings should all be
the same color, where the “color” is defined as bits [14..6] of the
instruction address (for instruction fetches) or bits [15 ..5] of the data
address (for data accesses).

Finally, no support is provided for handling and recovering from TLB
misses. A TLB miss is an unrecoverable fault to the Nintendo 64 system.

More information about these topics can be found in the MIPS R4300
documentation.
128

NINTENDO DRAFT ULTRA 64 GRAPHICS
PART

Ultra 64 Graphics IV
Chapter 1

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO DRAFT GRAPHICS MICROCODE
Chapter 11

11. Graphics Microcode

Graphics are rendered in Nintendo64 games by creating a graphics display
list, and passing this display list to the RSP. In order for the RSP to process
this display list, the application, using system calls, loads graphics
microcode. This section discusses the different microcode object files
available to applications.

There are six basic versions of the graphics microcode, and each basic
version has up to three subtypes. The basic versions are know as, gspFast3D,
gspF2DNoN, gspLine3D, gspTurbo3D, gspSuper3D, gspSprite2D. Each
basic version has a different set of graphics rendering features. Each subtype
has the same set of graphics features, but varies according to how the RSP
passes commands to the RDP. The three subtypes are regular, .dram and
.fifo. The object files for the microcode are labeled, <basicType>.o,
<basicType>.dram.o, and <basicType>.fifo.o.
131

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Microcode Functionality

gspFast3D

gspFast3D microcode is the most full-featured of the microcode objects. It is
also the microcode used in the majority of the demo applications. gspFast3D
supports 3D triangles, 3D clipping, z-buffering, near and far clipping,
lighting, mip-mapped textures, perspective textures, fog, and matrix stack
operations. It does not support the GBI command, gSPLine3D.

gspF3DNoN

The gspF3DNoN microcode is similar to the gspFast3D microcode, except it
does not handle near plane clipping in the same manor. When using the
gspFast3D microcode, objects between the eye and the near plane are
clipped. When using the gspF3DNoN microcode, objects between the eye
and the near plane are not clipped. However, the area between the eye and
the near clipping plane does not implement zbuffering. This means that
objects that fall into this area must be drawn in order from far to near.

gspLine3D

gspLine3d microcode features many of the features of gspFast3D, except
instead of drawing triangles, it draws 3D lines. This is useful for producing
wireframe effects. If a gSP1Triangle command is encountered it will draw
the three edges of the triangle, but not the center portion of the triangle.

gspTurbo3D

gspTurbo3D microcode is a reduced-feature, reduced-precision, microcode
that delivers significantly faster performance. The features not supported by
gspTurbo3D are: Clipping, lighting, perspective-corrected textures, and
matrix stack operations. The quality of the anti-aliasing also suffers, due to
the lack of precision used by gspTurbo3D. This loss of precision can also
manifest itself as various visual artifacts, depending on the content.
gspTurbo3D uses a different format for the display list.
132

NINTENDO DRAFT GRAPHICS MICROCODE
gspSprite2D

gspSprite2D microcode is optimized for drawing 2D sprite images. Sprites
are implemented as textured screen rectangles. gspSprite2D does not
support 3D lines 3D triangles, vertices operations, matrix operations,
lighting, or fog. All of the DP commands such as blender modes, and color
combiner modes are supported. Zbuffering can be used to arrange the order
of the sprites from front to back

gspSuper3D

gspSuper3D is a reduced precision microcode that supports the same
display list format as gspFast3D. This reduced precision will increase
performance, but can cause visual artifacts. Although gspSuper3D uses the
same display lists as gspFast3D, gspSuper3D does not support perspective
corrected textures.
133

NINTENDO 64 PROGRAMMING MANUAL DRAFT
RSP to RDP command passing

All types of RSP microcode generate commands for the RDP. The method
used to pass the commands from the RSP to the RDP determines the suffix
used to name the microcode object. In the “regular” method the commands
are written to a buffer in dmem, which can hold up to six RDP commands.
If the buffer fills, the next time the RSP tries to write a command it will stall
until there is space in the buffer. Microcode versions that use this type of
command passing have no special suffix, just a “.o” appended to their name.

Alternatively, the RSP can write all the commands to a larger fifo buffer in
rdram. This helps to prevent the RSP from stalling when the RDP gets bound
by processing large triangles. Microcode that uses this method has the
“.fifo.o” suffix appended to its name.

When using the fifo version of a microcode, the application must pass a
pointer to a buffer to be used as the fifo buffer, in the task output_buff field.
The size of the fifo buffer is put in the output_buff_size field. In order for fifo
to have a positive effect on performance the size of the buffer should be
greater than 1K.

The microcode also provides another option for the RSP to write all of the
RSP commands to an rdram buffer. In this case the application must start the
RDP task separately with a call to osDpSetNextBuffer(). (This form of
command passing is very useful for debugging in conjunction with the tool
dlprint which can print display lists in a human readable form.) Microcode
designed to use this method has the “.dram.o” suffix appended to its name.

Tasks using the .dram microcode need a pointer to a buffer in the
output_buff field of the task structure, and a size in the output_buff_size.
Because RSP commands usually expand when converted into RDP
commands, this buffer needs to be larger than the size of the RSP display list.
134

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
Chapter 12

12. RSP Graphics Programming

This document describes the graphics state machine of the RCP, with a
particular focus on the RSP (see “RSP: Reality Signal Processor” on page 44).

The RSP is an R4000-like CPU with an 8-element vector unit, featuring a
small instruction memory, IMEM (4K bytes or 1K instructions) and small
data memory, DMEM (4K bytes). Software running on this processor
implements a large portion of the geometry display pipeline.

In addition, the RSP provides visibility for all of the RCP functionality,
through a variety of software conventions and hardware exposure. All
“display lists” for the RCP graphics features must pass through the RSP.
There are several important features which require the application
programmer to be consciously aware of the distinctions between the RSP
and the RDP (and program each of them separately), but for the most part,
the RSP serves as the single interface between the application program and
the graphics pipeline:

Figure 12-1 Nintendo 64 Graphics Pipeline

R4300
game processing
animation

RSP
3D geometry
transformation +
lighting

RDP
polygon
rasterization +
texturingGBI assembly
135

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Topics covered in this document include:

• RSP overview

• display list processing

• matrix state

• vertex state

• vertex lighting state

• texture state

• clipping and culling

• primitives

• controlling the RDP state
136

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
RSP Overview

A program which runs on the RSP is called a task; the application is
completely responsible for scheduling and invoking tasks on the RSP.

The interface between the application and the RSP task is accomplished with
a series of operating system calls, and a structure called the task list (or task
header) which is type OSTask (defined in sptask.h). The task list contains all
the information necessary to begin task execution, including pointers to the
microcode to run. This structure is filled in by the application program.

A detailed description of invocation of a task on the RSP is beyond the scope
of this section (see “RCP Task Management” on page 65), but the essential
procedure is straightforward:

• the RSP is assumed to be halted (or the R4300 halts it).

• the R4300 DMA’s the boot microcode into the RSP IMEM.

• the R4300 DMA’s the ‘task header’ into the RSP DMEM.

• the R4300 sets the RSP PC to 0.

• the R4300 clears the RSP halt status (allowing it to run).

From this point, the boot microcode takes over, loading the task microcode
(and data) specified in the task list, and jumping to the beginning of the task.

One item in the task header is a pointer to the initial data to process (in the
case of a graphics task, this is a display list pointer).

Display List Format

The display list which the gspFast3D, gspF3DNoN, or gspLine3D microcode
running on the RCP interprets is defined as a stream of 64-bit commands.

Applications written in C will usually use the interface from the file gbi.h.,
which will be included via inclusion of ultra64.h. Although the construction
of display lists looks like a familiar series of function calls, they are actually
just bit-packing macros. These macros are described in detail in their
individual man pages.
137

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Each macro has two forms, i.e. gSPTexture() and gsSPTexture(). The
difference between ‘g’ and ‘gs’, is that the ‘g’ form is an in-line form which
requires an additional argument (pointer of the display list being
constructed). The display list pointer must be of the form “ptr++”, in order
for the macros to work properly.

The ‘gs’ form is for static declarations, and generates the appropriate C
structure initialization sequence.

Throughout this document, only the ‘gs’ form is mentioned, however the ‘g’
form also applies, and could always be substituted.

All of the display list building macros also embed an ‘SP’ or a ‘DP’ to
describe the functional unit of the RCP which will operate on this command.
This is certainly confusing, especially to application programmers familiar
with higher-level graphics API’s such as OpenGL. In order to achieve
maximum performance, it is necessary to expose the two major units of the
RCP to the application programmer. The primary reason for this is resource
constraints; there is simply not enough RSP IMEM to build a display list
processor that is rich enough to hide these details from the application
programmer. In addition, given the dedicated application of the RCP (video
games), any CPU cycles spent “gift-wrapping” the graphics API are a waste
of time. The binary encoding of most of the display list commands is the
lowest possible level: they are the bits that control the hardware.

Exposing the two functional units of the RCP also limits the amount of state
shared between them. The major drawback of this design decision is that
you must often tell the same thing to the RSP and the RDP. For example, in
order to “turn on texture mapping” you must turn it on in the RSP and turn
it on in the RDP. This may seem clumsy at first, and indeed this is a common
source of display list bugs, but the parallel execution of the RSP and RDP,
plus the lean display list processing machine make this trade-off
worthwhile.

Segmented Memory and the RSP Memory Map

All DRAM addresses in the display list are segmented addresses. The
mapping of segments and their base addresses is provided using the
gsSPSegment() macro. It is the responsibility of the application to maintain
this mapping and inform the RSP via the display list.
138

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
The RSP maintains an associative table of up to 16 segment ID’s and their
base addresses. Any DRAM address in the display list is ‘physical-ized’
using this table.

The RDP only uses physical addresses, and one of the chores of the RSP is to
do the address translation necessary for the RDP.

Note: By convention, segment table entry 0 is reserved for physical
addressing, and should be set to 0x0.

The RSP software can only access DMEM. All data must first be transferred
into DMEM using DMA operations, which must be 64-bit aligned.
Invocation of the DMA engine is handled by the RSP software, but the
application programmer needs to be aware of the boundary requirements.
Any data structure that is to be passed to the RSP must be aligned to a 64-bit
boundary. The structures in gbi.h use C unions to guarantee this.

Since the DMA engine is shared between the R4300 and the RSP, the
application program should also avoid unnecessary DMA activity while the
RSP is running.

Interaction Between the RSP and R4300 Memory Caching

The most prevalent example of communication between the CPU and the
RSP is that of the CPU creating a display list in DRAM for eventual
interpretation by the RSP. The display list data is read from DRAM via a
DMA mechanism. Unfortunately, DRAM locations may be “stale” with
respect to newer data being held in the R4300’s data cache. The R4300 cache
mechanism implements a “write-back” caching policy which means
individual stores to memory are not immediately written to memory. To
update the memory contents with more recent cached data, the CPU must
first write back cached data to the DRAM. Then, and only then, will the RSP
be able to DMA the correct data for display list processing.

Conversely, the contents of memory may be more recent than cached data in
some situations when the RSP modifies memory (an obvious example is
updating the color frame buffer). In this case, the CPU’s cache may contain
stale data and the CPU should invalidate the cached data to force an access
directly to DRAM and get the most recent data.
139

NINTENDO 64 PROGRAMMING MANUAL DRAFT
As a practical note, this second scenario only arises in advanced
applications.
140

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
Display List Processing

Understanding the basics of the RSP display list processing is necessary to
construct efficient, compact display lists for an application.

The display list (or command list) can be thought of as a hierarchical
structure, up to 10 levels deep. A display list may contain a pointer to
another display list, and so on. The RSP processes the display list using a
stack, pushing and popping the current display list pointer.

For animation, it will be desirable to “double-buffer” parts of the display list;
rendering one frame while the data for the next frame is updated. In this
case, only the minimum amount of data need be duplicated; only the data
which will change for each frame. Swapping between doubled buffers is
efficiently done by changing the segment base addresses (and organizing
your display list appropriately).

During computation by the RSP, all display lists and their data must remain
in the same location until the RSP is finished. This sounds obvious, but is a
very common bug, usually the result of incorrect usage of double-buffering
techniques. In addition, if the RSP task is interrupted (see “Signal Processor
(SP) Functions” on page 109), all of the data must remain in the same
location when/if the task is restarted

Connecting Display Lists

Hierarchical display list connection can be made with the gsSPDisplayList()
macro. The current display list location is pushed on the display list stack
and processing begins with the new display list.

Table 12-1 gsSPDisplayList(Gfx *dl)

Parameter Values

dl pointer to the display list to attach.
141

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Branching Display Lists

A display list branch without a push allows you to “chain” together
fragments of display lists for more efficient memory utilization.

Table 12-2 gsSPBranchList(Gfx *dl)

Ending Display Lists

All display lists must terminate with an “end” command.

Table 12-3 gsSPEndDisplayList(void)

A Few Words about Optimal Display Lists

The display list processor running on the RSP caches display list commands
in groups of about 32. This means the optimal display list size is a multiple
of 32. A display list of 33 commands (or 65, etc.) would require the display
list cache to be refilled during processing, possibly causing a wait state
(depending on the DMA engine activity). Obviously not all display lists can
keep the list processor running 100% optimally, but it is something to keep
in mind when tuning your application.

Another form of display lists which cause less than optimal processing are
display lists that look like this:

Parameter Values

dl pointer to the display list to attach.

Parameter Values

 none none
142

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
Since the display list engine is stack-based, a display list that has lots of
unnecessary indirect pointers will cause lots of unnecessary pushes and
pops, which do have a cost.

Constructs like this are unavoidable sometimes, like when sharing
geometries among objects, but if you have a choice try not to group indirect
display list pointers together.
143

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Matrix State

The “geometry engine” in the RSP implements a fixed-point matrix engine
with the following matrix state:

A 10-deep modeling matrix stack. New matrices can be loaded onto the
stack, multiplied with the top of the stack, popped off of the stack, etc. This
matrix stack is primarily used for manipulating objects within the world
coordinate system (often combinations of rotations, translations, and
sometimes scales).

A 1-deep projection and viewing matrix “stack”. New matrices can be
loaded onto the stack, multiplied with the top of the stack, but cannot be
pushed or popped. This matrix “stack” is primarily used for the projection
matrix and the viewing matrix. The projection matrix (often created with the
guPerspective or the guOrtho functions) is loaded onto the stack, and then
the viewing matrix (often created with the guLookAt function) is multiplied
on top of it.

A “perspective normalization” factor. This is used to improve precision of
the fixed-point perspective computation.

When a group of vertices is loaded, they are first transformed by the matrix
MP (the current top of the modeling stack multiplied by the projection
matrix). All vertex transformations are done only when they are loaded;
sending a new matrix down later will not change any points already in the
points buffer.

The modeling matrix stack resides in DRAM. It is the application’s
responsibility to allocate enough memory for this stack and provide a
pointer to this stack area in the task list.

The format of a matrix is a bit unusual. It is optimized for the RSP’s vector
unit (used during the multiplies and transformations.) This format groups
all of the integer parts of the elements, followed by all of the fractional parts
of the elements. This unusual format is not exposed to the user, unless
he/she chooses not to use the matrix utilities in the libraries.
144

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
Insert a Matrix

Inserts a new matrix into the display list.

Table 12-4 gsSPMatrix(Mtx *m, unsigned int p)

Pop a Matrix

This command pops the matrix stack.

Table 12-5 gsSPPopMatrix(unsigned int n)

Perspective Normalization

This scale value is used to scale the transformed w coordinate down, prior
to dividing out w to compute the screen coordinates (which are similarly
scaled). The effect of this is to maximize the precision of this divide.

Parameter Values

 m

p

 pointer to the new matrix.

G_MTX_MODELVIEW or G_MTX_PROJECTION,

G_MTX_MUL or G_MTX_LOAD,

G_MTX_PUSH or G_MTX_NOPUSH

Parameter Values

 n unused
145

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The library function guPerspective() returns one approximation for this
scale value, which is a good estimate for most cases:

Figure 12-2 Perspective Normalization Calculation

Note on Coordinate Systems and Big Numbers

The RSP is a fixed point machine, so keeping coordinate systems within a
certain range is important. If numbers in the final coordinate system (or
intermediate coordinate systems) are too big, then the geometry of objects
can be distorted, textures can shift erratically, and clipping can fail to work
correctly. In order to avoid these problems keep the following notes in
mind:

1) No coordinate componant (x, y, z, or w) should ever be greater than
32767.0 or less than -32767.0

2) The difference between any 2 vertices of a triangle should not have
any componants greater than 32767.0

Table 12-6 gsSPPerspNormalize(unsigned short int s)

Parameter Values

 s 16-bit unsigned fractional perspective normalization scale.

near plane far plane

1
s
--- near far+

2
--------------------------------=

so s 2
near far+

--------------------------------= (represented as an unsigned 16-bit fraction)

This approximation normalizes w=1.0 halfway between the near
and far planes.
146

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
3) The sum of the difference of w’s of any 2 vertices plus the sum of the
differneces of any of the x, y, or z componants should be less than
32767.0. In other words for any 2 vertices in a triangle,
v1=(x1,y1,z1,w1), and v2=(x2,y2,z2,w2) , these should all be true:

abs(x1-x2) + abs(w1-w2) < 32767.0
abs(y1-y2) + abs(w1-w2) < 32767.0
abs(z1-z2) + abs(w1-w2) < 32767.0

One way to check this is to take the largest vertices that you have and run
them throught the largest matrices you are likely to have, then check to make
sure that these conditions are met.

A reccommended way of avoiding trouble is to never allow any componant
to get larger than 16383.0 or smaller than -16383.0. To ensure this find:

M = the largest componant (x, y, or z) of the largest model in your
database.

S = The largest scale (ie number in the upper 3 rows of the matrix) in
the matrix made up of the concatenation of the largest modeling matrix,
the largest LookAt matrix, and the largest Perspective matrix you will
use.

T = the largest translation (ie number in the 4th row of the matrix) in
the
matrix made up of the concatenation of the largest modeling matrix, the
largest LookAt matrix, and the largest Perspective matrix you will use.

Now M * S + T < 16383.0 should be true. If you experience textures
wobbling or shifting over a surface, clipping not working correctly, or
geometry behaving erratically, this is a good place to check.

A Few Words About Matrix Precision

The RSP uses fixed-point 32-bit multiplies during matrix operations. Since
the product of two 32-bit numbers is a 64-bit number, only the middle 32 bits
of the answer is retained. Overflow of intermediate terms is possible,
especially in large coordinate systems or unusual projection matrices.
147

NINTENDO 64 PROGRAMMING MANUAL DRAFT
In order to avoid fixed-point precision problems, in some cases it may be
desirable to compute the matrix in floating point on the R4300 and just load
it.

Matrix multiplies are very fast on the RSP, but they are not free. If possible,
reduce matrix operations by pre-multiplying the matrices at modeling time
or compile time.
148

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
Vertex State

The RSP state includes a vertex buffer, holding up to 16 vertices. This buffer
can be loaded with any number of consecutive vertices, beginning at any
location.

Table 12-7 gsSPVertex(Vtx *v, unsigned int n, unsigned int v0)

At the time the vertices are loaded, they are transformed by the current
matrix state and possibly shaded by the current lighting state.

Vertices are not re-transformed again, if the matrix state changes, the old
(previously-transformed) vertices are not affected. This feature can be
exploited to construct data that is knit together between two groups of
points with different transformations (such as an elbow joint of a character).

Since the vertex processing is heavily vectorized and pipelined, it is
important that each load loads as many vertices as possible.

Since the vertex loading is a relatively slow operation, it is also important
that any triangles that share vertices be rendered using the same vertex state,
rather than re-loading these same vertices later.

See the “Note on Coordinate Systems and Big Numbers” on page 146 for
info on keeping your coordinates from becoming too big.

Parameter Values

 v

n

v0

 pointer to a list of vertices.

number of vertices

vertex buffer location to load vertices into.
149

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Texture State

The following command sets the RSP texture state:

Table 12-8 gsSPTexture(int s, int t, int levels, int tile, int on)

As explained previously, a vertex’s s and t coordinates are texel-space
coordinates in a S10.5 format. The texture coordinate usually ranges from 0
to (texel_size - 1), possibly larger to implement “wrapped” textures. The
maximum number of times that a texture may be wrapped is limited by the
number of integer bits in this coordinate.

Since the s and t coordinate texture scale parameters are only fractional
numbers, they cannot represent values >= 1.0. For non-scaled textures,
applications typically use a vertex texture coordinate format of S9.6, and a
scale value of 0.5 (0x8000 in 16-bit unsigned format).

The levels parameter tells the pipeline the maximum number of mipmap
levels to use, if mip-mapping is enabled.

The tile parameter tells the pipeline which of the 8 possible tiles in the RCP
texture memory to use when texturing the following primitives

The on parameter turns texturing on or off in the RSP. If texturing is turned
off in the RSP, textured primitives will not be generated, regardless of the
RDP state.

Likewise, setting the RSP state is necessary, but not sufficient to generate
textured primitives. The RDP state must also be set in the appropriate
manner, see “TX: Texture Engine” on page 186.

Parameter Values

 s

t

levels

tile

on

s-coordinate texture scale (16-bit unsigned fraction)

t-coordinate texture scale (16-bit unsigned fraction)

(maximum number of mip-map levels) - 1

which tile in the TMEM

G_ON or G_OFF
150

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
Texturing is sensitive to large numbers and overflows. Refer to the
Note on Coordinate Systems and Big Numbers in the Matrix State
section for notes on how to avoid texturing problems such as textures
shifting across surfaces, textures tearing, and edges between polygons
becoming visible in the texture.
151

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Clipping and Culling

3D clipping is automatically enabled all the time. There are two modes
which can be adjusted for performance and appearance: ClipRatio and
NearClipping. See also “Scissoring” on page 184.

3D clipping is expensive and should be avoided. Methods employed by the
host application which can reduce the amount of geometry that gets clipped
are a good idea. Crude visibility determination algorithms, geometric
level-of-detail, and careful scene construction can help improve clipping
performance dramatically.

The clipping algorithm is sensitive to large numbers and overflows. Refer to
the Note on Coordinate Systems and Big Numbers in the Matrix State
section for notes on how to avoid clipping problems.

Clip Ratio

The Clip Ratio feature helps the application to clip less.

Generally (ie when ClipRatio is set to FRUSTRATIO_1) the RSP clips to the
clipping frustrum which is defined by the projection and viewing matrices
(often created using guPerspective and guLookAt respectively). This is the
area which is mapped by the gSPViewport command and usually
corresponds to the entire frame buffer. Objects outside this area are
scissored by the RDP, so clipping them is not neccessary. The ClipRatio
command can set the area which is clipped between 1 and 6 times the size of
the viewing frustrum. Polygons which are completely on the screen are
drawn without clipping. Polygons which are partially onscreen but
completely within the enlarged frustrum are drawn without clipping (the
extra portions are scissored away). Polygons which are entirely offscreen
are trivially rejected (whether they are inside or outsid the frustrum). The
only polygons which are clipped are the large polygons which stretch all the
way from onscreen to outside the enlarged clipping boundary. There is
some overhead for drawing sections of polygons which are then scissored
away, but it is much smaller than the time to draw actual onscreen pixels and
is usually faster than clipping. Different values of ClipRatio can be tried to
obtain the best performance. High values of ClipRatio are suspected to be
associated with “texture shuffle” bugs, so if you see the texture shuffling you
could try lower values of ClipRatio.
152

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
To set the ClipRatio so that the clipping frustrum is 3x the size of the screen:

 gsSPClipRatio(FRUSTRATIO_3),

You can use values of FRUSTRATIO_1, FRUSTRATIO_2, ...,
FRUSTRATIO_6

Near Clipping and gspF3DNoN microcode

3D clipping causes geometry which is outside of a 3D box called the
“clipping Frustrum” to be clipped away (ie not rendered). The left, right, top
and bottom of this clipping frustrum box correspond to the left, right, top,
and bottom of the screen. However the side facing towards the viewer and
the side facing away from the viewer do not correspond to physical parts of
the screen. The “far plane” is the side of the box farthest from the viewer.
Objects which are farther away than this plane are not rendered. Likewise
the “near plane” is the side of the box closest to the viewer. Objects which
are closer to the viewer than this plane are not rendered. The near and far
clipping planes can cause visual problems. Objects which get too far away
will suddenly dissappear as the cross the far clipping plane. Also, objects
which get too close to the viewer will suddenly dissappear as the cross the
near clipping plane.

There is a solution to these problems. The near plane problem can be
partially solved by using the gspF3DNoN microcode (which is an acronym
for Fast 3D No Near clipping). The gspF3DNoN microcode will not clip
objects between the viewer and the near clipping plane (objects which
would have been clipped away by the gspFast3D microcode). However, Z
buffering will not work correctly in this area. Objects between the viewer
and the near plane will hide objects which are behind the near plane, but
objects between the viewer and the near plane will not correcly hide other
objects between the viewer and the near plane. For this reason it is
important for the application to ensure that only one object at a time comes
closer to the viewer than the near plane.

There is a solution to the far plane problem too. Objects which get farther
away from the viewer than the far plane visually “pop” out of view, and
objects approaching the viewer “pop” into view. The Fog effect can be used
to make objects gradually fade into a distant fog, or slowly appear through
a distant fog, instead of popping into and out of view. See the Vertex Fog
State section for details.
153

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Back-Face Polygon Culling

The geometry engine of the RSP implements a flexible polygon culling
algorithm; either the front-facing, the back-facing, neither, or both types of
polygons can be culled before rasterization.

This offers the programmer the most database flexibility. Geometry can be
ordered in any direction or re-used with different culling flags in order to
achieve effects such as interior surfaces, 2-sided polygons, etc..

Table 12-9 gsSPSetGeometryMode(unsigned int n)

Table 12-10 gsSPClearGeometryMode(unsigned int n)

Volume Culling

The RCP can perform volume culling. The volume of an object is described
to the RCP and the RCP only draws the object if the described volume is
entirely or partially onscreen. If the volume is entirely offscreen then the
display list is quickly skipped.

The volume of an object is described with a number of vertices surrounding
the object. The vertices may be part of the object or not. They can be 4
vertices describing a pyramidal volume, 8 points describing a cube, or any
other convex shape. These vertices should be sent to the RCP using a
gSPVertex command just like regular vertices (note: you may want to turn
lighting and fog off when these vertices are sent for better performance).
Then the gsSPCullDisplayList command is sent. If the volume is entirely off
the screen then the command acts like gsSPEndDisplayList and the rest of

Parameter Values

 n G_CULL_FRONT

G_CULL_BACK

G_CULL_BOTH

Parameter Values

 n G_CULL_FRONT

G_CULL_BACK

G_CULL_BOTH
154

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
the display list is skipped. Otherwise the command acts as a NOOP and the
display list processing continues.
155

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Vertex Lighting State

The RCP graphics pipeline provides a number of sophisticated real-time
lighting effects, including ambient (uniform) lighting, diffuse (directional)
lights, specular highlights, and automatic texture coordinate generation (fog
is discussed in its own section later). To achieve these effects and perform
the lighting operations, the following steps must be carried out:

1) Reference the gspFast3D microcode in the “spec” file.

2) Replace colors with normal components in the vertices of objects to
be rendered.

3) Define light structures with the parameters of the directional and
ambient lights and send them to the RCP.

4) Modify the state of the RCP to “turn on” lighting.

5) Define a texture map of the shape of the specular highlights to be
used and describe them to the RCP.

6) Define structures with the parameters of specular highlights and
send them to the RCP.

7) Render the objects.

Steps 1), 2), 3), 4), and 7) are required for diffuse and ambient lighting. All
steps are required for specular lighting. These steps are described in further
detail below.

RSP Microcode

Lighting requires the gspFast3D or gspF3DNoN microcode. This microcode
must be referenced in the “spec” file when the rom image is created. The part
of the microcode that performs the lighting calculations is not normally
resident, but is brought in through an overlay when lighting calls are made.
This has performance implications for rendering scenes with some objects
lighted and others colored statically. Moreover, the lighting overlay
overwrites the clipping microcode, so to achieve highest performance, it is
best to minimize or avoid completely clipped objects in lighted scenes.
156

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
Normal Vector Normalization

To light an object, the vertices which make up the object must have normals
instead of colors specified. The normal consists of 3 signed 8-bit numbers
representing the x, y, and z components of the normal. Each component
ranges in value from -128 to +127. The x component goes in the position of
the red color of the vertex, the y into the green, and the z into the blue. Alpha
remains unchanged. The normal vector must be normalized. This means
that square_root(x*x + y*y + z*z)== 127. To normalize the normal (x,y,z)
determine d=127/square_root(x*x + y*y + z*z). Then form XN=x*d;
YN=y*d; ZN=z*d. The normalized normal vector is (XN,YN,ZN). (Note the
libultra/gu square_root function is sqrtf().)

Ambient and Directional Lighting

Lighting helps achieve the effect of depth by altering the way objects appear
as they change their orientation. The RSP microcode supports up to 7
directional lights and 1 ambient light in a scene. Each directional light has a
direction and a color. Ambient lights have color only. Regardless of the
orientation of the object and the viewer, each directional light will continue
to shine in the same direction (relative to the “world”) until the light
direction is changed. In addition, one ambient light provides uniform
illumination. Shadows are not explicitly supported.

Important note on Matrix Manipulation

It is important, when lighting, that the projection matrix and the viewing
matrix (ie matrices which describe the view into the world coordinate
system) be placed on the projection matrix stack(G_MTX_PROJECTION),
while matrices used to describe the position and orientation of objects within
the world coordinate system are placed on the modeling matrix stack
(G_MTX_MODELVIEW).

Light Structure Definition

Lighting information is passed to the RSP in light structures. Since the
number of diffuse lights can vary from 0 to 7, there are 8 macros used to
define lights: gdSPDefLights0, gdSPDefLights1, gdSPDefLights2, ... ,
gdSPDefLights7. The number which is the last character in the macro
157

NINTENDO 64 PROGRAMMING MANUAL DRAFT
signifies the number of diffuse lights in the scene. Correspondingly, the
number of diffuse lights to be rendered determines which macro to use in
defining the light structure. There is always one ambient light.

To define a light structure use gdSPDefLights# where # is the number of
diffuse lights to be turned on. For example, for 3 lights:

Lights3 light_structure1 = gdSPDefLights3(
 ambient_red, ambient_green, ambient_blue,
 light1red, light1green, light1blue,
 light1x, light1y, light1z,
 light2red, light2green, light2blue,
 light2x, light2y, light2z,
 light3red, light3green, light3blue,
 light3x, light3y, light3z);

will define a structure called light_structure1 with an ambient light and 3
directional lights. The variables with red, green, blue suffixes represent the
color of the light and take on values ranging from 0 to 255. The variables
with the x, y, z suffixes represent the direction of the light and take on the
range from -128 to +127. The light direction does not need to be normalized.
The convention is that the light direction points toward the light. This means
the light direction indicates the direction TO the light and NOT the direction
that the light is shining. Note the direction the light is shining is the negative
of the light direction. For example if the light is coming from the upper left
of the world, the direction might be x=-80, y=80, z=0. If this diffuse light is
green, and the ambient light is red, this structure would be defined by:

Lights1 my_light = gdSPDefLights1(
 /* ambient color red */
 255, 0, 0,
 /* green light from the upper left */
 0, 255, 0, -80, 80, 0);

To avoid any ambient light, make the ambient light black (0,0,0). To include
only ambient light, and no diffuse directional light, use gdSPDefLights0:

Lights0 my_ambient_only_light = gdSPDefLights0(
 /* blue ambient light */
 0, 0, 255);
158

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
Note on Light Direction

The light direction does not need to be normalized. However, there are
some problems that can arise from using light directions with magnitudes
that are too large or too small. The Light direction is multiplied times the
Modelview Matrix (actually the transpose of the model matrix). If the
Modelview matrix has a scale associated with it then the light direction
might overflow or underflow. If the Modelview matrix has a scale S
associated with it and the magnitude of the light direction is L then you
should ensure that

1 < L*S < 23040

in order to keep the light working consistantly. If L*S is too big then the
normalization of the lights will overflow and you will get lights that are too
bright. If L*S is too small then the nortmalization will underflow and you
will get lights that are too dim. Note the number 23040 comes from the
formula: (L/128)*S < sqrt(32768) because the result of the matrix multiply of
L (which is a s.7 number, thus the /128) times the matrix (thus S, the scale of
the matrix, which is an s15.16 matrix) must produce a number which can be
squared (thus the square root) to produce a number which is s.15 (up to
32768).

Lighting State Set Up

To activate a set of lights in a display list use the macros: gsSPSetLights0,
gsSPSetLights1, gsSPSetLights2, ... , gsSPSetLights7. For example, the
following macros would activate the lights defined in the examples above

gsSPSetLights3(light_structure1), or
gsSPSetLights1(my_light), or
gsSPSetLights0(my_ambient_only_light),

in a static display list. (To activate the lights in a display list dynamically the
corresponding gSPSetLights# macros would be used.) Once lights are
activated, they will remain on until the next set of lights is activated. This
implies that setting up a new structure of lights overwrites the old structure
of lights in the RSP.
159

NINTENDO 64 PROGRAMMING MANUAL DRAFT
To turn on the lighting computation so that the lights can take effect, the
lighting mode bit needs to be turned on. This is accomplished using the
macro:

gsSPSetGeometryMode(G_LIGHTING)

Object Rendering

Objects are rendered by issuing geometric primitive commands (see
Primitives section). The objects drawn will use lighted colors instead of
vertex colors. This means any color combiner mode will use lighted colors in
the combination operation in a manner exactly analogous to vertex color use
in non-lighted rendering. Note that lighting is performed at Vertex
processing time. Therefore it is important that lighting state be established
prior to gSPVertex and gsSPVertex commands describing vertices in a lit
primitive. Lighting state established between a gSPVertex command and a
gSP1Triangle command will have no effect on that triangle.

NOTE ON MATERIAL PROPERTIES

Material properties are not explicitly supported. Instead material colors and
light colors have been combined in the Light structure. To obtain the correct
light color in a particular situation, multiply the the color of the material
times the color of the light foreach light source and use the result as the lights
color. Since colors range from 0 to 255, the result will have to be normalized
by dividing by 255 in order to obtain a resulting light color in the 0 to 255
range. In other words, if your material color is (mr, mg, mb) and your light
is (lr,lg,lb), then the light color you would use would be (mr*lr/255,
mg*lg/255, mb*lb/255). For example to light a purple object
(color=255,0,255) with yellow ambient light (color=255,255,0) and cyan
directional light (color=0,255,255) you could use:

Lights1 material1_light = gdSPDefLights1(
 /* ambient color red = purple * yellow */
 255, 0, 0,
 /* blue directional light = purple * cyan */
 0, 0, 255, -80, -80, 0);

If you then want to change the material color (eg to light an object of
different color) you can define a 2nd Light structure with different light
colors but the same directions and send it to the RCP after the first object’s
160

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
vertices and before the second objects vertices. For example to light a second
object which is yellow (color=255,255,0) with the same yellow and cyan light
as above you could use:

Lights1 material2_light = gdSPDefLights1(
 /* ambient color yellow = yellow * yellow */
 255, 255, 0,
 /* green directional light = yellow * cyan */
 0, 255, 0, -80, -80, 0),

PERFORMANCE NOTE: the gsSPSetLights# macros incur a certain
overhead when they are called in order to recalculate the new position of the
light. If the colors of the lights are being altered but the directions will
remain the same you can use the gSPLight macro to send the new light
structure after the 1st primitives vertex command and before the second
primitive’s. Note that the directional lights are always referred to as lights
1-N (where N is the number of directional lights in the scene) and the
ambient light is always referred to as light N+1. For the example above, the
entire sequence would look like:

gsSPSetGeometryMode(G_LIGHTING),
gsSPSetLights3(material1_light),
gsSPVertex(/* define vertices for object 1 */);
/* render object 1 here */
gsSPLight(&material2_light.l[0], LIGHT_1),
gsSPLight(&material2_light.a, LIGHT_2),
gsSPVertex(/* define vertices for object 2 */);
/* render object 2 here */

Specular Highlights

A specular highlight is the bright spot that shiny objects exhibit when the
viewing direction lines up properly with a highly directional light source.It
is caused by the light from the light source being directly reflected into the
eye of the observer. A specular highlight appears on a shiny object wherever
the normal of the object bisects the angle between the direction of the light
and the direction of the eye. The gspFast3D microcode can support zero,
one, or two specular highlights on an object. If there are more than 2 lights
in a scene, a quite impressive specular highlight effect can still be achieved
by choosing the two most important lights and rendering the highlights
from them. Specular highlights use texture mapping so specular highlights
161

NINTENDO 64 PROGRAMMING MANUAL DRAFT
cannot usually be used with texture mapped surfaces. Specular highlighting
when combined with diffuse lighting (described above) can produce very
realistic looking surfaces. While specular highlighting is not required to be
on when diffuse lighting is on, diffuse lighting must be on when specular
lighting is on. However, the specular highlights do not neccessarily have to
correspond to the diffuse lights at all.

A specular highlight is basically a reflection of a light source. To render it on
the RCP requires a texture map of an image of the light. The specular
highlight from most lights can be represented by a round dot with an
exponential or gaussian function representing the intensity distribution. If
the scene contains highlights from other, oddly shaped lights such as
fluorescent tubes or glowing swords, the difficulty in rendering is no greater
provided a texture map of the highlight can be obtained. The center of the
image of the light should be in the center of the texture map and the texture
map must be a power of 2 in width and height. In general shinier objects
reflect smaller, sharper highlights. A dull object might have a large white
dot for a specular highlight whether it is lit by a glowing sphere or a flaming
sword. A shiny metallic object would reflect the sword as a picture of the
sword and the texture map used for highlighting different types of objects
can portray this difference. Note that many objects, such as human skin and
cloth, which reflect specular highlights to some extent, often can benefit
more from a regular texture map (eg hair on the body or a pattern on the
cloth. Since these materials are not shiny the texture mapping ability may be
better spent on a conventional textutre map.

Specular Highlight Structure Definition

Specular lighting information is passed to the RSP in structures, analogous
to the diffuse light case. The utility procedure guLookAtHilite fills in the
elements of 2 structures, Hilite and LookAt, for use in highlighting. To
accomplish this, the two structures must be part of the dynamic segment,
declared as

Hilite hilite;
LookAt lookat;

and guLookAtHilite must be called for each object in the following manner:

guLookAtHilite(&throw_away_matrix, &lookat, &hilite,
 Eyex, Eyey, Eyez,
162

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
 Objectx, Objecty, Objectz,
 Upx, Upy, Upz,
 light1x, light1y, light1z,
 light2x, light2y, light2z,
 tex_width, tex_height);

where the arguments in common with guLookAt have the same meaning.
Objectx, Objecty, and Objectz are the world coordinates of the center of the
object. light1x, light1y, and light1z are the direction of the light which is
reflected in the 1st highlight (should be the same as the direction specified in
the gdSPDefLights# macro). light2x, light2y, and light2z are the direction of
the light which causes the second highlight (if you are only using one
highlight these may be zero). tex_width and tex_height are the size of the
texture to be used for the highlight and must be powers of 2.

The information in the LookAt structure is sent to the RSP with the LookAt
macro:

gsSPLookAt(&lookat),

Texture Loading

The texture for the highlights must be loaded with gsDPLoadTextureBlock
or similar loadblock command. For example, the following call loads a
tex_width by tex_height 4-bit intensity texture:

gsDPLoadTextureBlock_4b(hilight_texture, G_IM_FMT_I,
 tex_width, tex_height, 0,
 G_TX_WRAP | G_TX_NOMIRROR,
 G_TX_WRAP | G_TX_NOMIRROR,
 tex_width_power2,
 tex_height_power2,
 G_TX_NOLOD, G_TX_NOLOD),

where tex_width_power2, tex_height_power2 are the logarithms to the base
2 of the texture width and height. Note that wrapping must be turned on,
and the texture sizes must be a power of 2 for proper operation. The texture
loadblock macro sets a texture tile with the parameters necessary for
rendering one texture, and thereby one of the specular highlights. Setting a
second texture tile with the parameters for rendering a second specular
highlight can be done by loading another texture, but generally the same
texture can be used for both highlights. Instead, setting up a second tile if the
163

NINTENDO 64 PROGRAMMING MANUAL DRAFT
specular highlights are sharing one texture map can be accomplished with a
set tile call. The example following assumes the same 4 bit intensity texture
as used for the first highlight:

gsDPSetTile(G_IM_FMT_I, G_IM_SIZ_4b,
 ((tex_width/2)+7)>>3,
 0, G_TX_RENDERTILE+1, 0,
 G_TX_WRAP | G_TX_NOMIRROR,
 tex_width_power2, G_TX_NOLOD,
 G_TX_WRAP | G_TX_NOMIRROR,
 tex_height_power2, G_TX_NOLOD),

Texture Coordinate Transformations

Specular highlighting utilizes the projection of the vertex normals in the x
and y directions in screen space to derive the s and t indices respectively for
referencing the texture. The normals must be normalized as described
above. The normal projections are scaled to obtain the actual s and t values
for the reference. The scaling is applied in the RSP. It maps the negative most
projection of a unit normal, or -1, into zero. It maps the positive most
projection, or +1, into a scale value passed in through the gsSPTexture
command. Suppose the maximum texture s, t coordinates are tex_s_max and
tex_t_max. The following command sets the scale, so that a normal project
of +1 in the x direction in screen space will be mapped with the texel with s
coordinate tex_s_max:

gsSPTexture((tex_s_max)<<6, (tex_t_max)<<6, 0,
 G_TX_RENDERTILE, G_ON),

The left shift of argument by 6 bits is done to account for the S10.5 16-bit
internal representation of the texture coordinates (see Texture State below)
and a multiplication by one-half in the microcode.

Highlight Position Description

After the texture is loaded, the highlight position information must be sent
to the RSP. This information is contained in the Hilite structure, and is sent
to the RSP with the following macros:

gsDPSetHilite1Tile(G_TX_RENDERTILE,&hilite,
 tex_width, tex_height),
gsDPSetHilite2Tile(G_TX_RENDERTILE+1,&hilite,
164

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
 tex_width, tex_height),

where both highlights share the same texture.

Lighting State Set Up

Specular highlighting requires the lighting and texture generation mode bits
to be turned on using the macro:

gsSPSetGeometryMode(G_LIGHTING | G_TEXTURE_GEN),

Object Rendering

As with diffuse lighting, objects are rendered by issuing geometric primitive
commands (see Primitives section). For two specular highlights, the 2 cycle
mode can be used, with a cycle devoted to each highlight. In addition, since
each highlight can have a different color, two registers are needed to hold
the colors for combining. The Primitive Color register holds the first
highlight’s color and the Environment register holds the second highlight’s
color. As an example, the following calls:

gsDPSetCycleType(G_CYC_2CYCLE),
gsDPSetEnvColor(0, 255, 255, 255), /* cyan */
gsDPSetPrimColor(0, 0, 255, 255, 0, 255), /* yellow */
gsDPSetRenderMode(G_RM_PASS, G_RM_AA_ZB_OPA_SURF2),
gsDPSetCombineMode(G_CC_HILITERGBA, G_CC_HILITERGBA2),

set up rendering of a cyan and an yellow highlight in opaque z-buffered
antialiased mode. Note that for most materials the highlight color is the same
as the light’s color, in contrast to the diffuse light case where the resultant
color is often affected by the color of the object it is striking (although
metallic objects like gold and brass usually have material-colored
highlights).

Reflection Mapping

Reflection mapping maps a texture onto an object using the normals of the
object to specify where on the object the texture will be mapped. If this
texture is an image of the surroundings of the object, then this rendering will
make the object appear to reflect its surroundings. This effect simulates the
165

NINTENDO 64 PROGRAMMING MANUAL DRAFT
rendering of objects made of chrome or having a highly reflecting,
mirror-like surface.

Structure Definition

As with diffuse and specular lighting, information for reflection mapping is
passed to the RSP in a structure. The utility procedure guLookAtReflect fills
in the elements of a LookAt structure for use in reflection mapping. To
accomplish this, the structure must be part of the dynamic segment,
declared as

 LookAt lookat;

and guLookAtReflect must be called for each object in the following manner:

 guLookAtReflect(&throw_away_matrix, &lookat,
 Eyex, Eyey, Eyez,
 Objectx, Objecty, Objectz,
 Upx, Upy, Upz);

where the arguments in common with guLookAt have the same meaning.
Objectx, Objecty, and Objectz are the world coordinates of the center of the
object.

The LookAt structure contains information about the orientation of the
object relative to the viewing direction. This information is sent to the RSP
with the LookAt macro:

 gsSPLookAt(&lookat)

Texture Loading

The texture for reflection mapping must be loaded with a loadblock
command such as gsDPLoadTextureBlock, described in the example above.
As in the specular highlighting case, wrapping must be turned on, and the
texture sizes must be a power of 2 for proper operation.

Texture Coordinate Transformations

Reflection mapping utilizes the projection of the vertex normals in the x and
y directions in screen space to derive the s and t indices respectively for
166

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
referencing the texture. The normals must be normalized as described
above. The normal projections are scaled to obtain the actual s and t values
for the reference. The scaling is applied in the RSP. It maps the negative most
projection of a unit normal, or -1, into zero. It maps the positive most
projection, or +1, into a scale value passed in through the gsSPTexture
command. Suppose the maximum texture s, t coordinates are tex_s_max and
tex_t_max. The following command sets the scale, so that a normal project
of +1 in the x direction in screen space will be mapped with the texel with s
coordinate tex_s_max:

 gsSPTexture((tex_s_max)<<6, (tex_t_max)<<6, 0,
 G_TX_RENDERTILE, G_ON),

The left shift of argument by 5 bits is done to account for the S10.5 16-bit
internal representation of the texture coordinates (see Texture State below)
after a multiplication by one-half in the microcode.

The texture coordinate transformation depends on the geometry mode of
the RSP. Two modes are supported, regular and linear.

The first mode (regular) derives the texture coordinates from the x and y
projection values, multiplied by the above mentioned scale. In this mode
the S coordinate represents the x componant in world coordinates of the
direction from the object to the point which should be reflected. The T
coordinate represents the Y componant. This means that your texture map
should represent the following mapping: 1) The center of the texture map is
what is directly behing you. 2) The circle inscribed in the texture map
boundaries is what is directly in front of you. 3) The circle with a radius of
0.707 times the radius of the circle in 2) is the objects directly to your left,
right, up, down, etc. 4) other points map respectively.

The second mode (linear) derives the texture coordinates from the inverse
cosine of the x and y projection values, multiplied by the scale. In this mode
the S coordinate is the angle of the direction of the reflected vector in the XZ
plane. The T coordinate is the angle of the direction in the YZ plane. This
mode is useful because you can use a panoramic picture of the horizon for
your texture map. The center og the texture map should be the horizon
directly behind you. The extremes of the texture map to the left and right
should be the horizon in the direction which is directly in front of you. The
top of the panoramic texture map should be a constant sky color, and the
bottom a constant ground color. When the yaw of the viewing angle
167

NINTENDO 64 PROGRAMMING MANUAL DRAFT
changes it is a simple matter to adjust the S position of the texture map so
that the new “directly behind” position is the new center of the texture map.

Reflection mapping requires the lighting and texture generation mode bits
to be turned on. The first mode (regular) is set using the macro

gsSPSetGeometryMode(G_LIGHTING | G_TEXTURE_GEN),

while the second mode (linear) is set with

gsSPSetGeometryMode(G_LIGHTING| G_TEXTURE_GEN|
G_TEXTURE_GEN_LINEAR),

Compatibility with Specular Highlighting

Reflection mapping uses texture mapping so it cannot be used with objects
which are otherwise texture mapped. However, reflection mapping can be
used in conjunction with one specular highlight. This is analogous to
rendering two specular highlights, and utilizes the 2 cycle mode. The
specular highlight texture is set for a second tile and accessed in the second
cycle. Alternatively, specular highlights can be combined with reflection
mapping by incorporating the specular highlights (as bright dots) into the
reflection map texture wherever the lights are located. This technique
permits an unlimited number of specular highlights.

Environment Mapping

Reflection mapping provides a simple means for carrying out environment
mapping. The texture map needs to be an image of the environment as seen
from the “viewpoint” of the reflecting object. The main difficulty with this
procedure is, of course, generating a suitably realistic texture map.

One simple, yet effective, way to generate an environment map is to first
render the scene as viewed by the object. Render all the objects in the scene
using a viewing matrix obtained from a guLookAt call where the Eyex,
Eyey,Eyez is at the center of the object and Atx, Aty, Atz is at the eyepoint.
Render this scene into a 16 bit, 32 pixel x 32 pixel framebuffer which is not
part of the main framebuffer. Then re-render the entire scene into the main
framebuffer using the previously rendered 32x32 pixel texture map as an
environment map for the reflective object. Larger texture maps can be used
by playing with tiling. This is not a mathematically perfect way to generate
168

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
an environment map. but it is relatively cheep, and very effective. Try using
different aperature angles in the perspective call while rendering the texture
map and turning G_TEXTURE_GEN_LINEAR on or off to tweak the effect.
169

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Vertex Fog State

Fog alters the color of objects based on their distance from the eye position.
Fog can be used to make objects blend into the background color as they get
farther away. One problem which can be fixed by fog is that when an object
goes beyond the far clipping boundary and is clipped away it suddenly
dissapears. If fog is enabled the object can be made to look more and more
like the background color until, when the object reaches the far clipping
plane, the object is exactly the same color as the background and no one
notices when it dissappears.

The use of fog requires that the following steps be taken:

 1) run in two cycle mode.

 2) Set the render mode to blend the fog color with the primitive color.

 3) Set the fog position.

 4) Enable fog.

 5) Set the Fog Color.

For example:

/* 2 cycle mode */
gsDPSetCycleType(G_CYC_2CYCLE),
/* blend fog in AA ZB mode */
gsDPSetRenderMode(G_RM_FOG_SHADE_A,G_RM_AA_ZB_OPA_SURF2),
/* set fog position and enable fog */
gsSPFogPosition(FOG_MIN, FOG_MAX)
gsSPSetGeometryMode(G_FOG),
/* set the fog color */
gsDPSetFogColor(RED,GREEN,BLUE, ALPHA),

FOG_MIN specifies the position where fog begins and FOG_MAX
represents where fog is thickest. Both values are integers and are mapped
linearly such that 0={at the near clipping plane}, and 1000={at the far
clipping plane}. FOG_MAX is generally set to 1000 so that objects are
completely “fogged out” when they hit the far plane, but not before then.
FOG_MIN is set to the position where fog starts. A value of 0 will make the
object slowly change to fog color as it retreats from the viewer, while a larger
170

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
value (eg 800) will make the object clearly visible until it gets 80% of the way
to the far plane where it will finally begin to “fog out.” Note that
perspective makes distant objects look *much* farther away than nearby
objects. Because of this some objects which don’t appear to be very far away
may be more affected by fog than expected even though the FOG_MIN
value is fairly high. To remedy this problem simply increase the FOG_MIN
value until you get the desired effect. For example if you set FOG_MIN to
500, but objects which are about midway between the far and near planes
look foggier than they should, just increase the value of FOG_MIN until they
look better.

Fog works well when the horizon is a constant color (the same as the fog
color). When the horizon color is complicated (eg clouds, gradient colors,
etc), you can make objects become transparent when they are distant. To do
this don’t set the G_RM_FOG_SHADE_A render mode or the Fog color. Just
enable fog, use a transparent render mode, and swap FOG_MAX and
FOG_MIN. FOG_MIN should be set to 1000 to make the object completely
transparent when it is at the far clipping plane. FOG_MAX should be a large
enough value that fog has no effect until the object is farther away than any
other objects are likely to be (ie beyond mountains and other terrain, etc.).
Because transparency is used, the z-buffer will not keep things behind the
transparent-fogged object from being hidden, so it should only be enabled
for objects which are already fairly far from the viewer. This special
transparent-fog mode should be used with caution (as compared with the
regular fog effect described in the preceding paragraphs which should work
consistantly).

Fog is independant of lighting and texture mapping so it may be used in
conjunction with any, all, or none of these other effects.
171

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Primitives

Availability of different geometry primitives depends on the version of the
RSP microcode which has been loaded for execution.

Triangles

Table 12-11 gsSP1Triangle(int v0, int v1, int v2, int flag)

Other bits of the flag field are currently reserved.

Lines

Table 12-12 gsSPLine3D(int v0, int v1, int flag)

Lines are only available when running the line microcode. All the normal
vertex attributes (color, texture, z) are also available for lines. Lines however
require separate rdp rendermodes to be set than for polygons. Consult the
man pages for more details. Z-buffered lines will only do reads of the
z-buffer, and not writes. Thus z-buffered lines should be drawn after
z-buffered polygons.

Rectangles

All rectangles are 2D primitives, specified in screen-coordinates. They are
not clipped, but they are scissored in a limited fashion. In 1CYCLE and

Parameter Values

 v0

v1

v2

flag

 vertex buffer index of the first coordinate. (0-15)

vertex buffer index of the second coordinate. (0-15)

vertex buffer index of the third coordinate. (0-15)

used for flat shading; ordinal id of the vertex parameter to use for
shading: 0, 1, or 2

Parameter Values

 v0

v1

flag

 vertex buffer index of the first coordinate. (0-15)

vertex buffer index of the second coordinate. (0-15)

unused (should be 0)
172

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
2CYCLE mode, rectangles are scissored in the same way as triangles. In
COPY and FILL modes, rectangles are scissored to four pixel boundaries;
meaning that additional scissoring may be necessary in the application
program.

Filled rectangles are implemented entirely in the RDP, as “pass-through”
commands with respect to the RSP. They are mentioned here for
completeness:

Table 12-13 gsDPFillRectangle(unsigned int ulx, unsigned int uly, unsigned int lrx,
unsigned int lry)

Textured rectangles require minimal RSP intervention, and are thus an SP
operation:

Table 12-14 gsSPTextureRectangle(unsigned int ulx, unsigned int uly, unsigned int
lrx, unsigned int lry, int tile, short int s, short int t, short int dsdx, short
int dtdy)

There is a related macro, gsSPTextureRectangleFlip(), that is identical to
gsSPTextureRectangle(), except that the texture is flipped so that the s

Parameter Values

 ulx

uly

lrx

lry

 screen coordinate of upper-left x (10.2 format)

screen coordinate of upper-left y (10.2 format)

screen coordinate of lower-right x (10.2 format)

screen coordinate of lower-right y (10.2 format)

Parameter Values

 ulx

uly

lrx

lry

tile

s

t

dsdx

dtdy

 screen coordinate of upper-left x (10.2 format)

screen coordinate of upper-left y (10.2 format)

screen coordinate of lower-right x (10.2 format)

screen coordinate of lower-right y (10.2 format)

which tile in TMEM to use

s coordinate of upper-left corner (S10.5 format)

t coordinate of upper-left corner (S10.5 format)

change in s per change in x coordinate (S5.10 format)

change in t per change in y coordinate (S5.10 format)
173

NINTENDO 64 PROGRAMMING MANUAL DRAFT
coordinate changes in the y direction, and the t coordinate changes in the x
direction:

Table 12-15 gsSPTextureRectangleFlip(unsigned int ulx, unsigned int uly, unsigned
int lrx, unsigned int lry, int tile, short int s, short int t, short int dtdx,
short int dsdy)

Parameter Values

 ulx

uly

lrx

lry

tile

s

t

dtdx

dsdy

 screen coordinate of upper-left x (10.2 format)

screen coordinate of upper-left y (10.2 format)

screen coordinate of lower-right x (10.2 format)

screen coordinate of lower-right y (10.2 format)

which tile in TMEM to use

s coordinate of upper-left corner (S10.5 format)

t coordinate of upper-left corner (S10.5 format)

change in t per change in x coordinate (S5.10 format)

change in s per change in y coordinate (S5.10 format)
174

NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
Controlling the RDP State

The RSP performs two functions to support programming the RDP:
segmented address fix-up and handling setothermode.

Segmented address fix-up. Since the RDP is a physical address machine, the
RSP must translate the segmented addresses present in the display list into
physical addresses for the RDP. It does so by filtering out any RDP
command with an address (the ‘set image’ commands) and patching the
address before passing it to the RDP.

The RDP setothermode register is a collection of state bits, affecting many
different functions of the RDP. In order to simplify programming the RDP
state, the RSP caches the SETOTHERMODE command, and presents a
simpler “set/clear” interface through the display list. See Chapter 13, “RDP
Programming” for more details of these macros.
175

NINTENDO 64 PROGRAMMING MANUAL DRAFT
176

NINTENDO DRAFT RDP PROGRAMMING
Chapter 13

13. RDP Programming

The Reality Display Processor (RDP) rasterizes triangles and rectangles, and
produces high-quality, Silicon Graphics style pixels that are textured,
antialiased, and z-buffered.

The RDP has four main configurations where all the individual blocks work
together to generate pixels. These main configurations are called “cycle
types,” because they indicate how many pixels are generated per cycle. The
following table indicates their peak performance. Keep in mind that these
peak numbers are typically realized on large rectangle primitives. Triangles
have variable short and long spans and these numbers degrade rapidly. The
following table

Table 13-1Cycle Types

lists the RDP’s performance.

Note: These are theoritical peak performances. In reality, due the memory
latency and buffering overhead, actual performance numbers are lower.

Type Performance

FILL 4 16 bit pixels/cycle

2 32 bit pixels/cycle

COPY 4 pixels/cycle

1CYCLE 1 pixel/cycle

2CYCLE 1 pixel/2 cycles
175

NINTENDO 64 PROGRAMMING MANUAL DRAFT
RDP Pipeline Blocks

The RSP performs 3D geometric transformations while the RDP pipeline
rasterizes the polygon. The RDP consist of several pipeline subblocks. There
are six major logical RDP blocks: the RS, TX, TF, CC, BL, and MI. The
connections between these blocks can be reconfigured to the four cycle types
listed in Table 13-1, to perform different rasterization operations.

Table 13-2Basic Operations of RDP Subblocks

Note: The six RDP blocks (RS, TX, TF, CC, BL, and MI) are purely logical
blocks. For example, the hardware implementation of RS consist of several
blocks. However, for programming, each can be treated as a single logical
block.

Block Functionality

RS The RaSterizer generates pixel coordinates and their attributes’
slopes. Pixel coordinates consist of X and Y. Attributes consist of
R, G, B, A, Z, S/W, T/W, 1/W, L, pixel coverage.

TX The TeXturing unit contains texture memory and samples the
texture, based on which texel represents the pixel being
processed in the pipeline.

TF The Texture Filter performs a 4-to-1 bilinear filter of 4 texel
samples to produce a single bilinear filtered texel.

CC The Color Combiner performs general blending of color sources
by linearly interpolating between two colors with a coefficient.
For example, it may take the filtered texel samples and the
shading color (RGBA) and combine them together.

BL The BLender blends the pipeline-processed pixels with the pixels
in the framebuffer. The blender can do transparencies and also
sophisticated antialiasing operations.

MI The Memory Interface performs the actual read/modify/write
cycles to and from the framebuffer.
176

NINTENDO DRAFT RDP PROGRAMMING
One-Cycle-per-Pixel Mode

The pipeline configuration illustrated in Figure 13-1 shows how the RDP
blocks are connected in one-cycle-per-pixel mode.

Figure 13-1 One-Cycle Mode RDP Pipeline Configuration

One-cycle mode fills a fairly high-quality pixel. You can generate pixels that
are perspectively corrected, bilinear filtered, modulate/decal textured,
transparent, and z-buffered, at one-cycle-per-pixel peak bandwidth.

Table 13-3RDP Pipeline Block Functionality in One-Cycle Mode

Block Functionality

RS Generates pixel and its attribute covered by the interior of the
primitive.

TX Generates 4 texels nearest to this pixel in a texture map.

TF Bilinear filters 4 texels into 1 texel,

OR performs step 1 of YUV-to-RGB conversion.

CC Combines various colors into a single color,

OR performs step 2 of YUV-to-RGB conversion.

BL Blends the pixel with framebuffer memory pixel,

OR fogs the pixel for writing to framebuffer.

MI Fetches and writes pixels from and to the framebuffer memory.

RS TX TF CC BL MI

Rasterizer Per-Pixel Operators

texture maps
in dram

fr
am

eb
uf

fe
r

in
 D

R
A

M

177

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Note: Reaching peak bandwidth is difficult. The framebuffer memory is
organized in row order. In small triangles, it is rare to have long horizontal
runs of pixels on a single scanline. In these cases, the pipeline is often stalled,
pending memory access for read or write cycles.

Two-Cycles-per-Pixel Mode

The RDP blocks can be reconfigured into a two-cycle-per-pixel pipeline
structure for additional functionality. Figure 13-2 shows the RDP pipeline in
2-cycle mode where one pixel is generated every 2 clocks.

Figure 13-2 Two Cycle Mode RDP Pipeline configuration

Table 13-4RDP Pipeline Block Functionality for Two-Cycle Mode

Block Functionality

RS Generates a pixel and its attribute covered by the interior of the
primitive.

TX0 Generates 4 texels nearest to this pixel in a texture map. This can
be level X of a mipmap.

TX1 Generates 4 texels nearest to this pixel in a texture map. This can
be level X+1 of a mipmap.

TF0 Bilinear; filters 4 texels into 1 texel.

RS

Rasterizer Per-Pixel Operators

TX0 TF0

TX1

CC0

TF1

CC1 BL0 BL1 MI0 MI1

texture maps
in dram

fb
178

NINTENDO DRAFT RDP PROGRAMMING
Two-cycles-per-pixel mode contains more features than one-cycl- per-pixel
mode. In addition to all of the features of one-cycle mode, two-cycle mode
can also do mipmapping and fog.

Note: MI0 and MI1 represent two cycles of the MI that access color and z
framebuffer cycles, respectively. This is only a logical representation. The MI
does not need to run two cycles to do color and z-buffer access. One cycle
per pixel mode can also perform color and z-buffer accesses. The reason for
this representation is to show that two MI access cycles are balanced in the
two-cycle mode. In one-cycle mode, the pipeline is often stalled at MI,
waiting for the framebuffer when accessing both color and z.

These RDP blocks are very flexible and can be configured to do many things.
Table 13-4 outlines the typical usage of these blocks for a powerful
rasterization pipeline. Study the following sections to understand what
attribute state is programmable within each RDP block to master the raster
subsystem.

TF1 Bilinear; filters 4 texels into 1 texel,

OR step 1 of YUV-to-RGB conversion.

CC0 Combines various colors into a single color,

OR linear interpolates the 2 bilinear filtered texels from 2
adjacent levels of a mipmap,

OR performs step 2 of YUV-to-RGB conversion.

CC1 Combines various colors into a single color,

OR chroma keying.

BL0 Combines fog color with resultant CC1 color.

BL1 Blends the pipeline pixels with framebuffer memory pixels.

MI0 Read/modify/write color memory.

MI1 Read/modify/write Z memory.

Table 13-4RDP Pipeline Block Functionality for Two-Cycle Mode

Block Functionality
179

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Fill Mode

For high-performance framebuffer clearing, the RDP has a fill mode, which
can fill 64 bits per clock. A programmable RDP color attribute is written into
the framebuffer during each 64-bit write cycle. The RDP arithmetic pipeline
is largely unused, because the computation can not keep up with the pixel
fill rate. The fill mode is most commonly used for clearing color and
z-buffers.

Note: In fill mode, use the render mode
g*DPSetRenderMode(G_RM_NOOP, G_RM_NOOP2) to put the blender
into a safe state. Attempting to read Z when in fill mode can cause the RDP
pipeline to hang.

Copy Mode

For high-performance image-to-image copies, RDP also supports a copy
mode that can copy 64 bits or 4 pixels per clock. The RDP texture memory in
the TX is just a buffer capable of holding up to 4 KB worth of image pixels.
You can load bitmaps into this buffer as well as writing back out to the
framebuffer. The is a common bit blit operation that many 2D graphics
hardware systems support. Once again, the RDP arithmetic pipeline is
largely unused in copy mode.

Note: One important operation that does work in copy mode is alpha
compare. This allows RDP to blit an image into the framebuffer and
conditionally remove image pixels with alpha = 0. Usually, images with
alpha = 0 represent transparency, see “Alpha Compare Calculation” on
page 315 for more details.

Note: In copy mode, use the render mode
g*DPSetRenderMode(G_RM_NOOP, G_RM_NOOP2) to put the blender
into a safe state.
180

NINTENDO DRAFT RDP PROGRAMMING
RDP Global State

Several state are global to the RDP, usually to specify pipeline configuration
and synchronization.

Cycle Type

To configure the pipeline for rendering, choose one of the cycle types that
offers the functionality required at peak performance.

Table 13-5gsDPSetCycleType(type)

Synchronization

You might ask “How does the primitive rendering pipeline synchronize
with all of the different attribute states that the programmer can set?”
Imagine that the last few pixels are being processed in the RDP pipeline
when it receives a new attribute command, and this command affects the
pixel currently being processed. You would not want the last few pixels of a
primitive to have the attributes of a following primitive. You really want to
have the attribute state only to modify the pixels of the primitive following
the attribute state change. This synchronization is not implicit within the
pipeline; the application must explicitly insert proper synchronization
between attribute state changes and primitives.

Table 13-6gsDPPipeSync()

Parameter Values

type G_CYC_1CYCLE

G_CYC_2CYCLE

G_CYC_COPY

G_CYC_FILL

Parameter Values

none none
181

NINTENDO 64 PROGRAMMING MANUAL DRAFT
This command synchronizes the attribute update with respect to primitive
rendering. It ensures that the last pixels of a primitive are rendered prior to
the attribute taking effect. Insert this inbetween an RDP primitive followed
by an RDP attribute:

gDPSetCycleType(glistp++, G_CYC_FILL);
gDPFillRectangle(glistp++, 0, 0, 127, 127);
gDPPipeSync(glistp++);
gDPSetCycleType(glistp++, G_CYC_1CYCLE);

Note: After a primitive (eg. gSPTriangle, gDPFillRectangle,
gDPTextureRectangle) and before an RDP attributes (eg. gDPSet*), you need
to insert a gDPPipeSync.

After processing all of the RDP display list, the host processor must be
interrupted and notified.

Table 13-7gsDPFullSync()

gDPFullSync() also shuts down the RDP until given a new DP DL to
eliminate excessive power consumption.

Span Buffer Coherency

For RMW cycles, the RDP is smart enough to prefetch a row of pixels as soon
as the X, Y coordinates of the span are determined. The RDP then preloads
the framebuffer content of this span into an RDP onchip span buffer. The
RDP then waits for the pipeline to process the parameters for the outgoing
pixels. When the outgoing pixels are computed, they are “combined” with
the preloaded framebuffer pixels before writing back to the framebuffer.

An example of this operation is z-buffer and transparency blending. (This is
not shown in the logical pipeline description earlier, to simplify the
understanding of the pipeline.)

Parameter Value

none none
182

NINTENDO DRAFT RDP PROGRAMMING
The RDP has enough onchip RAM to hold several span buffers. Therefore,
what would happen if two spans in sequence happened to overlap the same
screen area? The RDP would prefetch the first span into a span buffer while
the pipeline starts processing this span. Then it would prefetch the next span
into another span buffer.

This is where the problems occur: the pixel data for the next span is not yet
computed. The RDP does have span buffer coherency, at the cost of some
performance. If errors are objectionable in your animation, use
gsDPPipelineMode(G_PM_1PRIMITIVE) to cause all primitives to add
between 30 to 40 null cycles after the last span of a primitive is rendered.

Table 13-8gsDPPipelineMode(mode)

These dead cycles can be expensive in terms of fill rate so it is recommended
not to use the 1PRIMITIVE mode be used unless absolutely necessary.

Parameter Value

mode G_PM_1PRIMITIVE

G_PM_NPRIMITIVE
183

NINTENDO 64 PROGRAMMING MANUAL DRAFT
RS: Rasterizer

The Rasterizer’s main job is implied in its name: to generate pixels that cover
the interior of the primitive. The primitives are either triangles or rectangles.
For each pixel, the RS generates the following attributes:

• screen x, y location

• z depth for z-buffer purposes

• RGBA color information

• s/w, t/w, 1/w, lod for texture index, perspective correction, and
mipmapping.

These are commonly referred to as s, t, w, l.

• coverage value.

Pixels on the edge of primitives have partial coverage values. Interiors
are full.

These values are sent to the pipelined blocks downstream for other
computations, such as texture sampling, color blending, and so on.

Figure 13-3 RS State and Input/Output

Scissoring

Scissoring is commonly used to eliminate running performance-intensive
clipping code in the geometry processing stage of a graphics pipeline. You
do this by projecting the clipping rectangle at the near plane larger than the

RS

scissor rectangleTriangle or
Rectangle

Stepped Pixels
(xyzrgbastwl, cvg)
184

NINTENDO DRAFT RDP PROGRAMMING
scissor rectangle. The rasterizer can then efficiently eliminate the portion
outside of the screen rectangle.

The RSP geometry processing is performed in fixed-point arithmetic. The
clipped rectangle boundary is not a perfect rectangle, because of precision
errors. This artifact can also be eliminated using the scissoring rectangle.

Figure 13-4 Scissor/Clipping/Screen Rectangles

Triangle A is scissored, but not clipped. B, C and E are trivially rejected
because no pixels are enumerated. Only D is clipped and scissored.

Table 13-9gsDPSetScissor(ulx, uly, lrx, lry)

Note: Rectangles are scissored with some restrictions. In 1CYCLE and
2CYCLE mode, rectangles are scissored the same as triangles. In FILL and
COPY mode, rectangles are scissored to the nearest four pixel boundary; this
might require rectangles to be scissored in screen space by the game
software.

Parameter Value

ulx

uly

lrx

lry

upper left x

upper left y

lower right x

lower right y

scissor/screen rect

clipping rect @near plane

A

B

C

D

E

185

NINTENDO 64 PROGRAMMING MANUAL DRAFT
TX: Texture Engine

The Texture Engine takes s/w, t/w, 1/w, and lod values for a pixel and
fetches the onboard texture memory for the four nearest texels to the screen
pixel. The game application can manipulate TX states such as texture image
types and formats, how and where to load texture images, and texture
sampling attributes.

Figure 13-5 TX State and Input/Output

Texture Tiles

TX treats the 4 KB on-chip texture memory (TMEM) as general-purpose
texture memory. The texture memory is divided into four simultaneous
accessible banks, giving output of four texels per clock.

The game application can load varying-sized textures with different formats
anywhere in the 4 KB texture map. There are eight texture tile descriptors
that describe the location of texture images within the TMEM, the format of
this texture, and the sampling parameters. Therefore, you can load many

TX

texture image ptr

Stepped Pixel(stwl) Texel 0,1,2,3

texture modes
8 texture tile descriptor

4KB texture map

DRAM

memory (TMEM)
186

NINTENDO DRAFT RDP PROGRAMMING
texture maps in the TMEM at one time, but there are only eight tiles that are
accessible at any time.

Figure 13-6 Tile Descriptors and TMEM

Note: There are some restrictions, depending on texel size and 64-bit
alignment within the texture memory.See “Alignment” on page 259.

Multiple Tile Textures

Given the eight texture tiles, you can use two- cycle pipeline mode to cycle
TX twice and access eight texels (four from each of two tiles). This
functionality, coupled with the use of up to eight texture tiles, allows the TX
to perform mipmapping and detailed textures.

Furthermore, there are no explicit restrictions requiring power of two
tile-sized decrements for mipmaps. Multi-tile texture map sizes are all
independently programmable. Therefore, using these tiles and the color
combiner block (see Chapter 13, “CC: Color Combiner”), arithmetic logic
can result in many special effects. For example, sliding two different
frequency band tiles across a polygon surface while combining them with a
blue polygon can give a nice ocean wave effect.

TMEM
TMEM location
size
wrap/clamp/mirror state
format

TMEM location
size
wrap/clamp/mirror state
format

tile 0

tile 7

8 tile total
187

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Texture Image Types and Format

Table 13-10 shows the legal combinations of data types and pixel/texel sizes
for the Color and Texture images. For RGBA types, the 16-bit format is
5/5/5/1, and the 32-bit format is 8/8/8/8.

The Intensity Alpha type (IA) replicates the I value on the RGB channels and
places the A value on the A channel. The IA 16-bit format is 8/8, the 8-bit
format is 4/4, and the 4-bit format is 3/1

Table 13-10Texture Format and Sizes

.

Texture Loading

Several steps are necessary to load a texture map into the TMEM. You must
block-load the texture map itself and set up the attributes for this tile. There
are GBI macros that simplify all these steps into a single macro.

There are two ways of loading textures: block or tile mode. Block mode
assumes that the texture map is a contiguous block of texels that represents
the whole texture map. Tile mode can lift a subrectangle out of a larger

Type 4b 8b 16b 32b

RGBA X X

YUV X

Color Index X X

IA X X X

I X X
188

NINTENDO DRAFT RDP PROGRAMMING
image. The following tables list block and tile mode texture-loading GBI
commands respectively.

Table 13-11gsDPLoadTextureTile(timg, fmt, siz, width, height, uls, ult, lrs, lrt, pal,
cms, cmt, masks, maskt, shifts, shiftt)

Table 13-12gsDPLoadTextureTile_4b(pkt, timg, fmt, width, height, uls, ult, lrs, lrt,
pal, cms, cmt, masks, maskt, shifts, shiftt)

Parameter Value

timg Texture dram address.

fmt G_IM_FMT_RGBA

G_IM_FMT_YUV

G_IM_FMT_CI

G_IM_FMT_I

G_IM_FMT_IA

siz G_IM_SIZ_4b

G_IM_SIZ_8b

G_IM_SIZ_16b

G_IM_SIZ_32b

width, height Texture tile width and height in texel space.

pal TLUT palette.

cms, cmt clamping/mirroring for s/t axis

G_TX_NOMIRROR

G_TX_MIRROR

G_TX_WRAP

G_TX_CLAMP

masks, maskt Bit mask for wrapping.

G_TX_NOMASK or a number: A wrapping bit mask is represented
by (1<<number) - 1.
189

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Color-Indexed Textures

There are some restrictions on the size and placement of CI texture maps
within the TMEM. The TMEM is actually partitioned into two halves. Four
texels are sampled from the first bank and fed into the second bank for
texture/color/index table lookup (TLUT).

Figure 13-7 CI TMEM Partition

Four texels from the texture images are sent from first half banks to the
second half banks. The second half banks contain color index palettes. Each

shifts, shiftt Shifts applied to s/t coordinate of each pixel. This is how you
“sample” the lower levels of a mipmap.

G_TX_NOLOD or a number: (s or t coord >> number) = s/t to
sample other mipmap levels.

uls

ult

lrs

lrt

upper left s index of the tile within the texture image

upper left t

lower right s

lower right t

Table 13-11gsDPLoadTextureTile(timg, fmt, siz, width, height, uls, ult, lrs, lrt, pal,
cms, cmt, masks, maskt, shifts, shiftt)

Table 13-12gsDPLoadTextureTile_4b(pkt, timg, fmt, width, height, uls, ult, lrs, lrt,
pal, cms, cmt, masks, maskt, shifts, shiftt)

Parameter Value

first half bank
0 1 2 3

second half bank
0 1 2 3

C0
C1
:
Cn

C0
C1
:
Cn

C0
C1
:
Cn

C0
C1
:
Cn

pa
le

tt
e

0

t0 t1 t2 t3
190

NINTENDO DRAFT RDP PROGRAMMING
color map entry is replicated 4 times for four simultaneous bank lookups.
Therefore, 8-bit CI textures all require 2 KB (256 x 64 bits per entry) second
half banks to hold the TLUT, while 4-bit CI texture can have up to 16
separate TLUTs.

Note: TLUT must reside on the second half of TMEM; while CI texture
cannot reside on the second half of TMEM. Non-CI texture can actually
reside on the second half of TMEM in unused TLUT palette/entries.

Texture-Sampling Modes

Software can enable and disable TX to perform the follow sampling modes:

• perspective correction

• detail or sharpen textures

• LOD (mipmap) or bilinear textures

• RGBA or IA TLUT type.

Table 13-13gsLoadTLUT(count, tmemaddr, dramaddr)

Parameter Value

count Number of entries in the TLUT. For example, 4-bit texel TLUT
would have 16 entries.

tmemaddr Where the TLUT goes in TMEM.

dramaddr Where the TLUT is in DRAM.

Table 13-14gsDPSetTexturePersp(mode)

Parameter Value

mode G_TP_NONE

G_TP_PERSP
191

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Synchronization

With TMEM and tile descriptor states, TX also requires explicit
synchronization to render primitives with the proper attribute state. Texture
loads after primitive rendering must be preceded by a gsDPLoadSync(), and
tile descriptor attribute changes should be preceded by a gsDPTileSync().

Note: If you use the high-level programming macros gsDPLoadTexture* or
gsDPLoadTexture*_4b, then you don’t need to worry about load and tile
syncs. They are embedded in the macro.

Table 13-15gsDPSetTextureDetail(mode)

Parameter Value

mode G_TD_CLAMP

G_TD_SHARPEN

G_TD_DETAIL

Table 13-16gsDPSetTextureLOD(mode)

Parameter Value

mode G_TL_TILE

G_TL_LOD

Table 13-17gsSetTextureLUT(type)

Parameter Value

type G_TT_NONE

G_TT_RGBA16

G_TT_IA16
192

NINTENDO DRAFT RDP PROGRAMMING
TF: Texture Filter

Texture filter takes the four texels generated by TX and produces a simple
bilinear-filtered texel. The TF can also work together with the color combiner
(see Chapter 13, “CC: Color Combiner”) to perform YUV-to-RGB color
space conversion.

Figure 13-8 Texture Filter State and Input/Output

Filter Types

TF performs three types of filter operations: point sampling, box filter, and
bilinear interpolation. Point sampling just selects the nearest texel to the
screen pixel. In the special case where the screen pixel is always the center of
four texels, the box filter can be used. In a typical 3D, arbitrarily rotated
polygon, the bilinear filter is the best choice available.

Note: For hardware cost reduction, the RDP does not implement a true
bilinear filter. Instead, the three nearest texels are linearly interpolated to
produce the result pixels. This has a natural triangulation bias. This artifact
is not noticeable in normal texture images. However, in regular pattern

TF

filter modes
Texel 0,1,2,3 Filtered Texel

yuv2rgb coeff
193

NINTENDO 64 PROGRAMMING MANUAL DRAFT
images, it can be noticed. For example, notches can be seen in the crosshair
on a image of grids. This can be eliminated by prefiltering the image with a
wider filter.

Color Space Conversion

Color space conversion can be used to convert YUV textures into RGB. This
could be a useful compression technique, or it could be used for MPEG
video, or for special effects.

Table 13-19gsSetTextureConvert(mode)

Table 13-20gsSetConvert(k0,k1,k2,k3,k4,k5)

Note: The default state of the RDP is G_TF_CONV (perform YUV2RGB),
which is probably not what you want (if you are using RGB textures). A
common bug is to forget to set this (usually it should be G_TF_FILT).

Table 13-18gsSetTextureFilter(type)

Parameter Value

type G_TF_POINT

G_TF_AVERAGE

G_TF_BILERP

Parameter Value

mode G_TF_CONV

G_TF_FILTCONV

G_TF_FILT

Parameters Value

k0, k1, k2

k3, k4, k5

G_CV_K0, G_CV_K1, G_CV_K2

G_CV_K3, G_CV_K4, G_CV_K5
194

NINTENDO DRAFT RDP PROGRAMMING
CC: Color Combiner

The color combiner (CC) combines texels from TX and stepped RGBA pixel
values from RS. The CC is the ultimate paint mixer. It can take two color
values from many sources and linearly interpolate between them. The CC
basically performs this equation

newcolor A B– C D+=

:

Here, A, B, C, and D can come from many different sources. Notice that if
D=B, then this is a simple linear interpolator.

Figure 13-9 Color Combiner State and Input/Output

Most of CC programming involves setting the desired sources for (A,B,C,D)
of the equation above. There are also programmable color registers within
CC that can be used to source (A,B,C,D) input of the interpolator.

Color and Alpha Combiner Inputs Sources

The following picture describes all possible input selection of a general
purpose linear interpolator for RGB and Alpha color combination.The input

CC

combiner modes

Texels

Combined PixelStepped Pixel(rgba)

primitive color

environment color

yuv2rgb coeff

RGB chroma key

from RS
195

NINTENDO 64 PROGRAMMING MANUAL DRAFT
in the shaded boxes are CC internal state that you can set. Most are
programmable color registers.

Figure 13-10RGB Color Combiner Input Selection

Texel 1 Color

Primitive Clr

Environment Clr

Texture 0 Alpha

Environment Alpha

-

X

+

Combined Color

Combine Color

Shade Clr

{

Primitive Alpha

Shaded Alpha

Texel 0 Color

Combined Color

Noise

Texture 1 Alpha

LOD fraction

Primitive LOD frac

1.0

0
1

2
3

4

5

7

8-15

0
1

2

3
4

5

6

7

8

9

10
11
12

13

14

16-31

0

1

2

3

4

5

6

8-15

0

1

2

3
4

5

6
7

Common Modes:
Modulate: 1,8,4,7; T*S
Decal: X,X,16,1; T
Blend: 3,5,8,5; (P - E)*Talpha + E
Trilinear: 2,1,13,1; (T1 - T0)*LOD +
T0
Interference: 1,8,2,7; T0 * T1
Keying:1,6,6,7; (T0 - Center) * Scale +
0

NOTE: There are two
Color Combine modes,
one for each of the two
possible cycles.

Key: Center

Key: Scale

Combined Alpha

0.0

6

Convert: K4

Convert: K5

7

15
196

NINTENDO DRAFT RDP PROGRAMMING
Figure 13-11Alpha Combiner Input Selection

CC Internal Color Registers

There are two internal color registers in the CC: primitive and environment
color. The primitive color can be used to set a constant polygon face color.
The environment color can be used to represent the ambient color of the
environment. Both can be used as source for linear interpolation. The names

Texture 0 Alpha

Environment Alpha

-

X

+

Combined Alpha

Combine Alpha
{

Primitive Alpha

Shaded Alpha

Texture 1 Alpha

LOD fraction

Primitive LOD frac

1.0
6

7

Common Modes:
Select: X,X,7,1; T0
Multiply: 1,7,2,7; T0*T1
Lerp: 1,2,0,2; (T0 - T1)*LODf +T1

NOTE: There are two Alpha
Combine modes, one for each of
the two possible cycles.

Combined Alpha

0.0

0

1

2

3

4
5

6

7

0

1

2

3

4
5

6

7

1

2

3
4

5
0

6

7

0

1

2

3

4
5

197

NINTENDO 64 PROGRAMMING MANUAL DRAFT
“primitive” and “environment” are purely arbitrary; you can use them for
any purpose you wish.

Table 13-21gsSetPrimColor(minlevel, frac, r, g, b, a), gsDPSetEnvColor(r, g, b, a)

One-Cycle Mode

Many of the typical RGB and alpha input selections are predefined in
Table 13-24. In 1 cycle mode bothe mode1 and mode2 should be the same.
See the man page for gDPSetCombineMode for a description of each mode
setting.

Parameter Value

minlevel minimum LOD level

frac LOD fraction for blending two texture tiles

r, g, b, a color

Table 13-22One-Cycle Mode Using gsDPSetCombineMode(mode1, mode2)

Parameter Value

mode1/2 G_CC_PRIMITIVE

G_CC_SHADE

G_CC_ADDRGB

G_CC_ADDRGBDECALA

G_CC_SHADEDECALA

mode1/2 Decal textures in RGB, RGBA formats

G_CC_DECALRGB

G_CC_DECALRGBA
198

NINTENDO DRAFT RDP PROGRAMMING
Note: In one-cycle mode, mode1 and mode2 should be the same value.

mode1/2 Modulate texture in I, IA, RGB, RGBA formats

G_CC_MODULATEI

G_CC_MODULATEIA

G_CC_MODULATEIDECALA

G_CC_MODULATERGB

G_CC_MODULATERGBA

G_CC_MODULATERGBDECALA

G_CC_MODULATEI_PRIM

G_CC_MODULATEIA_PRIM

G_CC_MODULATEIDECALA_PRIM

G_CC_MODULATERGB_PRIM

G_CC_MODULATERGBA_PRIM

G_CC_MODULATERGBDECALA_PRIM

mode1/2 Blend texture in I, IA, RGB, RGBA formats.

G_CC_BLENDI

G_CC_BLENDIA

G_CC_BLENDIDECALA

G_CC_BLENDRGBA

G_CC_BLENDRGBDECALA

mode1/2 Reflection and specular hilite in RGB, RGBA formats.

G_CC_REFLECTRGB

G_CC_REFLECTRGBDECALA

G_CC_HILITERGB

G_CC_HILITERGBA

G_CC_HILITERGBDECALA

Table 13-22One-Cycle Mode Using gsDPSetCombineMode(mode1, mode2)

Parameter Value
199

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Two-Cycle Mode

Color Combiner (CC) can perform two linear interpolation arithmetic
computations in two-cycle pipeline mode. Typically, the second cycle is
used to perform texture and shading color modulation (in other words, all
those modes you saw in one-cycle mode). However, the first cycle can be
used for another linear interpolation calculation; for example, LOD
interpolation between the two bilinear filtered texels from two mipmap tiles.

Table 13-23Two-Cycle Mode Using gsDPSetCombineMode(mode1, mode2)

Custom Modes

Color Combiner (CC) can be programmed more specifically when you
design your own color combine modes. To define a new mode use the
format:

#define G_CC_MYNEWMODE a,b,c,d, A,B,C,D

Where the color output will be (a-b)*c+d and the alpha output will be
(A-B)*C+D. The values you can use for each of a, b, c, d, A, B, C, and D are:

COMBINED combined output from cycle 1 mode
TEXEL0 texture map output
TEXEL1 texture map output from tile+1
PRIMITIVE PrimColor
SHADE Shade color
ENVIRONMENT Environment color
CENTER chroma key center value
SCALE chroma key scale value

Parameter Value

mode1 G_CC_TRILERP

G_CC_INTERFERENCE

mode2 G_CC_PASS2

Most of the Decal, Modulate, Blend and Reflection/Hilite texture
modes mentioned in one cycle mode. However, since they are
values for mode2 parameter, the names must all end with 2. e.g.
G_CC_MODULATEI2.
200

NINTENDO DRAFT RDP PROGRAMMING
COMBINED_ALPHA combined alpha output from cycle 1
TEXEL0_ALPHA texture map alpha
TEXEL1_ALPHA texture map alpha from tile+1
PRIMITIVE_ALPHAPrimColor Alpha
SHADE_ALPHA Shade alpha
ENV_ALPHA Environment color alpha
LOD_FRACTION LOD fraction
PRIM_LOD_FRAC Prim LOD fraction
NOISE noise (random)
K4 color convert constant K4
K5 color convert constant k5
1 1.0
0 0.0

Then you can use your new mode just like a regular mode:

gDPSetCombineMode(G_CC_MYNEWMODE, G_CC_MYNEWMODE);

Chroma Key

The color combiner can be used to perform “chroma keying”, which is a
process where areas of a certain color are taken out and replaced with a
texture. This is a similar effect to “blue screen photography”, or as seen on
the television news weather maps.

The theory is quite simple; a key color is provided, and all pixels of this color
are replaced by the texel color requested. The key color is actually specified
as a center and width, allowing soft-edge chroma keying (for blended
colors):

Figure 13-12Chroma Key Equations

KeyR = clamp(0, (-abs((R - RCen) * RScl) + RWd), 255)
KeyG = clamp(0, (-abs((G - GCen) * GScl) + GWd), 255)
KeyB = clamp(0, (-abs((B - BCen) * BScl) + BWd), 255)
KeyA = min(KeyR, KeyG, KeyB)

The center, scale, and width parameters have the following meanings:
201

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Center Defines the color intensity at which the key is active,
0-255.

Scale (255/(size of soft edge)). For hard edge keying, set scale
to 255.

Width (Size of half the key window including the soft
edge)*scale. If width > 255, then keying is disabled for
that channel.

In two-cycle mode, the keying operation must be specified in the second
cycle (key alpha is not available as a combine operand). The combine mode
G_CC_CHROMA_KEY2 is defined for this purpose.

The command

gsDPSetCombineKey(G_CK_KEY);

enables chroma keying.

The commands

gsDPSetKeyR(cR, sR, wR);
gsDPSetKeyGB(cG, sG, wG, cB, sB, wB);

allow you to set the parameters for each channel.
202

NINTENDO DRAFT RDP PROGRAMMING
BL: Blender

The BL takes the combined pixels and blends them against the framebuffer
pixels. Transparency is accomplished by blending against the framebuffer
color pixels. Polygon edge antialiasing is performed, in part, by the BL using
conditional color blending based on depth range. The BL can also perform
fog operations in two-cycle mode.

Figure 13-13Blender State and Input/Output

Surface Types

The BL can perform different conditional color-blending and z-buffer
updating. Therefore, it can handle semantically different surface and line
types. Figure 13-14 illustrates these types.

Figure 13-14Surface Types

BL

blender modes Blended Pixel

Combined Pixel
fog color
blend color
primitive depth

Stepped Pixel (rugby)

framebuffer Pixel
from MI

interpenetrating

opaque
surfaces

surface

transparent
surface

decal
surface
203

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Antialiasing Modes

The most important feature of the BL is its participation in antialiasing.
Basically, the BL conditionally blends or writes pixels into the framebuffer
based on depth range. Then the video display logic applies a spatial filter to
account for surrounding background colors to produce antialiased
silhouette edges.

The antialiasing scheme properly antialiases most pixels; only a small set of
corner cases have errors and are negligible. This algorithm requires ordered
rendering sorted by surface or line types. Here is the rendering order and
surface/line types for z-buffer antialiasing mode:

• All opaque surfaces are rendered.

• All opaque decal surfaces are rendered.

• All opaque interpenetrating surfaces are rendered.

• All of the translucent surface and lines are rendered last. These can
be rendered in any order. However, the proper depth order gives
proper transparency.

Note: There is an additional optimization discussed later; if z-buffered
surfaces in the scene are rendered in approximately front-to-backorder,
the fill rate is improved because the z-buffer test is a read only (no write)
for obscured pixels.

Besides the antialiased z-buffer rendering mode, the other three
combinations also exist: antialiased/not z-buffered, z-buffered/not
antialiased, not z-buffer/not antialiased.

Table 13-24One-Cycle Mode gsDPSetRenderMode(mode1, mode2)

Parameter Value

mode1 G_RM_FOG_SHADE_A

G_RM_FOG_PRIM_A

G_RM_PASS

or one of the primitive rendering modes.

e.g. G_RM_AA_ZB_OPA_SURF

mode2 e.g. G_RM_AA_ZB_OPA_SURF2
204

NINTENDO DRAFT RDP PROGRAMMING
Note: Even if you are only in one-cycle mode, mode2 should be
programmed. Mode2 value is always mode1 appended with “2”.

Note: When setting the cycle type to G_CYC_FILL or G_CYC_COPY, make
sure to use the command g*DPSetRenderMode(G_RM_NOOP,
G_RM_NOOP2), to guarantee that the blender is in a safe state.

BL Internal Color Registers

BL has two internal color registers, fog and blend color. These values are
programmable and can be used for geometry with fog or constant
transparency.

Table 13-26gsDPSetFogColor(r, g, b, a) gsDPSetBlendColor(r, g, b, a)

Alpha Compare

BL can compare the incoming pixel alpha with a programmable alpha
source to conditionally update the framebuffer. This has traditionally
allowed nice tree-outlined billboards and other complex, outlined, billboard

Table 13-25Two-Cycle Mode gsDPSetRenderMode(mode1, mode2)

Parameter Value

mode1 G_RM_FOG_SHADE_A

G_RM_FOG_PRIM_A

G_RM_PASS

mode2 same as one cycle mode mode2 values

Parameter Value

r, g, b, a color
205

NINTENDO 64 PROGRAMMING MANUAL DRAFT
objects. Besides thresholding against a value, the BL can also compare
against a dithered value to give randomized particle effect.

Table 13-27gsDPSetAlphaCompare(mode)

Note: When using mode G_AC_THRESHOLD, alpha is thresholded against
blend color alpha.

Note: Another way to do billboard cutouts which often provides better
antialiasing is ti turn Alpha Compare off (G_AC_NONE) and instead use
one of the TEX_EDGE render modes, such as G_RM_AA_ZB_TEX_EDGE.

Using Fog

The blender performs the fog operation. Fog is described fully in “Vertex
Fog State” on page 170. Fog is performed by the RSP and the RDP in
cooperation. The RSP takes the z value and places it in the alpha channel of
each pixel. The RDP then uses this alpha channel to blend the color from the
color combiner with the fog color. The larger the Z value (the farther the
pixel is from the viewers eye) the closerthe pixel’s color gets to the fog color.
The RSP part of this operation is enabled with the gSPSetGeometryMode:

gsSPSetGeometryMode(G_FOG),

and can be adjusted with gsSPFogPosition:

gsSPFogPosition(FOG_MIN, FOG_MAX),

The RDP part of fogging is enabled by telling the blender how to use Alpha.
Fog can be used in one cycle mode for non-antialiased opaque surfaces only:

/* 1cycle mode */
gsDPSetCycleType(G_CYC_1CYCLE),
/* blend fog in ZB mode (non-AA OPA_SURF modes only) */
gsDPSetRenderMode(G_RM_FOG_SHADE_A,G_RM_ZB_OPA_SURF2),

Parameter Value

mode G_AC_NONE

G_AC_THRESHOLD

G_AC_DITHER
206

NINTENDO DRAFT RDP PROGRAMMING
/* set the fog color */
gsDPSetFogColor(RED,GREEN,BLUE, ALPHA),
/* setup the RSP */
gsSPFogPosition(FOG_MIN, FOG_MAX)
gsSPSetGeometryMode(G_FOG),

It can be used for other surface types (or with antialiasing) in 2 cycle mode:

/* 2 cycle mode */
gsDPSetCycleType(G_CYC_2CYCLE),
/* blend fog. Use any standard render mode for cycle 2 */
gsDPSetRenderMode(G_RM_FOG_SHADE_A,G_RM_AA_ZB_OPA_SURF2),
/* set the fog color */
gsDPSetFogColor(RED,GREEN,BLUE, ALPHA),
/* setup the RSP */
gsSPFogPosition(FOG_MIN, FOG_MAX)
gsSPSetGeometryMode(G_FOG),

As an alternative to G_RM_FOG_SHADE_A (for the first cycle of
gsDPSetRenderMode) you can use G_RM_FOG_PRIM_A which will use the
alpha value in PrimColor to set the fog value. If you use this mode, then the
RSP’s part of fog is unneccessary and the gsSPFogPosition and
gsSPSetGeometryMode macros are not neccessary. Instead set the fog value
per primitive with the gsDPSetPrimColor macro:

gsDPSetPrimColor(0,0,0,0,0, FOG_VALUE),

where the FOG_VALUE is 0 for no fog and 0xff for full-fog.

Note that objects with FOG can still be transparent. The alpha value used to
modulate fog comes from the triangle renderer. The alpha value that comes
from the color combiner is independant of that renderer fog alpha. For
example the color combiner can be set to use the alpha value from a texture
map, and fog will still work with the alpha value from the renderer. You
cannot, however, use vertex alpha with fog. The per alpha supplied in the
vertices will be ignored and if the color combiner selects a SHADE alpha, it
will get the fog alpha value instead (not what was intended).
207

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Depth Source

The depth value used in the depth buffer compare is generally taken from
the Z value of the pixel, determined by interpolating the z values at the 3
vertices of the triangle containing the pixel. However it is sometimes
desireable to set the Z value which will be used for an entire primitive. This
is actually neccessary when rendering Z-buffered rectangles (gDPFillRect
and gSPTextureRect) since these primitives do not have a Z value associated
with them. To use a single Z value for an entire primitive the Z value is
placed in the PrimDepth register and the Z source Select is set to get Z from
the PrimDepth register:

gsDPSetDepthSource(G_ZS_PRIM),
gsDPSetPrimDepth(z, dz),

The value to use for z is the screen Z position of the object you are rendering.
This is a value ranging from 0x0000 to 0x7fff, where 0x0000 usually
corresponds to the near clipping plane and 0x7fff usually corresponds to the
far clipping plane. To synchronize Z for PrimDepth with a Z for a triangle it
is important to understand how the triangle’s Z gets computed. The
modeling coordinate vertex is multiplied by the modelview and projection
matrices resulting in a 4 componant homogeneous coordinate (x,y,z,w). The
screen Z value is computed by the RSP as

screenZ = 32*((z/w)*Viewport.vscale[2] + Viewport.vtrans[2])

Note: Viewport.vscale and Viewport.vtrans[2] are usually both G_MAXZ/2
= 0x1ff, which makes the formula: screenZ=(z/w)*0x3fe0 + 0x3fe0. Since
(z/w) ranges from -1.0 to +1.0 the result will range from 0x0 to 0x7fc0.

Note: For microcode progrmmers: The 32* part of this equation is done in
the setup microcode. The other parts of this equation are done in the vertex
processing microcode.

So if you want to position a rectangle at a specific modeling coordinate
position, run the modeling ccordinate of the position through the
modelview and projection matrix, and then comput its screenZ value based
upon the formula above. This is the value to use for z in the
gsDPSetPrimDepth command.
208

NINTENDO DRAFT RDP PROGRAMMING
The dz value should be set to 0. This value is used for antialiasing and objects
drawn in decal render mode and must always be a power of 2 (0, 1, 2, 4, 8, ...
0x4000). If you are using decal mode and part of the decalled object is not
being rendered correctly, try setting this to powers of 2. Otherwise use 0.
209

NINTENDO 64 PROGRAMMING MANUAL DRAFT
MI: Memory Interface

Memory Interface (MI) simply interfaces to the framebuffer memory. It has
programmable color and z-buffer pointers, a 32-bit fill color value used in
the FILL cycle type (see Chapter 13, “Fill Mode”), and an enable for color
dither.

Figure 13-15Memory Interface State and Input/Output

Image Location and Format

The framebuffer is row-ordered, starting at the upper left. The color and
z-buffer image pointers must be 64-byte aligned. The DRAM has dual banks,
one on each 1 MB. By keeping the color and z-buffers on different banks, you
can improve the DRAM access latency when the RDP is seeking DRAM
bandwidth for rendering.

The Nintendo 64 system actually uses 9-bit DRAMs rather than 8-bit
DRAMs, to gain two extra bits per color or z pixel. The color and z format
are illustrated in Figure 13-16.

Figure 13-16Color and Z Image Pixel Format

MI

fill color

Pixels to framebufferBlended Pixel

color image ptr

dither enable

mask image ptr framebuffer Pixelframebuffer Pixel
to BL

R G B cvg

5 5 5 3

z dz

14 4
210

NINTENDO DRAFT RDP PROGRAMMING
Fill Color

The MI has a 32-bit fill color register that is used in FILL cycle type. Fill color
is typically programmed to a constant value to fill background color and
z-buffers. Since two framebuffer pixels are 18x2=36 bits, while fill color
register is 32 bits, a few of the bits are replicated. See Figure 13-17 for an
illustration of how it works.

Figure 13-17Fill Color Register LSB Replication

Dithering

The RDP pipeline keeps full, 8-bit per RGB component precision
throughout. Dithering can be enabled or disabled to write to the 5-bit per
RGB component dram framebuffer format. Dithering is recommended since
it can significantly reduce Mach banding effect.

Table 13-28gsSetFillColor(data32bits) NEED READABLE TITLE FOR THIS!

Parameter Value

data32bits 2 different macros, one each for color and z. each generate 16 bits.
so do x << 16 | x to get 32 bits

GPACK_RGBA5551(r, g, b, a), a=1 is full coverage. (Typical)

GPACK_ZDZ(z, dz), z=G_MAXFBZ, dz=0. (Typical)

31 01516

02171935
211

NINTENDO 64 PROGRAMMING MANUAL DRAFT
212

NINTENDO DRAFT TEXTURE MAPPING
Chapter 14

14. Texture Mapping

Texture mapping, or texturing, is the process of applying an image to a
polygonal surface. There are many graphics books that discuss this topic;
this guide assumes that you are familiar with the basic principles of texture
mapping. This chapter explains the functionality of texture mapping as
implemented in the Reality Display Processor (RDP).
213

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Figure 14-1 Texture Unit Block Diagram

The RDP contains an on-chip texture memory called Tmem, which buffers
all source image data used for texturing. Tmem contains up to eight tiles (a
tile is a rectangular region of an image). A tile is loaded into Tmem using the
LoadTile, LoadBlock, or LoadTlut commands, and described using the
SetTile and SetTileSize commands. If the image is too large to fit entirely in

base
offset
size
mirror
mask

Texture Coordinates

Texture Memory

Texture Filter

Color Conversion,

Load Tlut

Load Tile, Load Block

persp_tex_en
detail_tex_en
sharpen_tex_en

Tmem adrs
line
size
mirror
mask
shift
texel type
palette
Clamp S,T
SL,TL, SH,TH

T
il

e
D

es
cr

ip
to

rs

tex_lod_en

mid_texel

Conversion

Coefficients

bi_lerp_0, bi_lerp_1

Primitive tile/level/coords(s,t,w)

convert_one

Part 1

sample_type

S,T,L fraction Texel Color/Alpha

0

7

Texel Color

tile number

tlut_en

min_level
copy_en
214

NINTENDO DRAFT TEXTURE MAPPING
Tmem, primitives must be subdivided in object space based on their texture
coordinate values so that each primitive references a tile that fits in Tmem.

Texture coordinates (S,T) for each pixel are input to the texture coordinate
unit and can be perspective corrected. Perspective correction is typically
enabled for 3D geometry and disabled for 2D sprites (tex_rect commands).
During this time, the texture coordinate unit calculates which tile descriptor
to use for this primitive. The texture image coordinates are converted to
tile-relative coordinates and wrapped, mirrored, and clamped. These tile
coordinates are then used to generate an offset into Tmem. The texture unit
can address 2x2 regions of texels in one or two cycle mode, or 4x1 regions in
copy mode. Copy mode is typically used for blits (block copy of texels) with
a 1:1 texel pixel relationship. In one or two cycle mode, filter or point-sample
can also be selected. Typically, filter will result in a smoother image with less
aliasing. The texture unit also generates S,T and L-fraction values that are
used to bi-linearly or tri-linearly interpolate the texels.

The texture unit supports ten different combinations of texel size and
format:

• 4-bit intensity (I)

• 4-bit intensity w/alpha (I/A) (3/1)

• 4-bit color index (CI)

• 8-bit I

• 8-bit IA (4/4)

• 8-bit CI

• 16-bit red, green, blue, alpha (RGBA) (5/5/5/1)

• 16-bit IA (8/8)

• 16-bit YUV (Luminance, Blue-Y, Red-Y)

• 32-bit RGBA (8/8/8/8)

Significant memory savings can result from the smaller color-index textures
or intensity textures over the more expensive 16-bit RGBA. It is a good idea
to experiment with the different texel sizes. One can actually do 2-color
textures using the intensity types. Also, the intensity-only textures place the
texel value on the alpha channel as well where it can be used for blending or
ignored.
215

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Graphics Binary Interface for Texture

The graphics binary interface (GBI) is a set of macros that create 64-bit
commands that are read and parsed by the RSP microcode. Some of these
commands cause actions or state changes in the RSP. Others are simply
passed through the RSP to the RDP. Below is a list of GBI commands that
control texture. See the corresponding reference (man) page for more details.

Primitive Commands

• g*SPTexture

• g*SPTextureRectangle*

Tile Related Commands

• g*DPSetTile

• g*DPSetTileSize

Load Commands

• g*DPLoadTile*

• g*DPLoadTextureBlock*

• g*DPLoadTLUT*

• gDPSetTextureImage

Sync Commands

• g*DPLoadSync

• g*DPTileSync

Mode Commands

• g*DPSetTextureLUT

• g*DPSetTexturePersp
216

NINTENDO DRAFT TEXTURE MAPPING
• g*DPSetTextureDetail

• g*DPSetTextureLOD

• g*DPSetTextureFilter

• g*DPSetTextureConvert
217

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Example Display List

The following display list fragment uses GBI display list commands to
render an object using a 16-bit RGBA texture map. The texture is loaded into
Tmem using the LoadBlock command. The texture coordinates are
perspective corrected. Note that the texture is allowed to wrap on 32-texel
boundaries in the s and t directions. The texture filter bilinearly interpolates
the 2x2 texels output by the texture unit. Finally, the resulting texture color
is multiplied with the object’s shade color in the Color Combiner for each
pixel of the object.

/* Enable textured poly generation in RSP */
gSPTexture(glistp++, 0x8000, 0x8000, G_TX_RENDERTILE, G_ON);
gDPSetTextureFilter(glistp++, G_TF_BILERP);
gDPSetTexturePersp(glistp++, G_TP_PERSP);
gDPSetCombineMode(glistp++,
G_CC_MODULATERGB,G_CC_MODULATERGB);
/* Load Texture Block */
gDPLoadTextureBlock(glistp++, RGBA16dana, G_IM_FMT_RGBA,
G_IM_SIZ_16b, 32, 32, 0, G_TX_WRAP, G_TX_WRAP, 5, 5,
G_TX_NOLOD, G_TX_NOLOD);
/* render model display list */
gSPDisplayList(glistp++, model);
218

NINTENDO DRAFT TEXTURE MAPPING
Texture Image Space

Texture coordinates are defined for textured primitives in Texture Image
Space. This space has a range of +/- 1K texel. Tiles are smaller rectangular
regions of a texture that fit into the on-chip texture memory of the RCP
(Tmem).

Figure 14-2 Image Space and Tile Space

Tiles are defined in Texture Image Space using SL, TL and SH, TH
coordinates, as shown in Figure 14-2. Tile coordinates must lie in the
positive S,T quadrant of Texture Image Space. However texture coordinates
of the primitive can lie in any of the four quadrants of image space. In other

T

S0,0

1023.99, 1023.99

-1024, -1024

SL,TL

S/W
, T/W

SH, TH

Texture Image Coordinate Space

Tile Space

Primitive
219

NINTENDO 64 PROGRAMMING MANUAL DRAFT
words, primitives can have negative texture coordinates which can be useful
when wrapping a texture on a very large primitive. Tiles can be up to 1024
columns wide and up to 256 rows tall. Tiles do not have to be sized to a
power of 2 (wrapping and mirroring, however, happen on power-of-2
boundaries).

The texture coordinates of the primitive (in Texture Image Space) are
converted into Tile Space by subtracting the SL,TL from the (possibly
perspective-corrected) texture coordinates of the pixel. This indirection
allows arbitrary placement of the tile with respect to the primitive. This
implies that the texture coordinates can be defined once in the database; and
that the texture can be translated (or slid) with respect to the primitive by
simply manipulating the SL,TL values using the SetTileSize RDP command.
220

NINTENDO DRAFT TEXTURE MAPPING
Tile Attributes

The RDP has a small on-chip memory for buffering up to eight tile
descriptors at a time. A tile descriptor contains all the information for a
texture tile including format; size; line; Tmem address; palette; mirror enable
S, T; mask S, T; shift S, T; SL, TL; SH, TH; and clamp S, T.

Format

Format of texels in texture tile.

Table 14-1 Tile Format Encodings

Size

 Size of texels in texture tile

Table 14-2

.

Format Value Format

0 RGBA

1 YUV

2 CI

3 IA

4 I

Size Value Size of texel in bits

0 4

1 8

2 16

3 32
221

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Line

Number of 64-bit words in one row of the tile. Dependent on tile row width
as well as texel type/size. When tiles are loaded using the LoadTile
command, the rows are padded to 64-bit boundaries. When LoadBlock is
used to load a texture, it is assumed that the rows have already been padded.
Line can also be used to control the stride through TMEM. By controlling
Line, smaller tiles can be pieced together into one larger continuous tile.

Tmem Address

Tile offset (0-511) in Tmem (64-bit) words.

Palette

Palette number (0-15) of 4-bit Color Index (CI) textures. An 8-bit index into
the high half of Tmem is formed by placing the palette number in the 4 MSBs
and the 4-bit texel value in the 4 LSBs. The color in Tmem at this index
becomes the color of the pixel. Therefore, for a 4-bit CI texture, you may
select one of 16 palettes with each palette having up to 16 entries. Palettes
can be loaded into Tmem using the LoadTLUT command or, optionally, the
LoadBlock command.

Mirror Enable S,T

Enables mirroring of texture coordinates. When the bit indicated by the
(Mask Value + 1) is 0 the coordinates are unchanged. When this bit is 1,
however, the coordinates are inverted. Useful for symmetric patterns like
trees, faces, etc. For example, a mask of 2 with mirror enabled would yield
the following texture coordinates:

0,1,2,3,4,5,6,7,... Input coordinate
0,1,2,3,3,2,1,0,... Mirrored Coordinate
222

NINTENDO DRAFT TEXTURE MAPPING
Mask S,T

Number of bits of tile coordinate to let through. For example, a mask of 1
indicates one bit of the texture coordinate should come through the mask,
giving a pattern of 0,1,0,1... As another example, a mask value of 5 indicates
that the texture should wrap every 32 texels, i.e., the lower 5 bits are passed
through the mask. A mask value of 0 forces clamping the texture
coordinates to be between (SL,TL),(SH,TH) inclusive. The mask value + 1
indicates the bit position that is looked at for mirroring. See discussion in
Mirror Enable, above.

Shift S,T

Shift texture coordinates after perspective divide. Used in MIP maps and
possibly for precision reasons (see the discussion of Detail texture later in
this document).Also useful for combining two differently scaled textures.

Table 14-3 Shift Encoding

Shift Value Shift

0 no shift

1 >> 1

2 >> 2

3 >> 3

4 >> 4

5 >> 5

6 >> 6

7 >> 7

8 >> 8

9 >> 9

10 >> 10

11 << 5
223

NINTENDO 64 PROGRAMMING MANUAL DRAFT
SL,TL

When rendering, the starting texel column, row of tile in texture image
space, 10.2 fixed point. Can be used to slide texture w.r.t. the primitive.
When loading, the starting texel column, row within the DRAM texture
image.

SH,TH

When rendering, the ending texel column, row of tile in texture image space,
10.2 fixed point. Used for clamping only. When loading, the ending texel
column, row within the DRAM texture image.

Clamp S,T

Enable clamp during wrap or mirror. When not masking, Clamp S,T is
ignored and clamping is implicitly enabled. This bit allows clamping the
texture coordinates when the mask is non-zero. Useful when you want to
mirror and then clamp like an airplane wing insignia. The border of the
insignia would have an alpha of 0. For example, SH = 11, mask = 2, mirror =
1, clamp = 1:

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,... Input Coordinate
0,1,2,3,3,2,1,0,0,1, 2, 3, 3, 3, 3, 3,... Mirrored/Clamped
Coordinates

12 << 4

13 << 3

14 << 2

15 << 1

Table 14-3 Shift Encoding

Shift Value Shift
224

NINTENDO DRAFT TEXTURE MAPPING
Tile Descriptor Loading

Tile descriptors must be loaded using the RDP command SetTile. This
command loads the format, size, line, Tmem address, palette, clamp, mirror,
mask, and shift parameters for the tile number specified. The SL, TL, SH, and
TH parameters are set by the RDP commands SetTileSize, LoadTile,
LoadBlock, and LoadTLUT.

One important point to keep in mind is that tile descriptors are used both
when loading textures and when rendering textures. In particular, when
loading a texture, the texture coordinate unit uses the Tmem address, line,
format, and size information from the tile specified in the
LoadTile/Block/TLUT command. Therefore, this information must be
loaded into the tile descriptor prior to executing the LoadTile/Block/TLUT
command. Also, the LoadTile/Block/TLUT command automatically writes
the SL,TL,SH,TH information into the tile descriptor. In the case of a
LoadTile command, this is probably the information you wanted. In the case
of a LoadBlock or LoadTLUT command, however, this information must be
overwritten with a SetTileSize command after the texture load.

The GBI commands for loading tile descriptors directly are:

• g*DPSetTile

• g*DPSetTileSize

The GBI commands that effect tile descriptors are:

• g*DPLoadTile*

• g*DPLoadTextureBlock*

• g*DPLoadTLUT*

Note: The load commands above use a double buffered tile system for
loading/rendering. When loading, the tile G_TX_LOADTILE is used, and
when rendering the tile G_TX_RENDERTILE is used. This simple scheme
avoids having to insert TileSyncs between loading and rendering. However,
if you need to use more than one tile for some reason, make sure that you use
the g*DPSetTile and g*DPSetTileSize to set the tile descriptors properly.
225

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Texture Pipeline

Figure 14-3 Texture Pipeline

s_image

t_image
W

persp_en

Persp. Corr.
A/B

S
T LOD or

Precision
Shift

shift_s
shift_t

Conversion to
Tile
Coordinates

Stile (int)

Ttile (int)
Sfrac (to Tex Filter)

Tfrac (to Tex Filter)

LOD

min_level
cycle_type
max_level
detail_en
sharpen_en
lod_en
prim_tile

Tile Address

LOD fraction to Color Combiner

Texture Image to Tile Coordinate Conversion

Tile Selection

Tile Coordinate Adjust

Stile

Ttile

Copy
Clamp S,T
Mask S,T
SL,TL,SH,TH

Clamp, Wrap, Mirror

Sadj

Tadj

Tile Attributes

Tile Size/Position

Tile
Memory

Load Path (LoadTile, LoadBlock, LoadTlut,
SetTile, SetTileSize)

S
T

SL
TL

Mirror S,T
226

NINTENDO DRAFT TEXTURE MAPPING
Figure 14-4 Texture Pipeline, contd.

Sadj

Tadj

Line
Tmem Address
Type
Size
Copy
Sample type
Mask, Mirror

Address A
Address B
Address C
Address D

Convert to 2x2 or 4x1
Tmem Addresses

Texture
Memory
Unit

Address A
Address B
Address C
Address D

TLUT_en
TLUT_type
Tex_type
Tex_size
Palette

64-bit Load Path

Texel A
Texel B
Texel C
Texel D

To
 T

ex
tu

re
 F

il
te

r

Tile Coordinate To Address Conversion

Texture Memory
227

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Tile Selection

Functionality

Tile descriptors are used both when loading a texture and when rendering a
texture. This section discusses the selection of tiles when rendering. The use
of tiles descriptors when loading textures in discussed in the Loading
Textures section.

There are basically two ways to index into tile memory: explicitly via a
user-defined tile number, or indirectly using a combination of the
user-defined tile number and the level of detail (LOD) of the pixel.

In two-cycle mode, it is possible to access different tile descriptors in each
cycle. The computation of tile indices for each cycle depends on several
mode bits and is described in the following sections.

 LOD Disabled

With LOD disabled, the user specifies the texture tile for a primitive directly
using the gSPTexture command. This tile number is inserted by microcode
into the header for each subsequent primitive and is referred to as the
primitive tile number. 2-cycle non-LOD mode can be useful for combining
two arbitrary textures (morphing, etc.) The calculation of the tile descriptor
index is straight forward when LOD is disabled

Table 14-4 Tile Descriptor Index Generation with LOD Disabled

:

Cycle Tile Index

0 primitive tile

1 primitive tile + 1
228

NINTENDO DRAFT TEXTURE MAPPING
LOD Enabled

The lod_en mode bit in SetOtherModes determines if tile indices are
determined using Level of Detail (LOD) or from the primitive command
directly.

With LOD enabled, the tile index is a function of the Level of Detail (LOD)
of the primitive. LOD is computed as a function of the difference between
perspective corrected texture coordinates of adjacent pixels to indicate the
magnification/minification of the texture in screen space (texel/pixel ratio).
The LOD module also calculates an LOD fraction for third axis interpolation
between MIP maps. The combination of LOD-derived tile coordinates and
fraction, a particular tile descriptor arrangement, and tri-linear filtering
allows the implementation of MIP maps. Notice that MIP mapping is a
specialized use of the general texture hardware. Other types of mappings
are possible. The LOD calculation makes the following features (and maybe
more) possible:

• trilinear MIP mapping

• sharpened texture

• detail texture

The LOD calculation depends on the following inputs:

• LOD: level of detail@pixel (texels/pixel), derived per pixel

• min_level (0.5): minimum LOD fraction clamp for sharpen or detail
modes, from the SetPrimColor RDP command

• max_level (0-7): number of MIP maps minus one, from the primitive
via the gSPTexture command.

• detail_en: enable for detailed texture, from SetOtherModes RDP
command

• sharp_en: enable sharpen mode, from SetOtherModes RDP command

• prim_tile (0-7): primitive tile number, from the primitive via the
gSPTexture command.

• lod_en: enable for LOD calculation, from SetOtherModes RDP
command

The LOD calculation produces the following outputs:
229

NINTENDO 64 PROGRAMMING MANUAL DRAFT
• l_frac (s,0.8): LOD fraction for 3rd axis interpolation

• l_tile (0-7): tile descriptor index into tile memory

The LOD per pixel is clamped to min_level. The LOD tile index is then
calculated using the equation:

l_tile = log2((int)lod_clamp)

So, for example, an LOD of 7.5 would be converted to an l_tile of 2. This
index is clamped to max_level and then added to the prim_tile. For example,
the tile arrangement for a MIP map with a prim_tile = 2 and max_level = 3
would be arranged as shown in Table 14-5.

Table 14-5 Example of Tile Address and LOD Index Relationship

The l_frac is derived by dividing the clamped LOD by 2 l_tile . For example,
an LOD of 7.5 would yield an l_frac of 0.875. The l_frac is modified
depending on the mode bits detail_en and sharp_en. Note that the detail and
sharpen modes discussed below are exclusive. If enabled simultaneously,
special effects may result. If neither detail_en or sharp_en is true, then the
l_frac is passed to the color combiner unmolested.

Sharpen and detail mode change the behavior of the tile index calculation
when magnifying. The texture is magnified when you get so close to the

Tile Address LOD Index

0 -

1 -

2 0

3 1

4 2

5 3

6 -

7 -
230

NINTENDO DRAFT TEXTURE MAPPING
primitive that one texel is being applied to many pixels, even using the
highest resolution texture in the MIP map.

Table 14-6 Generation of Tile Descriptor Index With LOD Enabled and Magnifying

Table 14-7 Generation of Tile Descriptor Index With LOD Enabled and Not
Magnifying

Also note that l_tile is clamped to max_level when at the coarsest level of
detail.

Cycle Detail Sharpen !Detail &
!Sharpen

0 prim_tile + l_tile prim_tile + l_tile prim_tile + l_tile

1 prim_tile + l_tile
+ 1

prim_tile + l_tile
+ 1

prim_tile + l_tile

Cycle Detail Sharpen !Detail &
!Sharpen

0 prim_tile + l_tile
+ 1

prim_tile + l_tile prim_tile + l_tile

1 prim_tile + l_tile
+ 2

prim_tile + l_tile
+ 1

prim_tile + l_tile
+ 1
231

NINTENDO 64 PROGRAMMING MANUAL DRAFT
MIP Mapping

An example of the tile arrangement for a MIP map is shown in Figure 14-5.

Figure 14-5 MIP Map Tile Descriptors

To implement trilinear MIP mapping, the RDP must be in two-cycle mode.
A tile is referenced in each of the cycles and linearly interpolated using the
l_frac in the color combiner.

For more control of interpolation between two texture tiles a register
prim_frac (0.8) is provided that can be used as an input to the color
combiner. prim_frac is set by the SetPrimColor command.

Care should be taken in the off-line generation of the MIP maps. Depending
on the filter used for generating the levels, the different levels can end up
unaligned if not careful. For example, if using a simple box filter for
generating the coarser levels, an offset of 0.5 should be added to the SL and
TL of each level to insure that they align when laid on top of one another.
Whether these or other offsets are necessary depends on the filter used.
Typically higher order filters will result in higher quality MIP maps.

Another word of caution. In computer graphics, extremely high frequency
textures are a bad thing. Going from black to white in one texel being the
highest frequency. High frequency maps are more likely to alias (flicker)
when edge on or far away. So when generating map data use common sense
and possibly lower frequency texture data to avoid these problems.

2
3
4
5
6

1
0

7
MIP Map pyramid, no detail map

Tile

Prim_Tile = 2
Max_level = 4
Lod_en = 1
Sharp_en = 0 or 1

Detail_en = 0

0
1
2
3
4

Shift
232

NINTENDO DRAFT TEXTURE MAPPING
Magnification

Figure 14-6 Magnification Interval Relative to LOD

Detail Texture

Even with trilinear MIP mapping, textures can look blurry under
magnification (that is, when 0.0 < LOD <= 1.0). One way of avoiding this is
to use very large textures that contain high-frequency detail. But this would
be expensive in Tmem.

Detail mode comes into play in magnification. The finest level of the base
texture is combined with a (usually small) detail texture in such a way as to
repeat the detail-texture over the base texture several times. A base-texel
would, upon magnification, appear to contain four or more detail texels
blended with the base-texel color, thus providing high-frequency
information without having to sacrifice large amounts of Tmem. This can be
used very effectively; for example, to provide motion cues when close to the
terrain.

1 2 3 4 5 6 70
0 1 1.5 2 2.5

8
3

L, texels/pixel

L_Tile .L_Frac0

Texel Color

Area where detail and sharpen become active
233

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Detail texture mode is most effective in situations where the high-frequency
information and overall hue are relatively consistent throughout the texture.
To convert a high-resolution image into a low-resolution image (for the base
texture) and a detail texture, follow this procedure:

12. Make the low-res image by filtering the high-res image to the desired
size. This will become the base level.

13. Any nxn sub-tile of the high-res image can be used as a detail-texture.
This sub-tile should preferably be modified to match across s and t
borders so that when it is repeated on the base-texture, the seams are
not visible. Detail textures can have a different texel type than the
base-texture (subject to Tmem restrictions). Often, it is sufficient to use
a 4-bit or 8-bit intensity detail-texture

A very effective and efficient implementation of detail texture involves use
of the base texture itself as the detail texture but at a different resolution.
This works well for objects and terrains with a ‘fractal character’ where
different resolutions of the object look similar. In such cases it might be
appropriate to set the min_level parameter to 0 to allow the detail texture to
completely replace the base texture at high magnifications.

Since the detail texture is combined with the base texture, a color shift may
result. This can be avoided by choosing the detail texture color scheme to
match the base texture colors so that this effect is minimized. The min_level
parameter can also be used to keep the detail texture from completely
replacing the base texture by setting it to a value greater than 0. This will
cause a certain minimum amount of the base texture to always be blended
in with the detail texture thus minimizing the color shift.

The shift field of the tile pointing to the detail texture is used to shift the
incoming s and t coordinates before indexing into the map. This shift then
determines the base-texel to detail-texel ratio.

For example, if the detail tile’s shift was set to shift left by 1 (the shift of the
finest level of the base texture being 0, of course), each base-texel, upon
magnification would display 4 detail-texels blended with the base-texel
color. A shift left of 2 would result in 16 detail-texels per base- texel and so
on. Larger shifts result in more aliasing in the detail-texture since the
interpolation occurs between widely different magnifications.
234

NINTENDO DRAFT TEXTURE MAPPING
Keep in mind that the shift values compromise between the base-texel to
detail-texel ratio and the effectiveness of the bilerp operation on the detail
texture. This is because the number of fractional bits in the s and t
coordinates (s10.5) is limited to 5 bits. Hence, a shift left of 3 bits will leave
only 2 bits of fraction within each texel to do the bilerp.

Detail textures must always be pointed to using PRIM_TILE.

Figure 14-7 MIP Map With Detail Texture Tile Descriptors

If detail_en is true and the LOD is less than 1.0, indicating that the LOD is
below the finest MIP map level, the fraction is a table lookup of the l_frac.
Currently, the table lookup is simply identity, so the fraction is not modified
in detail mode. In order to always to have a portion of the base-texture
visible, l_frac is clamped to be greater than min_level. Min_level should be
determined by experimentation. This fraction can then be used to
interpolate between the detail-texture (pointed to by prim_tile) and the
base-texture (pointed to by prim_tile+1). Filtering within the detail-texture
can be controlled as usual by using the setOtherModes bits to be POINT or
BILERP.

Sharpen Mode

Sharpen mode is used in a situation similar to that of detail texture. The
advantage of sharpen over detail is that sharpen is essentially free. It doesn’t
require an additional detail map. Instead it extrapolates using the two finest
MIP map levels. An image with high contrast edges has been magnified to
the point where the edge details are becoming blurry. Sharpen mode
increases the apparent sharpness of the texture edge by inverting the l_frac

2
3
4
5
6

1
0

7
MIP Map pyramid, with detail

Tile Prim_Tile = 1
Max_level = 4
Lod_en = 1
Sharp_en = 0
Detail_en = 1

0
1
2
3
4

Shift

Detail texture f
235

NINTENDO 64 PROGRAMMING MANUAL DRAFT
(extrapolating) as shown in Figure 14-8, “Sharpen Extrapolation,” on
page 238.

Bilinear Filtering and Point Sampling

The DP hardware treats texture coordinates differently based on whether
the DP is in point sample mode or bilerp mode. In point sample mode texels
can be thought of as 1 x 1 squares with the sample point at the top left hand
corner of the texel (where the ‘s’ and ‘t’ coordinate axes run left to right and
top to bottom respectively. This means that to map a modeler’s floating
point texture coordinate output (u,v) into the DP fixed point texture
coordinates (s,t) for say a 32x32 sized texture (s ranges from 0 - 31 and t
ranges from 0 - 31), the mapping

s = u*32;
t = v*32;

would work consistently and would map the full 32x32 texture onto a
polygon with (u,v) coordinates in the range [0.0 - 1.0]. This is because the
above mapping would result in u range of [0.0-1.0] to be mapped to an s
range of [0-32] which would cover the region from the left edge of the texel
0 to the right edge of texel 31.

On the other hand, in Bilerp mode the DP treats a texel as a 1 x 1 square with
the sample point at the center and the above mapping would cover the
region from the middle of texel 0 to the middle of texel 32 which goes beyond
the extent of the texture.

The mapping

s = u*32 - 1;
t = v*32 - 1;

doesn’t work either since it maps a (u,v) range of 0.0 - 1.0 to an (s,t) range of
0.0 - 31.0 which would cover a region from the middle of texel 0 to the
middle of texel 31 which cause both texel 0 and texel 31 to be half displayed.

The mapping that would make the textured primitive match exactly to the
artist’s rendition of the texture in Bilerp mode would be:

s = u*m - 0.5;
t = v*n - 0.5;
236

NINTENDO DRAFT TEXTURE MAPPING
since this would map a (u,v) range of [0.0-1.0] to an (s,t) range of [-0.5 - 31.5]
which would cover the region starting on the left edge of texel 0 to the right
edge of texel 31. However the bilerp filter requires two texels to bilerp
between and in the s,t ranges [-0.5 - 0.0] and [31.0 - 31.5] there is only one
texel available. This can be solved by turning on clamping in the DP and
setting SL,TL to 0,0 and SH,TH to 31,31. This will cause the bilerp filter to
select texel 0 for both texels to bilerp between in the range [-0.5 - 0.0] and
texel 31 for range [31.0 - 31.5]. This paradigm can be extended for wrapping
textures by clamping only at the border coordinates of the primitive. For
example a primitive with u,v in the range [0.0-4.0] in wrap mode would
repeat the texture 4 times. For the border texels to be displayed in full the s,t
range would have to be [-0.5 - 127.5] (according to the above mapping) and
the clamp parameters SL,TL and SH,TH would be set to 0,0 and 127,127
respectively. (Note that SL and TL is subtracted from the incoming texture
coordinates and is also used as the lower clamp value in clamp mode).

If the (power of 2) texture matches along the 4 edges, clamp can be turned
off and the bilerp filter will use the texel from the other edge of the wrapping
texture to filter to.

Note: Since point sampled and bilerp modes cause a shift of 0.5 texels in the
displayed primitive, to switch between point sampled and bilerp modes
without shifting the texture one of the following methods may be used: 1)
use a different primitive with a 0.5 shift in the texture coordinates; 2) Set the
0.5 texel shift in SL and TL in the texture tile (SL and TL are subtracted from
the incoming texture coordinates)

Note: If the mxn texture is too large to fit in tmem, the polygon and the
texture can be broken up along u,v and s,t in appropriately sized tiles. For
the bilerp to work along the tile boundaries, an extra row (or column) of
texels around each tile border needs to be loaded i.e the resulting polygons
will be disjoint but each tile (that is not a border tiles) will have an overlap
of 2 texels with any adjacent tile.
237

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Figure 14-8 Sharpen Extrapolation

1 20

0 1

L_Tile.L_Frac

0

Te
xe

l C
ol

or

0.4

Magnify interval

The change in color between texel A and B is extrap-
olated using the equation P = A + (B-A)*(Lfrac-1.0)
Notice that the extrapolation makes the dark texel
even darker...

and light texels become lighter after the extrapola-
tion, thus enhancing the apparent sharpness of the
edge.

A
B

P

1 20

0 1

L, texels/pixel

0

Te
xe

l C
ol

or

0.4

Magnify interval

A

B

P

238

NINTENDO DRAFT TEXTURE MAPPING
Texture Memory

Memory Organization

Because texturing requires a large amount of random accesses with
consistent access time to texture memory, it is impractical to texture directly
from DRAM. The approach taken by the Nintendo64 system is to cache up to
4 KB of an image in an on-chip, high-speed texture memory called Tmem.
All primitives are textured using the contents of Tmem. The basic sequence
of events needed to texture a primitive is:

1. Load a texture tile into Tmem.

2. Describe attributes of the texture tile.

3. Render primitives that use this tile.

Tmem should indeed be considered a cache from the programmer’s point of
view. Since each tile must be loaded from DRAM, it makes sense to render
as many primitives as possible, using the current tile before loading the next
one in order to conserve DRAM bandwidth.

Physically, Tmem is arranged as shown in Figure 14-9. L0-3 are referred to
as the low half of Tmem, H0-3 are referred to as the high half of Tmem.

Figure 14-9 Physical Tmem Diagram

16bit

L0

16bit

L1

16bit

L2

16bit

L3

16bit

H0

16bit

H1

16bit

H2

16bit

H3

256 Words
239

NINTENDO 64 PROGRAMMING MANUAL DRAFT
For loading, Tmem is arranged logically, as shown in Figure 14-10.

Figure 14-10Tmem Loading

The following table shows the maximum tile sizes that can be stored in the
4KB Texture Memory. Images larger than this will be tiled.

Table 14-8 Maximum tile sizes in TMEM

Texel Type Maximum Texel Count

4-bit (I, IA) 8K

4-bit Color Index 4K (plus 16 palettes)

8-bit (I, IA) 4K

8-bit Color Index 2K (plus 256-entry LUT)

16-bit RGBA 2K

16-bit IA 2K

16-bit YUV 2K Y’s, 1K UV pairs

32-bit RGBA 1K

64 bits

512 Words

Alignment Logic

Load Data

Load Address

Tmem
240

NINTENDO DRAFT TEXTURE MAPPING
Four-bit textures are stored in Tmem as shown, as shown in Figure 14-11.

Figure 14-11Four-Bit Texel Layout in Tmem

Eight-bit textures are stored in Tmem, as shown in Figure 14-12.

Figure 14-12Eight-Bit Texel Layout in Tmem

0 1 2 3

Low Half

High Half

T=0

4-bit Texture, 20 texels per row, texel indices are in hex

0 1 2 3 4 5 6 8 97 a b c d e f

10 11 12 13 X X X X X X X X X X X X

T=1 8 9 a b c d e 0 1f 2 3 4 5 6 7

X X X X X X X X 10 11 12 13 X X X X

Word 0

Word 511

16 bits

0

Low Half

High Half

8-bit Texture, 10 texels per row, texel indices are in hex

Word 0

Word 511

16 bits

0 1

8 9

4 5

X X

1

16 bits

2 3

X X

6 7

X X

3

16 bits

6 7

X X

2 3

X X

2

16 bits

4 5

X X

0 1

8 9

T=0

T=1
241

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Sixteen-bit textures (except YUV) are stored in Tmem, as shown in
Figure 14-13.

Figure 14-13Sixteen-Bit Texel Layout in Tmem

Sixteen-bit YUV textures are stored in Tmem, as shown in Figure 14-14. Note
that YUV texels must be loaded in pairs. In other words two Y’s at a time.
Also note that if filtering is enabled, an additional UYVY pair must be

0

Low Half

High Half

16-bit Texture, 6 texels per row, texel indices are in hex

Word 0

Word 511

16 bits

0

4

2

X

1

16 bits

1

5

3

X

2

16 bits

2

X

0

4

3

16 bits

3

X

1

5

T=0

T=1
242

NINTENDO DRAFT TEXTURE MAPPING
loaded per row and SH set accordingly to allow proper filtering of the last
UV texel per row.

Figure 14-14YUV Texel Layout in Tmem

Thirty-two bit (RGBA) textures are stored in Tmem, as shown in
Figure 14-15.

Figure 14-15Thirty-Two Bit RGBA Texel Layout in Tmem

0

16-bit YUV Texture, 12 texels per row, texel indices are in hex

Word 0

Word 255

16 bits

u 0 v

u 8 v

u 4 v

X

1

16 bits

u 2 v

u A v

u 6 v

X

2

16 bits

u 4 v

X

u 0 v

u 8 v

3

16 bits

u 6 v

X

u 2 v

u A v

T=0

T=1

Low Half High Half

0

16 bits

y0 y1

y8 y9

y4 y5

X X

1

16 bits

y2 y3

yA yB

y6 y7

X X

3

16 bits

y6 y7

X X

y2 y3

yA yB

2

16 bits

y4 y5

X X

y0 y1

y8 y9

0

32-bit Texture, 6 texels per row, texel indices are in hex

Word 0

Word 255

16 bits

r 0 g

r 4 g

r 2 g

X

1

16 bits

r 1 g

r 5 g

r 3 g

X

2

16 bits

r 2 g

X

r 0 g

r 4 g

3

16 bits

r 3 g

X

r 1 g

r 5 g

T=0

T=1

Low Half High Half

0

16 bits

b 0 a

u 4 v

b 2 a

X

1

16 bits

b 1 a

u 5 v

b 3 a

X

2

16 bits

b 2 a

X

b 0 a

b 4 a

3

16 bits

b 3 a

X

b 1 a

b 5 a
243

NINTENDO 64 PROGRAMMING MANUAL DRAFT
For color index (CI) textures, the texture is stored in the lower half of Tmem,
and the Texture/Color Look-Up Table (TLUT) is stored in the upper half of
Tmem. For 4-bit CI textures, the texels (or indices) addressed in the lower
half of Tmem have the 4-bit palette number for the tile prepended to create
an 8-bit address into the upper half of Tmem. Since four texels are addressed
simultaneously, there must be four (usually identical) TLUTs stored in the
upper half of Tmem across the four banks.

For 4-bit CI textures, the palette effectively selects one of sixteen possible
tables, each table having sixteen entries. Each table is aligned on 16-word
boundaries. Note that there are two choices for the texel type that resides in
the TLUT: 16-bit RGBA, or 16-bit IA. The type is selected using the
gDPSetTextureLUT() command. This command also configures the Tmem
as shown in Figure 14-16. Because of this, CI textures cannot be combined
with other texture types in two-cycle mode.
244

NINTENDO DRAFT TEXTURE MAPPING
Figure 14-16Tmem Organization for Eight-Bit Color Index Textures

Eight-bit CI textures do not use the palette number of the tile, since they
address the whole 256 TLUT directly. It is possible to use the 8-bit mode for
storing index textures that have between 16 and 256 entries.

For example, you could define a texture that had 40 entries, numbered 0-39,
and load the TLUT into the upper half of Tmem (word 256). Further suppose
that you had another texture with indices 40-69. You could load this
texture’s 30 entry TLUT into Tmem, starting at word 296.

0 1 2 3

Low Half

High Half

Word 0

Word 256

16 bits

Word 255

Word 511

Select Texels

Texels To Texture Filter

8 8 8 8

Addr Addr Addr Addr
245

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Assuming that both textures together fit into the lower half of Tmem (2 KB),
these textures could be co-resident in Tmem. It is also possible to have CI
textures co-resident with other non-CI textures.

In the above example, you are using only the first 70 words of upper Tmem
for TLUTs. You could use the remaining 186 words to store a 4-bit I texture,
for example. Note that even though you can store CI and other types
together in Tmem, you cannot access these types simultaneously in
two-cycle mode, because the configuration of the Tmem for CI textures is
controlled with a mode bit that must be updated using the
gDPSetTextureLUT command, as mentioned previously.

Figure 14-17Tmem Organization for Four-Bit CI textures

0 1 2 3

Low Half

High Half

Word 0

Word 256

16 bits

Word 255

Word 511

Select Texels

Texels To Texture Filter

Palette Palette Palette Palette

8 8 8 8

Addr Addr Addr Addr
246

NINTENDO DRAFT TEXTURE MAPPING
Texel Formatting

In the RDP graphics pipeline, most operations are done on
8-bit-per-component RGBA pixels. After looking up the texels, the texture
unit converts them into the 32-bit RGBA format. Table 14-9 describes how
each type is converted. The format for beatified descriptions is [MSB:LSB]
where MSB is the most significant bit and LSB is the least significant bit. Bit
fields are grouped together in braces {} with the most significant field on the
left and the least significant field on the right

Table 14-9 Texel Output Formatting

.

Type Size Input
Format

Output Format

Red Green Blue Alpha

I 4 I[3:0] {[3:0],
[3:0]}

{[3:0],
[3:0]}

{[3:0],
[3:0]}

{[3:0],
[3:0]}

I 8 I[7:0] [7:0] [7:0] [7:0] [7:0]

IA 4 I[3:1],
A[0]

{[3:1],
[3:1],
[3:2]}

{[3:1],
[3:1],
[3:2]}

{[3:1],
[3:1],
[3:2]}

255*[0]

IA 8 I[7:4],
A[3:0]

{[7:4],
[7:4]}

{[7:4],
[7:4]}

{[7:4],
[7:4]}

{[3:0],
[3:0]}

IA 16 I[15:8],
A[7:0]

[15:8] [15:8] [15:8] [7:0]

RGBA 16 R[15:11],
G[10:6],
B[5:1],
A[0]

{[15:11],
[15:13]}

{[10:6],
[10:8]}

{[5:1],
[5:3]}

255*[0]

RGBA 32 R[31:24],
G[23:16]
, B[15:8],
A[7:0]}

[31:24] [23:16] [15:8] [7:0]
247

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Texture Loading

Loading a texture actually consists of several steps. Internally, the RDP
treats loading a texture as if it were rendering a textured rectangle into
Tmem. To load a texture, you must describe the texture tile to be loaded,
render (load) it into Tmem, and describe the tile to be rendered. An
important consequence of these steps is that you can load a texture in one
way and render it in completely different way.

For example, the GBI macro gsDPLoadTextureTile performs all the tile and
load commands necessary to load a texture tile. The sequence of commands
is shown below (macros shown without parameters):

gsDPSetTextureImage
gsDPSetTile /* G_TX_LOADTILE */
gsDPLoadSync
gsDPLoadTile /* G_TX_LOADTILE */
gsDPSetTile /* G_TX_RENDERTILE */
gsDPSetTileSize /* G_TX_RENDERTILE */

This sequence of commands loads a texture tile using the tile descriptor
G_TX_LOADTILE (tile 7) and renders using G_TX_RENDERTILE (tile 0).
Since the tile descriptor used to load the tile is different from the one used to
render the texture, there is no possibility of tile usage conflict, so a TileSync
command is unnecessary. The TileSync command is used in situations
where you may want to use the same tile for both loading and rendering a
texture. It basically inserts a bubble in the RDP pipeline to guarantee that the
load tile descriptor isn’t changed by the render tile before the load is actually
done.

The gsDPSetTextureImage command sets a pointer to the location of the
image. Then the gsDPSetTile is used to indicate where in Tmem you want to
place the image, how wide each line is, and the format and size of the
texture. A gsDPLoadSync command makes sure that any previous load is
completely finished before this texture is loaded. Then the actual
gsDPLoadTile command is issued, which loads the texture into Tmem. The
final gsDPSetTile and gsDPSetTileSize are used to set the tile descriptors
correctly for the tile used when rendering.
248

NINTENDO DRAFT TEXTURE MAPPING
The textures are stored big-endian in memory and should obey the
following format for a 64-bit word in memory.

Figure 14-18Texel Formats in DRAM

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7

0 1 2 3

R0 G0 B0 A0 R1 G1 B1 A1

U0 Y0 V0 Y1 U2 Y2 V2 Y3

4-Bit

8-Bit

16-Bit

32-Bit

16-Bit

RGBA

YUV

64-Bit Word63 0
249

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Load Tile

The LoadTile command allows a programmer to load an arbitrary
rectangular region of a larger texture in DRAM into Tmem. The following
examples assume a 16-bit texel type.

Figure 14-19Example of LoadTile Command Parameters

When textures are loaded as a tile, it means that (at least) each line of the
texture is a separate DRAM transfer. Each line’s transfer may be broken into
multiple smaller transfers, depending on how big it is and whether it crosses
DRAM page boundaries. Since the DRAMs are block transfer type devices,
there is a fixed amount of overhead for each transfer, so long transfers are
desirable. For this reason, you should try to load your texture using the
longest dimension of the tile. Also, each line of a tile is padded automatically
to Tmem word (64-bit) boundaries. If your tile line size is not a multiple of
64-bits, some Tmem space is being wasted. Also when tiling a larger texture
image into multiple tiles, an extra row and column are usually loaded to
allow proper filtering of the texels along the border of the tile (to avoid
seams).

0 59
60 119

120

Texel Offsets in DRAM

180
240
300
360
420
480
540

179
239
299
359
419
479
539
599

140
200
260
320
380
440

159
219
279
339
399
459

Texture Image Pointer

Tile to be loaded using LoadTile command

SL = 20, TL = 2, SH = 39, TH = 7

Texture Size: S = 60, T = 10

Each line of the tile, for example, texels 140-159,
will be at least one DRAM transfer. The advan-
tage of LoadTile is that you can load arbitrary tiles
from a larger map.

Assume texel size is 16 bits

Line: 20 texels/line * 2 bytes/texel
 8 bytes/word

to a Large Texture Map
250

NINTENDO DRAFT TEXTURE MAPPING
Note: The RDP commands LoadTile, LoadBlock, and LoadTLUT set the tile
parameters SL,TL,SH,TH when they are executed. After the load command,
it may be necessary to use the SetTileSize command to restore these
parameters if you want parameters other than were used in the Load
command. In the gbi.h texture load macros, the SetTileSize command is
always used following a Load command.

Wrapping a Large Texture Using Load Tile

It is possible to effectively ‘wrap’ large textures (textures too large to fit
entirely in Tmem) by careful loading using the LoadTile command. There
are (at least two) methods for doing this. Figure 14-20, “Wrapping a Large
Texture Using Two Tiles,” on page 251 shows a large texture in memory.
We want to load a tile as if the texture had been wrapped in the S direction,
and the tile straddles the wrap region.

Figure 14-20Wrapping a Large Texture Using Two Tiles

0 59
60 119

120
180
240
300
360
420
480
540

179
239
299
359
419
479
539
599

Large Texture

0
60

120
180
240
300
360
420
480
540

Wrapped Large Texture (Virtual)

Tile we would like to load

T

m

n

n

m

T

Tile 1Tile 2
251

NINTENDO 64 PROGRAMMING MANUAL DRAFT
One way to effectively load the wrapped tile is to actually load two
interleaved tiles. To interleave two tiles in Tmem, load tile 1 but set the tile’s
Line parameter to n+m Tmem words, where n is the number of words in a
line of Tile 1 and m is the number of words in tile 2. SL,SH,TL,TH should be
set to load Tile 1. Now load Tile 2, setting the tile’s Tmem Address to n. Also
set the SL,TL,SH,TH for Tile 2. After the loads, reset the render tile’s Tmem
Address to 0. Set SL,SH,TL,SH to be the total composite tile size. Note that
only Tile 1’s width must be a multiple of Tmem words. Tile 2’s width can be
any number of texels and the remainder of the last Tmem word for each line
will simply be undefined.

Another, possibly more straightforward method, relies on the fact that at the
end of each line of the large texture, the addresses will naturally roll into the
next line.

Figure 14-21Wrapping a Large Texture Using One Tile

So, as shown in Figure 14-21, “Wrapping a Large Texture Using One Tile,”
on page 252, you can load a single tile starting at address 60 minus m words.
The tile’s Line parameter should equal m+n. Set the Tmem Address
parameter to 0 during the load. Make sure to load T+1 lines. After the load,
set Tmem Address to m, and set the SL,SH,TL,TH to the actual tile size. This
method wastes m words at the beginning of Tmem and n words at the end
of Tmem but has the advantage of using only one load.

0 59
60 119

120
180
240
300
360
420
480
540

179
239
299
359
419
479
539
599

Large Texture

T

mn bogus texels

bogus texels
at end of tile

at start of tile

This is one contiguous
line
252

NINTENDO DRAFT TEXTURE MAPPING
Load Block

A more memory-bandwidth efficient way to load textures is the LoadBlock
command. This command essentially treats each texture as a single long line
of data. This allows the MI to transfer the maximum amount of data for each
transfer.

Figure 14-22Example of LoadBlock Command Parameters

The LoadBlock command uses the parameter dxt to indicate when it should
start the next line. Dxt is basically the reciprocal of the number of words
(64-bits) in a line. The texture coordinate unit increments a counter by dxt
for each word transferred to Tmem. When this counter rolls over into the
next integer value, the line count is incremented. The line count is important
because the data in odd lines is swapped to allow interleaved access when
rendering. This works great when dxt is a power of two. However, if dxt is
not a power of two, the line counter can be corrupted due to accumulated
error. Appendix A contains a table that indicates how many lines for a
certain size can be in a load block for a tile before the line count is corrupted.

It is possible to load a set of texture tiles using a single LoadBlock command
(MIP maps, for example). However, if the tiles have different widths, the
single dxt parameter is not enough to do proper interleaving. In these cases,
the data must be pre-interleaved and the dxt parameter should be set to zero.

0 43
44 87
88

132
176
220
264
308
352
396

131
175
219
263
307
351
395
439

Texel Offsets in DRAM

Actual Texture Line Size = 42 texels

Pad each line by 2 texels to
Memory will be accessed as one continuous line of
texels from 0-439. The line number is determined
in texture hardware by accumulating dxt. DRAM
transfers will be the largest possible considering
span buffer size and page crossings.

dxt = 1 line
44 texels

4 texels
1 word

 = 1
 11

get integral 64-bit words per line
253

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The LoadTlut command is an efficient way of loading texture look-up tables
into the high half of TMEM. System memory is conserved using this
command as each 16-bit color value is “quadricated” as it is read in and
written to the TMEM. In other words, it isn’t necessary to store four times
the data in memory. The load hardware will expand it out into a 64-bit word
during the load. This saves system memory as well as memory bandwidth.
Two types of TLUTs are supported: 16-bit RGBA and 16-bit IA. TLUT depth
can range from 16 words (4-bit CI) to 256 words (8-bit CI). LoadTile or
LoadBlock can still be used for loading the TLUT however the data will have
to be quadricated in system memory first.

Loading Notes

4-bit types should be loaded as 16-bit types and then rendered as 4-bit types.
This does not restrict 4-bit types in any way and still allows for rows with an
odd number of 4-bit texels.

When using LoadBlock, no more than 2048 texels can be loaded at once. So
for example if you wanted to load 4K 8-bit texels, load them as 2K 16-bit
texels and then render them as 8-bit texels. If you’re using 16-bit or 32-bit
there is no need for a special case since TMEM cannot hold more than 2K
16-bit or 1K 32-bit texels.

To improve performance by minimizing the number of syncs required, the
user can interleave the tile loads and renders with different tile indices. For
example, load using tile 7 while rendering using tile 0.
254

NINTENDO DRAFT TEXTURE MAPPING
Examples

After texture coordinates are converted to Tile Space, they may be wrapped,
clamped, or mirrored. Figure 14-23 shows how wrapping, mirroring, and
clamping affect the tile-relative coordinates. The S and T coordinates have
independent controls for wrapping, mirroring, and clamping.
255

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Figure 14-23Wrapping, Mirroring, and Clamping

Wrap S,T

Mirror S
Wrap T

Mirror S,T

Clamp S
Wrap T

Wrap S
Clamp T

Base Map
256

NINTENDO DRAFT TEXTURE MAPPING
Figure 14-24Wrapping Within a Texture Tile

32

64

74

74 65 0 128 65
74Wrap every 64 texelsclamp clamp

Textured log using 3 textured cylinders. The
middle cylinder sets the tile’s mask to 6 so
that the texture wraps every 64 texels. The
end cylinders set the tile’s clamp bit and have
coordinates that access the jagged part of the
texture. Advantages include easier modeling,
use of one load command, and possibly
tighter Tmem packing than if two separate
textures were used.
257

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Figure 14-25Example of Texture Decals

Airplane Wing Insignia,

Mirror s,t
Clamp s,t

Cycle 0

Alpha 0 at edges of
insignia

Airplane Wing Camo,

Wrap s,t
Mirror s,t

Cycle 1

Airplane wing camo and
insignia combined in Color
Combiner using the insignia
alpha to lerp between the
camo and insignia color.
258

NINTENDO DRAFT TEXTURE MAPPING
Restrictions

Texture Types and Modes

The following is a list of restrictions concerning the use of certain textures
types in certain modes:

Point Sample

Clamp &/| (wrap | mirror) works for all texel types.

Filter

Clamp works for all texel types. Wrap t | mirror t | (clamp t & wrap t) |
(clamp t & mirror t) works for all texel types.

Wrap s | mirror s | (clamp s & wrap s) | (clamp s & mirror s) works for all
texel types except YUV.

Copy

Clamping is implicitly disabled for copy mode. 32-bit RGBA and YUV texel
types are not supported. To copy these types, they should be loaded and
copied as 16-bit RGBA type texels. When using a 16-bit RGBA type to copy
a 32-bit RGBA or YUV texture, mirroring in s is not supported.

Wrap or mirror works for 4, 8, and 16-bit types.

LOD

You must put the RDP in two-cycle mode to use texture LOD.

Alignment

The texture image pointer, as defined using the gDPSetTextureImage
command, must be 8-byte aligned. Additionally, each tile must be aligned
according to its size. For example, 8-bit texture tiles must be aligned to 8-bit
259

NINTENDO 64 PROGRAMMING MANUAL DRAFT
boundaries, 16-bit textures to 16-bit boundaries, etc. One exception is 4-bit
tiles, which must be accessed on byte (8-bit boundaries).

Tiles

The maximum size of a tile is 256 rows (t coordinate) and 1024 texels (s
coordinate) within the limits of Tmem size. It is better to always make the s
coordinate the longer coordinate in terms of load performance.

You should avoid shifting coordinates left using the shift parameter of a tile
unless necessary. See the example under Multiple Tile Effects in the
Applications section.

Coordinate Range

The valid texture coordinate range is currently from -1024.0 to +1023.99. A
total range of 2K texels across a primitive. The texture hardware can handle
this full range without any noticeable loss of accuracy. For small coordinate
ranges however, if given a choice of coordinates close to zero or coordinates
close to 1024, slightly higher quality may result from the lower coordinates.
260

NINTENDO DRAFT TEXTURE MAPPING
Applications

Multiple Tile Effects

Interference Textures

Since you can access two separate tiles in two-cycle mode, it easy to achieve
interference pattern effects.

X =

 Of course, you can use textures that are different

sizes (wrap on different intervals) to decrease the amount of apparent
repetition. This is especially useful for textures on terrain or for waves on
the ocean, for example.

Lighting with Textures

Multiple tiles can be used for lighting effects. In the example below, a small
texture is repeated many times but a small light texture is scaled up to create
the effect of a spotlight.

Tex 0 Tex 1

0, 0

0, 50

200, 0

200, 50
Tex 0 coordinates

0, 0

0, 25

50, 25

50, 0

Tex 1 coordinates

 In this example you could use the input coordinates

should be defined using Tex 0’s coordinates. The shift parameter of the tile
descriptor for Tex 1 could be used to right shift the input coordinates to the
required values. It would be a bad idea to use Tex 1’s coordinates as the
261

NINTENDO 64 PROGRAMMING MANUAL DRAFT
input coordinates and then left shift to obtain Tex 0’s coordinates. This is
because when you shift left, you shift zeros into the lsb’s of the coordinate,
thus losing precision.

Extended Alpha Using Multiple Textures

The 16 bit RGBA texture type is often used to texture sprites and billboards
because this is the only type that allows a large number of colors.
Unfortunately, this type only has one bit of alpha (which means you cannot
prefilter texture edges), and can lead to pixelated texture edges.

One way to get more bits of alpha (in order to create smoother outlines) is to
use two tiles. The first tile describes the RGB color of the texture, while the
second tile describes the alpha channel of the texture. Render the texture in
two-cycle mode. In the color combiner, select T0 as the source and in the
alpha combiner select T1 as the source.

A code fragment indicates how to set the combine modes and load the
textures:

#define MULTIBIT_ALPHA 0, 0, 0, TEXEL0, 0, 0, 0, TEXEL1

...
 /* use special combine mode */
 gsDPSetCombineMode(MULTIBIT_ALPHA, G_CC_PASS2),
...
 /*
 * Load alpha texture at Tmem = 256, notice I use a
 * different load macro that allows specifying Tmem
 * address.
 */
 _gsDPLoadTextureBlock_4b(I4molecule, 256, G_IM_FMT_I,
 32, 32, 0,
 G_TX_WRAP, G_TX_WRAP,
 5, 5, G_TX_NOLOD, G_TX_NOLOD),

 /*
 * Load color texture starting at Tmem=0
 */
 gsDPLoadTextureBlock(RGBA16molecule, G_IM_FMT_RGBA,
 G_IM_SIZ_16b, 32, 32, 0, G_TX_WRAP, G_TX_WRAP,
 5, 5, G_TX_NOLOD, G_TX_NOLOD),
262

NINTENDO DRAFT TEXTURE MAPPING
 /*
 * Since normal load macros use tile 0 for render, I
 * need to set tile 1 manually to point at alpha
 * texture.
 */

 gsDPSetTile(G_IM_FMT_I, G_IM_SIZ_4b, 2, 256, 1,
 0,
 0, 0, 0,
 0, 0, 0),
 gsDPSetTileSize(1, 0, 0, 31 << 2, 31 << 2),

...
 /* make sure in two-cycle mode */
 gsDPSetCycleType(G_CYC_2CYCLE),
263

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Appendix A: LoadBlock Line Limits

The table below lists the maximum number of lines that can be properly
transferred for a given texture width.

Note: The absolute max lines column refers to the number of lines that
could be transferred if only limited by Tmem size. If absolute max lines field
is empty, it indicates that the max lines was equal to absolute max lines. If
max lines is empty it indicates that zero lines could be transferred correctly
using these parameters.

This table only applies to 16-bit texels.

Table 14-10 Limits on Number of Lines for LoadBlock Command

Width

(16b texels)

Max Lines Absolute

Max Lines

4 512

8 256

12 170

16 128

20 102

24 85

28 73

32 64

36 56

40 51

44 20 46

48 42

52 26 39

56 14 36

60 19 34
264

NINTENDO DRAFT TEXTURE MAPPING
64 32

68 13 30

72 28

76 26

80 8 25

84 9 24

88 4 23

92 4 22

96 5 21

100 20

104 13 19

108 18

112 3 18

116 6 17

120 3 17

124 2 16

128 16

132-136 2 15

140 3 14

144 14

148 2 13

152 13

156 2 13

Table 14-10 Limits on Number of Lines for LoadBlock Command

Width

(16b texels)

Max Lines Absolute

Max Lines
265

NINTENDO 64 PROGRAMMING MANUAL DRAFT
160 1 12

164 12

168 4 12

172-184 2 11

188-192 2 10

196 4 10

200 10

204 --- 10

208 1 9

212 2 9

216 9

220 --- 9

224 1 9

228 8

232 --- 8

236 2 8

240 --- 8

244 1 8

248 --- 8

252 1 8

256 8

260-264 --- 7

268 1 7

Table 14-10 Limits on Number of Lines for LoadBlock Command

Width

(16b texels)

Max Lines Absolute

Max Lines
266

NINTENDO DRAFT TEXTURE MAPPING
272 --- 7

276 1 7

280 --- 7

284 2 7

288-292 --- 7

296 1 6

300 --- 6

304 6

308-312 --- 6

316 4 6

320-324 --- 6

328 6

332-340 --- 6

344 1 5

348-356 --- 5

360 1 5

364-372 --- 5

376 1 5

380-388 --- 5

392 2 5

396-408 --- 5

412 1 4

416-428 --- 4

Table 14-10 Limits on Number of Lines for LoadBlock Command

Width

(16b texels)

Max Lines Absolute

Max Lines
267

NINTENDO 64 PROGRAMMING MANUAL DRAFT
432 4

436-452 --- 4

456 4

460-480 --- 4

484 1 4

488-508 --- 4

512 4

516-544 --- 3

548 2 3

552-584 --- 3

588 1 3

592-628 --- 3

632 2 3

636-680 --- 3

684 2

688-744 --- 2

748 1 2

752-816 --- 2

820 2

824-908 --- 2

912 2

916-1020 --- 2

Table 14-10 Limits on Number of Lines for LoadBlock Command

Width

(16b texels)

Max Lines Absolute

Max Lines
268

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
Chapter 15

15. Texture Rectangles (Hardware Sprites)

Warning: Code fragments in this chapter have not been fully verified.
A demo containing these examples will be included in a future software
release.

A texture rectangle is a special primitive supported by the Reality Display
Processor (RDP) hardware. This primitive is intended to provide simple
‘sprite’ capabilities with a minimum number of parameters. Texture
rectangles are screen-aligned rectangles whose coordinates are defined
directly in screen space.

Example 15-1 Texture Rectangle Command

gsDPTextureRectangle(xl, yl, xh, yh, tile, s, t, dsdx, dtdy)

Texture coordinates are defined by specifying the start point S and T
coordinates at the top left corner of the rectangle and the step in S per pixel
in X and the step in T per pixel in Y. Example 15-2 shows a rectangle 100
pixels wide by 100 pixels high drawn at screen coordinates (100,100). The
texture coordinates at the top left corner of the rectangle are (0,0). The
texture steps 1 texel per pixel in both the S and T directions. This example
assumes that a texture has been previously loaded (see “Texture Loading”
on page 248).

Example 15-2 Texture Rectangle Example

gsDPSetTexturePersp(G_TP_NONE),
gsDPTextureRectangle(100<<2, 100<<2, 200<<2, 200<<2,

G_TX_RENDERTILE,
0, 0,
1<<10, 1<<10),
269

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Caution: The perspective divide of the texture coordinates in the RDP must
be disabled using the gsDPSetTexturePersp() command when rendering
texture rectangles.

Texture rectangles are two-dimensional (2D)-- they may be translated in X
and Y, but not rotated. Texture rectangles may be z-buffered in a limited
way, as described in “Z-Buffering Texture Rectangles” on page 299. Even
though they are simple and limited to two dimensions, texture rectangles are
useful both in 2-D sprite games as well as for 2-D effects in 3-D games. This
chapter will explain some of the details associated with the texture rectangle
primitive and provide some simple examples for new Nintendo-64
programmers. Some of the information found in this chapter may also be
found in other chapters but is repeated here for completeness.

Figure 15-1 Texture Rectangle Definition

Screen

xl, yl (10.2 fixed point)

xh, yh (10.2 fixed point)
Texture

s,t (s,10.5)

dtdy (s,5.10)

dsdx (s,5.10)

0,0

increasing y

increasing x
270

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
Sampling Overview

A texture is an array of values, where each value is a set of numbers
(components) describing the attributes of a texture element, or texel. For the
Nintendo 64, the numbers representing a texel are fixed-point. The number
of components per pixel and the number of bits per component is variable.
“Color Index Frame Buffer” on page 298 describes the possible formats for
texels.

When displaying a texture on the screen of a display, we must perform a
mapping from the texture space to the display image space. In the case of
texture rectangles, where the geometric operations are limited to scaling and
translation, the main problem is how to sample and filter the source texture
so that it is faithfully produced on the display. Figure 15-2 is one example of
aliasing artifacts that can effect image quality. In this example, 10 black bars
are separated by 10 white bars with even spacing. The bars cover a width of
11 pixels on the screen. Because we are sampling at a lower frequency than
the texture, our output image is aliased. Aliasing artifacts are caused by
high-frequency information that is insufficiently sampled appearing as
low-frequency information. Furthermore, if the beginning sample point is
moved slightly, the sampled image can shift dramatically. During
animations this causes the displayed image to scintillate or flash. Nyquist’s
Law indicates that the sampling frequency should be greater than twice the
highest frequency component in the texture to avoid aliasing artifacts.

Figure 15-2 Aliasing in a Sampled Image

Point Sampling

Point sampling in the Nintendo 64 means that we assume that each texel
maps to one pixel on the display, and we ignore any fractional overlap

scanline

samples

sampling points
271

NINTENDO 64 PROGRAMMING MANUAL DRAFT
between texels and pixels. Example 15-3 shows how to enable point
sampling.

Example 15-3 Enable Point Sampling

gsDPSetTextureFilter(G_TF_POINT)

Point sampling works well for mapping a rectangular texture to a
screen-aligned rectangle of the same size on the display. Problems occur if
the sampling ratio is not 1:1, however, as shown in Figure 15-3. In the first
case, we display 10 texels using 10 pixels. In the second case, we scale the
image slightly by displaying 9 texels on 10 pixels. This results in the middle
pixel having the same color as the previous bar. In general, point sampled
images should be scaled by an integer power of two to avoid this problem.
To achieve other scalings, it is necessary to use bilinear filtering.

Figure 15-3 Point Sampling Scaling Problem

Example 15-4 demonstrates 3 texture rectangles with the texture scaled by 1,
2, and 4 respectively:

Example 15-4 Scaled, Point Sampled Textures

scanline

samples

sampling points

1:1 Scaling

scanline

samples

sampling points

10:9 Scaling
272

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
gsDPSetTextureFilter(G_TF_POINT),
gsDPTextureRectangle(50<<2, 50<<2, 150<<2, 150<<2,

G_TX_RENDERTILE,
0, 0,
1<<10, 1<<10),

gsDPTextureRectangle(60<<2, 60<<2, 160<<2, 160<<2,
G_TX_RENDERTILE,
0, 0,
1<<9, 1<<9),

gsDPTextureRectangle(70<<2, 70<<2, 170<<2, 170<<2,
G_TX_RENDERTILE,
0, 0,
1<<8, 1<<8),

Point sampling also implies that animated sprites will have to move in
one-pixel increments. Even though the rectangle can be positioned with 2
bits of subpixel precision, and the texture can be offset to 5 bits of fractional
precision, the point sampling only looks at the integer coordinate and so will
not change until there is at least a one pixel change in position. Bilinear
filtering allows for smoother motion of sprites.

Bilinear Filtering

Instead of selecting a single texel for a given pixel, as in point sampling,
bilinear filtering selects four texels surrounding the sample point and
intepolates these points using fractional position information to determine
the pixel color. Example 15-5 shows how to enable texture filtering.

Example 15-5 Enable Bilinear Filtering

gsDPSetTextureFilter(G_TF_BILERP)
273

NINTENDO 64 PROGRAMMING MANUAL DRAFT
An example of bilinear filtering is shown in Figure 15-4.

Figure 15-4 Bilinear Filtering

In the Nintendo-64, rather than doing a full bilinear interpolation using all
four samples, a triangular interpolation is performed that uses only three
points. The texture filter selects which three points to use depending on
where the sample point lies inside the 2x2 grid of texels. In certain cases, the
triangular filter can cause small anomalies. These cases occur when there are
drastic intensity changes from one texel to another in the texture as shown
in Figure 15-5. In this example, if the sampling point moves slightly from
one side of the diagonal to the other, the resulting color changes abruptly. In

s_frac

t_frac
top =TL + s_frac(TR-TL)TL TR

BRBL

bot =BL + s_frac(BR-BL)

texel =top + t_frac(bot-top)

Sample Point
274

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
general, it is best to prefilter an image so that these sharp texture edges at
least a slight intensity ramp.

Figure 15-5 Triangular Filtering

With bilinear filtering, it is possible to scale a texture without the problems
of point sampling. Example 15-6 shows a texture rectangle with the texture
scaled by 1.5 in S and T:

Example 15-6 Scaled, Bilerped Textures

gsDPSetTextureFilter(G_TF_BILERP),
gsDPTextureRectangle(50<<2, 50<<2, 150<<2, 150<<2,

G_TX_RENDERTILE,
0, 0,
3<<9, 3<<9),

Smooth scrolling of texture rectangles is discussed in “Smooth Scrolling” on
page 286.

s_frac

t_frac

TL TR

BRBL

s_frac

t_frac

TL TR

BRBL

TriInterp(TL,BL,BR)

TriInterp(TL,TR,BR)

Output
Texel

Sample point
275

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Average mode for 1:1 Ratio Sampling

There is a special case in which the texture filter can perform an exact
average using all four texels. This case occurs when the sample point lies
exactly in the center, i.e. s_frac = t_frac = 0.5. To enable the average mode
use the command:

Example 15-7 Enable Average Filtering

gsDPSetTextureFilter(G_TF_AVERAGE)

In order to force the sample point to be in the middle of the texel, set the start
point to 0.5 and then step by 1 texel per pixel. Example 15-8 demonstrates
this:

Example 15-8 Averaging Textures

gsDPSetTextureFilter(G_TF_AVERAGE),
gsDPTextureRectangle(50<<2, 50<<2, 150<<2, 150<<2,

G_TX_RENDERTILE,
1<<4, 1<<4,
1<<10, 1<<10),

Copy

Copy mode is a special pipeline mode that allows fast image copies to the
framebuffer. Copy mode can be enabled as shown in

Example 15-9 Enable Copy Mode

gsDPSetCycleType(G_CYC_COPY)
276

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
In copy mode, four horizontally adjacent texels are copied per clock as
shown in Figure 15-6.

Figure 15-6 Copy Mode

In copy mode, since four texels are copied each clock, the step in S per clock
must be set to four. Example 15-10 shows a texture rectangle using copy
mode.

Example 15-10 Copy Mode Texture Rectangle

gsDPSetCycleType(G_CYC_COPY),
gsDPTextureRectangle(50<<2, 50<<2, 150<<2, 150<<2,

G_TX_RENDERTILE,
0, 0,
4<<10, 1<<10),

Since copy mode bypasses most of the RDP pipeline, the filter settings are
not used. However, it is still necessary to disable perspective correction as
shown in Example 15-2. Also, copy mode is not valid for all texture types,
see “Copy” on page 259.

Texture in Tmem

Texture Rectangle

Frame Buffer

4 texels copied each clock
277

NINTENDO 64 PROGRAMMING MANUAL DRAFT
It is possible to scale textures in copy mode in the T(Y) direction only. Note
that in this case, the rules for point sampled scaling apply, only integer
power of two scalings.

In copy mode, textures are copied directly to memory, so there is no
opportunity for color combiner operations, filtering, transparency, etc.
Copying is a write-only operation so transparency using the normal
blending hardware is impossible. However, you can achieve ‘cutout’ and
‘dithered’ types of transparency using the alpha compare logic, see “Alpha
Compare Calculation” on page 315.
278

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
Simple Texture Effects

This section describes some ‘sprite’-type effects that are commonly useful
for texture rectangles. This is intended to be a starting point for
programmers, not a complete list. Undoubtedly, clever programmers will
find the hardware allows many other effects.

Flip

Flip means to rotate an image 180 degrees around the X or Y axis or both as
shown in Figure 15-7.

Figure 15-7 Flipping Texture Rectangles

If the texture map to be flipped has a size that is a power of two in the
direction of the flip, then you can use the mirror_enable (“Mirror Enable
S,T” on page 222) bit in the tile descriptor to perform the flip. For example,
suppose we have loaded a 32x32 16-bit RGBA texture into Tmem. To flip the
texture in X we can use the code in Example 15-11.

Example 15-11 Flip a Texture in X

gsDPSetTile(G_IM_FMT_RGBA, G_IM_SIZ_16b, 8, 0,
G_TX_RENDERTILE,0,
G_TX_MIRROR, 5, G_TX_NOLOD, /* s */
G_TX_NOMIRROR, 5, G_TX_NOLOD), /* t */

gsDPTextureRectangle(50<<2, 50<<2, 150<<2, 150<<2,
G_TX_RENDERTILE,
32<<5, 0, /* start s on mirror boundary */
1<<10, 1<<10),

original flip X flip Y flip XY
279

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Note that the S start point is 32. Since the texture will be mirrored when the
S coordinate is between 32 and 63 if the mirror enable bit in the tile is set, we
get the effect of a flipped texture. If the mirror bit is disabled, the texture will
remain unflipped.

For textures that are not power of two sizes, we must use another approach
for flipping the textures. Suppose we have loaded a 48x42 16-bit RGBA
texture in Tmem and would like to flip the texture in T. The code in
Example 15-12 would accomplish this.

Example 15-12 Flip a Texture in Y (non power-of-two size)
gsDPTextureRectangle(50<<2, 50<<2, 98<<2, 92<<2,

G_TX_RENDERTILE,
0, 41<<5, /* start t at bottom of texture */
1<<10, ((-1)<<10)&0xffff), /* step from bottom to top of
texture*/

Note that we change the texture T coordinate to start at the bottom of the
texture and change the increment in T so that we step from the bottom of the
texture to the top, thus flipping the texture in Y.

There is also a variation of the texture rectangle called
g*DPTextureRectangleFlip() that swaps the S and T coordinates in
hardware. If we had a display list as in Example 15-13

Example 15-13 TextureRectangleFlip command
gsDPTextureRectangleFlip(50<<2, 50<<2, 98<<2, 92<<2,

G_TX_RENDERTILE,
0, 0,
1<<10, 1<<10)
280

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
we would get an resulting image as shown in Figure 15-8.

Figure 15-8 TextureRectangleFlip Command

Mirror

Mirroring is also useful for data compression in cases where the texture has
axial symmetry. For example, a tree could be created with half of a tree
texture that was mirrored in X as shown in Figure 15-9.

Figure 15-9 Mirrored Tree

As mentioned before, to use hardware mirroring, the texture must be a
power of two size in the direction to be mirrored. Suppose the tree texture
above is a 16x40 16-bit RGBA texture. Example 15-14 will render the
mirrored tree as shown in Figure 15-9.

Example 15-14 Mirrored Tree

gsDPLoadTextureTile(tree, G_IM_FMT_RGBA, G_IM_SIZ_16b,
16, 40,
0, 0, 15, 39,

original TextureRectangleFlip

original texture texture rectangle using mirroring
281

NINTENDO 64 PROGRAMMING MANUAL DRAFT
0,
G_TX_MIRROR, G_TX_CLAMP,
4, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(50<<2, 50<<2, 82<<2, 90<<2,
G_TX_RENDERTILE,
0, 0,
1<<10, 1<<10),

Wrap

Wrapping allows a small texture to fill a larger rectangle by repeating the
texture over and over. In the Nintendo-64, wrapping is enabled if the mask
(see “Mask S,T” on page 223) in the tile descriptor is non-zero and the clamp
bit (see “Clamp S,T” on page 224) in the tile descriptor is not set for the
coordinate in question. The mask determines which power of two the wrap
occurs on. Figure 15-10 shows the results for various wrap boundaries
using a single texture. Wrapping can be used in copy mode except for

Figure 15-10Wrapping on Several Boundaries of the Same Texture

Wrapping can also be used in conjuction with mirroring. Suppose we
wanted to wrap the mirrored tree shown in Figure 15-9. This could be done
using the code in Example 15-15.

Example 15-15 Wrapped and Mirrored Tree

gsDPLoadTextureTile(tree, G_IM_FMT_RGBA, G_IM_SIZ_16b,

original texture

wrap at 4

wrap at 8

wrap at 16
282

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
16, 40,
0, 0, 15, 39,
0,
G_TX_MIRROR | G_TX_WRAP, G_TX_CLAMP,
4, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(50<<2, 50<<2, 114<<2, 90<<2,
G_TX_RENDERTILE,
0, 0,
1<<10, 1<<10),

Note that the G_TX_WRAP above is really unnecessary because wrapping is
implicit as we have a non-zero mask value and are not clamping. It is
included just for documentation purposes. The resulting image would look
like Figure 15-11.

Figure 15-11Wrapped and Mirrored Tree

Sliding Textures

It is easy to slide a texture relative to the rectangle primitive by the changing
the tile descriptor values of SL and TL (see “SL,TL” on page 224). Using the

original texture texture rectangle using wrapping and mirroring
283

NINTENDO 64 PROGRAMMING MANUAL DRAFT
tile descriptor allows the texture coordinates to be statically defined. The
effect of changing SL, TL is shown in Figure 15-12.

Figure 15-12Effect of Changing SL, TL

Suppose we have a 32x32 4-bit I texture loaded in Tmem. In Example 15-16,
two rectangles are rendered with the texture placed in different positions
using SL and TL.

Example 15-16 Sliding Texture Using SL, TL

gsDPSetTileSize(G_TX_RENDERTILE, 50, 50, 82, 82),
gsDPTextureRectangle(50<<2, 50<<2, 82<<2, 82<<2,

G_TX_RENDERTILE,
0, 0,
1<<10, 1<<10),

gsDPSetTileSize(G_TX_RENDERTILE, 80, 100, 112, 132),
gsDPTextureRectangle(100<<2, 100<<2, 132<<2, 132<<2,

G_TX_RENDERTILE,
0, 0,
1<<10, 1<<10),

Note that SH and TH are only used when clamping. Because SL and TL are
unsigned, the texture rectangle coordinates must be offset to allow sliding

-s

-t

+s

+t

texture rectangle
SL,TL=(50,50)

texture

SL,TL=(80,100)
284

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
above the top edge or to the left of the left edge of the rectangle. This is
shown in Figure 15-13 and Example 15-17.

Figure 15-13Biasing Texture Coordinates for Positive SL, TL

Example 15-17 Biased Coordinates for Positive SL

gsDPSetTileSize(G_TX_RENDERTILE, 25, 50, 57, 82),
gsDPTextureRectangle(50<<2, 50<<2, 82<<2, 82<<2,

-s

-t

+s

+t

SL,TL=(-25,50)

texture

-s +s

+t

texture rectangleSL,TL=(25,50)

texture

texture rectangle

Negative SL not allowed

Bias S coordinate so that
SL can be positive

-t
285

NINTENDO 64 PROGRAMMING MANUAL DRAFT
G_TX_RENDERTILE,
50<<5, 0,
1<<10, 1<<10),

Smooth Scrolling

Scrolling involves positioning texture rectangles on the screen and also
positioning the texture within the rectangle. The rectangle geometry can be
positioned with 2 bits of fractional precision in X and Y. The texture
coordinates can be specified with 5 bits of fractional precision in S and T. To
get the smoothest scrolling, you can use the S and T start point as the
fractional part and the rectangle’s X and Y position for the integer part. So
effectively, you are sliding the texture to achieve fractional displacements.
Example 15-18 shows how such positioning could be achieved. Keep in
mind that a border area around the texture must be present so that the
texture doesn’t clamp when it slides off the rectangle.

Example 15-18 Accurate Positioning Using S and T

float xpos = 10.375, ypos = 19.432;
int xi, xf, yi, yf;

xi = (int) xpos;
yi = (int) ypos;
xf = 32 - 32 * (xpos - xi);
yf = 32 - 32 * (ypos - yi);
gDPTextureRectangle(glistp++,

xi<<2, yi<<2, (xi+32)<<2, (yi+32)<<2,
G_TX_RENDERTILE,
xf, yf,
1<<10, 1<<10);

Billboards

Billboards are textures that define complex outlines by using texture
transparency. For example, rather than creating a tree using polygons, you
can use an image of a tree, with the portion of the image outside the tree
having an alpha of 0 (transparent) and the interior of the tree having an
alpha of 1 (opaque). This is shown graphically in Figure 15-14. This
286

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
technique allows complex scenes to be built by compositing simple images
together.

Figure 15-14Texture Billboard

It is important to consider the antialiasing of the edges created by the
texture’s alpha pattern. If only 1 bit of alpha is used, then the pixel is either
written or not. If more bits of alpha are used to create a smoother transition
from opaque to transparent the edges will be blended with the background.
Billboards should be rendered after all opaque background objects have
been rendered. There are several texel formats that allow multiple bits of
alpha (see “Color Index Frame Buffer” on page 298) and ways of combining
different types (see “Combining Types” on page 290). To render this type of
antialiased texture billboard, you must be in one or two cycle mode and you
should use the render mode G_RM_AA_TEX_EDGE. See “Texture Edge
Mode, TEX_EDGE” on page 332 for further details.

Texture billboards can also be rendered in a write-only fashion but this also
implies no antialiasing of the texture edge. This mode is called ‘alpha
compare’ and basically thresholds the texel alpha with a register alpha value
or a random alpha source to generate a write enable for the pixel. See
“Alpha Compare Calculation” on page 315 for more details.

Cloud (CLD) Render Mode

Cloud render mode is intended for rendering texture billboards that are not
opaque, i.e. smoke clouds, explosions, etc. These are special cases because
care must be taken not to disturb the antialiased edges of things behind the
transparent cloud, because these edges will be seen through the cloud.

original texture texture rectangle using wrapping and mirroring

Alpha 0

Alpha 1, opaque

transparent
287

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Texture Types

Intensity (I) Textures

Intensity textures are useful because they are quite compact and should be
used in cases where a large number of colors is not necessary. For example,
a 4-bit I texture can be as large as 128x64 texels. Normally, the user would
like the primitive to have some specific color, and the I texture should
modulate that color. For example, to create a tree you could use two I
textures, one for the brown trunk and one for the green treetop. You can use
one of the many register colors in the color combiner to define the primitive
color. In Example 15-19 we use primitive color to define the colors of the
trunk and treetop.

Example 15-19 Intensity Texture Modulating Primitive Color

gsDPSetCombineMode(G_CC_MODULATEI_PRIM, G_CC_MODULATEI_PRIM),
gsDPSetPrimColor(0, 0, 205, 51, 51, 255), /* brown */
gsDPLoadTextureTile_4b(trunk, G_IM_FMT_I, 16, 40,

0, 0, 15, 39,
0,
G_TX_MIRROR, G_TX_CLAMP,
4, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(50<<2, 100<<2, 82<<2, 140<<2,
G_TX_RENDERTILE,
0, 0,
1<<10, 1<<10),

gsDPSetPrimColor(0, 0, 0, 139, 0, 255), /* green */
gsDPLoadTextureTile_4b(treetop, G_IM_FMT_I,32, 32,

0, 0, 15, 39,
0,
G_TX_MIRROR, G_TX_CLAMP,
5, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(44<<2, 68<<2, 108<<2, 100<<2,
G_TX_RENDERTILE,
0, 0,
1<<10, 1<<10),

By interpolating between two different colors using the intensity as the
parameter, it is possible to achieve two-color textures. The combine mode
288

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
G_CC_BLENDPEDECALA interpolates between primitive color and
environment color using an I texture. For this combine mode, when the
texture is 0 the pixel will be environment color, when the texel is all ones, the
pixel will be primitive color. Example 15-20 assumes an I texture has
already been loaded into Tmem.

Example 15-20 Two-Color Texture

gsDPSetCombineMode(G_CC_BLENDPEDECALA, G_CC_BLENDPEDECALA),
gsDPSetPrimColor(0, 0, 205, 51, 51, 255), /* brown */
gsDPSetEnvColor(0, 0, 0, 200, 0, 255), /* green */
gsDPTextureRectangle(50<<2, 100<<2, 82<<2, 140<<2,

G_TX_RENDERTILE,
0, 0,
1<<10, 1<<10),

Since for intensity textures the texel value is also copied onto the alpha
channel, you can achieve transparency using an intensity texture. For
example, if you define a 4-bit texture of some text to have an intensity of 0xf
for the characters and a value of 0 elsewhere, and then render using the
combine mode G_CC_BLENDPEDECALA and the render mode
G_RM_TEX_EDGE, the text will have the primitive color and be transparent
elsewhere. Note that if the edges of the text are filtered to give smooth
edges, then the text will have an intensity ramp at the edges. If you use an
antialiased render mode, such as G_RM_AA_TEX_EDGE, then the text will
look smoother than if a 1-bit alpha texture like 4-bit IA or 16-bit RGBA were
used.

Intensity Alpha (IA) Textures

This texture type defines an intensity (I) channel and a separate alpha
channel (A). This type is convenient where the transparency of the texture
must be defined separately from the intensity. The sizes include 4-bit (3 bits
of I and 1 bit of A), 8-bit (4 bits of I and 4 bits of A), 16-bit (8 bits of I and 8
bits of A). Keep in mind when using 1-bit alphas that the pixel will be either
written or not, depending on the alpha bit. Therefore, the transparency
channel is not antialiased (the texture filter cannot ‘create data’ to smooth the
edge). Scaling a 1-bit alpha texture can result in blocky-looking outlines.
289

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Color (RGBA) Textures

There are two sizes of RGBA textures: 16-bit (5 bits R, 5 bits G, 5 bits B, 1 bit
A), and 32-bit (8 bits R, 8 bits G, 8 bits B, 8 bits A). While 16-bit RGBA
textures are popular because they are easy to create and model with, they
have the disadvantage of only a 1-bit alpha channel. This can be overcome
in certain cases, as discussed in “Combining Types” on page 290.

Color Index (CI) Textures

Color index textures come in two sizes, 8-bit and 4-bit. When using color
index textures only half the Tmem is used for textures (2KBytes). The other
half is used to store the lookup table (TLUT) that converts the index texel
into either 16-bit RGBA or 16-bit IA types. It is also possible to copy 8-bit CI
textures directly to an 8-bit framebuffer as discussed in “Color Index Frame
Buffer” on page 298.

4-bit CI textures must select one of 16 possible palettes. Each palette has 16
entries. The g*DPLoadTLUT_pal16 can be used to load an individual
palette. The palette to use is defined in the tile descriptor (normally you
would define the palette in the g*DPLoadTexture* command), so different
tiles can select different palettes.

You can use a 4-bit CI texture to provide more alpha bits than is possible
with the 4-bit IA type, because the TLUT can hold 16-bit IA values.
Therefore, you could look up 16 levels of alpha with a 4-bit CI sprite as
compared to 1 level for a 4-bit IA sprite.

Combining Types

As mentioned previously, 16-bit RGBA textures have only a 1-bit alpha
channel. If you want to have a smoothly antialiased texture edge using the
16-bit RGBA type, you must combine two types of texture. Example 15-21
shows how a separate alpha texture with a 4-bit I type is combined with a
16-bit RGBA type to get smoother edges on a sprite.

Example 15-21 Interpolate Between Two Tiles

#define MULTIBIT_ALPHA 0, 0, 0, TEXEL0, 0, 0, 0, TEXEL1

gsDPSetCyleType(G_CYC_2CYCLE),
gsDPSetTextureLOD(G_TL_TILE),
290

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
gsDPSetCombineMode(MULTIBIT_ALPHA, G_CC_PASS2),
gsDPSetRenderMode(G_RM_AA_TEX_EDGE, G_RM_AA_TEX_EDGE2),
/* load color part of texture */
gsDPLoadMultiTile(color,

0, /* Tmem address in 64-bit words */
G_TX_RENDERTILE, /* tile */
G_IM_FMT_RGBA, G_IM_SIZ_16b,
32, 32,
0, 0, 31, 31,
0,
G_TX_NOMIRROR, G_TX_NOMIRROR,
G_TX_NOMASK, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

/* load alpha part of texture */
gsDPLoadMultiTile_4b(alpha,

256, /* Tmem address in 64-bit words */
G_TX_RENDERTILE+1, /* tile */
G_IM_FMT_I,
32, 32,
0, 0, 31, 31,
0,
G_TX_NOMIRROR, G_TX_NOMIRROR,
G_TX_NOMASK, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(glistp++,
50<<2, 50<<2, 82<<2, 82<<2,
G_TX_RENDERTILE,
0, 0,
1<<10, 1<<10);

The idea here is that in two-cycle mode we get two texel values, one from
the 16-bit RGBA texture and one from the 4-bit I texture. In the color
combiner, we program the alpha combiner to use the 4-bit I texture (the 1-bit
A of the RGBA texture is not used). In the color combiner, we select the RGB
texture as the color source. Since we are using both cycles for this trick, it is
not possible to use mipmapping or other two-cycle modes simultaneously.
Note that you could have used an 8-bit I texture for the alpha channel if you
needed more alpha resolution.
291

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Multi-Tile Effects

There are eight tile descriptors available in the tile memory of the RDP.
These tile descriptors contain information about the type and size of tiles
and where these tiles are located in Tmem. In two-cycle mode, texture from
two tiles is available for each pixel. Many effects are possible by
manipulation of tile descriptors and combining of the textured pixels.

In the g*DPLoadTexture* commands, a simple two-tile system is used for
loading and rendering. In this system, the G_TX_LOADTILE is used for
loading a tile starting at Tmem address 0 and the tile descriptor
G_TX_RENDERTILE is set up for rendering the tile. This is a
double-buffering scheme which avoids having to insert tile sync commands
in the load macro. Notice that since each tile is loaded at Tmem address 0
and the G_TX_RENDERTILE is always used for rendering, we cannot use
these macro for loading multiple tiles into Tmem.

In order to allow the user to manage Tmem for multi-tile effects, the load
macros g*DPLoadMultiTile and g*DPLoadMultiBlock were created. These
macros allow the user to specify the Tmem address of the tile and the tile
descriptor number to use when rendering this tile.

Simple Morph

One simple use of two tiles is to linearly interpolate, using a parameter to
indicate the blend amount, between the tiles. A register value in the color
combiner, such as primitive alpha, can be used as the ‘slider’ to blend
between the two textures as shown in Example 15-22. Notice that we define
our own color combine mode to achieve this effect, since gbi.h didn’t have
the mode we needed.

Example 15-22 Interpolate Between Two Tiles

#define MY_MORPH TEXEL1, TEXEL0, PRIMITIVE_ALPHA, TEXEL0, \
TEXEL1, TEXEL0, PRIMITIVE, TEXEL0

gsDPSetCyleType(G_CYC_2CYCLE),
gsDPSetTextureLOD(G_TL_TILE),
gsDPSetPrimColor(0, 0, 0, 0, 0, 128), /* 0.5 blend */
gsDPSetCombineMode(MY_MORPH, G_CC_PASS2),
gsDPLoadMultiTile(face0,

0, /* Tmem address in 64-bit words */
292

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
G_TX_RENDERTILE, /* tile */
G_IM_FMT_RGBA, G_IM_SIZ_16b,
32, 32,
0, 0, 31, 31,
0,
G_TX_NOMIRROR, G_TX_NOMIRROR,
G_TX_NOMASK, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPLoadMultiTile(face1,
256, /* Tmem address in 64-bit words */
G_TX_RENDERTILE+1, /* tile */
G_IM_FMT_RGBA, G_IM_SIZ_16b,
32, 32,
0, 0, 31, 31,
0,
G_TX_NOMIRROR, G_TX_NOMIRROR,
G_TX_NOMASK, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(glistp++,
50<<2, 50<<2, 82<<2, 82<<2,
G_TX_RENDERTILE,
0, 0,
1<<10, 1<<10);

By making the primitive alpha an animation variable, a simple ‘morph’
effect can be achieved.

Smoothing Flip-Book Animations

Often sprite animations are a sequence of key frames which are selected at
the appropriate time by some animation variable. The linear interpolation
between two images as described in “Simple Morph” above can be used to
smoothly transition between two key frames. Imagine a series of n images
in an animation selected using an animation variable frame. The integer part
of frame is called frame_i and the fractional part is called frame_f. An
algorithm for smoothing the sequence is described in Example 15-23.

Example 15-23 Smoothing an Animation Sequence

Load tiles frame_i and frame_i+1 into Tmem
Set primitive alpha = 256 * frame_f
Render the rectangle using MY_MORPH combiner mode
293

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The frames do not necessarily have to be related in time. For example, you
could interpolate between different flame images that are randomly
selected to create a fire effect.

Shrinking Sprites

In the previous discussion of scaling in “Bilinear Filtering” on page 273 we
only discussed scaling a sprite to a larger size since scaling it smaller would
result in aliasing effects. It is possible to effectively shrink an image by
interpolating between two tiles, one of which is a half the size of the other
tile. This is shown in Figure 15-15. Prim_lod_frac is a register in the color
combiner that can be used to indicate the fractional distance between the two
‘levels-of-detail’ of the sprite. Note that there is no special reason we used
this register as the interpolation parameter, other than it’s name suggests
this use.

Figure 15-15Shrinking a Sprite

One of the tile descriptor parameters is the shift (see “Shift S,T” on page 223)
that describes how many places to bitwise shift the tile coordinates for the
primitive. This implies that one tile’s size is related to the other’s by some
integer shift, but the tiles don’t necessarily have to be power of two sizes.
Example 15-24 shows the code to create a sprite that is 0.75 the size of the
larger image. The user must scale the size of the rectangle primitive by the
desired amount as well.

Example 15-24 Shrinking a Sprite

#define MY_LOD TEXEL1, TEXEL0, PRIM_LOD_FRAC, TEXEL0, \
TEXEL1, TEXEL0, PRIM_LOD_FRAC, TEXEL0

gsDPSetCyleType(G_CYC_2CYCLE),
gsDPSetTextureLOD(G_TL_TILE),

Tile 0 Tile 1prim_lod_frac
294

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
gsDPSetPrimColor(0, 128, 0, 0, 0, 0), /* 0.5 lod_frac */
gsDPSetCombineMode(MY_LOD, G_CC_PASS2),
gsDPLoadMultiTile(face0,

0, /* Tmem address in 64-bit words */
G_TX_RENDERTILE, /* tile */
G_IM_FMT_RGBA, G_IM_SIZ_16b,
32, 32,
0, 0, 31, 31,
0,
G_TX_NOMIRROR, G_TX_NOMIRROR,
G_TX_NOMASK, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPLoadMultiTile(face1,
256, /* Tmem address in 64-bit words */
G_TX_RENDERTILE+1, /* tile */
G_IM_FMT_RGBA, G_IM_SIZ_16b,
16, 16,
0, 0, 15, 15,
0,
G_TX_NOMIRROR, G_TX_NOMIRROR,
G_TX_NOMASK, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(glistp++,
50<<2, 50<<2, 82<<2, 82<<2,
G_TX_RENDERTILE,
8<<5, 8<<5,
1<<10, 1<<10);

Texture Decals

We can use the alpha of one tile to select between the texel color of two
different tiles to create a texture decal. Figure 15-16 shows an example of a
flag created using textures decals. The insignia of the flag has transparency
around it’s edges. After mirroring and wrapping once, the texture is
clamped. In the color combiner, the texture alpha is used to interpolate
295

NINTENDO 64 PROGRAMMING MANUAL DRAFT
between the flag stripes and the insignia. Where the alpha is zero, the stripes
will show, where the alpha is one, the insignia will show.

Figure 15-16Texture Decals

Need example code...

Interference Effects

Multiplying two textures together, especially while sliding the textures
relative to each other can create interference patterns. For example, a
horizontal stripe pattern multiplied by a vertical stripe pattern creates a set
of bright spots at the intersection of the points. If the stripes are slid relative
to each other, the points will move also. Multiplying can also be used to
modulate one image with another. For example, Figure 15-17 shows a
complex wave resulting from the modulation of two simple waves.

Figure 15-17Modulation

tile 0

tile 1

alpha 0.0
alpha 1.0

X

=

texture 0

texture 1

result
296

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
 Tiling Large Images

Sometimes it is desirable to render large textures, i.e. textures to large to fit
entirely into Tmem. This can be accomplished via ‘tiling’ or breaking the
large image up into smaller rectangular tiles that do fit into Tmem. These
tiles are rendered onto primitives that form a mesh coincident with the
texture tiling. The textured rectangle primitive is a useful primitive for tiling
a background image in a sprite game, for instance. If you point sample the
texture tile, it is only necessary to load the number of texels you wish to
display. However, if you want to bilinearly filter the texture, you must load
a border region of one texel around the tile so that the interpolation works
correctly at the edges of the tile. See “Bilinear Filtering and Point Sampling”
on page 236 for more information.
297

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Color Index Frame Buffer

You might have noticed that one of the color image types that is available is
the 8-bit I type. You can use this mode to render color index images into the
framebuffer. Before displaying the 8-bit image, however, you must read the
8-bit image into Tmem and dereference into a 16-bit RGBA image. Note that
the 8-bit frame buffer can share the same memory as the 16-bit frame buffer
by placing the 8-bit buffer in the high half of the 16-bit buffer.This technique
can give better performance than rendering directly to a 16-bit framebuffer
because the memory accesses are more efficient. Also, the initial clear of the
framebuffer is faster because the buffer is half the size.

There are, however, restrictions when using this technique. Since we are
rendering an 8-bit CI image, you must texture map objects with 8-bit CI
textures (but don’t dereference yet) and use shade colors that fit into your
palette. You cannot filter the textures since the texture values in the pipeline
are indices. You also cannot blend with memory colors (unless your palette
is laid out specifically to allow this), although you can achieve cut-out type
transparency. Antialiasing is also not available for this framebuffer type,
because no coverage is stored.

These restrictions sound severe, but may be practical for some sprite games,
especially those that use sort priority and can render totally in copy mode.
In copy mode (and 1 or 2-cycle mode) you can get cut-out transparency by
using the alpha compare logic and reserving an index (0 is a good choice)
that indicates transparency. If the index 0 means transparent, then setting
the blend alpha to 1 and enabling alpha compare (G_AC_THRESHOLD)
would allow all pixel with any index greater than or equal to 1 to be written
to the framebuffer but pixels with index 0 would not be written.
298

NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
Z-Buffering Texture Rectangles

Normally, sprites are rendered in a Z sorted list and rendered from back to
front. The Z of each sprite must be maintained by the application and the
application must do the sort each frame. Another technique is to use the
z-buffer to determine priority.

Primitive Z

The texture rectangle has no Z value associated with it directly, however you
can use the primitive Z register (g*DPSetPrimDepth()). To force the z-buffer
logic to use primitive Z rather than pixel Z, you must use the following
command:

gsDPSetDepthSource(G_ZS_PRIM)

You must also use a RenderMode that enables z-buffering, such as
G_RM_ZB_OPA_SURF. To z-buffer sprites, you would have to insert a
g*DPSetPrimDepth() command before the rectangle command of each
sprite. Because the primitive Z is explicitly buffered in the pipeline, it is not
necessary to insert pipe sync commands before setting the register.

Note that z-buffering can only be used in 1 and 2-cycle mode. In copy and
fill mode, you should use the RenderMode G_RM_NOOP to effectively
disable z-buffering and put the pipeline logic in a safe state.
299

NINTENDO 64 PROGRAMMING MANUAL DRAFT
300

NINTENDO DRAFT ANTIALIASING AND BLENDING
Chapter 16

16. Antialiasing and Blending

Aliasing is a signal-processing term describing sampling errors that occur
when a continuous function containing sharp changes in intensity is
approximated using discrete intensity values. Antialiasing is a method for
minimizing these errors by using gradations in intensity of neighboring
pixels at edges of primitives, rather than setting pixels to maximum or zero
intensity only. There are many references on antialiasing as it applies to
graphics. This chapter will discuss the method of antialiasing used by the
Reality Co-Processor (RCP). In addition, we will discuss other uses of the
blender hardware. The blender plays a key role in antialiasing, z-buffering,
and transparency effects. After understanding the blender hardware, it
may be possible for a user to come up with new effects by clever
programming of the blender pipeline.
301

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Antialiasing

Antialiasing is an algorithm that attempts to minimize sampling errors that
occur when an edge of a primitive is displayed on a raster image. Visually,
these errors cause the edge to be stair-cased or look jaggy. For scenes with
moderate complexity and/or animation, these jaggies are the source of
high-frequency noise, which is annoying and distracting to users.

Figure 16-1 Edge With and Without Antialiasing

In Figure 16-2, “Unweighted Area Sampling,” on page 303, antialiasing is
achieved by weighting the intensity of the pixel in proportion to the area of

Aliased Edge

Antialiased Edge

Edge

Primitive
302

NINTENDO DRAFT ANTIALIASING AND BLENDING
the pixel covered by the edge. In signal-processing terms, this is called
unweighted area sampling.

Figure 16-2 Unweighted Area Sampling

High-end graphics machines typically use an antialiasing technique known
as super-sampling, in which the pixel is divided into a grid of sub-pixels. A
color is computed for each subpixel and the subpixels that are covered by a
primitive are averaged to produce the final pixel color. In the case where
more than one primitive covers a pixel, each primitive’s color is weighted by
the number of subpixels it covers. Also, depth (Z) can be found for each
subpixel which allows antialiased interpenetrations between primitives.
While super-sampling is straightforward and effective, it is also expensive
in terms of memory and memory bandwidth. For a 4x4 subpixel grid, 16
color and Z values must be stored for each pixel. In addition, to achieve
required fill rates, each of these values must be accessed every clock.

Because the Nintendo 64 machine has very severe cost and memory
requirements, a new and novel technique for antialiasing that avoided (as
much as possible) the storage requirements of super-sampling but yet
provided satisfactory antialiasing was needed. This method relies heavily
on the notion that different objects have different antialiasing needs, and
that the hardware can be simplified by requiring that different
RenderModes are configured as appropriate for a particular object. As well,
there are display-order restrictions for rendering certain types of objects.
For example, transparent objects must be rendered after all the opaque
objects. Finally, it was recognized that antialiasing of silhouettes could be
done as a post process during video output. A data flow diagram of the
analogizing algorithm is shown in Figure 16-3, “Antialiasing Data Flow,” on

9/16 * Black + 7/16 White

Pixel
Subpixel

Edge
Primitive Color

Background Color
303

NINTENDO 64 PROGRAMMING MANUAL DRAFT
page 304. Note that this method requires, in addition to the pixel color and
Z value, three bits of coverage and four bits of deltaZ per pixel, quite small
when compared with super-sampling methods.

Figure 16-3 Antialiasing Data Flow

Compute subpixel mask per pixel

Dither subpixel mask and compute coverage value. (Coverage
= 4)

Blender: antialias interior edges, transparency

Pixel Color, Alpha, Z Pixel Coverage

New Coverage

D
at

a
F

lo
w

Allow combining of coverage and alpha for tex-
ture edges.

Color Combiner

Pixel Alpha Pixel Coverage

Pixel CoveragePixel Alpha

New Color New Z, DeltaZ

Memory Color, Coverage, Z, DeltaZ

Frame Buffer Z Buffer

Video Interface

Pixel Color and Coverage

NTSC/PAL
Antialias silhouette
304

NINTENDO DRAFT ANTIALIASING AND BLENDING
The antialiasing data flow shows the most general case for z-buffered and
antialiased primitives. Other techniques are possible. For example, if the
database is sorted and rendered in back to front order, non-z-buffered
antialiasing can be used. All of the various types of antialiasing are
discussed in detail in “Blender Modes and Assumptions” on page 327.

For each pixel, a subpixel mask is computed. This mask is a 4x4 grid of bits
where the bit is one if the subpixel is covered by the primitive and zero if the
subpixel is not covered. The mask is converted to a coverage value by
adding all the bits of the mask together. Since we only have three bits of
coverage, the sixteen subpixels must be dithered to eight. The coverage
value is optionally combined with the pixel’s alpha value. This is useful for
antialiasing edges created by a texture cut-out. In the blender, the pixel color
and the last value stored for the pixel in memory are combined. The blender
also combines the pixel coverage and memory coverage and does
z-buffering. The blender typically performs operations such as antialiasing
the interior edges of objects and transparency. The new pixel’s color,
coverage, and Z are stored in the frame buffer. The Video Interface (VI)
reads the pixel color and coverage and antialiases the silhouettes of objects.

We will now discuss each hardware unit in the antialiasing datapath in
isolation, before considering how these units work together to render a
complete image.
305

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Coverage Unit

The coverage calculation, as described previously, produces a 4-bit number
for each pixel that indicates how much of the pixel was covered by a
primitive. For example, a value of 8 (1.0) indicates the pixel was fully
covered. A value of 1 (0.125) indicates only one subpixel was covered. An
example of the coverage calculation is shown in Figure 16-4, “Coverage
Calculation,” on page 306

Figure 16-4 Coverage Calculation

Note that it is very important that primitives sharing an edge have
complementary subpixel masks, otherwise cracks may appear between
edges. In the RCP, if primitives use the same vertices to create the primitive,
then the pixel mask will be complementary. There are, however, cases
where bad modelling can lead to cracks, as in Figure 16-5, “Complementary
Edges,” on page 307. These cases can occur when (incorrectly) fractalizing

Coverage Dither Mask
2x2 Pixels

coverage = sum(0x037f & 0xa5a5) = 4

0xa5a5

coverage = sum(0xffff & 0xa5a5) = 8

coverage = sum(0x8cce & 0xa5a5) = 4

coverage = sum(0xffff & 0xa5a5) = 8
306

NINTENDO DRAFT ANTIALIASING AND BLENDING
terrain or (incorrectly) generating triangles from NURBs surfaces, for
example.

Figure 16-5 Complementary Edges

Edges that share vertices will join correctly Edges that do not share vertices are not guaran-
teed to join correctly
307

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Z Stepper

The Z-stepper calculates an 18-bit fixed point depth value (Z) for each pixel
of a primitive. The value is of Z is normally zero at the near plane and
maximum at the far plane, assuming a proper g*SPViewport() command.
By manipulating the g*SPViewport() command, it is possible to split the
z-buffer into separate Z-planes, see Figure 16-6, “Z-Buffer Planes,” on
page 308.

Figure 16-6 Z-Buffer Planes

No attempt will be made to justify why one would do this, only that it is
possible. Also, note that the g*SPPerspNormalize() command can be used
to maximize Z precision. See Figure 12-2, “Perspective Normalization
Calculation,” on page 146 for more details about g*SPPerspNormalize().

Z

Near, Z=0 Far, Z=MAXZ

static Vp vp = {
 SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/2, 0, /* scale */
 SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/2, 0, /* translate */

};
...gsSPViewport(&vp),

Z

Near0, Z=0 Far0/Near1, Z=MAXZ/2 Far1, Z=MAXZ

static Vp vp0 = {
 SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/4, 0, /* scale */
 SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/4, 0, /* translate */

};
static Vp vp1 = {
 SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/4, 0, /* scale */
 SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/2, 0, /* translate */

};

...gsSPViewport(&vp1), /* render object in second Z-plane */

...gsSPViewport(&vp0), /* render object in first Z-plane */

obj 0
obj 1

obj 0
obj 1
308

NINTENDO DRAFT ANTIALIASING AND BLENDING
There is also a source of constant Z (from a register) that can set using the
g*DPSetPrimDepth() command. To select the constant depth, use the
g*DPSetDepthSource() command. This may be useful when z-buffering
sprites, for example.

The Z value is subpixel corrected so that it is always calculated on the
primitive. To see why this is necessary, consider Figure 16-7, “Subpixel
Correction of Z,” on page 309:

Figure 16-7 Subpixel Correction of Z

In this case, if you calculate Z at the center of the pixel, the Z value will be
negative because Z will be projected behind the viewpoint. A better solution
is to calculate the Z value at the subpixel, below the center of the pixel in this
case, which intersects the primitive.

Center of the pixel, Z negative (projects behind VP)

Horizon line, Z = infinity

Primitive

View Frustum

Projected View

VP

Primitive

Z

309

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Blender

Color Blend Hardware

The blend mux selects input operands for the blender hardware. The
controls for these muxes are in the RDP’s SetOtherModes modeword. There
are two sets of mux controls, one for each of the two possible rendering
cycles.

The blend equation is of the form:

Equation 1 Blend Equation

The reasoning behind this equation will become evident in the discussion of
the antialiasing algorithm discussed later in this document.

The four input operands (p, a, m, b) each have four possible sources so two
bits are needed to control each mux. This gives a total of 8 bits per cycle of
blend mux control. Since the pipeline can operate in one or two cycle mode
(see g*DPSetCycleType()) the blender must select which of the sets of mux
controls to use depending on the cycle type (G_CYC_1CYCLE or
G_CYC_2CYCLE) and an internal cycle counter. The sources for the p and
m muxes are identical and are shown in Table 16-1, “P and M Mux Inputs,”
on page 310.

Table 16-1 P and M Mux Inputs

Mux Select Source

0 first cycle - pixel RGB, second cycle -
blended RGB from first cycle

1 memory RGB

2 blend (register) RGB

3 fog (register) RGB

color a p b m+
a b+

---------------------------------------=
310

NINTENDO DRAFT ANTIALIASING AND BLENDING
For select 0, the cycle select is built into the hardware. The ‘blended RGB’
refers to the numerator result of the blend equation, Equation 1, on the first
cycle (it’s fed back as an input). Note that this will only work if the b mux is
set to 1.0 - a, since only the numerator of the blend equation is provided to
the input mux. Register RGBs refer to colors which can be set using the
g*DPSetFogColor() and g*DPSetBlendColor() commands. Colors set using
these commands are stored in registers within the RDP. Care must be taken
to make sure that a g*DPPipeSync() command is issued previous to setting
these registers. The g*DPPipeSync() command inserts a delay into the RDP
pipe so that a previous primitive is guaranteed to be finished processing
before the register is updated. It is anticipated that the user will set a group
of attributes, process many primitives, set a new group of attributes, etc. The
syncs are exposed to the user who can more likely determine the minimum
number of syncs needed than would be possible in hardware. (Note that
primitive color,g*DPSetPrimColor(), primitive depth,
g*DPSetPrimDepth(), and scissor, g*DPSetScissor(), are attributes that do
not require any syncs.

The sources for the a muxes are shown in Table 16-2, “A Mux Inputs,” on
page 311.

Table 16-2 A Mux Inputs

The sources for the b muxes are shown in Table 16-3, “B Mux Inputs,” on
page 311.

Mux Select Source

0 color combiner output alpha

1 fog (register) alpha

2 (stepped) shade alpha

3 0.0

Table 16-3 B Mux Inputs

Mux Select Source

0 1.0 - ‘a mux’ output

1 memory alpha
311

NINTENDO 64 PROGRAMMING MANUAL DRAFT
In general, the RDP pipeline operates on RGBA pixels with 8 bits per
component. The 1.0 in Table 16-3, “B Mux Inputs,” on page 311 assumes the
alpha is a number between 0.0-1.0. These numbers are actually fixed point
and the output of the a and b alpha muxes have less resolution (5 bits) than
the color components (8 bits) to reduce hardware cost. When this alpha is
changing slowly across a face, Mach banding can occur due to the reduced
number of discrete steps in the alpha channel.

Two dither commands can be used to reduce Mach banding effects:
g*DPSetColorDither(), and g*SetAlphaDither(). These commands basically
add a small amount of randomness (1/2 of an LSB) to the color and/or alpha
which makes the Mach banding less noticable. The g*DPSetColorDither()
command also controls the dithering of RGB from 8 to 5 bits per component
(for use in 5/5/5/1 pixel mode).

There are two variations of dithering that can be set using the
g*DPSetColorDither() command. One is a screen coordinate based dither
(G_CD_MAGICSQ or G_CD_BAYER) in which the dither matrix changes
based on the location of the pixel on the screen. In other words, the dither
pattern is registered to the screen. The noise dither (G_CD_NOISE), on the
other hand, adds pseudo-random noise with a very long period into the
LSBs of each pixel. In this mode, the dithering is not registered to the screen
and will vary from frame to frame. Of course, you can disable color
dithering altogether using the G_CD_DISABLE parameter.

Alpha dithering (g*DPSetAlphaDither()) for screen-based dither patterns
uses the same matrix that is selected by the g*DPSetColorDither() command.
However, the user may invert the pattern, G_AD_NOTPATTERN, or
simply pass the pattern through unchanged, G_AD_PATTERN. The user
may also select the noise pattern using G_AD_NOISE, or disable alpha
dithering altogether using G_AD_DISABLE.

2 1.0

3 0.0

Table 16-3 B Mux Inputs

Mux Select Source
312

NINTENDO DRAFT ANTIALIASING AND BLENDING
Note: The dithering of the RGB from 8 bits to 5 bits by adding 3 lsbs of noise
to the original 8 bits (with clamping to prevent wrapping) is enabled even in
32 bit mode (8/8/8/8), where there is no truncation to be done. Since this
one mode bit controls both RGB dither and alpha dither (which always is
needed, even in 32 bit mode), opaque things should have the dither bit off in
32 bit mode (so the 3 lsbs don’t get stepped on), but transparent things
should have this bit on in 32 bit mode, since the noise from the alpha will be
of the same order as the noise gratuitously added to the RGB.

Fog

Suppose we want to “fog out” from an image to a constant color as a
function (set up in the RSP) of depth. We will assume the fog parameter is
set up (per vertex) in the stepped alpha of the shaded triangle primitive (see
“Vertex Fog State” on page 170). We will use the fog register color
(g*DPSetFogColor()) as the color to fade too. We will use the stepped shade
alpha as a control to determine how much of the fog color is used. The first
cycle blend mux selects in Table 16-4, “Fog Mux Controls,” on page 313 will
achieve this effect.

Table 16-4 Fog Mux Controls

From the blend equation, Equation 1, you can see that these selects perform
a linear interpolation between the fog color and the color combiner output
color.

Mux Source Selected

P select 0, pixel RGB

A select 2, stepped shade alpha

M select 3, fog register color

B select 0, 1.0 - stepped shade alpha
313

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Equation 2 Fog Blend Equation

The command g*DPSetRenderMode() is used to control these muxes as well
as other blender modes. The command
g*DPSetRenderMode(G_RM_FOG_SHADE_A, G_RM_FOG_SHADE_A)
implements the mux controls for this fog effect in G_CYC_1CYCLE mode.
Typically, this effect would be used only in G_CYC_2CYCLE mode, with
the second cycle performing the blend of the pixel with memory. For
example, g*DPSetRenderMode(G_RM_FOG_SHADE_A,
G_RM_AA_ZB_OPA_SURF2) enables fog while rendering antialiased,
z-buffered, opaque surfaces. In G_CYC_1CYCLE mode, only the fogging
operation would be performed (no blend).

Coverage Calculation

 From the previous discussion in “Coverage Unit” on page 306, coverage is
a 4-bit value that indicates how many subpixels are occluded by a primitive.
Note that a coverage of zero indicates that no subpixels were covered and
the pixel does not need to be written to the frame buffer. Because there are
only 3 bits of coverage available in the frame buffer, the coverage stored is
actually:

Equation 3 Stored Coverage

When the pixel is read from memory, a one is automatically added to restore
the actual coverage before it is used in calculations.

It is interesting to note that the Video Filter is concerned primarily with
partially covered pixels around the silhouette edges of objects (see “Video

color fogparam pixclr 1.0 fogparam– fogclr+
fogparam 1.0 fogparam–+

--=

memcvg coverage 1–=
314

NINTENDO DRAFT ANTIALIASING AND BLENDING
Filter” on page 326). Also, the antialiasing performed by the blender uses
information about coverage wraps, i.e. when the sum of memory coverage
and pixel coverage are greater than 1.0. Because of this, the frame buffer is
initially cleared such that the coverage bits are all one, see “Color Image
Format” on page 318.

Alpha Compare Calculation

From “Fill Mode” on page 180 and “Copy Mode” on page 180, you will
notice that in G_CYC_COPY and G_CYC_FILL modes the blender
hardware is bypassed and the fill color or image is written with no
opportunity for read/modify operations.

Note: When rendering in G_CYC_COPY or G_CYC_FILL, you should use
the RenderMode G_RM_NOOP to make sure that reading of Z and color is
disabled.

You can achieve a texture edge effect in G_CYC_COPY mode, however, by
using the pixel alpha thresholded with the blend register alpha
(g*DPSetBlendColor()). Figure 16-8, “Alpha Compare in Copy Mode for
8-bit Framebuffer,” on page 316 shows that write enables are generated
when the texel alpha is greater than or equal to blend alpha for 8-bit
framebuffers. Also, note that for 16-bit RGBA texels there are no compares,
the alpha bit simply acts as a write enable. Threshold alpha compare mode
may be set by the following command:
g*DPSetAlphaCompare(G_AC_THRESHOLD).
315

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Note: Alpha compare only works in G_CYC_COPY mode for the 16-bit
RGBA color and 8-bit image types. You cannot copy the 32-bit RGBA color
image type.

Figure 16-8 Alpha Compare in Copy Mode for 8-bit Framebuffer

Another alpha compare mode uses a hardware generated pseudo-random
number as the threshold alpha. To set this mode, use
g*DPSetAlphaCompare(G_AC_DITHER).

Both G_AC_DITHER and G_AC_THRESHOLD can be used in
G_CYC_1CYCLE or G_CYC_2CYCLE mode as well. In these modes, you
can readily change the pixel’s alpha from frame to frame, allowing various
fade effects. In order to get the alpha of the pixel to the comparators, you
must set the ALPHA_X_CVG and ALPHA_CVG_SEL bits properly.
Figure 16-9, “Alpha Compare in One/Two-Cycle Mode,” on page 317
shows a block diagram of the coverage/alpha combiner and alpha
comparator logic. These controls are usually set as part of the
g*DPSetRenderMode command. For example, the command
g*DPSetRenderMode(G_RM_TEX_EDGE, G_RM_TEX_EDGE2) will do the
right thing with these mode bits. See Table 16-6 for details on which bits are
set for a particular RenderMode.

For rendering effects such as smoke, clouds, or explosions, set the texture
alpha to the outline of the smoke orexplosion and render the texture onto a
transparent polygon so that one can see through the smoke to the objects
behind.

Blend Alpha

Random Alpha

gDPSetAlphaCompare

Texture Memory

>= >= >= >=

A0 A1 A2 A3

we0 we1 we2 we3

8

316

NINTENDO DRAFT ANTIALIASING AND BLENDING
In this situation, the correct g*DPSetRenderMode() to use is
G_RM_ZB_CLD_SURF or G_RM_CLD_SURF.

This ‘cloud’ mode preserves the antialiasing of objects behind the cloud
primitive, unlike TEX_EDGE and XLU_SURF modes.

Figure 16-9 Alpha Compare in One/Two-Cycle Mode

Blender ADD Mode

A special blender mode has been implemented that allows the pixel color to
be added to the memory color:

#define RM_ADD(clk) \
 IM_RD | CVG_DST_SAVE | FORCE_BL | ZMODE_OPA | \
 GBL_c##clk(G_BL_CLR_IN, G_BL_A_FOG, G_BL_CLR_MEM, \
 G_BL_1)
#define G_RM_ADD RM_ADD(1)
#define G_RM_ADD2 RM_ADD(2)

Blend Alpha

Random Alpha

gDPSetAlphaCompare

>=

we

Combined Alpha

Key

Coverage

1.0

Key Mode CVG_X_ALPHA

ALPHA_CVG_SEL

Pixel Coverage, to Blender

Pixel Alpha, to Blender
317

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Several notes about this mode:

• You must set fog alpha equal to 0xff for this mode to work, e.g.
gsDPSetFogColor(255, 255, 255, 255).

• Since the blender does not clamp the final color (all the inputs are
clamped and normal interpolation operations won’t under/over
flow) the user must guarantee that the results will not overflow or
“special effects” may occur.

Color Image Format

The are three color image formats: 32-bit RGBA, 16-bit RGBA, and 8-bit. In
addition, there are hidden bits that are available to the RDP memory
interface but not readily visible to the programmer, see Figure 16-10,
“Hidden Bits,” on page 319. These hidden bits come from the fact that the
RCP uses 9-bit RDRAMs. For 16-bit RGBA types, the hidden bits are used
for storing coverage. For 32-bit RGBA types, the 3 coverage bits are stored
as the 3 MSBs of the 8-bit alpha channel and the hidden bits are ignored.
Note that the 32-bit RGBA mode does not provide increased alpha
resolution. For 8-bit color images, the hidden bits are ignored.

There hidden bits are logically the 2 LSBs of each 18-bit word. For memory
accesses from other than the RDP memory interface (MI), only a 16-bit word
is read/written. Other masters can indirectly set or clear the hidden bits by
setting or clearing the LSB of the 16-bit word, respectively. For example, if
the CPU writes the 16-bit binary value 10101010_10101010 to memory, the
memory interface will actually write the 18-bit binary value
10101010_10101010_00. On the other hand, if the CPU writes the 16-bit
binary value 01010101_01010101, the memory interface will actually write
the 18-bit binary value 01010101_01010101_11.
318

NINTENDO DRAFT ANTIALIASING AND BLENDING
Figure 16-10Hidden Bits

Figure 16-11, “Color Image Formats,” on page 320 describes the logical
frame buffer formats.

R G B A R G B A
Number of Bits
Components

5 5 5 3 5 5 5 3
Byte Ordering0 1 2 3

0 1 Pixel Ordering

Bit Ordering15 10 5 0 15 10 5 0

Hidden Bits (2)

16-bit RGBA Format Showing Hidden Bits

Note: Hidden bits are only read/written directly by the RDP memory
Interface. They are logically positioned as the LSBs of every 16-bit
word, independent of Color Image type.

0 1
0 1 2 3

Short Ordering
Byte Ordering

Hidden Bits (2)

15 7 0 15 7 0 Bit ordering
319

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Image Alignment Requirements

The color image pointer, g*DPSetColorImage(), and the depth image
pointer, g*DPSetDepthImage(), should be aligned to 64-bits, i.e. the 3 LSBs
of the pointer should be zero.

Figure 16-11Color Image Formats

Z Calculation

As mentioned in the “Z Stepper” section, g*DPSetDepthSource() selects the
source of Z for the depth compares used in the z-buffer algorithm. This
selects between primitive Z (a register), g*DPSetPrimDepth(), and stepped

R G B A
Number of Bits
Components

5 5 5 1
Byte Ordering0 1

0 Pixel Ordering

Bit Ordering15 10 5 1

Number of Bits
Components

Byte Ordering0 1 2 3
0 1 Pixel Ordering

Bit Ordering31 23 15 7 0/31 23 15 7

4 5 6 7
8 8 8 8 8 8 8 8
R G B A R G B A

Number of Bits
Components

Byte Ordering0 1 2 3
Pixel Ordering

Bit Ordering7 0/7 0/7 0/7 0/7 0/7 0/7 0/7

4 5 6 7
8 8 8 8 8 8 8 8
I I I I I I I I

0 1 2 3 4 5 6 7

0

0

16-bit RGBA Format

32-bit RGBA Format

8-bit I Format

R G B A
5 5 5 1

2 3
1

0/15 10 5 1 0
320

NINTENDO DRAFT ANTIALIASING AND BLENDING
Z (from the triangle or line). G*DPSetDepthSource() also selects between
primative DeltaZ (a register) and stepped DeltaZ. The 16 bit primitive Z
register can supply the 15 integer bits of the Z value and the 16 bit deltaZ
register can supply the 16 bits of the DeltaZ value.

For each z-buffered primitive, the change in Z per pixel change in the X and
Y directions are calculated in the RSP as part of setup. These values are used
in the z-buffer logic of the blender to create a composite DeltaZ for the pixel:

Equation 4 DeltaZ Calculation

DeltaZpix = |dZdx| + |dZdy|

The DeltaZ value is important in determining surface correlation-- that is,
whether this pixel is part of the same surface as the pixel that is stored in
memory. When computing whether the pixel is part of the same surface, the
worst case DeltaZ is used:

Equation 5 Max DeltaZ Calculation

The z-buffer compare equations are:

Equation 6 Max Z Test

Equation 7 Farther Compare

DeltaZpix dZdx dZdy+=

DeltaZmax MAX DeltaZpix DeltaZmem()=

MaxZ MemZ MAXZ =

Farther PixZ DeltaZmax+ MemZ=
321

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Equation 8 Nearer Compare

Equation 9 In Front Compare

These signals are used along with coverage information to determine
surface correlation for various antialiasing modes. See “Blender Modes and
Assumptions” on page 327.

Z Image Format

The Z-buffer logic in the blender uses a fixed point, 0,15.3, 18 bit number for
Z calculations. The delta Z is a 16 bit quantity that is used as a s15 number.
The linear 18-bit Z that is stepped, is converted to a 14 bit floating point
format before being stored. This encoding is shown in Figure 16-12, “Z
Encoding,” on page 322.

Figure 16-12 Z Encoding

Three bits are stored for the exponent and 11 bits are stored for the mantissa.
Here is some psuedo code for converting from the format stored in memory
to the Z format used in calculations:

Nearer PixZ DeltaZmax– MemZ=

InFront PixZ MemZ=

0 0 m m m m m m m m m m m 0 0 0 0 0 0
0 1 0 0 0 0 0 0m m m m m m m m m m m
0 1 1 m 0 0 0 00 m m m m m m m m m m
0 1 1 m m 0 0 01 0 m m m m m m m m m
0 1 1 m m m 0 01 1 0 m m m m m m m m
0 1 1 m m m m 01 1 1 0 m m m m m m m
0 1 1 m m m m m1 1 1 1 0 m m m m m m
0 1 1 m m m m m1 1 1 1 1 m m m m m m

Exponent, 3 bits

0
1
2
3
4
5
6
7

Mantissa, 11 bits

Stepped Z 0,15.3
322

NINTENDO DRAFT ANTIALIASING AND BLENDING
/*
 * Convert 11 bit mantissa and 3 bit exponent
 * to 0,15.3 number
 */
struct {
 int shift;
 long add;
} z_format[8] = {
 6, 0x00000,
 5, 0x20000,
 4, 0x30000,
 3, 0x38000,
 2, 0x3c000,
 1, 0x3e000,
 0, 0x3f000,
 0, 0x3f800,
};

 zvalue = (mantissa << z_format[exponent].shift) +
 z_format[exponent].add;

Notice that converting from a 18 bit fixed point number to a 14 bit floating
point number, some precision may be lost. The lose of precision is greatest
for small exponents. The highest precision is saved for large Z values, that
is, for objects that are far away from the eye.

The DeltaZ is also encoded into 4 bit integer for storage into the Z-buffer
using the following equation:

Equation 10 DeltaZ Encoding

This is just a priority encoding of the DeltaZ value. The bit number of the
most significant bit that has a value of one is stored.

DeltaZmem 2 DeltaZpix log=
323

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The memory format for the Z and DeltaZmem is shown in Figure 16-13, “Z
Memory Format,” on page 324.

Figure 16-13Z Memory Format

Zexp Zmantissa dZ
Number of Bits
Components

3 11 4
Byte Ordering0 1

0 Pixel Ordering

Bit Ordering15 12 1

Hidden Bits (2)

Zexp Zmantissa dZ
3 11 4

2 3
1

15 12 1

Note: Hidden bits are only read/written directly by the RDP Memory
Interface. They are logically positioned as the LSBs of every 16-bit
word.

0 0
324

NINTENDO DRAFT ANTIALIASING AND BLENDING
Z Accuracy

The plot in shows the worst-case percent error in Z relative to the near and
far planes.

Figure 16-14 Z Worst-Case Error

d
Z

e/
Z

e
(%

 e
rr

or
 in

 Z
)

Znear 128*Znear Zfar

Ze*

*Ze is eye-space Z.

2-11
325

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Video Filter

The video filter performs the second pass of the analogizing algorithm. The
first pass is done in the blender and involves antialiasing of internal or
non-silhouette edges. After the image is rendered into the frame buffer, all
pixels except those that are on the silhouettes of objects will be fully covered
(coverage = 1.0). For partially covered pixels, the video filter performs a
linear interpolation between the foreground color and the background color:

Equation 11 Video Filter Interpolation

The ForeGround color is always the color stored in the frame buffer for that
pixel. The BackGround color is found by examining fully covered pixels in
a 5x3 pixel area around the current pixel. Note that Z is not used in
determining the BackGround color and so it is safe for Z to be
single-buffered.

OutputColor cvg ForeGround 1.0 cvg– BackGround+=
326

NINTENDO DRAFT ANTIALIASING AND BLENDING
Blender Modes and Assumptions

Opaque Surface Antialiased Z-Buffer Algorithm,
OPA_SURF

The main goal of this algorithm is to produce an antialiased rendering of
polygonal surfaces without the need for sorting. The key to achieving this
goal is to split the antialiasing problem up into several pieces, each of which
is readily implemented.

There are basically three different kinds of antialiasing. The first is the
antialiasing of textures within polygons. This is accomplished outside of the
blender by the texture hardware, using the industry standard mipmapping
technique. This uses tri-linear interpolation to produce a correctly sampled
texture lookup. See “MIP Mapping” on page 232 for more details.

The second kind of antialiasing is the blending of polygon fragments within
the pixels they share. The classic example of this is the pinwheel, where
alternating black and white triangles meet at a center vertex. The pixel
within which this vertex lies should be the average of the colors of all the
triangles which share this vertex, weighted by the area of the pixel at the
vertex covered by each of the triangles.

This blending is done in the blender hardware by computing Equation 1,
where p is the color of the pixel of the new poly, m is the color of the pixel in
the frame buffer memory, a is the coverage value of the new poly, and b is
the sum of the coverage values of all the polygons already blended into that
pixel in the frame buffer. Note that no matter what order the polygon
fragments come in, they will all average in correctly.

The third kind of antialiasing is the blending of the silhouette of a
foreground object against the background. This is traditionally done at
rendering time in the blend unit. Unfortunately, doing it at this time has bad
consequences for hidden surfacing.

Consider an internal edge of a surface (i.e., an edge shared by two visible
polygons not at the silhouette). A priori, when the first of the two polygons
is rendered, the blender does not yet know whether it is a silhouette edge
(and hence needs to be blended with the background), or an internal edge
327

NINTENDO 64 PROGRAMMING MANUAL DRAFT
(and hence should not be blended with the background). Note that if an
internal edge does blend with the background, there will be a line along the
edge left when the second polygon blends with the first. Once the blending
is done, there is no way to undo it. Also, note that the background may not
even have been rendered yet, unless the rendering of polygons is done in
depth-sorted order, which defeats the purpose of z-buffering.

The only way to deal with this is to postpone the blending of silhouette
edges until after the whole scene is rendered. In fact, the final blending of the
silhouette edges is done at display time by the video interface. While the
details of this are beyond the scope of this document, the main point is that
to do this blend on video output, there needs to be a coverage value left
behind in the frame buffer, with which to interpolate between the
foreground (the color of which is in the frame buffer) and the background
(which is assumed to be in one or more of the neighboring pixels in the frame
buffer). This interpolation is described in Equation 11.

Note that for this approach to work, we must be able to distinguish between
internal edges within a surface and silhouette edges between an object and
its background. This is only possible in the context of z-buffering. (If
z-buffering is disabled, the internal edge blending must also be disabled,
since we can no longer distinguish between internal and silhouette edges.)

In order to distinguish between an internal and a silhouette edge, we need
in addition to the normal z-buffer containing depth information, some
additional information so that we can tell if two polygons sharing a pixel are
within the same surface or not. This added information is the slope of Z
(depth) in screen space. This is computed as shown in Equation 4. The delta
for the old polygon is stored in the frame buffer with the Z. The rule is then
if the absolute difference in Z between the new polygon and the frame
buffer is less than the max of the new DeltaZ and the frame buffer DeltaZ,
then the new polygon is considered to be part of the same surface as the old
polygon already in the frame buffer. If the new Z is clearly in front, it
overwrites the frame buffer. If it is clearly behind, it is not written at all.

In fact, while this algorithm works as described above, it has some problems.
First off, we are only representing one fragment per pixel. If there are
multiple silhouettes within one pixel, there will be a slight artifact. There is
some specialized hardware to reduce this effect (the divot circuit). However,
some artifacts remain, and are simply tolerated.
328

NINTENDO DRAFT ANTIALIASING AND BLENDING
The other, and considerably more visually obvious artifact is
“punchthrough”, where part of an object which should have been occluded
“punches through” the object in front of it. This is caused by the z-buffer
blending range being too large, usually due to large DeltaZ’s from polygons
that are very “edge on” to the viewpoint. There are two different
mechanisms to prevent this artifact.

The first mechanism is to weight the weighting factors in the internal edge
blend by how “edge on” they are. Polygons that are more “flat” are
weighted more heavily than polygons that are more “edge on”. Thus, the
punching-through polygon is attenuated relative the polygon it is punching
through.

The second mechanism to prevent punchthrough is to use the wrapping of
the coverage value to distinguish between contiguous surfaces and a “new”
polygon that is not part of that surface. Basically, if the coverage wraps (i.e.,
new cvg + old cvg > 1.0), then the new polygon must not be part of the
previously rendered surface (or background). In that case, instead of using
the DeltaZ range, the z-buffer does a strict compare between the new and
old z, ignoring the deltas, since we know the new polygon is not part of the
old surface.

Note: Note that the silhouette antialiasing part of this algorithm depends on
not having shared edges across the silhouette (shared with the backfacing
polygons adjacent to the silhouette). Consequently, back-facing polygons
must be rejected (culled), or the coverage values at the silhouette edge will
be incorrect for the display-time pass of the antialiasing algorithm. This is
generally desirable in any case, since this saves the rendering time for the
back-facing polygons, which should be invisible. Note that this is only a
problem for closed polygonal surfaces (hulls), but not for “open” surfaces,
like flags, which have “external” edges. So flag-like objects need to be
represented in the display list twice, once frontfacing and once backfacing.

Transparent Surfaces, XLU_SURF

In addition to opaque surfaces, we would like to be able to do transparent
surfaces with antialiasing and without the need to sort. There are two
problems with this.
329

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The first problem is avoiding sorting. Strictly speaking, this is impossible. In
order for the colors to be correctly blended from multiple colored
transparent surfaces, the surfaces need to be depth sorted (or carry around a
lot of extra information, more than we have memory for), so we just don’t do
the right thing.

We do require all the transparent surfaces to be rendered after the opaque
surfaces, but aside from that segregation, there is no sorting of the
transparent (or opaque) surfaces. So multiple colored transparent surfaces
will not be quite right. First off, this case doesn’t come up much (most
transparent surfaces are not colored, and it is rare for multiple transparent
surfaces to line up). Secondly, even if it does, most people have had so little
experience with multiple colored transparency that they don’t know what to
expect. Generally speaking, rendering the transparent surfaces in the same
order, regardless of depth, looks just fine.

The second problem with transparency is internal edges. Here, we cannot do
what we did in the opaque surface case. The pixels at an internal edge of a
transparent surface are now blended with the (previously rendered,
opaque) background, as are all the pixels in the interior of the transparent
poly. So if we render one polygon sharing an internal edge, and then render
the other polygon sharing that same edge, we must be sure not to blend any
pixel twice, or there will be a noticable line on the internal edge as a
consequence of blending twice. So we just don’t blend internal edges of
transparent surfaces.

In fact, this is a bit tricker than it seems. We still want the silhouette of a
transparent object to be properly antialiased, so we need to be able to get the
partial coverage values for the silhouette edges, without double blending
the internal edges. This is done with a special mechanism provided just for
transparency.

Under control of a special mode bit (CLR_ON_CVG), we can inhibit the
writing of color (but not coverage) unless the coverage wraps (i.e., the sum
of the old coverage in the frame buffer and the new coverage of the currently
rendering polygon is greater than unity). On an internal edge of a
transparent surface over a fully covered background, the first polygon will
write the color, since full coverage plus any non-zero partial coverage must
wrap. The coverage value is always written with the wrapped sum of the old
pixel and new polygon coverage, which will be equal to the partial coverage
of the new (first) poly. On the rendering of the second poly, however, the
330

NINTENDO DRAFT ANTIALIASING AND BLENDING
coverage values will sum to unity on the shared edge, which is not a wrap.
So the second polygon will not write over the pixels on the shared edge of
the first poly. Note that this works even if the underlying coverage is not
unity (i.e., the transparent surface is over a pre-rendered silhouette edge),
since still only one of the two transparent polygons sharing an internal edge
will get to write (although it could be the second one instead of the first).

The blender in transparent surface mode uses a different form of the blend
equation than for the opaque surface case. The blend equation for
transparency is:

Equation 12

where p is the color of the pixel of the new poly, m is the color of the pixel in
the frame buffer memory, a is the opacity (alpha) of the new poly. Note that
this can be obtained from Equation 1 by setting b=(1-a).

Note that since we never blend across an internal edge, we do not need to
use the DeltaZ used to condition blending in the opaque surface case.
Instead, we just compare Z directly, since the transparent surface can only
be either clearly in front (in which case it is written with the
transparency-blended color) or clearly behind (in which case it is not written
at all, including coverage).

Note also that unlike opaque surfaces, which modify depth, transparent
surfaces do not modify depth (although they do read it, to test for occlusion
by a previously-rendered opaque object). This is because transparent
surfaces do not want to prevent the writing of other transparent surfaces
which are behind them (but in front of any opaque surfaces).

Transparent Lines, XLU_LINE

In this system, there is no explicit line generation hardware. So lines are
rendered as degenerate polygons (i.e., a triangle two of whose sides are
parallel, and whose third vertex is at infinity) using the normal triangle
hardware. Rendering is very much like the rendering of surfaces. However,
unlike surfaces, lines have no internal edges (since by definition, a line is an

color a p 1.0 a– m+=
331

NINTENDO 64 PROGRAMMING MANUAL DRAFT
edge). So here, we don’t have to worry about incorrectly blending internal
edges at render time. So for lines, all the antialiasing is done at render time.
Note, however, that as with transparent surfaces, lines must be rendered
after any surfaces they may occlude. In fact, lines are considered intrinsically
transparent. Opaque lines are simply transparent lines with an alpha of
unity (or close to it).

The render-time antialiasing is done by multiplying the new polygon (line)
coverage value with the alpha value, and using that as the alpha to do the
transparency blending. This produces the correct result, due to the absence
of internal edges.

The coverage value written into the frame buffer in line mode is the clamped
sum of the old pixel coverage and the new line’s coverage times its alpha.
For nearly opaque pixels, the coverage will be clamped to unity, making any
underlying silhouette edge not be modified by the video interface at the
display-time part of the antialiasing algorithm. This prevents the overlying
line from being disturbed by the underlying (and hence hidden) silhouette
edge. However, if the coverage times alpha from the line is nearly zero, then
the silhouette edge is not disturbed, since it should be visible through the
line.

Lines do read depth, and thus can be occluded by opaque objects. However,
lines, like transparent and decal surfaces, do not modify depth. They are
thus blended in display list order, which for thin lines should not matter.

Note that “lines” need not be degenerate triangles. In particular, for a “ray”
coming from somewhere in the foreground to a vanishing point at infinity,
a normal triangle, with two vertices at the source of the ray, and the third at
the vanishing point, produces the desired effect. Also note that these “rays”
can be textured, to produce the effect of a diffuse particle beam (or “neon
glow”), or even “tracer bullets” animated by changing texture coordinate
mapping in the texture unit.

Texture Edge Mode, TEX_EDGE

Texture edge mode is the first of the special-purpose modes. It is a variation
of opaque surface mode. It is intended mostly for ‘billboard’ type objects.
332

NINTENDO DRAFT ANTIALIASING AND BLENDING
A textured ‘billboard’ uses alpha values of zero in the texture to define the
outline of the tree. Either two billboards are crossed, or the one billboard
moves to always face the eyepoint, so as to hide the two dimensional nature
of the billboard. Frequently, only one bit of alpha (all or nothing) is available
in the highly-packed texture modes usually used for billboards.
Mipmapping can be used to maintain a properly antialiased tree texture, but
at some point the eye can get close enough to the tree texture to exceed the
highest level of detail. In this case the alpha will be interpolated over several
pixels, creating a ‘blurry’ effect around the texture edges.

Texture edge mode simply allows the blurred alpha to be written as
coverage. A blurryness in coverage does not produce a blurryness in the
final image, since the backend filter simply ignores the internal partial
coverage bits, recreating a sharp edge.

Decal Surfaces, OPA_DECAL, XLU_DECAL

In order to make the creation of models with complex details as simple as
possible, we added a special mode to allow the rendering of ‘decal’ polygons
(usually with a texture on them, like a flag or logo) over a previously
rendered opaque surface. Unlike normal rendering, here we only want to
render the decal if it is coplanar with the existing surface. Since we have the
hardware to tell if a surface is (roughly) coplanar from the opaque surface
blend case, we can use that to condition the writes of the decal. Otherwise
the rendering is just like the opaque surface case. Here we rely on the opaque
surface mechanism which conditions blends on the coverage value not
wrapping. This insures that a decal polygon written over a fully covered
surface will not blend with that surface, but will instead overwrite it.
Internal edges of a decal will, however, be properly blended (with each
other, but not with the underlying surface).

The coverage values of the decal surface wrap (as do opaque and
transparent surfaces). Note that this only works well if the edge of the decal
polygons do not coincide with a silhouette edge of the underlying surface.
If this is the case, it would help to use clamping for coverage since this will
result in simple aliasing. Using wrap in this case fails miserably, since the
coverage values are double what they should be, with some of them
wrapping and some of them not. However, even clamping is wrong. So
decals should never be allowed to exactly coincide with a silhouette edge of
the underlying surface.
333

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Decal surfaces, like transparent surfaces do not modify depth, since they are
supposed to be coplanar with the underlying surface, which already has the
correct depth.

Note that there is also a transparent version of decals, for cases where some
of the underlying surface should blend through. This uses the same decal
z-buffering algorithm, but is otherwise like transparent surface mode.

Decal Lines, DEC_LINE

This mode also goes by the name “Tron mode”, since its main effect is to
exaggerate the polygonalness of an object, making it look more artificial, and
hence more “hi-tech” (at least in the eyes of some artists). Like decal surfaces,
the decal lines are only rendered if they are within the depth range of the
underlying surface, which must be rendered before the decal line.

Aside from the different z-buffer algorithm, the only other difference
between transparent lines and decal lines is the coverage written into frame
buffer memory. For decal lines we do not modify coverage at all. This is so
we do not disturb the antialiasing of the silhouette edges. Note that the half
of the line which is “over the edge” of the silhouette will not be rendered.
Consequently, while the inside edge of the decal line at the silhouette will be
correctly antialiased at render time (as with transparent lines), the outside
edge must still be antialiased at display time by the video interface. The
coverage values at the silhouette are already correct before the decal lines are
rendered. Internal edges are also already correct, since they are fully covered
by the opaque surface rendering.

Note that the decal line case interacts poorly with one of the features of the
video interface (the divot circuit). In particular, if a decal line is on the
silhouette of an object, the divot circuit can disturb the decal lines at the
silhouette. This can be avoided by not using decal lines anywhere they could
be in the silhouette, or by turning off the divot circuit (at the loss of some
antialiasing quality). Or it can simply be tolerated as it is. The effect is a
thinning and breaking up of the decal line at the silhouette. In motion, the
line doesn’t scintillate much, and so is probably tolerable.
334

NINTENDO DRAFT ANTIALIASING AND BLENDING
Interpenetration, OPA_INTER, XLU_INTER

Interpenetration is another special purpose mode, which allows antialiased
interpenetration of polygons to a reasonable approximation, at the cost of
some loss of protection against “punchthrough”. This mode is intended for
protrusions (“spikes”) through a normal opaque surface, and for terrain, so
the placement of objects (like trees) on the surface of the terrain need not be
precise. Note that in the latter case, the terrain should be the interpenetrating
surface, rendered last (after all the other opaque objects in the foreground).
This ordering both prevents unnecessary punchthrough, as well as
rendering more quickly (since the background terrain does not get written if
it is behind an already rendered foreground object). Interpenetration mode
should not be used for articulated joints, or other purposes where the
interpenetration is used to connect what is supposed to be a contiguous
surface. If it is used in this way, unacceptable punchthrough will result. It is
probably better in these cases to use normal opaque surface mode if this is
really necessary. The lines of intersection will alias, but if the two surfaces
are roughly the same color, this may not be too noticable. Interpenetration
mode should not be used gratuitously. There is both an opaque and
transparent version of interpenetration mode.

The only down side of this is that interpenetration mode requires using the
wrapping of coverage to select whether to do the coverage adjustment (if it
wraps, and hence is a potentially interpenetrating surface) or not (if it
doesn’t wrap, and hence is assumed to be part of the same surface). This can
result in unacceptable punchthrough if any previously rendered objects are
behind and either very edge-on or very near the foreground interpenetration
mode surface. This almost never happens for terrain (where an object is
almost never both occluded and near the terrain surface), and is not terribly
noticable in the case of small protrusions from a normal opaque surface
object.

Note that interpenetrating polygons must be rendered after the surfaces
which they interpenetrate (which need not themselves have been rendered
in interpenetration mode). Other than that, there are no sorting
requirements.
335

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Particle System Mode, PCL_SURF

The so-called “particle system” mode is really just a clever use of the alpha
dither compare function described above. This is not a true particle system,
where a large number of discrete particles interact to produce some
interesting effect (fire, explosions, water, etc.). This mode is just another
polygonal rendering mode which can be used to make the surface of an
object resemble the behavior of some kinds of particle systems. Note that this
is much more efficient than a “true” particle system, since by this method, a
large number of particles can be represented by a much smaller number of
polygons. The remarkable thing about it is that it produces properly
antialiased silhouettes with correctly rendered internal edges.

This mode is an odd hybrid of the normal 3D opaque surface mode and the
2D alpha dither compare mode. As described in “Alpha Compare
Calculation” on page 315, alpha dither compare (G_AC_DITHER) is a way
of getting “stipple transparency”, on a pixel by pixel basis, by allowing a
write of the pixel only if its alpha value is greater than the value of a random
number between 0.0 and 1.0. This makes the probability of a write
proportional to the alpha value, which averaging over many frames
produces the effect of transparency. The most obvious use of this effect is a
“transporter”, where the object starts out opaque (alpha = 1.0), but then
fades to nothing (alpha = 0.0) in a cloud of sparkles. With some other effects
added in (textures, inverse transparency, etc.), this mode can also be used for
explosions, fire, and the like. By animating the alphas with texture mapping,
propagating “waves” of alpha can be produced. Due to the human visual
system’s predilection for finding patterns whether they are there or not (e.g.,
the “canals” on Mars), even though the “particles” are completely
uncorrelated, the waves of alpha will create the perception of coordinated
behavior among a large number of interacting particles.

In this mode, the interior of a polygon is strictly under the control of the
alpha dither compare. The probability of a write is proportional to the alpha
value. The silhouette edge is handled as for opaque surfaces, at display time
in the video interface. The tricky thing is what to do about the internal edges
of a surface.

Note that in this alpha dither compare case, the density of the neighborhood
is a function of alpha. This means that on a shared internal edge, a blend will
only be likely to occur if the alpha value is quite high. In fact, the probability
of a blend is proportional to the square of the alpha value. If the blend
336

NINTENDO DRAFT ANTIALIASING AND BLENDING
doesn’t happen, then the internal edge is treated like a silhouette edge, and
as long as the neighborhood has enough uncovered pixels, the display-time
antialiasing of these partially covered internal edge pixels will do the right
thing. So the only possible problem is with internal edges at high alpha
values, and here, the weighted average will just merge the (nearly
identically colored) fragments from the two polygons with possibly the
wrong weights. But since the two fragments are nearly identical, any error
in weighting doesn’t matter.

Blender Modes Truth Table

The g*DPSetRenderMode() macro sets all of the blender state necessary for
different types of surfaces and antialiasing. The following tables map the
RenderMode arguments to individual mode settings. The macro names
used are from the gbi.h header file.

Mode Bit Descriptions:

AA_EN: if not force blend, allow blend enable - use cvg bits

 Z_CMP: condition color write enable on depth comparison

Z_UPD: enable writing of Z if color write enabled

 IM_RD: enable color/cvg read/modify/write memory access

CVG_DST[1:0]: 0) clamp if blend_en, new if !blend_en 1) wrap always 2)
zap (force to full cvg) 3) save (don’t overwrite memory cvg)

CLR_ON_CVG: only update color on cvg overflow (transp surf)

CVG_X_ALPHA: use alpha times cvg for pixel alpha and cvg

ALPHA_CVG_SEL: use cvg (or alpha*cvg) for pixel alpha

FORCE_BL: force blend enable

ZMODE: 0) opaque 1) interpenetrating 2) transparent 3) decal

alpha_compare_en: condition color write enable on alpha compare, use the
g*DPSetAlphaCompare() command to set.

dither_alpha_en: compare alpha with pseudo-random noise (dithering),
use the g*DPSetAlphaCompare() command to set.
337

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Blender Mux Selects described in Table 16-1, “P and M Mux Inputs,” on
page 310, Table 16-2, “A Mux Inputs,” on page 311, and
Table 16-3, “B Mux Inputs,” on page 311.

Note:

(1) Interpenetration is only meaningful in antialiased z-buffered mode.

(2) Always zap coverage in point sampled modes.

(3) If CLR_ON_CVG, must also FORCE_BL.

(4) If not CVG_X_ALPHA and ALPHA_CVG_SEL, must not
FORCE_BL.

(5) Always FORCE_BL on non-z-buffered modes.

(6) In opaque surface mode, clamp/new CVG_DST mode works better
on the edges of a decaled surface which closely corresponds to the
edge of the underlying surface. Otherwise, use the wrap CVG_DST
mode.

 (7) To place new color regardless of other conditions, use FORCE_BL
with p=don’t care; m=pixel_color; a=zero; b=one; and don’t enable
Z_CMP.

Table 16-5 enumerates the recommended rendering modes for 3D graphics,
discussed above in some detail. They are what the rendering engine was
primarily designed to do. They produce the best visual quality at
near-optimal efficiency.

Sub surface mode, SUB_SURF, is intended to be used as a way to get an
opaque object upon which an antialiased transparent surface can be
overlaid. The coverage values from the transparent surface will fill in the
zapped coverage values from the initial opaque surface.

The terrain modes, *_TERR, are to get around the modification of the
blending weights by DeltaZ, which was intended for punchthrough
reduction. This causes aliasing of internal edges in cases where the object
faces are non-coplanar. These new modes use the normal lerp blender mode,
which is free of DeltaZ dependence, and hence doesn’t alias. Note, however,
that these modes do not handle “pinwheels” correctly, since they assume
that only two polygons meet at any pixel, which is generally not true. But
in the case of terrains, which have very large polygons, this is more nearly
correct.
338

NINTENDO DRAFT ANTIALIASING AND BLENDING
Table 16-5 Antialiased Z-buffered Rendering Modes, G_RM_AA_ZB

Mode

A
A

_E
N

Z
_C

M
P

Z
_U

PD

IM
_R

D

C
V

G
_D

S
T

 (
0:

cl
am

p,
 1

:w
ra

p,
 2

:z
ap

, 3
:s

av
e)

C
L

R
_O

N
_C

V
G

C
V

G
_X

_A
L

P
H

A

A
L

P
H

A
_C

V
G

_S
E

L

F
O

R
C

E
_B

L

Z
M

O
D

E
 (

0:
op

aq
ue

, 1
:i

nt
er

, 2
:t

ra
ns

, 3
:d

ec
al

)

al
ph

a_
co

m
pa

re
_e

n,
 g

*D
P

S
et

A
lp

ha
C

om
pa

re

di
th

er
_a

lp
ha

_e
n,

 g
*D

P
S

et
A

lp
ha

C
om

pa
re

B
le

nd
er

 M
ux

 P

B
le

nd
er

 M
ux

 M

B
le

nd
er

 M
ux

 A

B
le

nd
er

 M
ux

 B

OPA_SURF 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1

XLU_SURF 1 1 0 1 1 1 0 0 1 2 0 0 0 1 0 0

OPA_DECAL 1 1 0 1 1 0 0 1 0 3 0 0 0 1 0 1

XLU_DECAL 1 1 0 1 1 1 0 0 1 3 0 0 0 1 0 0

OPA_INTER 1 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1

XLU_INTER 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0

XLU_LINE 1 1 0 1 0 0 1 1 1 2 0 0 0 1 0 0

DEC_LINE 1 1 0 1 3 0 1 1 1 3 0 0 0 1 0 0

TEX_EDGE 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1

TEX_INTER 1 1 1 1 0 0 1 1 0 1 0 0 0 1 0 1

SUB_SURF 1 1 1 1 2 0 0 1 0 0 0 0 0 1 0 1

PCL_SURF 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0

OPA_TERR 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0

TEX_TERR 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0
339

NINTENDO 64 PROGRAMMING MANUAL DRAFT
 Table 16-6 enumerates modes that are primarily for situations where the
sorting by depth of a scene is trivial, for example, the terrain for a flight
simulator (as long as it is not too mountainous). Otherwise, the cost of
sorting the polygons by depth would be prohibitive. These modes can be
mixed and matched with any of the other rendering modes, z-buffered or
not. Note that for proper antialiasing, polygons should be rendered in
forward painter’s algorithm order (back to front), NOT inverse order. (This
is NOT the “a-buffer” algorithm, which requires inverse painter’s algorithm
order.) So in a mixed rendering mode scene, any non-z-buffered background
polygons should be rendered first.

Note that there is no decal surface mode. Since there is no Z to condition the
blend, decal surface mode is identical to opaque surface mode. There is a
decal line mode, since it is slightly different in the way it handles silhouette
edges. Also since there is no z, there are no interpenetration modes.

The line modes are very similar to the z-buffered line modes, except that
decal line mode zaps coverage to unity. This is because in the non-Z case,
both sides of the line are rendered, and are already correctly antialiased at
render time. For the non-line modes, blending is based on coverage wrap,
since there is no Z to discriminate between new and contiguous surfaces.

Sub surface mode is intended to be used as a way to get an opaque object
upon which an antialiased transparent surface can be overlaid. The coverage

SUB_TERR 1 1 1 1 2 0 0 1 0 0 0 0 0 1 0 0

Mode

A
A

_E
N

Z
_C

M
P

Z
_U

PD

IM
_R

D

C
V

G
_D

S
T

 (
0:

cl
am

p,
 1

:w
ra

p,
 2

:z
ap

, 3
:s

av
e)

C
L

R
_O

N
_C

V
G

C
V

G
_X

_A
L

P
H

A

A
L

P
H

A
_C

V
G

_S
E

L

F
O

R
C

E
_B

L

Z
M

O
D

E
 (

0:
op

aq
ue

, 1
:i

nt
er

, 2
:t

ra
ns

, 3
:d

ec
al

)

al
ph

a_
co

m
pa

re
_e

n,
 g

*D
P

S
et

A
lp

ha
C

om
pa

re

di
th

er
_a

lp
ha

_e
n,

 g
*D

P
S

et
A

lp
ha

C
om

pa
re

B
le

nd
er

 M
ux

 P

B
le

nd
er

 M
ux

 M

B
le

nd
er

 M
ux

 A

B
le

nd
er

 M
ux

 B
340

NINTENDO DRAFT ANTIALIASING AND BLENDING
values from the transparent surface will fill in the zapped coverage values
from the initial opaque surface.

The terrain modes are to get around the modification of the blending
weights by DeltaZ, which was intended for punchthrough reduction. This
causes aliasing of internal edges in cases where the object faces are
non-coplanar. These new modes use the normal lerp blender mode, which is
free of DeltaZ dependence, and hence doesn’t alias. Note, however, that
these modes do not handle “pinwheels” correctly, since they assume that
only two polygons meet at any pixel, which is generally not true. But in the
case of terrains, which have very large polygons, this is more nearly correct.

Table 16-6 Antialiased Non-Z-Buffered Rendering Modes, G_RM_AA

Mode
A

A
_E

N

Z
_C

M
P

Z
_U

PD

IM
_R

D

C
V

G
_D

S
T

 (
0:

cl
am

p,
 1

:w
ra

p,
 2

:z
ap

, 3
:s

av
e)

C
L

R
_O

N
_C

V
G

C
V

G
_X

_A
L

P
H

A

A
L

P
H

A
_C

V
G

_S
E

L

F
O

R
C

E
_B

L

Z
M

O
D

E
 (

0:
op

aq
ue

, 1
:i

nt
er

, 2
:t

ra
ns

, 3
:d

ec
al

)

al
ph

a_
co

m
pa

re
_e

n,
 g

*D
P

S
et

A
lp

ha
C

om
pa

re

di
th

er
_a

lp
ha

_e
n,

 g
*D

P
S

et
A

lp
ha

D
it

he
r

B
le

nd
er

 M
ux

 P

B
le

nd
er

 M
ux

 M

B
le

nd
er

 M
ux

 A

B
le

nd
er

 M
ux

 B

OPA_SURF 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1

XLU_SURF 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0

XLU_LINE 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0

DEC_LINE 1 0 0 1 2 0 1 1 1 0 0 0 0 1 0 0

TEX_EDGE 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1

SUB_SURF 1 0 0 1 2 0 0 1 0 0 0 0 0 1 0 1

PCL_SURF 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0

OPA_TERR 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0
341

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The point-sampled rendering modes in Table 16-7 are provided for
completeness. They have no significant performance advantage over the
antialiased modes. These modes can be mixed and matched with any of the
other rendering modes, antialiased or not, and so could be used for “special
effects” within an otherwise antialiased scene. Generally speaking, point
sampling looks bad, and should be avoided.

Note that there is no distinction between point-sampled line and surface
modes, since lines and surfaces only differ in the way they are antialiased.
For the same reason there are no point-sampled interpenetration or texture
edge modes.

For the point-sampled modes listed, coverage is usually zapped to unity to
prevent the video interface from trying to antialias them. Note also that in
these modes, because the coverage always wraps (since it is always fully
covered to begin with), surfaces are never blended, and the DeltaZ range is
never used in the z-buffering.

Cloud and overlay surface modes are versions of transparent surface and
transparent decal surface which do not disturb coverage. These are intended

TEX_TERR 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0

SUB_TERR 1 0 0 1 2 0 0 1 0 0 0 0 0 1 0 0

Mode

A
A

_E
N

Z
_C

M
P

Z
_U

PD

IM
_R

D

C
V

G
_D

S
T

 (
0:

cl
am

p,
 1

:w
ra

p,
 2

:z
ap

, 3
:s

av
e)

C
L

R
_O

N
_C

V
G

C
V

G
_X

_A
L

P
H

A

A
L

P
H

A
_C

V
G

_S
E

L

F
O

R
C

E
_B

L

Z
M

O
D

E
 (

0:
op

aq
ue

, 1
:i

nt
er

, 2
:t

ra
ns

, 3
:d

ec
al

)

al
ph

a_
co

m
pa

re
_e

n,
 g

*D
P

S
et

A
lp

ha
C

om
pa

re

di
th

er
_a

lp
ha

_e
n,

 g
*D

P
S

et
A

lp
ha

D
it

he
r

B
le

nd
er

 M
ux

 P

B
le

nd
er

 M
ux

 M

B
le

nd
er

 M
ux

 A

B
le

nd
er

 M
ux

 B
342

NINTENDO DRAFT ANTIALIASING AND BLENDING
as overlays, where the silhouette of the polygon will have zero opacity, and
hence should not affect the antialiasing of the image. (Note that textures can
still be bilerped, which is the only kind of antialiasing that matters in this
case.

Table 16-7 Point-Sampled Z-Buffered Rendering Modes, G_RM_ZB

Mode

A
A

_E
N

Z
_C

M
P

Z
_U

PD

IM
_R

D

C
V

G
_D

S
T

 (
0:

cl
am

p,
 1

:w
ra

p,
 2

:z
ap

, 3
:s

av
e)

C
L

R
_O

N
_C

V
G

C
V

G
_X

_A
L

P
H

A

A
L

P
H

A
_C

V
G

_S
E

L

F
O

R
C

E
_B

L

Z
M

O
D

E
 (

0:
op

aq
ue

, 1
:i

nt
er

, 2
:t

ra
ns

, 3
:d

ec
al

)

al
ph

a_
co

m
pa

re
_e

n,
 g

*D
P

S
et

A
lp

ha
C

om
pa

re

di
th

er
_a

lp
ha

_e
n,

 g
*D

P
S

et
A

lp
ha

D
it

he
r

B
le

nd
er

 M
ux

 P

B
le

nd
er

 M
ux

 M

B
le

nd
er

 M
ux

 A

B
le

nd
er

 M
ux

 B

OPA_SURF 0 1 1 0 2 0 0 1 0 0 0 0 0 1 0 1

XLU_SURF 0 1 0 1 2 0 0 0 1 2 0 0 0 1 0 0

OPA_DEC 0 1 0 0 2 0 0 1 0 3 0 0 0 1 0 1

XLU_DEC 0 1 0 1 2 0 0 0 1 3 0 0 0 1 0 0

CLD_SURF 0 1 0 1 3 0 0 0 1 2 0 0 0 1 0 0

OVL_SURF 0 1 0 1 3 0 0 0 1 3 0 0 0 1 0 0

PCL_SURF 0 1 1 0 2 0 0 0 0 0 1 1 0 0 3 2

The point-sampled, non-z-buffered rendering modes in Table 16-8 are
provided for completeness. They have no significant performance
advantage over the antialiased modes.

Since there is neither antialiasing nor z-buffering, there is no difference
between lines and surfaces, and no such thing as interpenetration, decals, or
343

NINTENDO 64 PROGRAMMING MANUAL DRAFT
texture edges. Only the transparent surface mode requires the reading of the
frame buffer at render time. The opaque modes simply overwrite the color
and zap the coverage in the frame buffer.

Cloud surface mode, CLD_SURF, is a versions of transparent surface mode
which does not disturb coverage. This is intended as an overlay, where the
silhouette of the polygon will have zero opacity, and hence should not affect
the antialiasing of the image. (Note that textures can still be bilerped, which
is the only kind of antialiasing that matters in this case.

The ADD render mode adds the pixel color to the memory color. Note that
you must set the fog alpha to 0xff for this mode to work, e.g.
gsDPSetFogColor(255, 255, 255, 255). Since the blender does not clamp it’s
output values (all the inputs are clamped and the normal interpolation
operations won’t under/overflow) the user must guarantee that the results
of the add operation will not overflow or weird results (effects?) may occur.

The NOOP mode is simply a mode that disables reading of color and Z and
zeros the rest of the blender state. You should set this render mode when the
cycle type is either G_CYC_FILL or G_CYC_COPY.

The PASS mode is used when the cycle type is G_CYC_2CYCLE. In this case
you may not want to do anything on the first cycle but blend in the second
cycle. An example is: gsDPSetRenderMode(G_RM_PASS,
G_RM_OPA_SURF).
344

NINTENDO DRAFT ANTIALIASING AND BLENDING
Table 16-8 Point-Sampled Non-Z-Buffered Rendering Modes

Mode

A
A

_E
N

Z
_C

M
P

Z
_U

PD

IM
_R

D

C
V

G
_D

S
T

 (
0:

cl
am

p,
 1

:w
ra

p,
 2

:z
ap

, 3
:s

av
e)

C
L

R
_O

N
_C

V
G

C
V

G
_X

_A
L

P
H

A

A
L

P
H

A
_C

V
G

_S
E

L

F
O

R
C

E
_B

L

Z
M

O
D

E
 (

0:
op

aq
ue

, 1
:i

nt
er

, 2
:t

ra
ns

, 3
:d

ec
al

)

al
ph

a_
co

m
pa

re
_e

n,
 g

*D
P

S
et

A
lp

ha
C

om
pa

re

di
th

er
_a

lp
ha

_e
n,

 g
*D

P
S

et
A

lp
ha

D
it

he
r

B
le

nd
er

 M
ux

 P

B
le

nd
er

 M
ux

 M

B
le

nd
er

 M
ux

 A

B
le

nd
er

 M
ux

 B

OPA_SURF 0 0 0 0 2 0 0 0 1 0 0 0 0 0 3 2

XLU_SURF 0 0 0 1 2 0 0 0 1 0 0 0 0 1 0 0

TEX_EDGE 1 0 0 0 0 0 1 1 1 0 0 0 0 0 3 2

CLD_SURF 0 0 0 1 3 0 0 0 1 0 0 0 0 1 0 0

PCL_SURF 0 0 0 0 2 0 0 0 1 0 1 1 0 0 3 2

ADD 0 0 0 1 3 0 0 0 1 0 0 0 0 1 1 2

NOOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PASS x x x x x x x x x x x x 0 0 3 2

, G_RM

Creating New Blender Modes

There are two types of mode bits in the blender, cycle-dependent and
cycle-independent. The blender mux controls are cycle-dependent since
they may differ between cycle 0 and cycle 1. All the other mode bits in the
blender do not change between cycle0 and cycle 1. The
g*DPSetRenderMode() command is set up to take two arguments. See the
345

NINTENDO 64 PROGRAMMING MANUAL DRAFT
discussion in “Antialiasing Modes” on page 204 for details on how to make
calls with g*DPSetRenderMode().

To define a new RenderMode you must create a new macro that takes the
cycle number (1 or 2) as an argument. For example:
#define RM_AA_ZB_OPA_SURF(clk) \
 AA_EN | Z_CMP | Z_UPD | IM_RD | CVG_DST_CLAMP | \
 ZMODE_OPA | ALPHA_CVG_SEL | \
 GBL_c##clk(G_BL_CLR_IN, G_BL_A_IN, G_BL_CLR_MEM, G_BL_A_MEM)

This macro OR’s the mode bits that are not cycle-dependent together with
the blender mux controls that are cycle-dependent. Next define two macros
that instance the macro above for each clock cycle:
#define G_RM_AA_ZB_OPA_SURF RM_AA_ZB_OPA_SURF(1)
#define G_RM_AA_ZB_OPA_SURF2 RM_AA_ZB_OPA_SURF(2)

To use this mode, you could make the following call:
gsDPSetRenderMode(G_RM_AA_ZB_OPA_SURF, G_RM_AA_ZB_OPA_SURF2)

Note: Creating new controls for the blender mux is fairly straightforward.
Setting the other blender modes, however, presumes a detailed
understanding of the hardware since many of these modes are
interdependent.

Visualizing Coverage

As a special bonus render mode, we have added G_RM_VISCVG. This
mode will display coverage in the frame buffer as gray-scale intensities. To
use this mode:

1. Render you entire scene, but don’t send FullSync yet.

2. Send the following display list:
 gsDPPipeSync(),
 gsDPSetCycleType(G_CYC_1CYCLE),
 gsDPSetBlendColor(255, 255, 255, 255),
 gsDPSetPrimDepth(0xffff, 0xffff),
 gsDPSetDepthSource(G_ZS_PRIM),
 gsDPSetRenderMode(G_RM_VISCVG, G_RM_VISCVG2),
 gsDPFillRectangle(0, 0, SCREEN_WD-1, SCREEN_HT-1),

Partial coverage will be displayed as darker shades of gray and full coverage
will be displayed as almost white. Try experimenting with different
346

NINTENDO DRAFT ANTIALIASING AND BLENDING
antialiasing methods while visualizing the coverage to increase your
understanding of these algorithms.
347

NINTENDO 64 PROGRAMMING MANUAL DRAFT
348

NINTENDO DRAFT SPRITES
Chapter 17

17. Sprites

This chapter describes the use of Sprites. Sprites are rectangular images or
textures that you draw on the screen. Large images must be drawn in small
pieces called “tiles.” Managing these pieces is the task of the Sprite Library
and associated data structures. This chapter explains how to do simple
things, such as clear the framebuffer with a specified image; and how to do
complex things, such as draw multi-colored text or explosions.

Here is a simple outline for this chapter:

• Application Programmers Interface (API)
Making
Manipulating
Drawing

• Data Structures and Attributes
Bitmaps
Sprites
Attributes

• Tricks and Techniques
Sparse Sprites
Early Ending
Variable Size Bitmaps
Explosions
Bitmap Re-use
Sprite Re-use
349

NINTENDO 64 PROGRAMMING MANUAL DRAFT
• Examples
Backgrounds
Text (Fonts)
Simple Game
350

NINTENDO DRAFT SPRITES
Application Program Interface (API)

Making Sprites

Sprites are usually used to draw images onto the screen. For these simple
cases, a few scripts are provided to automatically take a specified image and
generate an appropriate sprite data structure. The generated sprite may then
be edited manually or modified at run time to create dynamic behavior.

mksprite name imgfile.rgb tileX tileY overlap > sp_name.h

This program takes a Silicon Graphics image file and generates a sprite. This
sprite consists of a number of individual bitmaps (tiles) that are tileX apart
in the x direction and tileY apart in the y direction. If overlap is “0,” then
these bitmaps are exactly tileX by tileY in size and should not be scaled (see
spScale()). If overlap is “1,” then the tiles are (tileX+1) by (tileY+1) in size.
These sprites may be scaled and the textures will be properly interpolated.
This extra pixel of overlap, or “border,” provides the required data to create
smooth transitions between tiles. The generated file may be included in an
application and the sprite may be manipulated with the name “name.”

mkisprite name imgfile.rgb tileX tileY overlap > sp_name.h

This command is just like mksprite, except that it converts the image to an
8-bit Color Index format, computes the TLUT, and generates the sprite with
all the appropriate changes to support this format.

Manipulating Sprites

void spInit(Gfx **glistp)

This routine is called at the beginning of sprite drawing. Some GBI display
list commands are added to the specified glistp to get the RCP into the
correct mode for sprite rendering. This sets default texturing modes.

void spFinish(Gfx **glistp)
351

NINTENDO 64 PROGRAMMING MANUAL DRAFT
This routine is called at the end of sprite drawing. Some GBI display list
commands are added to the specified glistp to get the RCP to complete all
pending drawing operations and reset the RCP to its regular state. It also
tacks on a gEndDisplayList().

void spMove (Sprite *sp, s32 x, s32 y)

This routine sets the screen position of the upper left-hand corner of the
sprite.

void spScale (Sprite *sp, f32 sx, f32 sy)

This routine sets the resizing amount for this sprite. Scales may be less than
1.0 to produce a smaller image, or greater than 1 to create an expanded
image.

void spSetZ (Sprite *sp, s32 z)

This routine sets the z-buffer depth of the sprite. This may cause the sprite
to be obscured by previously drawn sprites that were drawn with a smaller
value of Z.

void spColor (Sprite *sp, u8 red, u8 green, u8 blue, u8 alpha)

This routine sets the color of the sprite. Based on how the sprite is to be
drawn, this could be either the PRIMITIVE_COLOR or the FILL_COLOR.

void spSetAttribute (Sprite *sp, s32 attr)

This routine sets the indicated attributes. “attr” can be the bit-wise OR of
many attributes.

void spClearAttribute (Sprite *sp, s32 attr)

This routine clears the indicated attributes. “attr” can be the bit-wise OR of
many attributes.

void spScissor (s32 xmin, s32 xmax, s32 ymin, s32 ymax)
352

NINTENDO DRAFT SPRITES
This routine specifies the bounding region in which sprites will be drawn.
By default, this region is initialized with xmin=0,
xmax=319, ymin=0, and ymax=239.

Drawing Sprites

Gfx *spDraw (Sprite *sp)

This routine constructs a display list starting at sp->next_dl that draws the
sprite into the framebuffer in the indicated way. This display list is
terminated with an gEndDisplayList() entry, and the sp->next_dl entry is
updated to point to one entry past this. The pointer to the start of this display
list is returned.
353

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Data Structures and Attributes

Bitmap Structure

Here is the actual structure of a single bitmap:

typedef struct bitmap {

s16width;/* Size across to draw in texels */
/* Done if width = 0 */

s16width_img;/* Actual size across in texels */

s16s;/* Horizontal offset into bitmap */
/* if (s > width_img), then load only! */

s16t;/* Vertical offset into base */

void*buf;/* Pointer to bitmap data */
/* Don’t re-load if new buf */
/* is the same as the old one */
/* Skip if NULL */

s16actualHeight;/* True Height of this bitmap piece */

s16LUToffset;/* LUT base index (for 4-bit CI Texs) */

} Bitmap;

Sprite Structure

typedef struct sprite {

s16x,y;/* Target position */

s16width,/* Target size (before scaling */
height;

f32scalex,/* Texel to Pixel scale factor */
scaley;

s16expx, expy;/* Explosion spacing */

u16attr;/* Attribute Flags */
s16zdepth;/* Z Depth */
354

NINTENDO DRAFT SPRITES
u8red,/* Primitive Color */
green,
blue,
alpha;

u16startTLUT;/* Lookup Table Entry Starting index */

s16nTLUT;/* Total number of LUT Entries */

s16*LUT;/* Pointer to Lookup Table */

s16istart;/* Starting bitmap index */

s16istep;/* Bitmaps index step (see SP_INCY) */
/* if 0, then variable width bitmaps */

s16nbitmaps;/* Total number of bitmaps */

s16ndisplist;/* Total number of display-list words */

s16bmheight;/* Bitmap Texel height (Used) */

s16bmHreal;/* Bitmap Texel height (Real) */

u8bmfmt;/* Bitmap Format */

u8bmsiz;/* Bitmap Texel Size */

Bitmap*bitmap;/* Pointer to first bitmap */

Gfx*rsp_dl;/* Pointer to RSP display list */

Gfx*rsp_dl_next;/* Pointer to next RSP DL entry */

} Sprite;

Attributes

Sprite attributes permit sprites to be used in a variety of different ways. The
following detailed description of each attribute indicates how setting or
clearing that attribute affects the appearance of the drawn sprite. Note also
that these attributes are as independent as possible, thus greatly expanding
the available variety and uses for sprites.
355

NINTENDO 64 PROGRAMMING MANUAL DRAFT
SP_TRANSPARENT

This attribute permits the Alpha blending of the sprite texture with the
background.

SP_CUTOUT

Use alpha compare hardware to not draw pixels with an alpha less than the
blend color alpha (automatically set to 1).

SP_HIDDEN

This attribute makes spDraw() on the sprite return without generating a
display list.

SP_Z

This attribute specifies that z-bufferering should be on while drawing the
sprite.

SP_SCALE

This attribute specifies that the sprite should be scaled in both X and Y by the
amount indicated in scalex and scaley.

SP_FASTCOPY

This attribute indicates that the sprite should be drawn in COPY mode. This
produces the fastest possible drawing speed for background clears.

SP_TEXSHIFT

This attribute indicates that textures are to be shifted exactly 1/2 texel in
both s and t before drawing it. This creates a better antialiased edge along
transparent texture boundaries when in cutout mode..
356

NINTENDO DRAFT SPRITES
SP_FRACPOS

This attribute indicates that the frac_s and frac_t fields of the sprite structure
are to be used to fine-position the texture into the drawn pixels..

SP_TEXSHUF

This attribute indicates that the tile textures have their odd lines pre-shuffled
to work around a LoadTextureBlock(3P) problem. See the Texture Mapping
chapter for more details on this problem..

SP_EXTERN

This attribute indicates that existing drawing modes are to be used rather
than the sprite routines explicitly setting them.
357

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Tricks and Techniques

Sparse Sprites

The buf in a bitmap entry may be NULL, indicating that nothing should be
drawn. This area will be 100% transparent.

Early-Ending Sprites

Setting the width of a bitmap entry to zero (0) signals an early exit to
drawing the sprite’s bitmaps.

Variable Size Bitmaps

Each bitmap can have a different drawn “width” and the corresponding
texture can have a different width_img. To vary the vertical size of a sprite,
set the actual_height field. If this is bigger than the sprite’s bmHeightReal,
then this actual_height is used for loading TMEM.

Explosions

Each sprite can specify the spacing between tiles in pixels by setting the
explx and exply fields. The default value is zero (0). This spacing is not
affected by the scaling of the sprite.

Bitmap Re-use

If the buf of the current bitmap matches the buf of the previous bitmap (not
counting NULL bufs) in this sprite, then TMEM will not be re-loaded. This
very simple form of texture caching is used in the font example.
358

NINTENDO DRAFT SPRITES
Sprite Re-use

Each sprite has an associated display list and an associated next_dl pointer.
When spDraw is called, new display list entries are added to the area
pointed at by next_dl. This doesn’t have to correspond to the pre-allocated
display list allocated for the sprite; it could point somewhere else.

This allows a sprite to get drawn multiple times, each with a different setting
of some parameters (position, scale, color, solid/textured, and so on).
Sufficient display list area must be allocated for this to operate correctly.
359

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Examples

A sample sprite library demonstration program is provided in under
/usr/src/PR/spgame. The demo shows how to use sprite library to do
backgrounds, texts and a simple animation.

Backgrounds

Setting up copy mode. Using TLUTs to animate it.

Scrolling Background example (up/down, left/right)

Text (Fonts)

void text_sprite(Sprite *txt, char *str, Font *fnt, int xlen, int ylen)

This creates the appropriate bitmap to render the specified string in the
indicated sprite. You can use a two-pass approach to render a larger number
of characters.

Simple Game

Anyone for a quick game of pong? Explosions, animated textures. Too much
fun!
360

NINTENDO DRAFT SPRITE MICROCODE
Chapter 18

18. Sprite Microcode

This chapter describes the use and operation of the Sprite Microcode, an
alternative to the Sprite C Library described in the previous section.

The motivations for the creation of the Sprite Microcode were to provide an
API which was more familiar to traditional 2D content developers, as well
as offloading expensive calculations from the CPU to the otherwise largely
idle RSP. By making use of the Sprite Microcode, applications gain access to
additional CPU cycles per frame to perform game related computations.

The Sprite Microcode can co-exist with the Sprite Library in an application.
Depending on the situation, either the Sprite C Library or the Sprite
Microcode will be more appropriate at particular points in the game. One
example where the Sprite C library would be more appropriate is for
drawing text on the screen. An example where the Sprite Microcode would
be more appropriate is the display of large textured background images
which would require a large amount of CPU time by the Sprite Library to
setup. The two APIs are also fairly different in their styles and the features
they support. Developers are encouraged to try both methods to see which
fits their needs more closely
361

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Sprite Microcode Functionality

The functionality provided by the Sprite Microcode is the ability to display
a subimage of arbitrary location and size out of a larger DRAM resident
image of arbitrary texture type and size with optional scaling or mirroring
in the X/Y axes.

 Larger than 4K subimage

Large DRAM texture image

X/Y Scaled/mirrored screen image
362

NINTENDO DRAFT SPRITE MICROCODE
Sprite Microcode API

The API provided for access to the Sprite Microcode is encapsulated into two
new instructions illustrated by the following code fragment:

#include “gu.h”
#include “gbi.h”

uSprite MySprite;

guSprite2DInit(&MySprite, ImagePointer, TlutPointer,
 ImageWidth, RectangleWidth,
RectangleHeight,
 ImageType, ImageSize,
 TextureScaleX, TextureScaleY,
 FlipTextureX, FlipTextureY,
 TextureStartS, TextureStartT,
 TranslateHorizontal, TranslateVertical);

gSPSprite2D(glistp++, OS_K0_TO_PHYSICAL(&MySprite));

Where MySprite is defined as a structure of type:

typedef struct {
 void *SourceImagePointer, void *TlutPointer,
 short Stride,
 short SubImageWidth, short SubImageHeight,
 char SourceImageType, char SourceImageBitSize,
 short ScaleX, short ScaleY,
 char FlipTextureX, char FlipTextureY,
 short SourceImageOffsetS, short SourceImageOffsetT,
 short PScreenX, short PScreenY,
 char dummy[2];
} uSprite_t;

typedef union {
 uSprite_t s;
 long long int force_structure_allignment[4];
} uSprite;
363

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Where the parameters are defined as:

SourceImagePointer The address of the texture image in memory out of
which a subrectangle is to be displayed

TlutPointer The address of an optional color index table for use with CI
images. Use NULL for non-CI images

Stride The width in texels of the original base image in memory

SubImageWidth The width in texels of the subimage which is to be
displayed

SubImageHeight The height in texels of the subimage which is to be
displayed

SourceImageType The format of the texture image in memory. All
supported hardware texture formats are allowed.

SourceImageBitSize The number of bits per texels of the input image.
All supported hardware texture sizes are allowed.

ScaleX, ScaleY The s5.10 fixed point axis scaling ratios which are to be
applied to the input image. A value of 1024 specifies 1 to 1 scaling. A value
of 512 specifies that each input texel should be scaled up to 2 output screen
pixels. Scale values should be <= 1024 in order to prevent sampling artifacts
from occuring. Scale values must be positive. Use the FlipTextureX or
FlipTextureY parameters to create negatively scaled images.

FlipTextureX, FlipTextureY Specifies whether the image should be
mirrored in the X or Y direction before display

SourceImageOffsetS, SourceImageOffsetT The offset in texel rows
or columns from the origin of the input base image where the texture
subrectangle which is to be displayed starts

PScreenX, PScreenY Specifies the starting X or Y location in screen
coordinates of the output image. The origin is in the upper left corner of the
screen.
364

NINTENDO DRAFT SPRITE MICROCODE
The guSprite2DInit() call merely copies its parameters into the passed
in uSprite structure. The call can be eliminated if the application sets up the
structure directly.

The Sprite Microcode automatically handles the division of the input
subimage into 4K texture segments, loads them into TMEM and issues the
appropriate RDP commands to setup and render a series of connected
Texture Rectangles to display the subimage at the desired location and
scaling. The Sprite Microcode keeps track of the s and t coordinates for the
generated texture subRectangles.

The Sprite Microcode clamps the coordinates for the generated texture
rectangles to prevent overflow of the RDP screen space registers. Texture
Rectangles which have their X or Y starting values less than zero are clipped
and their starting s and t texture coordinates adjusted so that they begin at
the screen boundary. Texture rectangles which have their ending Y value
less than zero or their starting Y value > 1023.75 are thrown away entirely.

More information about the Sprite Microcode can be found in the man pages
for gspSprite2D (3P) and guSprite2DInit (3P)
365

NINTENDO 64 PROGRAMMING MANUAL DRAFT
366

NINTENDO DRAFT ULTRA 64 AUDIO
PART

Ultra 64 Audio V
Chapter 1

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO DRAFT THE AUDIO LIBRARY
Chapter 19

19. The Audio Library

The Nintendo 64 Audio Library is a lightweight library of functions. It
provides game developers with the ability to interactively synthesize and
manipulate audio on the Nintendo 64. It provides support for both sampled
sound playback and Wavetable synthesis. This is accomplished with four
software objects: the Sound Player, the Sequence Player, the Synthesis
Driver, and the Audio Synthesis Microcode. These are shown in Figure 19-1,
“Audio Software Architecture,” on page 370.

• The Sound Player is useful for the playback of single sample sound
effects or streamed audio. It is capable of playing back either ADPCM
compressed sounds, or uncompressed 16 bit sound.

• The Sequence Player can exist in either of two types. The first type
plays back Type 0 MIDI sequence files and the second type plays back a
format of compressed MIDI unique to the Nintendo64. In both cases,
the sequence player handles sequence, instrument bank, and
synthesizer resource allocation, sequence interpretation, and MIDI
message scheduling.

Note: Both the Sequence Player and the Sound Player are clients of the
Synthesis Driver. The Driver can support an arbitrary number of clients,
including multiple Sound and Sequence Players.

• The Synthesis Driver is responsible for creating audio Command Lists,
which are packaged into tasks by the Application program and passed
on to the Audio Synthesis Microcode. It allows Driver clients to assign
wave tables to synthesizer voices, and control the playback parameters.
369

NINTENDO 64 PROGRAMMING MANUAL DRAFT
• The Audio Synthesis Microcode processes the tasks passed to it by the
application and synthesizes stereo 16- bit samples, which the
application in turn passes to the Audio DACs.

This chapter contains descriptions of the Sound Player, Sequence Player,
and Synthesis Driver APIs . Many application programmers will be satisfied
with the interfaces provided by the Sound and Sequence Players. Most of the
Synthesis Driver API is intended for programmers who want to create their
own players (see the section titled “Writing Your Own Player” for more
information); however, all programmers should understand certain
functions essential for the creation of audio Command Lists.

Figure 19-1 Audio Software Architecture

Sequence

Player

Sound

Player

Synthesis

Driver

Audio synthesis
Microcode

CPU

RCP

... Other players

MIDI Compressed Sound
370

NINTENDO DRAFT THE AUDIO LIBRARY
The following sections outline the data structures and API calls that are
necessary to make use of the audio library. Further details on some of the
data structures can be found in Chapter 15. The data structure definitions
and function prototypes for the calls described are in the include file
libaudio.h, which is part of the software release. Also included as a part of
the software release are reference (man) pages for each of the function calls.
371

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Generating Audio Output

The basic process for generating, and playing audio can be summed up by
the following steps.

1. Create and initialize the neccessary resources. (Typically, an audio
heap, a synthesizer, and a player)

2. Repeatedly make calls to alAudioFrame to generate the audio task lists.

3. Execute these audio tasks lists on the RSP.

4. Set the output DAC’s to point to the audio output, with a call to
osAiSetNextBuffer().

The creation and initialization of the neccessary resources is somewhat
dependent on your applications needs, but typically you will need to take
the following steps.

1. Create an audio heap with a call to alHeapInit.

2. Set the hardware output frequency with a call to osAiSetFrequency.

3. Create a synthesizer with a call to alInit(). (alInit will require that you
have a callback routine to initialize the audio dma structures)

4. Create message queues for receiving signals that allow you to time
your audio processing.

5. Create a player, (such as a sound player or sequence player) to sign into
the synthesizer.

6. Initialize the resources specific to the player(s) that you have created.
372

NINTENDO DRAFT THE AUDIO LIBRARY
Sampled Sound Playback

Representing Sound

The Audio Library supports playback of both uncompressed and ADPCM
compressed, 16-bit audio. An audio waveform is represented with the
Sound object via the ALSound structure. The ALSound structure contains
entries for the Envelope, Pan, and Volume, along with a pointer to the
ALWaveTable structure (which contains the audio).

Collections of sounds can be stored in an ALBankFile structure. The format
of this structure is described in Chapter 21, “Audio File Formats”. The tools
available to create Bank Files for inclusion in the ROM are described in
Chapter 20, “Audio Tools”.

Note: Currently, the only supported sample formats are single-channel,
ADPCM compressed and 16-bit uncompressed.

Playing Sounds

The Sound Player is the mechanism by which the Audio Library plays back
individual sounds, such as isolated sound effects. It is responsible for
allocating the resources needed to play a sound and for controlling the
performance of the sound data for the application.

There are certain steps you must take for your game to play a sound. At a
minimum, you must:

1. Create and initialize the basic resources described in the section
Generating Audio Output.

2. Instantiate the Sound Player with alSndpNew(). The Sound Player
created also signs in as a client to the Synthesis Driver.

3. Copy the sound bank’s .ctl file into RAM, and initialize it with a call to
alBnkfNew.

4. Allocate a sound with a call to alSndpAllocate().

5. Set the Sound Player’s target sound to reference your sound with
alSndpSetSound().
373

NINTENDO 64 PROGRAMMING MANUAL DRAFT
6. Play the sound with alSndpPlay().

7. Stop the sound when you are finished with alSndpStop(). Note that if
the sound is not looped, the sound player will take care of stopping the
sound when it is finished playing. However, you can stop the sound at
any time during playback with this call.

When the sound is no longer needed, the resources in the Sound Player can
be freed with a call to alSndpDeallocate(). If the Sound Player itself is no
longer required, it can be removed from the Synthesis Driver client list with
alSndpDelete().

The Sound Player can play both looped and unlooped sounds. When
playing a sound, the Sound Player steps through the Envelope states Attack,
Decay, and Release. Envelope parameters are defined in the ALSound
structure. The duration of the sound is determined by the sum of the Attack
time, Decay time, and Release time, or the length of the wave table
(whichever is shorter), scaled by the pitch.

For looped sounds, the duration is always determined by the Envelope
parameters and the pitch. If the Envelope Decay time is set to -1, the sound
will continue playing (that is, it will never enter the Release phase) until it is
stopped by the application with a call to alSndpStop(). Envelope times are
scaled by the playback pitch so that regardless of pitch, finite-length sounds
play to completion. For example, by default, a sound played an octave lower
plays for twice as long as it does at unity pitch. Loop points for sounds are
embedded in the ALWaveTable structure. (Loop points will be
automatically extracted from the .aiff file when using the file conversion
tools provided.)

Various parameters that affect the playback of a sound can be set before and
during playback. When a sound is allocated to a Sound Player, an ID is
returned that uniquely identifies that sound. Parameters for a particular
sound are set by first setting the target sound with a call to
alSndpSetSound(), and then making a subsequent call to set a parameter for
the target sound. Available calls are detailed in Table 13-1.

Note: Each sound allocated to a Sound Player has a unique ID and private
parameter values and play state. To play the same sound simultaneously,
possibly with different parameter settings, it must be allocated multiple
times to the Sound Player.
374

NINTENDO DRAFT THE AUDIO LIBRARY
A summary of Sound Player functions is given below. Details can be found
in the reference (man) pages.

Table 19-1Sound Player Functions

Function Description

alSndpNew Creates a new Sound Player.

alSndpDelete Removes a Sound Player from the
Synthesis Driver’s client list.

alSndpAllocate Allocate a sound to a sound player.

alSndpDeallocate Deallocate a sound from the sound
player.

alSndpSetSound Sets the Sound Player’s current sound.

alSndpGetSound Returns the Sound Player’s current
sound.

alSndpPlay Plays the Sound Player’s current sound.

alSndpPlayAt Plays a sound at some specified time in
the future.

alSndpStop Stops the current sound from playing.

alSndpGetStates Gets the current state (stopped or
playing) of the current sound.

alSndpSetPitch Sets the pitch for the current sound.

alSndpSetVol Sets the playback volume of the current
sound.

alSndpSetPan Sets the pan position of the current
sound.

alSndpSetPriority Sets the sounds priority value.

alSndpSetFXMix Sets the wet/dry mix of the current
sound.
375

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Sequenced Sound Playback

You will be concerned with three issues when using sequenced sound on the
Nintendo 64:

• representing the sequence data

• representing the instruments or sounds that make up the sequence

• controlling the sequence playback

Representing the Sequence

The Audio Library supports two different sequence players. The first
sequence player uses Type 0 MIDI sequences. Sequences are represented at
runtime with the ALSeq structure. This structure encapsulates sequence
data that conforms to the Standard MIDI Files 1.0 specification for Type 0
MIDI files. The Type 0 MIDI file format contains a time-ordered MIDI
message that specifies music events. It is described in detail in the “Standard
MIDI Files 1.0” specification published by the MIDI manufacturers
association.

The second sequence player uses a compressed format of sequence data
unique to the Nintendo64. This format is detailed in Audio Formats chapter.
Sequences are represented at runtime with the ALCSeq structure. Besides
differences in the format of the data, the compressed MIDI sequence player
handles loops in a different fashion and does not support markers.

To use a Type 0 MIDI sequence in your game, you must first initialize an
ALSeq structure with alSeqNew(). To use the compressed MIDI sequence
player, you first initialize an ALCSeq structure with alCSeqNew(). After
initializing the ALSeq structure, you can perform sequence operations.

The alSeqNextEvent() call returns the MIDI event at a specified location in
the sequence. The alSeqNewMarker() call creates a sequence position
marker that can be used in conjunction with the Type 0 Sequence Player to
set playback time and loop points. The convenience functions
alSeqTicksToSec() and alSeqSecToTicks() convert between seconds and
MIDI clock ticks.
376

NINTENDO DRAFT THE AUDIO LIBRARY
Note: Normally, you won’t call alSeqNextEvent() directly, because it is
called by the Sequence Player during sequence playback.

The sequence calls are described in detail in the reference (man) pages. Brief
descriptions are given in Table 13-2.

Table 19-2Sequence Functions

Representing Instruments

Instruments are represented at runtime by the ALBankFile structure. This
structure describes the instruments that sound in response to an event in the
sequence. Bank Files are composed of Banks; which are composed of
Instruments; which themselves are composed of groups of Sounds,
KeyMaps, Envelopes, and gain and pan information. The Bank File format
is described in detail in the Audio Formats chapter.

Type 0 MIDI
Sequence Player
Function

Compressed MIDI
Sequence Player
Function

Description

alSeqNew alCSeqNew Initializes the sequence control
structure.

alSeqNextEvent alCSeqNextEvent Returns the next MIDI event from the
sequence.

alSeqNewMarker alCSeqNewMarker Initializes a marker for a given event
time.

alSeqGetLoc alCSeqGetLoc Sets a marker to the sequence’s current
location.

alSeqSetLoc alCSeqSetLoc Sets the sequence to the location
specified by the marker.

alSeqTicksToSec alCSeqTicksToSec Converts a time value from MIDI clock
ticks to microseconds.

alSeqSecToTicks alCSeqSecToTicks Converts a time value from
microseconds to MIDI clock ticks.
377

NINTENDO 64 PROGRAMMING MANUAL DRAFT
To use a Bank File in your game, you must first create a runtime structure to
represent it. This is accomplished with the alBnkfNew() function (See Table
13-3). Both sequence players use the same function call for this operation.

Table 19-3Bank Functions

Playing Sequences

The Sequence Player is the mechanism by which the Nintendo 64 Audio
Library plays back MIDI sequence files. It is responsible for allocating the
hardware and software resources needed to play a sequence and for
controlling the performance of the sequence data for the application.

Note: A Sequence Player can play only one sequence at a time.

There are certain steps you must take for your game to play a music
sequence. The minimum steps needed to use the Type 0 MIDI sequence
player are listed below. Using the compressed MIDI sequence player is
identical, only you use the calls specific to the compressed MIDI sequence
player.

1. Create and initialize the basic resources described in the section
Generating Audio Output.

2. Initialize the sequence by using alSeqNew().

3. Copy the bank file’s .ctl file into RAM, and initialize the bank by using
alBnkfNew().

4. Initialize the sequence player by using alSeqpNew().

5. Set the sequence player’s bank by using alSeqpSetBank().

6. Set the sequence player’s target sequence by using alSeqpSetSeq().

7. Play the sequence by using alSeqpPlay().

8. Stop the sequence when you are finished with it, by using alSeqpStop().

Type 0 MIDI
Sequence Player
Function

Compressed MIDI
Sequence Player
Function

Description

alBnkfNew alBnkfNew Initializes a collection of banks for use
with a Sequence Player.
378

NINTENDO DRAFT THE AUDIO LIBRARY
9. If the sequence player is no longer needed it can be removed from the
Synthesis Driver’s client list by using alSeqpDelete().

Table 19-4Sequence Player Functions

Type 0 MIDI Sequence
Player Function

Compressed MIDI
Sequence Player
Function

Description

alSeqpNew alCSPNew Initializes a Sequence Player.

alSeqpDelete alCSPDelete Removes a Sequence Player from
the Synthesis Driver’s client list.

alSeqpGetState alCSPGetState Returns the current state of the
Sequence Player.

alSeqpSetBank alCSPSetBank Assigns a bank of instruments to
the sequence.

alSeqpGetSequence alCSPGetSequence Gets a reference to the sequence
that is currently bound to the
Sequence Player.

alSeqpSetSequence alCSPSetSequence Makes the specified sequence the
target sequence.

alSeqpPlay alCSPPlay Starts the target sequence playing.

alSeqpStop alCSPStop Stops the target sequence if it is
playing.

alSeqpGetTempo alCSPGetTempo Returns the current playback
tempo for the target sequence.

alSeqpSetTempo alCSPSetTempo Sets the current playback tempo of
the target sequence.

alSeqpGetVol alCSPGetVol Returns the overall volume for the
sequence.

alSeqpSetVol alCSPSetVol Sets the overall volume for the
sequence.

alSeqpGetChlPan alCSPGetChlPan Gets the pan on the specified MIDI
channel.
379

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Loops in Sequence Players

The way in which loops are handled in the sequence players is different.
When using the Type 0 MIDI sequence player, the programmer must create
a marker at the loop start point, and a marker at the loop end point. Then the
sequence can be looped between these two markers using alSeqpLoop().
Using the compressed MIDI sequence player, loops are constructed by the

alSeqpSetChlPan alCSPSetChlPan Sets the pan for the specified MIDI
channel.

alSeqpGetChlVol alCSPGetChlVol Gets the volume for the specified
MIDI channel.

alSeqpSetChlVol alCSPSetChlVol Sets the volume for the specified
MIDI channel.

alSeqpGetChlProgram alCSPGetChlProgram Returns the program assigned to
the specified MIDI channel.

alSeqpSetChlProgram alCSPSetChlProgram Assigns the given program to the
specified MIDI channel.

alSeqpGetChlFXMix alCSPGetChlFXMix Gets the wet/dry FX mix on the
specified MIDI channel.

alSeqpSetChlFXMix alCSPSetChlFXMix Sets the wet/dry FX mix on the
specified MIDI channel.

alSeqpGetChlPriority alCSPGetChlPriority Gets the priority value for the
specified MIDI channel.

alSeqpSetChlPriority alCSPSetChlPriority Sets the priority value for the
specified MIDI channel.

alSeqpLoop (Not Supported) Sets the loop points for the target
sequence.

alSeqpSendMidi alCSPSendMidi Sends the specified MIDI message
to the sequence player.

Table 19-4Sequence Player Functions

Type 0 MIDI Sequence
Player Function

Compressed MIDI
Sequence Player
Function

Description
380

NINTENDO DRAFT THE AUDIO LIBRARY
musician, in the tracks of the sequence by inserting controllers. (This is
discussed in the chapter “Using the Audio Tools”). This method allows
different loops for different tracks, and allows for nesting of loops.

Controllers in Sequence Players

The realtime controllers that the Sequence Player responds to are (control
numbers in parenthesis): pan (10), volume (7), priority (16), sustain (64), and
reverb amount (91). Note that because only one effects bus is supported,
reverb amount is used to control effect amount no matter what the effect is.

The compact sequence player also uses controllers 102, 103, 104, and 105 for
creating loops. Details of this are discussed in the chapter “Using the Audio
Tools.”
381

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The Synthesis Driver

The Synthesis Driver is the Audio Library object used by the Sound Player,
the Sequence Player, and application-specific players to create Audio
Command Lists, which are passed to the Audio Microcode. This section
defines various API calls which can be used by application programmers
who want to create their own Players.

Programmers who use the Sequence Player and Sound Player need only be
familiar with the initialization of the driver, the alAudioFrame() function
that creates audio Command Lists, and the mechanism by which the
Synthesis Driver satisfies the need for sound data.

Initializing the Driver

The Synthesis driver needs to be initialized in order to be used. This is
accomplished by calling alSynNew() with a configuration structure that
specifies the number of virtual voices, physical voices, and effects busses to
instantiate. The configuration structure also provides information regarding
the Audio DMA callback routines, the Audio Heap, FXType and the audio
playback rate to use. (Audio DMA callbacks are discussed later in this
chapter.)

Note: The alInit() call will call alSynNew().

The configuration also specifies a callback procedure pointer of type
ALDMANew, which is used by the synthesis driver initialization procedure to
set up callbacks for sound data requests. The procedure specified in the
configuration structure is called once during initialization for every physical
voice that is instantiated. The Synthesis Driver expects the procedure to
return another procedure pointer that defines a callback of type
ALDMAproc, and a pointer to some state information that can be used in
various ways to manage sound data requests.

Note: Only one driver may be instantiated at any given time.
382

NINTENDO DRAFT THE AUDIO LIBRARY
Building and Executing Command Lists

The main function of the Synthesis Driver is to build Audio Command Lists,
which are executed by the microcode to synthesize audio. Command lists
are built in frames. A frame is a number of samples—usually something
close to the number of samples required to fill a complete video frame time
at the regular video frame rate (e.g. 30 or 60 Hz).

From an application, the Command List (to synthesize a number of audio
samples) is built by making a call to alAudioFrame(). Parameters for this call
define the number of samples (which must be a multiple of 16), a physical
address of an output buffer where the Microcode will put the audio samples,
and a pointer to an array that can be used to store the Command List.

During the construction of the Command List, the Synthesis Driver makes
callbacks to its clients (the players) to process the various events that
determine the parameters and timing of the playback of sound effects and
sequences.

The Driver also makes callbacks to the defined ALDMAproc routine with
requests for sound data (see below).

To execute an audio Command List, it is first put in OSTask structure and
then passed to the microcode with a call to osSpTaskStart(). The OSTask
structure specifies pointers to microcode and data along with the Command
List which allows the RCP to execute.

Synthesis Driver Sound Data Callbacks

The application is responsible for making sure that the required sound data
is located in RAM before the command list is executed by the audio
microcode. The application programmer has the freedom to load complete
compressed sounds from the ROM before playback, or, as is more likely, to
initiate DMAs from ROM to RAM in response to callbacks from the
Synthesis Driver. Initiating DMA’s in response to callbacks allows the
application to only load the portion of the sound needed, and thus greatly
reduce the RAM needed for audio.

The Audio DMA callback routines are initialized when alInit is called. The
synthesizer configuration structure must contain a pointer to a routine for
383

NINTENDO 64 PROGRAMMING MANUAL DRAFT
initializing the Audio DMA’s. This routine will be called once for each
physical voice. Typically this routine will initialize any state variables, and
then must return a pointer to the ALDMAproc.

The ALDMAproc procedure is called by each physical voice during the
construction of the command list when compressed sound data is required.
The call specifies the required data address, the length, and the state pointer,
and it expects to receive a physical memory address where the data can be
(or at least will be) found in memory.

The example applications (playseq, and simple) provide examples of how
these callback routines can be implemented.

Assigning Players to the Driver

In order to make calls to the driver interface, you must first make your
player known to the driver. This is accomplished with the alSynAddPlayer()
call. For more information on writing your own player, see the section
“Writing Your Own Player”.

Note: Both the Sequence Player and the Sound Player add themselves to the
driver when they are initialized by calling alSynAddPlayer(). If you are not
creating your own players you should not need to call alSynAddPlayer.

Allocating and Controlling Voices

The Synthesis driver manages two types of voices: virtual voices and
physical voices.

Virtual voices are described by the ALVoice structure, and represent the
voice from the player’s perspective. In order to play a wavetable, players
must allocate a virtual voice on which to play it. This is accomplished with
the alSynAllocVoice() call. The voice configuration structure allows you to
specify the voice priority and bus assignment. The number of virtual voices
available is established when the driver is initialized, and you may specify
more virtual voices than you have resources to play. There is no benefit to
specifying more physical voices than virtual voices since the player will
have no way to use them.
384

NINTENDO DRAFT THE AUDIO LIBRARY
Physical voices represent the actual sound processing modules available to
the driver. They consist of an ADPCM decompressor, a pitch shifter, and a
gain unit. The ADPCM decompressor converts mono ADPCM compressed
(approximately 4:1) wavetables to mono 16-bit raw format. The pitch shifter
resamples the resulting data (up one octave, down any number of octaves)
to the desired pitch. The gain unit then applies a volume envelope, a pan
value, and mixes the (stereo) output into the master bus and an effect bus at
gains specified by the wet/dry parameters associated with the voice.

The driver maps virtual voices to physical voices based on virtual voice
priority. If there are more active virtual voices than available physical voices,
the driver allocates the physical voices to the highest priority virtual voices.
The driver may “steal” a physical voice from a virtual voice if a higher
priority virtual voice is allocated.

Note: To prevent a voice from being stolen, you can set the voice priority to
the highest priority with alSynSetPriority().

After you allocate a virtual voice, you can use it to play a wavetable with the
alSynStartVoice() call. You can stop the playback with the alSynStopVoice()
call.

Once you start a voice, you can control pitch, volume, and panning and
effect mix with the appropriate calls listed in the section titled “Summary of
Driver Functions”.

Effects and Effect Busses

Each voice can be assigned to one effects bus. Each effects bus can contain
any number of effects units (up to the limit imposed by the processing
resources). The number of busses and effects units are specified in the driver
configuration structure and are established at initialization time.

Note: The Audio Library currently only supports one effects bus. Future
version may support multiple busses.
385

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Creating Your Own Effects

The Nintendo64 uses a general purpose effects implementation that
manipulates data in a single delay line. A small number of default
configurations have been supplied (see libaudio.h), but applications
developers can also specify there own custom reverb and chorus/flange
style effects.

The way in which the data is manipulated is defined by a set of parameters
specified in blocks where each block represents a single effects primitive. An
effect is constructed by attaching an arbritrary number of effects primitives
to a single delay line. There is one and only one input to this delay line which
is the sum (slightly attenuated to minimize overflow) of the left and right
effects send busses. The contribution of a voice to this bus can be specified
by a call to alSynSetFXMix. This delay line is then operated on by the effect
specified in the the fxType field of the synthesizer configuration structure.
The delay memory will be allocated from the audio heap by a call to alInit,
so the application must be sure that the audio heap is big enough to contain
the delay memory and it’s associated effects primitive stuctures. The
parameters for each primitive in the effect are specified in an array which is
passed to the audio initialization code. Each primitive consists of an input
offset, an output offset, coefficients specifying output contribution to input
and input contribution to output, chorus rate and depth parameters which
control modulation of the output offset, a DC normalized (unity gain at DC)
single pole low-pass filter, and finally, an output gain specifying how much
of this primitives output is to be contributed to the final effect output.

The particular combination of values in each of the parameters for a
primitive specifies the function of that primitive as a whole within the effect.
For example, if the ffcoef and fbcoef are the same except for a sign change,
that primitive will be an all pass; if ffcoef and fbcoef are different, or one or
the other is zero, the primitive will be a filter of some kind. If both ffcoef and
386

NINTENDO DRAFT THE AUDIO LIBRARY
fbcoef are zero, the primitive will be pure delay only, possibly modulated
and low pass filtered.

Figure 19-2 Effects Primitives

The function of the effects primitives can be thought of in two ways, the first
of which is as an individual signal processing block. The effect as a whole
would then be thought of as a set of concatenated and/or nested primitives
arranged to produce the overall desired effect. The second way of
conceptualizing the primitive is the way it is actually implemented, which is
to say, as an operator on a single longer delay line shared with all the other
primitives. Both conceptualizations are illustrated in figure 13-2. By careful
selection of the effects parameters, a large class of cascaded/nested all-pass
and comb filter based effects can be created. (For a more detailed description
of this class of effects, see Bill Gardner’s MIT masters thesis, “The Virtual
Acoustic Room”, section 4.6, available from

+ +

+ +

or alternatively,

ffcoef

fbcoef

LP

gain

contiguous delay line

fbcoef

ffcoef
LP

gain

input output

input output

this store does not
occur if a tap position
modulation (chorus)
is part of the effect

(see chorus rate and
chorus depth
parameters)
387

NINTENDO 64 PROGRAMMING MANUAL DRAFT
http://sound.media.mit.edu/papers.html, and his Macintosh “Reverb”
program and documentation in same location).

Builders of custom effects will also discover that the effect specification
controls not only the nature of the effect, but the processing resources
consumed by the effect. Only those functions which are driven by non-zero
parameters actually generate any audio command operations in the RCP.
This gives application developers a great degree of flexibility in defining an
effect that is appropriate both in terms of sonic quality and efficiency. If a
developer wishes to use one of the pre-defined effects, they need only
specify that effect in the fxType field of the synthesizer configuration
structure. If, on the other hand, they wish to build their own effect, they
would specify an fxType of AL_FX_CUSTOM, and then allocate and fill in
the fields for the primitives. See the PR/apps/playseq source for one
example of how to use this capability to build a complex effect.

To create a custom effect, an application specifies the number of sections, the
overall length of the delay memory used by the total effect, and then the
input and output addresses, feedforward and feedback coefficients, gain,
chorus rate and depth, and low-pass coefficient for each section. Following
is a brief explanation of the significance of each parameter and what
processing actually takes place as a result of it’s inclusion. Although
parameters are interpreted in different ways, they are all stored in signed
32-bit numbers.

Parameter Description

The following two parameters are specified only once for the entire effect:

sections: this parameter specifies the total number of sections in the effect. A
section is one primitive and it’s associated parameters.

length: this parameter specifies the total length of delay memory used by the
effect, and must be a multiple of 8 bytes. Since data is processed in blocks,
this parameter should be greater than or equal to the largest output offset
parameter PLUS the length of a processing buffer. This length is defined to
be 160 samples, or 320 bytes. If the last section of the effect has a non-zero
chorus rate parameter which corresponds to a slow modulation rate, and a
deep modulation depth (> 1 semitone), the total delay length may need to be
larger depending on the rate and depth of the chorus.
388

NINTENDO DRAFT THE AUDIO LIBRARY
The rest of these parameters constitute one processing element, so there
must be one set of these parameters for each section specified by the sections
parameter.

The following two address parameters must be positive and must be on 8
bytes (or 4 sample) boundaries. The application playseq.c shows an easy
way to specify addresses in the convenient unit of milliseconds which are
properly aligned.

input: this parameter specifies the address of the input of this section of the
effect. This address must be on a 4 sample (or 8 byte) boundary.

output: this parameter specifies the address of the output of this section of
the effect. This address must be on a 4 sample (or 8 byte) boundary.

The following three parameters, along with the lpfilt coef parameter, are
interpreted as signed 16-bit fractional fixed point values. The upper sixteen
bits should be sign extended:

fbcoef: this parameter specifies the coefficient of the feedback portion of the
section. If this parameter is zero, no action takes place.

ffcoef: this parameter specifies the coefficient of the feedforward portion of
the section. If this parameter is zero, no action takes place. If the chorus rate
parameter is non-zero, because it is not possible to store the loaded output
back into the delay line since it is not the same length), the ffcoef parameter
controls how much of the input to add to the interpolated output allowing
flange type effects.

gain: this parameter specifies how much of this primitives output to
contribute to the total effect output, and can be thought of as a ‘tap’ value. If
zero, no multiply is performed. Note that at least one section of the effect
must have a non-zero gain value for the effect to be heard. If no section of an
effect has a non-zero gain value, then no effect output will be heard.

chorus rate: this parameter specifies the modulation frequency of the output
tap position of the delay line, i.e., how quickly the tap position will be
modulated. The value of this parameter is (frequency/sample rate)*2^25.
For example, a modulation frequency of .5Hz at a synthesizer sample rate of
44.1kHz would be (.5/44100)*33,554,432 = 380
389

NINTENDO 64 PROGRAMMING MANUAL DRAFT
chorus depth: this parameter specifies the modulation depth, or pitch
change, of the effect. The parameter is specified approximately in
hundredths of a cent. So a modulation depth of +/-25 cents, or a quarter of
a semitone, would be 2500. The approximation to cents is good over the
range useful for musical chorusing and flanging, i.e., less than a few
semitones. The error at 1 semitone (100 cents) is about 3 cents and at 3
semitones is about 30 cents. If you wish to know the “exact” value (in cents)
of the modulation depth , use the following equation:

cents 1200
2 ln

-------------- 1 chorusdepth
120 000 2 ln
---------------------------------------–

 ln=

lpfilt coef: this parameter specifies the single pole low-pass filter coefficient.
The derivation of this value as a function of frequency and sample rate can
be found in numerous signal processing texts, and is left as an exercise to the
reader (doncha hate that). Generate a table once and forget about it. Only
positive values will actually be low-pass. Negative values will generate DC
normalized boost at high frequencies causing possible overflow.

Armed with this knowledge about primitive parameters, let’s look at some
example effects:

Figure 19-3 A simple echo effect

.36 1.0

+

179 ms
390

NINTENDO DRAFT THE AUDIO LIBRARY
The effect in figure 13-3, which is a simple echo effect, and can be selected
using AL_FX_ECHO, would be implemented using the following
parameters:

#define ms *(((s32)((f32)44.1))&~0x7)
param[0] = 1; /*the number of sections in this effect */
param[1] = 200 ms; /* total allocated memory */
param[2] = 0; /* input is beginning of delay line */
param[3] = 179 ms; /* output location on delay line */
param[4] = 12000; /* fbcoef of .36 */
param[5] = 0; /* no feedforward coefficient */
param[6] = 0x7fff; /* full gain 1.0 - 1/2^15 */
param[7] = 0; /* no chorus rate */
param[8] = 0; /* no chorus depth */
param[9] = 0; /* no low-pass filter */

This is, in fact, the echo effect implemented when AL_FX_ECHO is specified
in the fxType field of the synthesizer configuration structure.

Let’s try something a little more interesting:

Figure 19-4 A nested all-pass inside a comb effect

In Fig 13-4, we have used the more compact Gardner-style notation. Note
that section 2 is “nested” inside section 1.This effect which is the

+

section 1

section 3

section 2
input = 19 ms
output = 38 ms
fbcoef = 3276
ffcoef = -3276

chorus rate = 0
chorus depth = 0
lopass coef = 0

input = 0ms
output = 54ms
fbcoef = 9830
ffcoef = -9830

chorus rate = 0
chorus depth = 0
lopass coef = 0

input = 0
output = 60ms
fbcoef = 5000
ffcoef = 0

chorus rate = 0
chorus depth = 0
lopass coef = 0x5000 (.625)

gain = 0x3fff (.5)

gain = 0

gain = 0
391

NINTENDO 64 PROGRAMMING MANUAL DRAFT
AL_FX_SMALLROOM effect, would be specified using the following
parameters:

param[0] = 3; /*the number of sections in this effect */
param[1] = 100 ms; /* total allocated memory */
/* SECTION 1 */
param[2] = 0; /* input */
param[3] = 54ms; /* output */
param[4] = 9830; /* fbcoef */
param[5] = -9830; /* ffcoef */
param[6] = 0; /* no out gain */
param[7] = 0; /* no chorus rate */
param[8] = 0; /* no chorus delay */
param[9] = 0; /* no low-pass filter */
/* SECTION 2*/
param[10] = 19 ms; /* input */
param[11] = 38 ms; /* output */
param[12] = 3276; /* fbcoef */
param[13] = -3276; /* ffcoef */
param[14] = 0x3fff; /* gain */
param[15] = 0; /* chorus rate */
param[16] = 0; /* chorus depth */
param[17] = 0; /* low-pass filter */
/* SECTION 3*/
param[18] = 0; /* input */
param[19] = 60ms; /* output */
param[20] = 5000; /* fbcoef */
param[21] = 0; /* ffcoef */
param[22] = 0; /* gain */
param[23] = 0; /* chorus rate */
param[24] = 0; /* chorus depth */
param[25] = 0x5000; /* low-pass filter */
392

NINTENDO DRAFT THE AUDIO LIBRARY
Summary of Driver Functions

Table 19-5Synthesizer Functions

Function Description

alSynNew Opens and initializes the synthesizer
driver.

alSynDelete NOT IMPLEMENTED

alSynAddPlayer Adds a client player to the synthesizer.

alSynRemovePlayer Removes a player from the synthesizer.

alSynAllocVoice Allocates and returns a synthesizer
voice.

alSynFreeVoice Deallocates a synthesizer voice.

alSynStartVoice Starts a virtual voice playing.

alSynStartVoiceParams Starts a virtual voice with the specified
parameters.

alSynStopVoice Stops a virtual voice from playing.

alSynSetVol Sets the volume for the specified voice.

alSynSetPitch Sets the pitch for the specified voice.

alSynSetPan Sets the pan values for the specified
voice.

alSynSetFXMix Sets the wet/dry/effects/mix for the
specified voice.

alSynSetPriority Sets the priority of the specified virtual
voice.

alSynGetPriority Returns the priority of the specified
virtual voice.

alSynAllocFx Allocates a new effect of the specified
type to the specified bus.

alSynFreeFx NOT IMPLEMENTED
393

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Writing Your Own Player

A Player is an Audio Library software object that works through the
Synthesis Driver to construct audio command lists. Both the Sequence
Player and the Sound Player are examples of Players.

A Player operates by signing into the driver and then responding to driver
callback with driver API calls, described in the section “The Synthesis
Driver” on page 382. The initialization procedure and the callback routine
are detailed below.

Initializing the Player

In order for your player to receive driver callbacks and to use the synthesis
driver voice functions, you must first add the player as a driver client. This
is accomplished with the alSynAddPlayer() call, which takes two
arguments: a reference to the synthesis driver, and a reference to the
ALPlayer structure that represents the player to be added. A reference to the
synthesis driver may be obtained from the Audio Library globals structure
alGlobals. The ALPlayer structure contains a reference to the voice handler
callback function and a pointer that the player can use.

Example 19-1 Player Initialization

typedef struct MyPlayer_s {

 ALPlayer node;

 /*
 * include other player specific state here

alSynGetFXRef Returns a pointer to the FX structure.

alSynSetFXParam Currently has no effect.

Table 19-5Synthesizer Functions

Function Description
394

NINTENDO DRAFT THE AUDIO LIBRARY
 */

} MyPlayer;

void playerNew(MyPlayer *p)
{
 /*
 * Initialize any player specific state here
 */

 /*
 * Sign into the synthesis driver so that the next time
 * alAudioFrame is called, it will call the
 * __voiceHandler function.
 */
 p->node.next = NULL;
 p->node.handler = __voiceHandler;
 p->node.clientData = p;
 alSynAddPlayer(&alGlobals->drvr, &p->node);
}

void playerDelete(MyPlayer *p)
{
 /*
 * remove this player from the synthesis driver
 */
 alSynRemovePlayer(&alGlobals->drvr, &p->node);
}

In the previous example, you’ll notice that the player structure contains a
reference to __voiceHandler. This field points to a callback procedure, of
type ALVoiceHandler, which the driver calls in the process of building the
audio command list.

Implementing a Voice Handler

When your application calls alAudioFrame(), the driver iterates through its
list of players, calling the player’s voice handler functions at the appropriate
offset (which translates to time) in the command list.

Typically, the player maintains a time-based list of events which the voice
handler parses and translates into driver calls. The voice handler contributes
to the construction of the command list by making driver voice calls.
395

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Note: Driver voice calls can be made only from within the voice handler
function.

The voice handler returns the time, in microseconds, for the next callback.

Example 19-2 The Voice Handler

ALMicroTime __voiceHandler(void *node)
{
 MyPlayer *p = (MyPlayer *)node;

 /*
 * You can now make calls to the following synthesis
 * driver voice functions
 *
 * alSynAllocVoice()
 * alSynFreeVoice()
 * alSynStartVoice()
 * alSynStopVoice()
 * alSynSetVol()
 * alSynSetPitch()
 * alSynSetPan()
 * alSynSetFXMix()
 * alSynSetPriority()
 * alSynGetPriority()
 * alSynSetFXParam()
 */

 return 1000; /* call back in 1 millisecond */
}

396

NINTENDO DRAFT THE AUDIO LIBRARY
Implementing Vibrato and Tremolo

Note: A full example of vibrato and tremolo implementation is given in the
latest version of the playseq demo. GenMidiBank.inst has examples of how
vibrato and tremolo would be set in the bank.

Vibrato and tremolo, are implemented by providing three callback routines;
initOsc, updateOsc, and stopOsc. These routines act as the low frequency
oscillator (LFO) that is modulated against either pitch or volume. When the
sequence player determines that a note uses either vibrato or tremolo, it will
call initOsc which will set a current value, and return a delta time specifying
how long before it needs to update the value of the oscillator. After the delta
time has passed, updateOsc will be called, which will set a current value and
return a delta time until the next update. This will continue, until the note
stops sounding, and at that time, stopOsc will be called, so that your
application can do any necessary cleanup.

What each routine does, and how it does it is largely up to the application.
All the sequence player expects is a delta time until the next callback, and a
value to use as the current value. In addition the sequence player provides a
mechanism for each note to have its own data, and for this data to be passed
to subsequent calls of updateOsc.

For vibrato or tremolo to be active, you must set the vibType or tremType of
the instrument in the .inst file. A value of zero (the default) in these fields
will be interpreted by the sequence player as either vibrato off or tremolo off.
Any non-zero value will be considered as on. In addition to the type, the
following fields can be used to specify parameters for the oscillator: vibRate,
vibDepth, vibDelay, tremRate, tremDepth, tremDelay. These values are
eight bit values and can be used in whatever way the oscillator callbacks
deem appropriate.

When creating a sequence player, you must pass pointers to your callbacks
through the ALSeqpConfig struct. The following code fragment
demonstrates how to do this.

ALSeqpConfig seqc;

seqc.maxVoices = MAX_VOICES;
seqc.maxEvents = EVT_COUNT;
seqc.maxChannels = 16;
397

NINTENDO 64 PROGRAMMING MANUAL DRAFT
seqc.heap = &hp;
seqc.initOsc = &initOsc;
seqc.updateOsc = &updateOsc;
seqc.stopOsc = &stopOsc;

alSeqpNew(seqp, &seqc);

The initOsc routine

ALMicroTime initOsc(void **oscState, f32 *initVal, u8
oscType,u8 oscRate, u8 oscDepth, u8 oscDelay);

The initOsc routine is the first callback to occur when a note is started, and
either the vibType or tremType is non-zero. Vibrato and tremolo are
handled separately by the sequence player, so if an instrument has both
vibrato and tremolo, two calls will be made, one for each oscillator. When
called, initOsc is passed a handle, in which it may store a pointer to a data
structure. This pointer will be passed back to subsequent calls of updateOsc
and stopOsc. This is optional. The second argument is a pointer to an f32 that
must be set with a valid oscillator value. The remaining arguments are the
oscType, oscRate, oscDepth, and oscDelay. These values may be used as you
wish.

Typically initOsc will allocate enough memory for its data structure, and
store a pointer to this memory in the oscState handle. This is optional
though, and if your oscillator doesn’t have any state information it may not
need to do this. After performing any computation that it needs, the initOsc
routine returns a delta time, in microseconds, until the first call to
updateOsc. If a delta time of zero is returned, the sequence player interprets
this as a failure, and will not making any calls to either updateOsc or
stopOsc. If the initVal is changed, the new value will be used. If the initVal
remains unchanged, vibrato will default to a value of 1.0 and tremolo will
default to a value of 127.

If the oscillator is a vibrato oscillator, the return value is multiplied against
the unmodulated pitch to determine the modulated pitch. A value of 1.0 will
have no effect, a value of 2.0 will raise the pitch one octave, and a value of .5
will lower the pitch one octave. If the oscillator is a tremolo oscillator, the
returned f32 should be an integer value between 0 and 127. This value will
be multiplied against the unmodulated volume to determine a modulated
volume. A value of 127 will be full volume, and a value of 0 will be silent.
398

NINTENDO DRAFT THE AUDIO LIBRARY
The updateOsc routine

ALMicroTime updateOsc(void *oscState, f32 *updateVal);

The updateOsc routine will be called whenever the delta time returned by
either initOsc or the previous updateOsc call has expired. When called,
updateOsc is passed the value returned by initOsc in the oscState handle.
UpdateOsc should make whatever calculations it needs, set the new
oscillator value in updateVal, and return a delta time until the next time
updateOsc needs to be called. Valid oscillator values are the same as in the
case of initOsc.

The stopOsc routine

void stopOsc(void *oscState);

The main purpose of the stopOsc routine is to give the application the
opportunity to free any memory stored in the oscState. StopOsc is not called
until the note has completely finished processing. Even if your routine does
nothing, you should still have a stopOsc routine if you have an initOsc
routine.
399

NINTENDO 64 PROGRAMMING MANUAL DRAFT
400

NINTENDO DRAFT AUDIO TOOLS
Chapter 20

20. Audio Tools

This chapter describes the various audio tools for the Nintendo 64. These
include: an instrument compiler, which can be used to prepare banks of
sounds and control information used by the sequence player and the sound
player; a set of tools to compress and decompress sound data for the
Nintendo 64 ADPCM format; and tools for converting and printing MIDI
files.
401

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The Instrument Compiler: ic

The Nintendo 64 Audio Library synthesizes audio from MIDI events using
information contained in the .ctl and .tbl data files. These files, along with the
.sym file, are known collectively as Bank files, and are created by the “ic”
tool.

The .tbl file contains the ADPCM compressed audio wavetable data.

The .ctl file contains information about how the wavetables are to be
synthesized. It includes information about the wavetable’s envelope, pan
position, pitch, mapping to MIDI note numbers, and velocity values. For
more information about the format of the .ctl file, see the section “Bank Files”
in Chapter 15

The .sym file contains the bank file’s symbol information, and is used mainly
for development and debugging. It is used only by the audio bank tools, not
by the Audio Library.

Note: ic can also be used to collect sound effects into a single bank structure
for inclusion in the ROM. In this case some of the features of the Bank format
are not used (for example, Keymaps and Instrument parameters).

Invoking ic

Invoke ic by entering this command:

ic [-v] -o <output file prefix> <source file>
402

NINTENDO DRAFT AUDIO TOOLS
Table 20-1ic Command Line Options

Writing ic Source Files

Instrument Compiler source files consist of C-like definitions for the
collection of objects that make up the Bank. There are objects to represent
banks, instruments, sounds, keymaps, and envelopes. Each of these objects
is detailed below.

The Bank Object

A bank object, denoted by the keyword “bank,” contains an array of
instruments, a sample rate specification, and an optional default percussion
instrument. In the example below, the bank defined as “GenMidiBank”
contains one instrument, called “GrandPiano,” at instrument location 0. It is
intended to operate at 44.1 kHz.

bank GenMidiBank
{
sampleRate = 44100;
program [0] = GrandPiano;
}

Note: The General MIDI 1.0 Specification specifies that MIDI channel 10 is
the default drum or percussion channel. As a result, many General MIDI
sequences do not contain program change messages for channel 10. You can
specify the default instrument (program) for channel 10 as follows:

Command Line Option Function

-v Turns on verbose mode, which causes
the compiler to produce a quantity of
largely useless information.

-o <output file prefix> Specifies the prefix for the .ctl, .tbl, and
.sym files created by the compiler.

<source file> The name of the file containing the
source code for the banks of instruments.
403

NINTENDO 64 PROGRAMMING MANUAL DRAFT
bank GenMidiBank
{
sampleRate = 44100;
percussionDefault = Standard_Kit;
program [0] = GrandPiano;
}

The Sequence Player sets the default instrument for channel 10 messages to
be “Standard_Kit.”

The Instrument Object

The instrument object, referenced by the bank object, contains the overall
volume and pan for the instrument as well as the list of sounds that make up
the instrument.

In the example below, the “GrandPiano” instrument contains eight sounds:
“GrandPiano00”, “GrandPiano01”, “GrandPiano02”, “GrandPiano02”,
“GrandPiano03”, “GrandPiano04”, “GrandPiano05”, “GrandPiano06”, and
“GrandPiano07”.

The overall instrument volume is 127, or full volume, and is panned to the
position 64, which is center.

instrument GrandPiano
{
 volume = 127;
 pan = 64;

 sound [0] = GrandPiano00;
 sound [1] = GrandPiano01;
 sound [2] = GrandPiano02;
 sound [3] = GrandPiano03;
 sound [4] = GrandPiano04;
 sound [5] = GrandPiano05;
 sound [6] = GrandPiano06;
 sound [7] = GrandPiano07;
}

404

NINTENDO DRAFT AUDIO TOOLS
The Sound Object

The sound object specifies the volume and pan, keyboard mapping, and
envelope for the sound. It also specifies the AIFF-C sound file containing the
ADPCM compressed wavetable data. A description of the AIFF-C format
expected by ic (which is generated by the ADPCM encoding tools) is given
in the section titled “ADPCM AIFC Format” in Chapter 21.

Note: The Sequence Player multiplies the instrument volume with the
sound volume to get the overall volume. It adds the instrument pan with the
sequence pan to get the sound’s overall pan.

In the example below, the GrandPiano00 sound specifies that the wavetable
data is to come from the file ../sounds/GMPiano_C2.18k.aifc. It is to be
panned center (64) at full volume (127) and arranged on the keyboard
according to the map specified in piano00key with the envelope specified in
GrandPianoEnv.

sound GrandPiano00
{
 use (“../sounds/GMPiano_C2.18k.aifc”);
 pan = 64;
 volume = 127;
 keymap = piano00key;
 envelope = GrandPianoEnv;
}

Keymaps and envelopes are described in the following sections.

Note: When using banks to collect sound effects, the keymap entry is not
necessary.

The Keymap Object

The keymap object, referenced by the sound object, specifies the range of
MIDI velocities and key numbers that the sound is intended to cover. It is
used by the Sequence Player to determine which sound to map to a given
MIDI note number, and at what pitch ratio to play the sound.
405

NINTENDO 64 PROGRAMMING MANUAL DRAFT
In the example below, piano00key specifies a MIDI Note On message with
a velocity between 0 and 127 and a note number between 0 and 43

In this example, the keyBase is 41, so a MIDI Note on message for key 41
triggers the sound that references this keymap at unity pitch. A MIDI Note
On message for key 42 triggers the same sound, but shifted up a half step in
pitch.

Note: You can set the keyBase value outside the range of keyMin to keyMax.
This is useful if you want to critically resample a wavetable to conserve
ROM space. You could, for instance, resample a wavetable from 44.1 kHz to
22.05 kHz and adjust the keyBase up an octave to compensate. Remember,
however, that quality degrades at larger pitch shift ratios.

The detune parameter indicates the number of cents that is to be added to
the default tuning. A half step is equal to 100 cents.

keymap piano00key
{
 velocityMin = 0;
 velocityMax = 127;
 keyMin = 0;
 keyMax = 43;
 keyBase = 41;
 detune = 0;
}

The Envelope Object

The envelope object specifies the attack-decay-sustain-release (ADSR)
envelope, or volume contour, for a sound. Volumes are specified in the
range of 0 to 127, and the times are specified in microseconds.

In the example below, the sound’s envelopes would ramp from 0 to 127 in
0 microseconds, decay to 0 in 400 milliseconds, wait for a MIDI Note Off, and
then release to 0 in 200 milliseconds. The decay portion of the envelope
decays to zero. For many acoustic instruments, especially percussion
instruments, this gives the most realistic envelope.
406

NINTENDO DRAFT AUDIO TOOLS
Note: The Sound Player uses envelopes in a slightly different way. See
Chapter 19 for details.

A Complete Example

The following example, taken from the General MIDI bank that is shipped
with the development software, defines a bank with one instrument, the
Grand Piano.

envelope GrandPianoEnv
{
 attackTime= 0;
 attackVolume= 127;
 decayTime= 4000000;
 decayVolume= 0;
 releaseTime= 200000;
 releaseVolume= 0;
}

keymap piano00key
{
 velocityMin = 0;
 velocityMax = 127;
 keyMin = 0;
 keyMax = 41;
 keyBase = 51;
 detune = 0;
}

sound GrandPiano00
{
 use (“../sounds/GMPiano_C2.18k.aifc”);
 pan = 64;
 volume = 127;
 keymap = piano00key;
 envelope = GrandPianoEnv;
}

keymap piano01key
{
 velocityMin = 0;
 velocityMax = 127;
407

NINTENDO 64 PROGRAMMING MANUAL DRAFT
 keyMin = 42;
 keyMax = 49;
 keyBase = 63;
 detune = 0;
}

sound GrandPiano01
{
 use (“../sounds/GMPiano_Bb2.16k.aifc”);
 pan = 64;
 volume = 127;
 keymap = piano01key;
 envelope = GrandPianoEnv;
}

keymap piano02key
{
 velocityMin = 0;
 velocityMax = 127;
 keyMin = 50;
 keyMax = 57;
 keyBase = 67;
 detune = 0;
}

sound GrandPiano02
{
 use (“../sounds/GMPiano_F3.19k.aifc”);
 pan = 64;
 volume = 127;
 keymap = piano02key;
 envelope = GrandPianoEnv;
}

keymap piano03key
{
 velocityMin = 0;
 velocityMax = 127;
 keyMin = 58;
 keyMax = 63;
 keyBase = 72;
 detune = 0;
}

sound GrandPiano03
408

NINTENDO DRAFT AUDIO TOOLS
{
 use (“../sounds/GMPiano_C4.22k.aifc”);
 pan = 64;
 volume = 127;
 keymap = piano03key;
 envelope = GrandPianoEnv;
}

keymap piano04key
{
 velocityMin = 0;
 velocityMax = 127;
 keyMin = 64;
 keyMax = 69;
 keyBase = 79;
 detune = 0;
}

sound GrandPiano04
{
 use (“../sounds/GMPiano_G4.22k.aifc”);
 pan = 64;
 volume = 127;
 keymap = piano04key;
 envelope = GrandPianoEnv;
}

keymap piano05key
{
 velocityMin = 0;
 velocityMax = 127;
 keyMin = 70;
 keyMax = 75;
 keyBase = 84;
 detune = 0;
}

sound GrandPiano05
{
 use (“../sounds/GMPiano_C5.22k.aifc”);
 pan = 64;
 volume = 127;
 keymap = piano05key;
 envelope = GrandPianoEnv;
}

409

NINTENDO 64 PROGRAMMING MANUAL DRAFT
keymap piano06key
{
 velocityMin = 0;
 velocityMax = 127;
 keyMin = 76;
 keyMax = 81;
 keyBase = 91;
 detune = 0;
}

sound GrandPiano06
{
 use (“../sounds/GMPiano_G5.22k.aifc”);
 pan = 64;
 volume = 127;
 keymap = piano06key;
 envelope = GrandPianoEnv;
}

keymap piano07key
{
 velocityMin = 0;
 velocityMax = 127;
 keyMin = 82;
 keyMax = 111;
 keyBase = 99;
 detune = 0;
}

sound GrandPiano07
{
 use (“../sounds/GMPiano_C6.18k.aifc”);
 pan = 64;
 volume = 127;
 keymap = piano07key;
 envelope = GrandPianoEnv;
}

instrument GrandPiano
{
 volume = 127;
 pan = 64;

 sound [0] = GrandPiano00;
410

NINTENDO DRAFT AUDIO TOOLS
 sound [1] = GrandPiano01;
 sound [2] = GrandPiano02;
 sound [3] = GrandPiano03;
 sound [4] = GrandPiano04;
 sound [5] = GrandPiano05;
 sound [6] = GrandPiano06;
 sound [7] = GrandPiano07;
}

bank GenMidiBank
{
sampleRate = 44100;
program [0] = GrandPiano;
}

411

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The ADPCM Tools: tabledesign, vadpcm_enc, vadpcm_dec

The ic tool requires wavetables to be compressed in ADPCM format before
they are included in a sound bank. ADPCM compression is accomplished
using the tabledesign, vadpcm_enc, and vadpcm_dec tools. These tools are
described below.

Note: The format described is used only as an interchange format between
the compression tools and the instrument compiler. It is not used to store
compressed sound data on the ROM.

tabledesign

tabledesign reads an AIFC or AIFF sound file and produces a codebook
(written to standard output), which is used by the ADPCM encoder. The
codebook is a table of prediction coefficients which the coder selects from to
optimize sound quality. The procedure used to design the codebooks is
based on an adaptive clustering algorithm.

Invoking tabledesign

tabledesign [-s book_size] [-f frame_size]
[-i refine_iter] aifcfile
412

NINTENDO DRAFT AUDIO TOOLS
Table 20-2tabledesign Command Line Options

Command-line options are described in Table 14-2.

vadpcm_enc

vadpcm_enc encodes AIFC or AIFF sound files and produces a compressed
binary file, which is used by ic to prepare banks of sounds. The encoding
algorithm is based on a switched ADPCM algorithm which uses a codebook
to define a table of prediction coefficients. Coefficients from the table are
selected adaptively during encoding to give the best sound quality. The
Nintendo 64 compressed sound format currently supports a single loop
point, which should be defined in the input file’s Instrument Chunk. The
codebook and loop-point definitions are embedded in the final output file.

Command Line Option Function

-s <value> Value is the base 2 log of the number of
entries in the table. Currently up to 8
entries are supported, so the value can
range from 0 to 3. The default value for
this parameter is 2, giving 4 entries. This
seems to be adequate for most sounds.

-f <value> Value is the size of the frames (in
samples) used to estimate predictors.
Since the ADPCM encoder operates on
frames of 16 samples, this number
should be a multiple of 16. The default
value is 16. The main benefit of
increasing the frame size is that design
time is reduced.

-i <value> Value is the number of iterations used in
the refinement step of the clustering
algorithm. The default value is 2.
Increasing this parameter increases
design time, with some possible
improvement in quality. The default is
adequate for most sounds.
413

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Invoking vadpcm_enc

The vadpcm_enc tool is invoked as follows:

Table 20-3vadpcm_enc Command Line Options

vadpcm_enc -c codebook [-t] [-l minLoopLength]
aifcFile codedFile

Note: The efficiency of wavetable synthesis is dependent on the length of
loops. Longer loop lengths can be synthesized more efficiently. A minimum
loop length can be set in the ADPCM encoder. The currently defined default
minimum loop length is 800 samples. This default length can be changed
(see above), with the absolute minimum being 16 samples. Loops shorter
than the minimum loop length are repeated until the total loop length is
larger than the minimum length. If possible loops should be longer than a
single audio frame which is equal to the (SampleRate)/(FrameRate).

vadpcm_dec

vadpcm_dec decodes a sound file that has been encoded in the Nintendo 64
ADPCM format using vadpcm_enc, and writes it to standard output as raw
mono 16-bit samples.

Command Line Option Function

-c <filename> Define a file that contains the prediction
coefficient codebook constructed by
tabledesign(1).

-t Truncate the encoded file after the loop
end point. The portion of the sound after
the loop end-point is never used in audio
playback.

-l <value> Set the minimum loop length in the
encoded file (see Note below).
414

NINTENDO DRAFT AUDIO TOOLS
Invoking vadpcm_dec

The vadpcm_dec tool is invoked as follows:

Table 20-4vadpcm_dec Command Line Options

vadpcm_dec [-l] codedfile

Command Line Option Function

-l If the sound has a loop, play the loop
repeatedly until a key is pressed on the
standard input.
415

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The MIDI File Tools: midicvt, midiprint & midicomp

midicvt

The Audio Library plays only Type 0 Standard MIDI files. You can use
midicvt to convert from Type1 (which are generally output by most MIDI
sequencers) to Type0.

Invoking midicvt

midicvt is invoked as follows:

Table 20-5midicvt Command Line Options

midicvt [-v] [-s] <input file> <output file>

midiprint

The midiprint tool prints a text listing of the time-based MIDI events in a
Type 0 or Type 1 Standard MIDI file.

Invoking midiprint

midiprint [-v] -o <output file> <input file>

Command Line Option Function

-v turns on verbose mode

-s strips out any messages that are not used
by the Audio Library. These include text
messages and system exclusives.

input file the name of a Type 0 or Type 1 Standard
MIDI file.

output file the name for the Type 0 output file.
416

NINTENDO DRAFT AUDIO TOOLS
Table 20-6midiprint Command Line Options

midicomp

The midicomp tool is used to compress midi files of either Type 0 or Type 1
to a format recognized by the compact sequence player.

Invoking midicomp

midicomp is invoked as follows:

midicomp <input file> <output file>

Making files that will compact better.

Different midi files will be compressed by different percentages, based on
the content of the files. All files (except very small files) should be

Command Line Option Function

-v verbose mode.

-o <output file> the optional output file for the MIDI
event text.

<input file> the name of the Type 0 or Type 1
Standard MIDI file to list.

Table 20-7midicomp Command Line Options

Command Line Option Function

<input file> the name of the Type 0 or Type 1
Standard MIDI file to compress.

<output file> the name to use for the output file.
417

NINTENDO 64 PROGRAMMING MANUAL DRAFT
compressed at least somewhat. Because midicomp achieves compression by
recognizing patterns and then compressing these, the greatest amounts of
compression occur when the files are repetitive. Patterns and sections
created in a sequencer using cut and paste are the ones most likely to be
compressed.
418

NINTENDO DRAFT AUDIO TOOLS
Midi Receiving with Midi Daemon: midiDmon

Midi Daemon is no longer supported. All functionality from Midi Daemon
is now incorporated into Instrument Editor.
419

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Instrument Editor

The tool Instrument Editor provides three primary uses. First, as an editor,
it allows realtime editing and auditioning of instrument banks and effects.
Second, as a player, it allows external MIDI devices to playback MIDI on the
Nintendo 64 Development Hardware. Third, as a profiler, it profiles and
measures audio resources that are being used during playback. With its
support for MIDI playback, the ie tool is intended to replace the
functionality of the Midi Daemon tool.

Instrument Editor is invoked with the command:

ie [-b <.inst file>] [-c <.cnfg file>] [-v]

Editor

The editor portion of the ie tool is a simple application for editing .inst files
as well as effects. A Nintendo 64 development board does not have to be
present to open and edit .inst files. However, you will not be able to audition
your changes without the Nintendo 64.

Bank Editing

The ie tool can read, write, and edit .inst files. .inst files contain a description
of a Nintendo 64 bank which can be compiled into actual Nintendo 64 bank
files with ic, the instrument compiler tool. The .inst bank description is

Table 20-8ie Command Line Options

Command Line Option Function

-b <.inst file> specifies the name of the instrument
bank file to open in the editor. If this
option is not used, the editor opens with
a new .inst file.

-c <.cnfg file> specifies the name of the configuration
file used to configure the N64 Audio
Library used by ie.

-v turns on verbose mode. (for debugging.)
420

NINTENDO DRAFT AUDIO TOOLS
made up of several components such as instruments, sounds, envelopes, etc.
Each of these bank components, or assets, have one or more parameters
associated with it. For example, an instrument asset as volume, pan, and
bend range parameters associated with it among others. Assets can also
reference each other in a sort of parent-child relationship. For instance, bank
assets reference instruments assets so instruments are children of a bank.
Similarly, instrument assets reference sounds assets so sounds are children
of an instrument. Furthermore, if a child asset is never referenced by another
asset (ie. it has no parent), it is called an orphan. So if an envelope asset is
never used by a sound asset, the envelope is an orphan and can be deleted
from the .inst file without affecting the bank.

Viewing Assets

The editor displays all these bank assets and supports viewing and editing
the parent-child relationships within a bank. The editor’s view contains
several folders for each type of bank asset. Each folder contains a list of all
the assets of the given type. For example, to view a bank’s instruments,
simply select the instrument’s folder tab to open up the instrument folder.
The folder contains a list of all the names of the instruments as well as
columns for each of an instrument’s parameters, such as volume, pan,
priority, and bend range. Each asset also contains an icon column which
helps identify the type of asset.

Editing Assets

To edit the value of an asset’s parameters, simply click on the corresponding
column to activate the default editing for the parameter. Names are always
text edited. Numbers can be scrolled up or down to increase or decrease
their value. References to other child assets are edited with popup menus.
However, all assets can be text edited by clicking on them with the “Alt” key
held down. This pops up a text edit field which can be moved around from
field to field using the arrow keys and the “Alt” key. (Without the Alt key,
the arrow keys move the cursor within the text field.) Values won’t be
accepted if the value is out of range or is illegal. Use the “ESC” key to cancel
any text editing. Note that some fields cannot be edited (eg. a wavetable’s
sample rate) and only display information. Icon fields are used for a variety
of purposes such as asset selection, asset audition, and others. Integer fields
can be double-clicked to quickly set the value to a preset default value.
421

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Viewing and Editing Children

Some of the assets contain a “#” column. This column displays the number
of children that the asset has. If the asset has one or more children,
double-clicking on the “#” column will open up the parent and display its
children. Since the children have different parameters than the parent, only
the common fields such as the name field are displayed for children.
Double-clicking the “#” column again will close the asset. The “#” field can
be edited by clicking on the field. This will bring up a popup menu showing
a list of assets that are currently not children of the selected asset. Choosing
one of these assets will add it to the parent’s list of children. Double-clicking
on the icon of a child, will automatically open up the children’s folder for
editing of their parameters. For example, double-clicking an instrument’s
sound will open up the sound folder for editing. Likewise, double-clicking
a sound’s envelope will open up the envelope folder for editing.

Auditioning Assets

In order to audition assets, the current bank being edited must be “valid”
and must be “online” on the Nintendo 64. For a description of what it means
for a bank to be valid and online, see the Nintendo 64 Playback section.
When a bank is online, bank assets can be auditioned by clicking on their
icon. Pressing the button down sends a MIDI note on event. Releasing the
button sends a MIDI note off event. This makes it easy to audition the
sustain portion of a sound. Currently, auditioning instrument assets will
always play a C4 note. Auditioning sounds, keymaps, envelopes, and
wavetables will play the asset’s parent instrument at the sound’s key base.
Note that if the keymaps for an instrument’s sounds are not specified and
ordered properly, an auditioned asset may not get mapped to the correct
sound. This is a potential source of confusion when auditioning assets so
make sure that the auditioned sound’s keymap is correct and complete
before auditioning.

The File Menu

The file menu contains commands for opening, closing, and saving .inst
files. The “Open” command brings up a dialog for selecting a .inst file to
edit. Only one .inst file can be open at a time so choosing “Open” while
another .inst file is currently open will first close the file before opening a
422

NINTENDO DRAFT AUDIO TOOLS
new one. The “Close” command removes all bank assets and allows a new
file to be edited. The “Save” and “Save As” command write the file to disk.

The Edit Menu

The edit commands are currently not supported.

The Asset Menu

The Asset menu contains commands for inserting and deleting assets.
Selecting the insert command will create a new asset and place it at the end
of the list. The asset will automatically have default parameter values. To
insert an asset in the middle of the list, select the asset where you want the
asset to appear and select the insert command. The selected asset will
appear below the newly created one. To delete assets, simply select one or
more assets and select the delete command. A short cut for creating an asset
and adding it to a parent is provided by the “Insert Child” command. This
command will insert a new child asset to the selected parent. The “Remove
Child” command removes the selected child(ren) from the parent, but does
NOT delete them. Choose the “Delete” command to remove and delete
them. Finally, the “Import” command allows importing of other .inst files
as well as .aiff-c files. This is currently the only way to create wavetable
assets.

The Select Menu

The select menu contains useful commands for selecting certain types of
assets. The “Select Parents” command will select all the parents of the
currently selected asset. This command works only if exactly one asset is
selected. For example, if a keymap is selected, the “Select Parents”
command will select all the sound assets that use the given keymap and will
automatically display the sound folder. The “Select Orphans” commands
will select all the folder’s assets that do not have any parents. This is useful
for determining which assets aren’t being used anywhere and which can be
deleted.

Effects

The ie tool supports creating, editing, and auditioning effects on the
Nintendo 64. Since effects are tightly coupled to the N64 Audio Library, they
423

NINTENDO 64 PROGRAMMING MANUAL DRAFT
will only appear for editing if N64 development hardware is present.
Otherwise, only bank components can be edited. If N64 development
hardware is present, ie will automatically create five built-in effects for
auditioning and editing. These effects are small room, big room, chorus,
flange, and echo. In addition to the built-in effects, custom effects can be
created from scratch.

Effects Viewing

Similar to banks, effects are made up of two components, the effect asset and
the effect section asset. Simple effects may contain only one or two sections,
while more complicated effects may contain eight or more sections. Similar
to banks, effects are parents to effect section children. As a result, effects can
be viewed just like bank assets can be viewed. All effects parameter values
are displayed in their native data format (the format that the N64 requires
them in) except for the delay fields (length, input, and output). The delay
parameters are displayed in milliseconds and must be converted to samples
and aligned to an 8 sample boundary before being used to configure a game.
(ie does this automatically when it loads an effect for auditioning.)

Effects Editing

Effects and effect sections can be edited just like bank assets. However, there
are some special considerations when editing effects.

First, the delay parameters (length, input, output) are displayed and editing
in msecs. The N64 requires that these values occur at 8 sample boundaries
and that the length is greater than both the input and output delays by about
160 samples (depending on the chorus rate). (See the section on audio effects
for a more detailed explanation of the 160 sample restriction). The ie tool
automatically enforces the 8 sample boundary rule when it loads the effect
on the N64, however it does not enforce the 160 sample rule. Be careful
when editing input or output delays so that they do not approach within 160
samples (depending on the chorus rate) of the delay line’s length. Normally,
if this limit is exceeded, you will hear artifacts in the audio such as clicks and
pops.

Secondly, when an effect is “online” (ie. it is loaded into the N64), the effect’s
length parameter cannot be edited. In addition, you cannot insert or delete
424

NINTENDO DRAFT AUDIO TOOLS
sections to an online effect. In order to make these changes to an online
effect, you must offline the effect first.

Thirdly, effect sections can only have one parent. Once it is being used by a
parent effect, it will not be available for other effects to use it.

Finally, to use chorus or the low pass filter, you must make sure that the
respective parameters are non-zero before loading the effect. The Audio
Library will not allocate the required memory to implement chorus or the
low pass filter if the parameters are initially zero (this saves unneeded
memory).

Effects Auditioning

Initially, no effects are loaded onto the N64. In order to load an effect and
make it “online”, double-click the desired effect’s icon. To offline the effect,
double-click it again or double-click another effect. When an effect is placed
online, the N64 must be fully reconfigured since the Audio Library must be
initialized with an effect. This may take a few seconds since it must reload
the entire bank to the N64. Once the effect is online, its icon should appear
in red to indicate that it is online. From now on, auditioning bank assets will
be played through the effect. Note that the wet/dry amount can be
controlled for each MIDI channel by sending an FX1 control message to the
channel.

Effects Saving and Restoring

Currently, effect assets can not be saved to disk. This is because there is no
standard “.fx” file like there is an “.inst” file for bank assets. However, effects
can be restored from disk with a configuration (.cnfg) file. (See the section on
the N64 Configuration for a description of the configuration file.) Since the
Audio Library treats effects as part the the configuration data you can edit
the configuration file to include a custom effect. An effect is defined with the
keyword “REVERB_PARAMS” and is followed by a bracketed {...} set of
parameters describing the effect and its sections. Below is an example of an
effect with 8 sections and a total delay line length of 325 msecs. Note that
comments are bracketed by /* ... */.

REVERB_PARAMS = {
/* sections length*/
425

NINTENDO 64 PROGRAMMING MANUAL DRAFT
 8, 325,
/* chorus chorus fltr*/
/* input output fbcoef ffcoef gain rate depth coef*/

0, 8, 0, -9830, 3600, 0, 0, 0,
8, 12, 9830, -9830, 0x2b84, 0, 0, 0x5000,
41, 128, 16384, -16384, 0x11eb, 0, 0, 0,
45, 103, 8192, -8192, 0, 0, 0, 0,
162, 282, 16384, -16384, 0x11eb, 0, 0, 0x6000,
166, 238, 8192, -8192, 0, 0, 0, 0,
238, 268, 8192, -8192, 0, 0, 0, 0,

0, 299, 18000, 0 0, 380, 2000, 0x7000}

Nintendo 64 Player and Profiler

When ie is launched, it automatically looks for an N64 development board
and if it finds one, it will boot it up with MIDI playback code and profiling
code. If it can’t find the N64 board or if it fails to boot it up, it will report an
error and ie will not be able to audition any instruments or edit effects. In
addition, ie will also boot up the gload tool which acts as a print server for
any error or debugging messages. This is useful for detecting when an audio
library resource has been exceeded. If another gload is running at the time
that ie is launched, ie will fail to run.

.Nintendo 64 Configuration

The Nintendo 64 Audio Library is configured using default configuration
information. This default configuration can be edited either by using the
configuration dialog or by specifying a configuration file on the command
line when the tool is run. For information on how to use the configuration
dialog see the section on the Nintendo 64 Menu. To configure the tool using
a configuration file, simply specify the file on the command line. The
configuration file should contain reserved words that specify the values of
certain configuration parameters, such as output rate or the number of
available virtual voices. For an example of a .cnfg file and its reserved words,
refer to the file /$ROOT/usr/src/PR/assets/banks/ie.cnfg.

Nintendo 64 MIDI Playback

Once it is up and running, the Nintendo 64 waits for incoming MIDI
messages. MIDI messages can be sent from an external MIDI device or from
426

NINTENDO DRAFT AUDIO TOOLS
the ie tool itself. In order for the Nintendo 64 code to respond to the MIDI
messages, it needs to have a valid bank downloaded to it by ie. When ie is
launched with a new file, there is no bank in the editor and the Nintendo 64
will be “offline” which means it does not have a bank installed. The
profiling screen on the Nintendo 64 monitor indicates the state of the bank
at the top of the screen. As soon as ie has a valid bank in the editor, it will
download the bank data and the Nintendo 64 will then be “online” and it
will be able to respond to MIDI events. As the bank is edited, it continually
checks to see whether the bank is still “valid” and as soon as the bank fails
to be valid, it will take the bank offline. The reason for this is simply that the
Audio Library requires complete and correct bank data in order to work
properly. A bank is determined to be valid if the following conditions are
met:

1) a bank asset exists
2) the bank contains at least one instrument
3) the bank’s instruments contain at least one sound
4) the bank’s sounds must all have keymaps, envelopes, and wavetables

When a bank is online, bank assets can be auditioned from the editor by
clicking on their icon. MIDI messages can also be sent from external devices.
To use external devices, a MIDI interface must be properly attached to one
of the host computer’s serial ports and it must be properly configured using
the startmidi tool.

Nintendo 64 Profiling

The Nintendo 64 screen displays current readings for various audio
resources. These readings are useful to monitor when playing back a
sequence targeted for the Nintendo 64 from an external MIDI sequencer.
The readings will measure how much of each resource is used in order to
playback the sequence. The profiler keeps track of the following resources:
427

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Table 20-9ie Profiled Resources

Profiled
Resource

Description

cmds the number of audio commands used to synthesize a frame of
samples. Profiles both current and maximum values.

syn upds the number of parameter update blocks used by the synthesis
driver to store changes in control parameters. The number of
available update blocks is specified during the Audio Library
configuration. Profiles both current and maximum values.

seq evts the number of event message blocks used by the sequence
player. The number of available message blocks is specified
during the Audio Library configuration. Profiles both current
and maximum values.

DMAs the number of DMA requests made during an audio frame.
Displays both current and maximum values. The maximum
number of DMA requests is specified during the audio system
configuration. Profiles both current and maximum values.

DMA bufs the number of DMA buffers needed during an audio frame.
The number of availabe DMA buffers is specified during the
audio system configuration. Profiles both current and
maximum values.

Vcs this graph profiles virtual voice usage during playback. Each
pixel represents one used virtual voice. The number of
available virtual voices is specified during the Audio Library
configuration. The maximum number of virtual voices used is
displayed in the corner of the voice graph.

RSP this graph profiles the percentage of a frame period being used
to execute the audio synthesis microcode on the RSP.
428

NINTENDO DRAFT AUDIO TOOLS
Be aware that the resource demands for audio synthesis varies on a frame by
frame basis. This is because it must share the processing resources with the
other parts of the system. This means that the profile values will vary each
time a given sequence is played. Therefore, the readings should be used as
an approximation, not as an accurate measurement of resource usage. Also
note that the CPU measurements can be affected by any debugging
messages produced by the audio library. Also the N64 code was not
optimized by gcord and so is not displaying best case performance.

The Nintendo 64 Menu

If the N64 development board is available, an N64 menu will appear in the
editor. This menu provides control over some of the N64 functionality. The
“Clear Profile Values” item resets the MIDI player and causes all the
maximum values to be reset to zero. The “Configure Hardware” menu
brings up a dialog which can be used to set some of the Audio Library
configuration parameters. See Table 20-9 on page 428 for a description of
the various configuration parameters. After setting the configuration
parameters, press the okay or apply button to make the changes take affect.
Reconfiguration may take a few seconds since any open bank file must be
fully reloaded to the N64. Configurations can be saved and reloaded at a
later time using the “Save Configuration...” and “Load Configuration...”
commands. These commands ask you to name the configuration file you

CPU this graph profiles the percentage of a frame period being used
by the CPU during the call to alAudioFrame.

output meters this profiles the peak output levels of the final output samples
that are sent to the audio DACs. The scale is in dBs with the
top of the meter at 0 dB and then decreasing in 3 dB increments
per LED. Signal levels above -3 dB are indicated by a yellow
caution LED. Signal presence is indicated by the bottom LED
(ie any non-zero sample will turn on the bottom LED). Signal
clipping is indicated by a red LED that appears above the
meter. Note that the clip detector does not detect true clipping,
rather it detects when a sample magnitude value of 0x7fff
appears. This could be a legitamite value from a normalized
sound or it could be a limited value caused by overflow.

Table 20-9ie Profiled Resources

Profiled
Resource

Description
429

NINTENDO 64 PROGRAMMING MANUAL DRAFT
want to save or load before proceeding. Finally, the “Reset Hardware”
command resets the entire N64 hardware forcing the N64 code to be
reloaded and the audio reconfigured. Use this command to try to recover
the N64 if it crashes for any reason.

Here is a description of each of the configuration parameters:

Table 20-10ie Configuration Parameters

Configuration
Parameter

Description

output rate the requested sampling rate of the audio interface in Hz.

samples per
frame

the requested number of samples to be synthesized per audio
frame. For maximum efficiency use a value that is a multiple
of 160 samples (eg. 640). A larger number means a slower
frame rate while a smaller number means a faster frame rate.
This number, along with the output rate can be used to
simulate a game running at 60 Hz or 30 Hz. For example, at an
output rate of 44100 Hz, setting this value to be 735 will
produce an frame rate of 60 Hz.

max commands
per frame

the maximum number of ABI commands that can be executed
per audio frame. This directly corresponds to the size of the
audio command list buffer that stores the ABI commands.

DMA buffers the number of available buffers for performing DMA requests.

DMA buffer size the size of each DMA buffer. Smaller buffer sizes normally
require more DMA requests while larger buffer sizes normally
require fewer DMA requests.

max DMA
requests

the maximum number of DMA requests that can be made. This
value directly affects the size of the DMA message queue set
up by the N64 code.

frames to hold
DMA buffers

the number of frames that must elapse before the N64 code will
free a DMA buffer for reuse. While the buffer is being “held”,
its samples remain available for other requests that may ask for
the same samples. In some cases, the same samples may be
used over and over again so holding them in memory is faster
than performing a DMA from ROM.

max virtual
voices

the maximum number of virtual voices available to both the
synthesis driver and the MIDI player.
430

NINTENDO DRAFT AUDIO TOOLS
Note that since audio sample DMA is implemented by the game application,
the DMA configuration parameters may not be applicable to your game.
Keep this in mind when setting these parameters.

Bugs

For a list of known bugs and problems, consult the man page for the ie tool.

max physical
voices

the maximum number of physical voices available. If this is
less than virtual voices then voice stealing is enabled.

max control
updates

the maximum number of control updates each physical voice
is able to store. Control updates store data such as volume
changes, pitch changes, etc. This value directly affects the
memory allocated for control data.

max channels the maximum number of channels available for MIDI
messages. Normal MIDI systems support 16 channels. This
affects how much memory is allocated to store channel
information.

max events the maximum number of event updates that the synthesizer is
able to store. Event updates store sequence data such as start
commands, MIDI commands, etc. This value directly affects
the memory allocated for event data.

Table 20-10ie Configuration Parameters

Configuration
Parameter

Description
431

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Midi and the Indy

Before using Midi Daemon, you will have to correctly configure your Indy
for midi. Because there have been changes in both the midi software, and the
serial ports, on the motherboard, it is recommended that only a recently
purchased Indy and the latest software releases be used.

Motherboards need to be of version 013 or newer. To determine the version
of your motherboard, open your Indy, and on the front right of the
motherboard, you will find a version number. The first four digits should be
8123 and they are followed by three more digits that are the version number.
The revision number that follows the version number is not important. If
you find that you have an Indy with an older version motherboard, contact
SGI field service for a replacement board.

The Indy uses a standard Macintosh Computer Midi Interface. Because there
are differences between the interfaces sold for the Mac, (particularly in the
voltage levels necessary) not all Mac Midi Interfaces will work correctly.
Insufficient testing has been done to recommend a particular brand. We
have seen cases where interfaces that do not supply their own power, but
instead draw their power from the Indy serial port will drop midi messages
sent back to back. For that reason we do recommend that you purchase a
midi interface that has its own power supply.

At present, we are recommending the installation of the DMedia 5.5
package, which contains the necessary midi drivers.

To configure your Indy for midi, you can use either of two methods. The first
method, is to run startmidi. This utility is started from the command line,
with arguments specifying which midi ports to turn on. This is the only way
to turn on the internal midi port.

Alternately, you can turn on midi by using the Serial Port manager, in the
System Manager tools. This provides a more user friendly interface, and
once configured, a serial port will remain configured even after a reboot. If
you find that selecting the System Manager or the Serial Port manager
generates error messages pertaining to the object server, try the following
sequence of commands:

/etc/init.d/cadmin stop

/etc/init.d/cadmin clean
432

NINTENDO DRAFT AUDIO TOOLS
/etc/init.d/cadmin start

You can verify that your midi is working, by starting Midi Daemon with the
-v (verbose) option. If midi is working, you will get a message printed in the
window for every midi message received.

If you wish to use serial port number one for receiving midi, it is important
to turn off automatic spawning of getty’s on that port. To do this, you must
edit the file /etc/inittab. Find the line that starts with:

t1:23:respawn:/sbin/getty ttyd1

Change this to:

t1:23:off:/sbin/getty ttyd1

Save the file and reboot the Indy.
433

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The sbc Tool

sbc

sbc is used to combine any number of MIDI sequences into a MIDI sequence
bank (a .sbk file). A sequence bank file contains the sequences, one after the
other (8-byte aligned), with a header at the front that allows indexing into
the bank to retrieve individual sequences.

sbc is invoked as follows:

sbc -o <output file> file0 [file1 file2 file3]
434

NINTENDO DRAFT AUDIO FILE FORMATS
Chapter 21

21. Audio File Formats

This chapter describes the file formats used for Nintendo 64 audio
development.

The first section details the bank format used by the Sequence Player. The
second section provides information about the Standard MIDI File format as
it relates to Project Reality.

Note: All multi-byte data types (short, long, and so on) are stored with the
high byte first. This is the opposite of the Intel ordering found in PCs.
425

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Bank Files

Bank files store the audio and control information needed to create audio
from sequencer MIDI events. On the Nintendo 64, this information is
encapsulated in two files: the bank file and the wavetable file.

The Bank (.bnk) file contains control information such as program number
to instrument assignment, key mapping, tuning, and envelope descriptions.
It is loaded into the Nintendo 64 DRAM during playback.

The Wavetable (.tbl) file contains ADPCM compressed audio data. Because
of the size of the data, it is streamed into DRAM (and then to the RCP) only
when it is needed.

The formats for both files are optimized for the Nintendo 64 to be efficiently
used with the Sequence Player and the Sound Player. They are not intended
to be interchange file formats, and contain no textual information or other
data not directly related to playing back audio. Many features commonly
found in standard patch and wavetable formats (for example, AIFF files)
were sacrificed in favor of smaller files in ROM.

Note: References to objects are stored as offsets in the Bank files, but the
alBnkfNew() call converts the offsets to pointers.

ALBankFile

Bank files must begin with an ALBankFile structure. This structure allows
the software to locate data for a specific bank.

typedef struct {
s16revision;
s16bankCount;
s32bankArray[1];
} ALBankFile;
426

NINTENDO DRAFT AUDIO FILE FORMATS
The ALBankFile fields are summarized in Table 15-1.

Table 21-1ALBankFile Structure

ALBank

The ALBank structure specifies the instruments that make up the bank, as
well as the default sample rate and percussion instrument. Banks may
contain any number of programs.

Note: The percussion field specifies an instrument for the Sequence Player
to use as a default MIDI channel 10 (drum channel) instrument.

typedef struct {
s16instCount;
u8flags;
u8pad;
s32sampleRate;
s32percussion;
s32instArray[1];
} ALBank;

Field Description

revision File format revision number.

bankCount Number of banks contained in the Bank
file.

bankArray Array of offsets of the ALBank structures
in the bank file.

Table 21-2ALBank Structure

Field Description

instCount Number of programs (instruments) in
the bank.

flags =0 if instArray contains offset, and =1 if
instArray contains pointers.

pad Currently unused byte.
427

NINTENDO 64 PROGRAMMING MANUAL DRAFT
ALInstrument

The ALInstrument structure contains performance information.

typedef struct {
u8volume;
u8pan;
u8priority;
u8flags;
u8tremType;
u8tremRate;
u8tremDepth;
u8tremDelay;
u8vibType;
u8vibRate;
u8vibDepth;
u8vibDelay;
s16bendRange;
s16soundCount;
s32soundArray[1];
} ALInstrument;

sampleRate The sample rate at which this bank is
inteded to be played.

percussion The offset (or pointer) to the default
percussion instrument.

instArray Array of offsets (or pointers) to
ALInstrument structures that make up
this bank.

Table 21-3ALInstrument Structure

Field Description

volume Overall instrument playback volume.
0x0 = off, 0x7f = full scale

pan Pan position. 0 = left, 64 = center, 127 =
right.

Table 21-2ALBank Structure

Field Description
428

NINTENDO DRAFT AUDIO FILE FORMATS
ALSound

The ALSound structure contains information about the individual sounds
that make up an instrument.

typedef struct Sound_s {
s32envelope;
s32keyMap;
s32wavetable;
u8samplePan;
u8sampleVolume;
u8flags
} ALSound;

priority The priority for voices for this
instrument. 0 = lowest priority, 10 =
highest priority.

flags If soundArray values are offsets, flags =
0. If they are pointers, flags = 1.

bandRange Pitch bend range in cents.

soundCount Number of sounds in the soundArray
array.

soundArray Offsets of (or pointers to) the ALSound
objects in the instrument.

Table 21-4ALSound STructure

Field Description

envelope Offset of (or pointer to) the ALEnvelope
object assigned to the sound.

keyMap Offset of (or pointer to) the ALKeyMap
object assigned to this sound.

wavetable Offset of (or pointer to) ALWavetable
objects assigned to the sound.

Table 21-3ALInstrument Structure

Field Description
429

NINTENDO 64 PROGRAMMING MANUAL DRAFT
ALEnvelope

The ALEnvelope structure describes the attack-decay-sustain-release
(ADSR) envelope for a sound.

Note: Release volume is assumed to be 0.

typedef struct {
s32 attackTime;
s32 decayTime;
s32 releaseTime;
s16 attackVolume;
s16 decayVolume;
} ALEnvelope;

samplePan Pan position of the sound in the stereo
field: 0 = full left, 0x7f = full right

sampleVolume Overall sample volume. 0 = off, 0x7f =
full scale.

flags If envelope, keyMap, and wavetable are
specified as offsets, flags = 0. If they are
pointers, flags = 1.

Table 21-5ALEnvelope Structure

Field Description

attackTime Time, in microseconds, to ramp from
zero gain to attackVolume.

attackVolume Target volume for the attack segment of
the envelope.

decayTime Time, in microseconds, to ramp from the
attackVolume to the decayVolume.

Table 21-4ALSound STructure

Field Description
430

NINTENDO DRAFT AUDIO FILE FORMATS
ALKeyMap

The ALKeyMap describes how the sound is mapped to the keyboard. It
allows the sequencer to determine at what pitch to play a sound, given its
MIDI key number and note on velocity.

Note: C4 is considered to be middle C (MIDI note number 60).

Note: Bank files may not contain keymaps that have overlapping key or
velocity ranges.

typedef struct {
u8 velocityMin;
u8 velocityMax;
u8 keyMin;
u8 keyMax;
u8 keyBase;
u8 detune;
} ALKeyMap;

decayVolume Target volume for the decay segment of
the envelope. The sustain loop holds at
the decayVolume.

releaseTime Time, in microseconds, to ramp to zero
volume.

Table 21-6ALKeyMap Structure

Field Description

velocityMin Minimum note on velocity for this map.
0 = off, 0x7f = full scale.

velocityMax maxumum note on velocity for this map.
0 = off, 0x7f = full scale.

keyMin Lowest note in this key map. Notes are
defines as in the MIDI specification.

Table 21-5ALEnvelope Structure

Field Description
431

NINTENDO 64 PROGRAMMING MANUAL DRAFT
ALWavetable

The ALWavetable structure describes the sample data to be played for the
given sound. It is described in detail below, along with the structures it
contains.

enum {AL_ADPCM_WAVE = 0,
 AL_RAW16_WAVE};

typedef struct {
 s32 order;
 s32 npredictors;
 s16 book[1]; /* Must be 8-byte aligned */
} ALADPCMBook;

typedef struct {
 u32 start;
 u32 end;
 u32 count;
 ADPCM_STATE state;
} ALADPCMloop;

typedef struct {
 u32 start;
 u32 end;
 u32 count;
} ALRawLoop;

typedef struct {
 ALADPCMloop *loop;
 ALADPCMBook *book;

keyMax Highest note in this key map. Notes are
defined as in the MIDI specification.

keyBase The MIDI note equivalent to the sound
played at unity pitch.

detune Amount, in cents, to fine-tune this
sample. Range is -50 to +50.

Table 21-6ALKeyMap Structure

Field Description
432

NINTENDO DRAFT AUDIO FILE FORMATS
} ALADPCMWaveInfo;

typedef struct {
 ALRawLoop *loop;
} ALRAWWaveInfo;

typedef struct {
s32base;
s32len;*/
u8type;
u8flags;
union {
ALADPCMWaveInfo adpcmWave;
ALRAWWaveInfo rawWave;
} waveInfo;
} ALWaveTable;

Table 21-7ALWavetable Structure

Field Description

base Offset of (or pointer to) the start of the
raw or ADPCM compressed wavetable
in the table (.tbl) file.

len Length, in bytes, of the wavetable.

type the type (AL_ADPCM_WAVE or
AL_RAW16_WAVE) of the wavetable
structure.

flags If the base field contains an offset, flags
=0. If it contains a pointer, flags = 1.

waveInfo Wavetable type specific information.

Table 21-8ALADPCMWaveInfo structure

Field Description

loop Offset or pointer to the ADPCM-specific
loop structure.

book Offset or pointer to the ADPCM-specific
code book.
433

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Table 21-9ALRawWaveInfo structure

Field Description

loop Offset or pointer to the raw sound loop
structure.

Table 21-10ALADPCMLoop structure

Field Description

start Sample offset of the loop start point.

end Sample offset of the loop end point

count Number of times the wavetable is to
loop. A value of -1 means loop forever.

state ADPCM decoder state information.

Table 21-11ALADPCMBook structure

Field Description

order Order of the ADPCM predictor.

npredictors Number of ADPCM predictors.

book Array of code book data.

Table 21-12ALRawLoop structure

Field Description

start Sample offset of loop start point.

end Sample offset of loop end point.

count Number of times the wavetable is to
loop. A value of -1 means loop forever.
434

NINTENDO DRAFT AUDIO FILE FORMATS
ADPCM AIFC Format

The compressed ADPCM file format is based around AIFC. It uses a
non-standard compression type and two application-specific chunks that
contain the codebook and loop point information. This file is generated by
the ADPCM encoding tool from standard AIFC and AIFF sample files, and
is used by the Instrument Compiler to generate Bank and Table files.

As in AIFC, chunks are grouped together in a FORM container chunk:

typedef struct {
ID ckID; /* ‘FORM’ */
s32 ckDataSize;
s32 formType; /* ‘AIFC’ */
Chunk chunks[]
}

where ckID is always FORM and formType is AIFC. The standard AIFC
chunks, which are essential, are the Common chunk, which contains
information about the sound length; and the Sound data chunk.

typdef struct {
u32 ckID; /* ‘COMM’ */
s32 ckDataSize;
s16 numChannels;
u32 numSampleFrames;
s16 sampleSize;
extended sampleRate;
u32 compressionType; /* ‘VAPC’ */
pstring compressionName; /* ‘VADPCM ~4:1’ */
}

The current format accepts only a single channel. The numSampleFrames
field should be set to the number of samples represented by the compressed
data, not the the number of bytes used. The sampleRate is an 80 bit floating
point number (see AIFC spec).

The Sound data chunk contains the compressed data:

typedef struct {
u32 ckID; /* ‘SSND’ */
s32 ckDataSize;
u32 offset;
435

NINTENDO 64 PROGRAMMING MANUAL DRAFT
u32 blockSize
u8 soundData[];
}

Both offset and blockSize are set to zero.

The encoded file will include two application-specific chunks. The common
Application Specific data chunk format in AIFC is:

typedef struct {
u32 ckID; /* ‘APPL’ */
s32 ckDataSize;
u32 applicationSignature; /* ‘stoc’ */
u8 data[];
}

where data[] contains the application-specific data.

The Codebook application-specific data defines a set of predictors that are
used in the decoding of the compressed ADPCM data.

typedef struct {
u16 version; /* Should be 01 */
s16 order;
u16 nEntries; /* ‘stoc’ */
s16 tableData[];
}

The order and nEntries fields together determine the length of the
tableData field. In the current implementation, order, which defines the
ADPCM predictor order, must be 2. nEntries can be anything from 1 to 8.
The length of the tableData field is order*nEntries*16 bytes.

The Loop application-specific data contains information necessary to allow
the ADPCM decompressor to loop a sound. It has the following structure:

typedef struct {
u16 version; /* Should be 01 */
s16 nLoops;
436

NINTENDO DRAFT AUDIO FILE FORMATS
adpcmLoop loopData[];
}

nLoops defines the number of loop points and hence the number of
adpcmLoop structures in the chunk. In the current library, only one loop
point can be specified. loopData has the following structure:

typedef struct {
u16 state[16];
s32 start;
s32 end;
s32 count;
} adpcmLoop

state defines the internal state of the ADPCM decoder at the start of the
loop and is necessary for smooth playback across the loop point. The start
and end values are represented in samples. count defines the number of
times the loop is played before the sound completes. Setting count to -1
indicates that the loop should play indefinitely.
437

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Sequence Banks

To provide a convenient way of collecting multiple MIDI sequences and
accessing them from the ROM, Silicon Graphics has defined a simple
Sequence Bank format. Files of this format are produced by the Sequence
Bank Compiler (sbc), which takes multiple MIDI files and collects them with
a simple header.

The format for the Sequence Bank file header is:

typedef struct {
u16 version; /* Should be 01 */
s16 seqCount;
ALSeqData seqArray[];
}

where seqCount is the number of sequences in the file, and the seqArray
gives a list of offsets into the file and lengths for the individual sequences.

typedef struct {
u8 *offset;
s32 seqLen;
} ALSeqData

The offsets represent the position of the start of the sequence from the
beginning of the file. Note that the start of all sequences are 8-byte aligned
when the Sequence Bank Compiler is used.
438

NINTENDO DRAFT AUDIO FILE FORMATS
Compressed Midi File Format

The compressed midi file format is composed of a header and up to sixteen
individual tracks. Each midi channel will have its own track. If there are no
midi events for a particular channel, the track will not be created, and the
offset to that track will be set to zero.

The compressed midi file header is a collection of 16 offsets and a division
value.

typedef struct {
 u32 trackOffset[16];
 u32 division;
} ALCMidiHdr;

The offset is specified in bytes from the begining of the file to the begining of
the track. The division value is taken from the input midi file.

The format for the individual tracks is similar to the format used in a
standard midi file. Each track consists of a series of events, seperated by
delta times in ticks. Ticks are specified using variable length numbers, and
ever event must have a delta value, even if that value is zero. Midi events are
of the same format as that used in the standard midi file except as specified
below.

1. There are no note offs, instead note ons are followed by a variable
length number that specifies the number of ticks duration. As an
example, a note on of middle C with a velocity of 80 and a duration of
240 ticks would be expressed by the following sequence of hex bytes:
0x90 0x3C 0x50 0x81 0x70. Note that when calculating the deltas
between events, the duration is not taken into account.

2. Only two types of meta events are supported, tempo events and end of
track events, and they are both slightly altered. Tempo events are
composed of a meta status byte, (0xFF) a subtype byte (0x51) and three
bytes that contain the new tempo. (Note that the len byte has been
removed.) The end of track event is composed of only two bytes, a meta
status byte, (0xFF) and a subtype byte (0x2F). Care should be taken to
see that the end of track event occurs after all the notes in the track have
played out their full duration.
439

NINTENDO 64 PROGRAMMING MANUAL DRAFT
3. Loops are allowed using a combination of loop start and loop end
events. A track can have up to 128 loops which can be nested. Each loop
within a track has a unique loop number. The loop start event is
composed of four bytes; a meta status byte (0xFF), a loop start subtype
byte (0x2E), a loop number (0-127), and an end byte (0xFF). A loop end
event is composed of eight bytes, a meta status byte (0xFF), a loop end
subtype byte (0x2D), a loop count byte (0-255), a current loop count
(should be the same as the loop count byte), and four bytes that specify
the number of bytes difference between the end of the loop end event,
and the begining of the loop start event. (note that if this value is
calculated before the pattern matching compression takes place, this
value will have to be adjusted to compensate for any compression of
data that takes place between the loop end and the loop start.) The loop
count value should be a zero to loop forever, otherwise it should be set
to one less than the number of times the section should repeat. (i.e. to
hear a section eight times, you would set the loop count to seven.)

4. Running status is supported for all events except across meta events
and across loop points.

The compressed midi file format uses a system of matching patterns in the
data, and replacing them with markers, instead of repeating the data. When
constructing tracks, any pattern of data may be replaced by any previous
track data with a marker. A pattern marker consists of four bytes. The first
byte is 0xFE. The second two bytes are an unsigned 16 bit value that specifies
the difference, in bytes, between the begining of the marker, and the
begining of the pattern. The last byte is the length of the pattern. In order to
distinguish between a data byte of 0xFE and a pattern marker’s first byte,
any data byte of 0xFE will be followed by another byte of 0xFE.

Note: The maximum pattern length is 0xFF and the maximum distance
between the marker and the pattern is 0xFDFF.

Nesting of patterns is not supported. If a marker is encountered within a
repeated pattern, the marker data will be returned to the sequence player, as
actual midi data.

Note: Patterns replaced with markers may not contain bytes of value 0xFF
or the current loop count byte of a loop end event.
440

NINTENDO DRAFT NINTENDO 64 AUDIO MEMORY USAGE
Chapter 22

22. Nintendo 64 Audio Memory Usage

The following sections discuss the memory used by the audio system in a
typical application. Memory requirements, and optimization are discussed
in detail.
441

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Overview of audio RDRAM usage.

The amount of RDRAM needed by the audio system is dependent on
numerous factors. Most importantly, the number of sounds being played at
any given time will determine the size of most buffers. Most buffers must be
large enough to accommodate the worst case scenario. Applications with
fewer voices will need fewer buffers. The sample rate and frame rate chosen
will effect the size of several important buffers.

Audio Buffers

The majority of memory used by the audio, that can be optimized, comes
from the following buffers:

• The Sample DMA Buffers.

• The Command List Buffers.

• The Audio Output Buffers.

There are several other buffers, but the gains obtained by optimizing them
are less significant. These include:

• The Audio Thread Stacksize.

• The Synthesizer Update Buffers

• The Sequencer Event Buffers

In addition to optimizing the buffers listed above, it is important that several
other buffers are no larger than they need to be. While you can’t optimize
them per se, you should check to make sure that their size is no bigger than
need be. Important buffers of these type include:

• The Audio Heap,

• The Sequence Buffer

• The Bank Control File Buffer

• The Reverb Delay Line Buffer

Because the heap size is dependent on the size of the buffers allocated from
the heap, it is important to optimize the other buffers first.
442

NINTENDO DRAFT NINTENDO 64 AUDIO MEMORY USAGE
Sample Rate, Frame Rate, and Other Factors

In order to determine the size of most of the buffers, you will need to
determine several factors first. Most importantly, sample rate and frame
rate. Higher sample rates will require larger output buffers, more DMA
space, and larger command list buffers. Likewise, slower frame rates require
larger output buffers, more DMA buffer space, and larger command list
buffers.

Note: Audio frame rate can be different from video frame rate. It is possible
for the audio to be operating at 60 frames per second, while the graphics are
operating at 30 frames per second.

In addition to the sample rate and frame rate, the specific sounds, and how
they are set up can effect the size and number of DMA buffers, as can the
individual sequences used.
443

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Optimizing Buffer Sizes.

Audio DMA Buffers

The first area to try and optimize is the number of DMA buffers. These
buffers are used by the audio synthesizer to store samples from the cartridge
during creation of the output buffers. In the worst case scenario you will
need four buffers for every voice you have allocated. However, in practice
you need only a portion of that. The actual number of buffers you will need
is very dependent on the sequences and sound effects played. To optimize
this value, you will need to allocate sufficient buffers to keep from crashing,
and then play your game for a while. At the end of each frame you should
be calling a routine that frees DMA buffers that have become stale. (Called
__clearAudioDMA in example programs.) In this routine, before
discarding stale buffers, step through the list of used DMA buffers and count
how many there are. If you keep track of the maximum value, you can report
this at the end of game play, using your choice of debugging method. The
following code is an example of how to perform this count.

#ifdef AUD_MEM_PROF
 ampDMAcount = 0;
 dmaPtr = dmaState.firstUsed;
 while(dmaPtr)
 {
 ampDMAcount++;
 dmaPtr = (AMDMABuffer*)dmaPtr->node.next;
 }
 if(ampDMAcount > ampMaxDMABufs)
 ampMaxDMABufs = ampDMAcount;
#endif

Because the number of buffers used can vary slightly, even when playing the
same music and sound effects, it is always a good idea to have a few more
buffers than you ever found yourself needing.

In addition to the number of DMA buffers needed, it is helpful to know what
is the maximum number of DMA’s performed in any frame. This number
will allow you to optimize the number of DMA message buffers you will
need. Because the size of a message buffer is substantially less than the size
of a DMA buffer, the result of this optimization is not much. However, it is
easily performed since there is a variable that reports the number of DMA’s
444

NINTENDO DRAFT NINTENDO 64 AUDIO MEMORY USAGE
done each frame. All you need to do is record its maximum value, checking
it once a frame, and then report that value at the same time you report the
number of DMA buffers used.

Another place for optimization is the length of the DMA buffers. Longer
buffers will require fewer buffers, and use fewer DMA’s. Conversely,
smaller buffers will require more buffers and more DMA’s. Generally, the
smaller buffers, even though more are required, will use memory more
efficiently. However, the smaller buffer sizes will also generate more DMA’s
and for that reason are less efficient in terms of processing time. It is up to
the developer to decide what trade off between memory usage and
processing time to pick. Optimal buffer sizes are probably ones that will
handle enough samples to process one frame of audio. Below, is a table that
compares the same music played back with various buffer sizes. (All other
factors were the same.

Table 22-1 DMA Buffer Length.

)

As can easily be seen, the amount of buffer space needed goes up as the size
of the buffers go up, even though fewer buffers are needed. However, at the
same time, the number of DMA’s goes down. In this case, probably the value
of 0x500 is optimal, since it causes the least number of DMA’s per frame in
the worse case situation, but allows the memory allocated to buffers to be
smaller than it would be with buffers of 0x600 size.

Another constant that can be changed is FRAME_LAG. This value defines
how long a DMA buffer will be kept after it has been used. If you continually
use the same sample, that sample will be kept in memory, and will not need

DMABufLength MaxDMA/Frame MaxDMABuffers BufLen*MaxBufs

0x600 12 26 39936

0x500 12 30 38400

0x400 14 34 34816

0x300 16 38 29184

0x280 17 43 27520

0x200 22 50 25600
445

NINTENDO 64 PROGRAMMING MANUAL DRAFT
to be DMA’ed again. Higher lag values will lower the number of DMA’s but
will increase the number of DMA buffers needed.

Command List Size

Like the number of DMA buffers, the command list size is dependent on the
sequences and sound effects used by the game. To optimize the command
list size, simply record the maximum value used, and check that value at the
end of game play. Because this can vary, even when playing the same audio,
it is wise to leave a little more than you ever needed.

Output Buffer Size

The output buffer size is determined by the audio playback rate, and the
frame rate. If you synch audio to the vertical retrace you will need to have
three audio output buffers. If you synch the audio to the audio completion
interrupt, you will only need to have two output buffers. Example code is
included in the example applications demonstrating calculating the size of
the output buffers.

Audio Thread Stacksize

The audio thread stacksize can be determined using the stacktool, and
optimized accordingly.

Synthesizer Update Buffers and Sequencer Event Buffers

Synthesizer update buffers and sequencer event buffers are allocated from
the audio heap when the synthesizer and sequencer are created. There is, at
present, no way to efficiently optimize these values. However, because the
size of each buffer is small, it is better to allocate a few too many, than not
enough.
446

NINTENDO DRAFT NINTENDO 64 AUDIO MEMORY USAGE
The Audio Heap

Once all calls to alHeapAlloc have been completed, you can determine the
amount of the heap that has been used by subtracting the heap’s current
value from the heap’s base value. These values are part of the heap structure.

The Sequence Buffer

The sequence buffer needs to be large enough to hold the largest sequence
that will be used.

The Bank Control File Buffer

The bank control file buffer needs to be large enough to hold the bank
control file. This is the <bank>.ctl file.
447

NINTENDO 64 PROGRAMMING MANUAL DRAFT
448

NINTENDO DRAFT USING THE AUDIO TOOLS
Chapter 23

23. Using The Audio Tools

This chapter instructs the musician and sound designer in how to use the
audio development tools currently available for the Nintendo 64. It is
divided into the following sections:

• An overview of the audio system.

• Discusion of the constraints and decisions that should be made in
conjunction with the programmer or game designer.

• Suggestions for creating samples.

• Playback parameters and the .inst file.

• How to create bank files.

• MIDI files and MIDI implementation.

• Music development tools.
449

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Overview of Audio System

In order for the musician or sound designer to produce sounds and music
for the Nintendo64, a short explanation of the audio system is helpful,
though not necessary. To that end, a brief description of the audio system is
included here. (The audio system is discussed in greater detail in the
programmers documentation.) In addition to a brief description of the audio
system, several important items the musician should be aware of are listed
below.

Brief description of audio system

The audio system for the Nintendo 64 is composed of a Sound Player (for
playing single samples, such as sound effects) and a Sequence Player (for
playing music). When the game starts up, it creates and initializes a sound
player and a sequence player. It then assigns a bank of sound effects to the
sound player, and assigns a bank of instruments and a bank of MIDI
sequences to the sequence player. To play a sound effect, the game sends a
message to the sound player, telling it what sound effect to set as its target,
and then sends another message to the sound player, telling it to play the
target sound. To play a MIDI sequence, the game must load the sequence
data, then attach the sequence to the sequence player, and then send a
message to the sequence player to start playing the music.

Note: Musical sequences can be stored as either type 0 MIDI files, or in a
compressed midi format unique to the Nintendo64. It is very important that
the programmer and the musician agree on which file format to use.

There are several components to the sound system. First, there are the
samples that are stored in ROM. Accompanying the samples are a group of
parameters used for playback (Key Mappings, Envelopes, Root Pitch, and so
on). In order to process the sounds, a section of the RAM must be allocated
for the audio system.

In software, there are two main sections. One part runs on the CPU and the
other part runs on the RSP. The audio system must share the RSP with the
graphics processing. The RSP is where most of the low-level processing
takes place, and this is where the samples are mixed into an output stream.
This output stream is then fed to a pair of DACs for stereo output.
450

NINTENDO DRAFT USING THE AUDIO TOOLS
There are four types of files used by the game for audio production: .ctl, .tbl,
.seq, and .sbk. Before the game can play back either sound effects or music,
the musician and sound designer must create these files. The .tbl files
contain the compressed samples. The .bnk files contain the associated
control information necessary for playback. .bnk files and .tbl files are
always paired.

The .seq files are MIDI files that have all unneeded events removed, and the
.sbk files are banks of .seq files. Typically, there will be at least one pair of
.bnk and .tbl files for music, and a seperate pair for sound effects. (Although
it would be possible to put all sounds into one pair, or alternatively, have
numerous pairs.)

The reason that banks are stored in two files is that then the raw audio data
doesn’t need to be loaded into RAM; only the information pointing to the
samples, and the values for the playback parameters. When a sound is to be
played, only a small portion of the sample is loaded into a RAM buffer. After
it has been used for playback, it can be discarded, and the buffer reused for
the next portion of the sample. The result is that a comparatively small
amount of RAM is needed for sound.

Typical Development Process

When creating audio for an Nintendo 64 game, the musician typically
follows these steps:

1. Create the samples as AIFF files.

2. Encode the samples into AIFC files.

3. Create a .inst file.

4. Compile the .inst file, with the samples into the bank files.

5. Create the MIDI sequence files.

6. Compile the MIDI sequence files into .seq files, and then compile the
.seq files into a .sbk file.

7. Deliver the .tbl .bnk and .sbk files to the programmer.
451

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Common Values

Throughout this document and when referring to .inst files, several things
are kept constant:

• Middle C (MIDI note 60) is referred to as C4. (Some synthesizer and
software manufactures refer to Middle C as C3.)

• Pan values range from 0 to 127, with 0 being full left, 64 center pan, and
127 full right.

• Volumes are from 0 to 127, with 0 meaning there will be no sound, and
127 being full volume.
452

NINTENDO DRAFT USING THE AUDIO TOOLS
Dealing With Constraints and Allocating Resources

When you use the Nintendo 64 system, there are several choices that you
must make. Most of these choices center around how to use the fewest
system resources, while still maintaining a sufficient level of quality.
Unconstrained by limits on available resources, the Nintendo 64 system is
capable of audio rivaling top-of-the-line samplers.

Most of the limits in the software system are easily changed. However, in
most cases a great deal of time can be saved if the programmer, game
designer, and musician all agree beforehand what these values are going to
be set to.

The limits on resources will fall into several categories:

• determining hardware playback rate

• limits of voices and processing time

• division of sounds and music into banks

• limits of ROM space

Determining Hardware Playback Rate

The principle decision to make about software is deciding what playback
rate the hardware should be set to. Typically, rates from 22050 Hz to
44100 Hz are chosen. Higher rates require the software to produce more
samples, and consequently take more processing time. Although there are
no hard rules to follow, values of 44100 Hz are ideal, but values of 32000 Hz
and 22050 Hz do not produce a substantial loss of audio quality. Values
below 22050 Hz quickly begin to degrade the quality of the audio.

Also of considerable importance is the fact that samples sound better if the
output rate is as close as possible to their sample rate. If all the samples in the
game are sampled at 22050 Hz, the output quality will be best with a
playback rate of 22050 Hz. If there is uncertainty in the planning process, it
is better to start with a higher rate, and resample down later, than to start
with a lower rate and resample up later.
453

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Limits of Voices and Processing Time

The factor limiting the number of voices available for playback is the amount
of time the audio will have for processing. Obviously, the more voices, the
more processing time needed, and the higher the audio playback rate, the
more time needed. As a rough guideline, it is estimated that 1% of RSP time
is needed for each voice, when playing at 44.1k. So, if the audio is given 20%
of RSP processing time, then fifteen to twenty voices will be possible.
However, if the audio is given 40% of processing time, then 30 to 40 voices
will be possible. Remember that a lower output playback rate reduces
processing time, thus increasing the number of voices available for
playback.

Division of Sounds and Music Into Banks

There are no formal rules specifying how the sounds and music will be
organized. However, in most cases it is best to organize the sound effect
samples into a bank (or banks) separate from the music samples.

There are two ways that the sequences may be stored in the game. They may
be stored as separate sequences, or they may be compiled into a .sbk file. The
music samples and MIDI files should be organized so that each sequence (or,
if used, each bank of MIDI files) has a corresponding bank of music samples.
If samples are shared by different MIDI files, they should be stored in the
same bank. If the sequences do not share the same sample bank, duplicates
of the samples will be produced in the different bank files.

Limits of ROM

The amount of space available for audio is strictly up to the game developer.
454

NINTENDO DRAFT USING THE AUDIO TOOLS
Creating Samples

Creating samples for the Nintendo 64 is similar to creating samples for any
sample player. However, there are several additional facts to keep in mind.

To be recognized by the ADPCM tools, the samples should be stored as AIFF
files, or uncompressed AIFC.

Samples benefit from being sampled at the same sample rate as the output
playback sample rate. Because all samples are compressed with a variation
of ADPCM, when they are played back at rates significantly different from
their sampled rate, the noise can become rather obvious.

As an example, if the output sample rate is set to 44100 Hz, but the sample
is sampled at only 22050 Hz, then to playback the sample at its original pitch,
the sample converter must create two samples from each sample. Worse, if
the sample is to be played an octave below its original pitch, the sample
converter must create four samples for each sample. Because of the noise
and distortion introduced from ADPCM, this will not be nearly as good
quality as it would be if samples were recorded at 44100 Hz, or if the output
playback rate were changed to 22050 Hz. For this reason, you may want to
resample all samples to match the output sample rate, before performing the
ADPCM conversion

Samples may be looped at any location in the sample. Although many
ADPCM systems require you to loop samples at specific boundaries (the
Super Nintendo, for example, required that loop points be multiples of 16),
the Nintendo 64 makes no such requirement. If a sound is looped, it will loop
as long as the sound is playing. When a looped sound’s envelope enters the
release phase, then the sound will still continue to loop.

All looped samples should last until the next multiple of 16, after the loop
end. (This is because the ADPCM encoding stores the samples in blocks of
16.) For this reason, it is prudent to leave at least 16 samples after the loop
end, on any sample that loops. As a nice feature, the adpcm tools provided
have an option that truncates any sample to the shortest viable length, so
there is no benefit to the musician calculating and truncating looped
samples.

In other words, when creating looped samples, find your loop points, and
don’t worry about the release portion of the sample. If you want to truncate
455

NINTENDO 64 PROGRAMMING MANUAL DRAFT
the sample, to keep samples on your hard disk smaller, but always leave at
least 16 samples after the loop end. Then when you encode the samples,
make sure you use the -t option, and the samples will be automatically
truncated for you.
456

NINTENDO DRAFT USING THE AUDIO TOOLS
Playback Parameters and .inst Files

This section contains information about how to create the .inst file.

Setting Sample Parameters in the .inst File

In order for the Nintendo 64 audio system to playback samples correctly, it
must have information for controlling aspects such as pitch and volume.
These parameters are set by creating and editing a .inst file. Although some
discussion of parameters follows, it is highly recommended that you review
an example .inst file, because many of the parameters will be much clearer
then.

The .inst file is a collection of objects, defined by text using C language
syntax. The objects are:

• envelopes

• keymaps

• sounds

• instruments

• banks

The objects are related as follows: The basic unit representing a sample is a
sound. That sound has an associated keymap, which specifies the velocity
range, key range, and tuning of the sample. Also, the sound has an
associated envelope that specifies the ADSR used to control the sample’s
volume. Sounds can be grouped into an instrument. Instruments are then
grouped into a bank. Currently, there is only one bank in a .inst file. Because
program control changes are limited to values from 1 to 128, MIDI sequences
can only use the first 128 instruments in a bank. Game applications can select
higher values by calls to the audio API.

Differences Between Sound Player and Sequence Player
Use of .inst Files

The sound player and sequence player use the bank files created from the
.inst files in different ways. While the sequence player uses the bank to
457

NINTENDO 64 PROGRAMMING MANUAL DRAFT
identify instruments, and then uses the keymaps to identify which sound to
play for what MIDI notes, the sound player does none of this. The sound
player does not use the bank structure, the instrument structure, or the
keymap parameters. However, for the .inst file to compile, every .inst file
must have a bank and an instrument. Also, every sound must point to a
keymap. This keymap may be shared by all the sounds in the .inst file, so
only one keymap is needed.

For these reasons, the example .inst sound effects files are set up with one
bank, with only one instrument, that lists the sounds in sequential order.
There is no concern for overlapping of keymaps in this case, because the
sound player ignores them. However, there is one default keymap, in order
to allow the file to compile. In order for the pitch of a sound effect to be
altered from its recorded pitch, the application must set the pitch, not the
.inst file.

Envelopes

The Nintendo 64 audio system supports the use of ADSR envelopes for
controlling volume. Envelope time values are in microseconds. (Because
microseconds are a much finer control than most synthesizers and samplers
use, musicians will have to adjust their thinking to accommodate much
larger numbers than are usually used by samplers. Remember, an
attackTime of 100,000 will produce an attack of one tenth of a second.)
Maximum volume values are 127. In order to avoid any pops or clicks at the
ends of sounds, you should always end an envelope with a release volume
of zero. This is particularly true in the case of looped samples.

When using the sound player to play sound effects, if the decay time is set to
-1, then the envelope will never enter the release phase. (In other words, it
will loop forever.) To stop the sound, the game will have to call
alSndpStop().

Keymaps and Velocity Zones

Note: Keymaps are used only by the sequence player. They are ignored by
the sound player.
458

NINTENDO DRAFT USING THE AUDIO TOOLS
In addition to an envelope, every sample has a keymap. This keymap defines
what keys and velocities the sample will respond to. By using different
keymap settings, it is possible to create instruments that play different
samples for different keys and velocities.

In the keymap object, you set the minimum and maximum velocity values,
as well as the minimum and maximum keys to respond. Note that you
cannot create overlapping keymap zones. When the sequence player is
trying to map a note to be played, it will search through the possible
keymaps, and when it finds one that it can use, it will not continue to search.

Note: The Nintendo 64 imposes an upper limit on the keyMax value of one
octave more than the keyBase.

Tuning for Samples Recorded at the Hardware Playback
Rate

In addition to the velocity and key zone information contained in the
keymap structure, all samples have a keyBase and a detune value. The
keyBase sets the sample’s pitch in semitones, and the detune value is used to
fine-tune the sample in cents. (A cent is 1/100th of a semitone.) If the sample
rate of the sound matches the hardware playback rate, the keyBase is the
MIDI note value of the sample’s original pitch. If the sample rate does not
match the hardware playback rate, the keyBase must be altered to
compensate for the difference in rates.

As an example, if a note of F4 is recorded at 44100, and the playback rate is
also 44100, then the keybase should be set to 65 (since 65 is equivalent to
MIDI note F4) and the detune is set to zero.

Tuning for Samples Recorded at Varying Rates

One of the more complicated aspects of the .inst files is the tuning of samples
that are not sampled at the same rate as the hardware output rate.
(remember that the hardware output rate is determined by software, and
can
be changed). Although the sample rate will be extracted from the AIFF file,
you must adjust the keyBase parameter and the detune parameter if you
want the sample to play back at the correct pitch.
459

NINTENDO 64 PROGRAMMING MANUAL DRAFT
In order to calculate keyBase and detune from a given sample rate, use the
following formula:

N = semitones to add to keybase

N= 12log2(HardwareRate/SampleRate)

A much easier way to deal with the tuning issue is to use Table 16-1. In this
case, pick an acceptable rate from the column that corresponds to your
hardware rate. Record your sample at that rate (or resample your sample at
that rate), and then add the number of semitones in the leftmost column to
the MIDI note value of the samples pitch. Notice that this method insures a
value of zero for the detune.

As an example, suppose that you had a hardware playback rate of 44100, but
you wished to critically resample a sample of a trumpet playing Bb4 to a
sample rate of about 32000 Hz. Instead of using 32000, you would resample
to a rate of 33037, and then in your .inst file, you would add 5 semitones to
the midivalue. Since Bb4 is the same as MIDI note number 70, you would
add 5 and your keyBase value would be 75.

Table 23-1 Tuning to hardware playback rates.

Add to MIDI Value Hardware Playback
Rate of 44100

Hardware Playback
Rate of 32000

Hardware Playback
Rate of 22050

0 semitones 44100 32000 22050

1 semitones 41624.857 30203.978 20812.429

2 semitones 39288.633 28508.759 19644.317

3 semitones 37083.532 26908.685 18541.766

4 semitones 35002.193 25398.417 17501.097

5 semitones 33037.671 23972.913 16518.836

6 semitones 31183.409 22627.417 15591.705

7 semitones 29433.219 21357.438 14716.609

8 semitones 27781.259 20158.737 13890.626

9 semitones 26222.017 19027.314 13111.008

10 semitones 24750.288 17959.393 12375.144
460

NINTENDO DRAFT USING THE AUDIO TOOLS
To extend the above table, or produce a table with a different hardware
playback rate, use the following formula:

Sample Rate = S

Hardware Rate = H

Number of semitones to add to MIDI value = N

Sounds

A sound structure is simply a reference to the sample, the keymap, the
envelope, a value for pan, and a value for volume. Pan values are in the
range of 0 to 127, with 0 equal to full left, 64 equal to center pan, and 127
equal to full right. Volumes are specified by values of 0 to 127.

Instruments

The instrument structure is a list of sounds grouped into an instrument. If
the instrument is a musical instrument to be used by the sequence player, it
is limited to 128 sounds, since that is the maximum number of MIDI notes.
However, if the instrument is for use by the sound player, it may have as
many sounds in it as you like. In addition to the list of sounds, the
instrument has an overall volume and pan. (The sound player ignores these
volume and pan values. Instead the sound player uses the pan and volume
values specified in the sound object.)

11 semitones 23361.161 16951.410 11680.581

12 semitones 22050 16000 11025

Table 23-1 (continued) Tuning to hardware playback rates.

Add to MIDI Value Hardware Playback
Rate of 44100

Hardware Playback
Rate of 32000

Hardware Playback
Rate of 22050

S H

2
N 12

----------------=
461

NINTENDO 64 PROGRAMMING MANUAL DRAFT
The instrument structure can be used to create Drum Kits. In this case, you
create an instrument that uses multiple sounds and associated keymaps.
(There is a good example of this in the General MIDI Bank provided with the
developer’s package.)

Banks

At the top level of the .inst file is the bank structure. A .inst file may contain
as many banks as needed. The bank must be selected by the application,
since there is currently no way to switch banks via MIDI.

Creating Bank Files

The process for creating sample bank files is as follows:

1. Record the samples and save as .AIFF files.

2. Encode the samples using tabledesign and vadpcm_enc.

3. Create the .inst file.

4. Compile the bank using ic.
462

NINTENDO DRAFT USING THE AUDIO TOOLS
MIDI Files

Sequences can be stored in the game in one of two ways. Either as MIDI file
Type 0, or in a compressed MIDI file format. To use MIDI Type 0, save the
file as either a Type 0 or Type 1 MIDI file, and then use midicvt. To use the
compressed sequence format, save the file as either a Type 0 or Type 1 MIDI
file, and then use midicomp.

The process for creating MIDI sequence bank files is as follows:

1. Create the sequences and save them as MIDI files of either Type 0 or
Type 1.

2. Convert the sequences using either midicvt or midicomp.

3. Compile the sequences using sbc.

The following MIDI messages are supported by both file formats:

• Note on

• Note off

• Polyphonic key pressure

• Midi Controllers:

? Controller 7: Channel volume

? Controller 10: Channel Pan

? Controller 64: Sustain

? Controller 91: FXMix

• Program Control changes 0-127

• Pitch Bend Change

In addition to the above MIDI messages, the MIDI file meta tempo event is
supported.

Loops in the sequences.

The way loops are implemented in the two sequence formats are very
different. If a game uses MIDI Type 0 format, the loops must be created by
463

NINTENDO 64 PROGRAMMING MANUAL DRAFT
the programmer using audio library calls from within the game code. If the
compressed sequence type is used, loops are inserted by the musician. This
is done using midi controllers.

The compressed sequence format supports looping within tracks. A track
can have as many as 128 loops, which can be sequential or nested. Each loop
is numbered, and must have a loop start and a loop end. Optionally, it can
have a loop count, that specifies the number of times the looped section
should play. Loop counts are limited from 1 to 255. A loop count of zero, the
default, will loop forever.

Although the format used in the compressed midi file is not detailed here, it
should be noted that when a file is compressed, midi events are rearranged
into tracks based on channel. All midi events for channel 1 are put in the first
track, and all midi events for channel 2 are put in the second track, and
so on. This is particularly important when considering loops. If a loop is put
in a track, all midi events from that channel will loop.

To insert loops into a compressed midi sequence, you will need to insert
extra controllers. These controllers serve as markers for the loop. A loop start
is defined as a controller number 102. A loop end is defined as a controller
103. Within a channel, each loop start and loop end pair must have a unique
number between 0 and 127. This number is what the loop start and loop end
controller’s value should be set to. A loop count between 0 and 127 is created
with a controller 104, using values 0 to 127. A loop count between 128 and
255 is created using controller 105, with values 0 to 127. (When a loop count
controller 105 is encountered, the value is added to 128 to produce loop
counts from 128 to 255.)

As a simple example, consider the following sequence:
loop 0 start (controller 102 with value 0)

loop count of 6 (controller 104 with value 6)

loop 0 end (controller 103 with value 0)

In this case the section between the loop start and the loop end will be played
six times.

It is important to understand that the loop count is not associated with a start
and end pair. When a loop end is encountered, it uses the most recent loop
464

NINTENDO DRAFT USING THE AUDIO TOOLS
count, even if there has already been a loop end for another loop. Consider
the following sequence:

loop 0 start (controller 102 with value 0)

loop count of 8(controller 104 with value 8)

loop 0 end (controller 103 with value 0)

loop 1 start (controller 102 with value 1)

loop 1 end (controller 103 with value 1)

In this case, the first loop (loop 0) will have a loop count of 8. The second loop
(loop 1) will also have a loop count of 8, since once set, the loop count
continues until changed. If there has never been a loop count in the
sequence, the loop count is set at its default of 0, which is interpretted as loop
forever.

Warning: All loops must have a loop start and a loop end with at least
one valid midi event in between.

Nesting Loops.

In the compact sequence format it is easy to nest loops. Consider the
following sequence:

loop 0 start (controller 102 with value 0)

loop 1 start (controller 102 with value 1)

loop count of 8(controller 104 with value 8)

loop 1 end (controller 103 with value 1)

loop 2 start (controller 102 with value 2)

loop 2 end (controller 103 with value 2)

loop 3 start (controller 102 with value 3)

loop count of 4(controller 104 with value 4)

loop 3 end (controller 103 with value 3)

loop forever (controller 104 with value 0)

loop 0 end (controller 103 with value 0)

In this case loop 1 will loop eight times, before the sequence proceeds to loop
2, which will also loop eight times. After that, loop 3 will loop 4 times, and
then the entire sequence will loop infinitely.
465

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Putting Things Together Into Makefiles

In the developer’s kit, there is a directory named viper that shows how files
would be arranged to build a bank of music samples. The makefile in this
directory shows examples of setting up rules for files, and dependencies in
a logical order. When you start a project, you can use these files as a
template.
466

NINTENDO DRAFT USING THE AUDIO TOOLS
General MIDI and the Nintendo 64

Although the Nintendo 64 is not specifically a General MIDI device, it can be
configured as one. As part of the developer’s kit, there is a General MIDI
Bank that demonstrates this. All the sound files used in this bank are also
provided and may be used by licensed developers in any Nintendo 64
project.

Currently, MIDI channel 10 is configured to default to program 128. In the
General Midi Bank, this is the Standard Drum Kit. If you send a program
change on channel 10, the specified program will be selected, and channel 10
will no longer be the Standard Drum Kit.
467

NINTENDO 64 PROGRAMMING MANUAL DRAFT
468

NINTENDO DRAFT SCHEDULING AUDIO AND GRAPHICS
Chapter 24

24. Scheduling Audio and Graphics

The Nintendo64 audio and graphics chores are shared between the host
CPU and the RCP. The work to be performed is expressed using an array of
primitives called a command list.

The host CPU is responsible for command list generation. Audio command
lists are generated by calling alAudioFrame(). Graphics command lists are
generated by calling the various graphics macros defined in gbi.h. In
addition, the host CPU is responsible for assembling command lists into
RCP tasks (which consist of command lists, RCP microcode and execution
state information), and for downloading the task at the appropriate time to
the RCP.

The RCP is responsible for command list processing. The RCP microcode
loaded by the host CPU parses the command list, executes the appropriate
core rendering routines, and writes the results to the video frame or audio
buffer.

Since the video frame buffer must be updated at a regular rate (usually 30
frames per second) and the audio buffers must be updated before they are
emptied by the audio DAC to prevent clicks and pops, the application must
make schedule the command list generation and processing chores so that
they happen in a “timely manner”. This chapter identifies the relevant
scheduling issues and describes the libultra Scheduler that addresses them.
469

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Scheduling Issues

Command List Generation

Command lists are usually generated during the frame before they are to be
processed. Though command list generation should take less than a frame
time to complete, there are infrequent occasions when it may take longer.
When the host CPU misses its completion deadline, host overrun is said to
have occurred.

The effects of host overruns are usually undesirable. If an audio command
list is not ready to be processed during the next frame time, clicks and pops
will be introduced into the audio stream. If a graphics command list is not
ready to be processed, the video frame buffer will not be updated until the
following frame, which may cause the graphics stream to appear “jerky”.

The effects of host overruns on the audio stream can be minimized if the
audio and graphics command lists are generated in separate threads.
Specifically, if the audio thread runs at a higher priority than the graphics
thread, the host CPU can schedule the audio task even though the graphics
task may not be completely generated, preventing clicks and pops from
being introduced into the audio stream.

Alternately, one could implement a dynamic buffering scheme to prevent
overrun by dynamically varying the audio data buffer size to accommodate
any graphics overrun. This approach would require somewhat larger
buffers and is more difficult to implement since overrun is dependent on
things that are not known until runtime.

Note: Calls to alAudioFrame() generate DMA requests, which are assumed
to be complete when the audio command list is processed. The DMA latency
depends on the operation of the audio DMA callback which is implemented
by the application.

Command List Processing

While audio command list processing time is deterministic (based on the
number of active voices), the graphics command list processing time is
470

NINTENDO DRAFT SCHEDULING AUDIO AND GRAPHICS
variable (based on the complexity of the scene and the perspective of the
viewer). Unless great care is taken in the construction of the graphics
command lists, they may require more than a frame time to process. This is
call graphics (RCP) overrun.

The effects of graphics overrun can be minimized by suspending the
overrunning task and running the waiting audio task at the beginning of a
video frame. Graphics tasks can be suspended with the osSpTaskYield()
function. See the osSpTaskYield man pages for more information.
471

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Using the Scheduler

The Scheduler is a host CPU thread that addresses the issues discussed
above. It is responsible for executing audio and graphics tasks on the RCP
such that host and RCP overrun is minimized or eliminated.

Each video retrace, the Scheduler reads the new tasks generated by client
threads from the task queue and adds them to the end of a real-time (audio)
or non-real-time (graphics) task schedule list.

If the previous frame’s graphics task has overrun, the Scheduler causes the
task to yield. It then runs the next audio task, resuming the yielded task
when the audio task has completely processed, and any additional graphics
tasks that are to be run to be run in the current frame.

When a task completes, the Scheduler sends a message to the client
indicating that the work it requested is complete.

Creating the Scheduler: osCreateScheduler()

In order to use the Scheduler, you must first call osCreateScheduler() to
initialize the OSSched data structure, its message queues and the Vi
Manager. The osCreateScheduler() function spawns a thread to schedule
and manage task execution. One of the parameters to this call is the thread
priority, which should be higher than that of the threads which generate the
command lists.

Adding Clients to the Scheduler: osScAddClient()

The Scheduler instantiates the Vi Manager and receives all retrace messages.
However, clients of the Scheduler can receive a copy of the retrace message
by providing a message queue when they sign in. This is accomplished by
calling the osScAddClient() function.

Note: One of the parameters to this call is the message queue on which you
wish to receive retrace messages. Make sure that the queue is big enough if
you don’t want to lose messages, as the Scheduler does not block when the
queue is full.
472

NINTENDO DRAFT SCHEDULING AUDIO AND GRAPHICS
Creating Scheduler Tasks: The OSScTask Structure

In order to send tasks to the Scheduler for execution, you must first create
and initialize an OSScTask structure. The structure and a description of its
fields is listed below.

typedef struct OSScTask_s {
 struct OSScTask_s *next;
 s32 state;
 u32flags;
 void*framebuffer;

 OSTask list;
 OSMesgQueue*msgQ;
 OSMesg msg;
} OSScTask;

Table 24-1OSScTask structure fields

Field Description

next Not used by client (used by the
scheduler for list management).

state Not used by client (used by the
scheduler for state management).

framebuffer Address of the frame buffer for this task
(if it is a graphics task).

list Structure containing task code and
command list data (described below).

msgQ The message queue on which the client is
to receive the task done message.

msg The message that the client is to receive
when the task in done.
473

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Table 24-2OSTask structure fields

Field Description

type Task type; should be initialized to
M_AUDTASK for audio tasks or
M_GFXTASK for graphics tasks.

flags Various task state bits; should be
initialized to 0 for audio tasks, or
OS_TASK_DP_WAIT for most graphics
tasks

ucode_boot Pointer to boot microcode; should be
initialized to rspbootTextStart.

ucode_boot_size Pointer to boot microcode size in bytes;
should be initialized to
((u32)rspbootTextEnd -
(u32)rspbootTextStart).

ucode Pointer to task microcode. Should be set
to one of gspFast3DTextStart,
gspFast3D_dramTextStart,
gspLine3DTextStart, or
gspLine3D_dramTextStart for graphics
tasks; otherwise aspMainTextStart for
audio tasks.

ucode_size Size of microcode; should be initialized
to SP_UCODE_SIZE.

ucode_data Pointer to task microcode. Should be set
to one of gspFast3DDataStart,
gspFast3D_dramDataStart,
gspLine3DDataStart, or
gspLine3D_dramDataStart for graphics
tasks; otherwise aspMainDataStart for
audio tasks.

ucode_data_size Size of microcode data; should be
initialized to SP_UCODE_DATA_SIZE.
474

NINTENDO DRAFT SCHEDULING AUDIO AND GRAPHICS
dram_stack Pointer to DRAM matrix stack; should
be initialized to 0 for audio tasks and to
memory region of size
SP_DRAM_STACK_SIZE8 bytes.

dram_stack_size DRAM matrix stack size in bytes; should
be initialized to 0 for audio tasks or
SP_DRAM_STACK_SIZE8 for graphics
tasks.

output_buff Pointer to output buffer. The “_dram”
versions of the graphics microcode will
route the SP output to DRAM rather
than to the DP. When this microcode is
used, this should point to a memory
region to which the SP will write the DP
command list.

output_buff_size Pointer to store output buffer length. The
SP will write the size of the DP command
list in bytes to this location.

data_ptr SP command list pointer. For graphics
tasks, this is the application constructed
display list. For audio tasks, this
command list is created by
alAudioFrame(3P).

data_size Length of SP command list in bytes.

Table 24-2OSTask structure fields

Field Description
475

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Note: Refer to the osSpTaskLoad man page for information about the
alignment restrictions of the data pointers.

Sending Tasks to the Scheduler: osScGetTaskQ()

Once you have created and initialized a Scheduler task, you can send it to
the Scheduler thread via the Scheduler’s task queue. You can obtain a
pointer to this queue by calling osScGetTaskQ().

The Scheduler will read this task queue after the next retrace message from
the Vi Manager. Normally, you will send one audio and one graphics task to
the Scheduler each frame.

Note: After you send the task to the Scheduler, you should not modify it
until you receive the “done” message.

yield_data_ptr Pointer to buffer to store saved state of
yielding task. If the application is going
to support preemption of graphics tasks,
the graphics tasks should have this
structure member set. This should point
to a memory region of size
OS_YIELD_DATA_SIZE bytes. If task
preemption is not supported by the
application, this field be initialized to 0.
Audio tasks should always set this field
to 0

yield_data_size Size of yield buffer in bytes. When task
yielding is to be supported by the
application, this should be initialized to
OS_YIELD_DATA_SIZE for the
graphics task. This should always be 0
for audio tasks.

Table 24-2OSTask structure fields

Field Description
476

NINTENDO DRAFT ULTRA 64 DEVELOPMENT TOOLS
PART

Ultra 64 Development Tools VI
Chapter 1

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO DRAFT GAMESHOP DEBUGGER
Chapter 25

25. GameShop Debugger

This chapter describes the game debug environment for the Nintendo
Nintendo 64 system. It briefly explains the hardware and software
environments, illustrates recommended programming model, tells you how
to get started with the debug environment, and introduces you to the most
commonly used debugger features.

Hardware Environment

For the development system, the ROM on the game cartridge is replaced by
RAM on the development board; in this chapter, we refer to it as “virtual
ROM.” This allows the game developer to load the game program into
memory, control its execution, and observe the effects of modifying the
game without having to rebuild from source.

The development board plugs into the GIO bus of the workstation. Audio
and video output connections are provided. Communication facilities
between the workstation (referred to as the host in the rest of this chapter)
and the development board (called the target) are via the RAM devices that
emulate the cartridge ROM and several registers provided for handshaking
and synchronization.

Software Environment

The software debug environment consists of a number of software modules
that must be present to support debugging. Some of these will also be
present in the final game system, but many will not. A good understanding
479

NINTENDO 64 PROGRAMMING MANUAL DRAFT
of the software architecture will enable the game developer to deal with
unexpected situations that arise during a debugging session.

At the highest level, the debugger consists of two major parts. On the
development host, a graphically oriented source-level debugger called gvd
is provided. In the target system, a small in-circuit debug monitor called
rmon acts as the agent for gvd. The operator of the debugger sees only gvd,
but requests are actually fulfilled by rmon. That is, you may open a window
on the host for the purpose of looking at memory contents. The host cannot
access such memory directly, but it can ask rmon to fetch the memory
contents from the target so that the host can display them. rmon runs as
three threads under the OS, but these threads spend most of their time either
blocked (awaiting a host request) or stopped. Thus, they do not interfere
with the operation of the game (other than taking up some memory) unless
they are processing debugging commands under operator control.

Like the OS and other library routines, rmon is included in a build only if the
game developer specifically asks for it. This is done by creating a thread with
rmonMain specified as the function to be started when that thread is run.
The rmon program is part of libultra, the Nintendo 64 run-time library. You
do not need to have any special files to include rmon in a build. Referencing
rmonMain automatically includes all code and data for all three of rmon’s
threads.

On the host side, the main program you see is gvd, the debugger. However,
there are a number of support programs that run in conjunction with the
debugger. Since gvd is designed to work in other environments as well, it
uses a separate program called dbgif (for debugger interface) to
communicate with the target environment. Only dbgif knows the actual
means of communication with the target system; gvd is independent of such
concerns.

Since we wish to share the GIO interface between the host and target with
other programs (for example, diagnostics), a third module is provided on the
host. This is a device driver built into the UNIX kernel, and functions as the
target manager. When any program (such as dbgif) wishes to communicate
with the target, it issues requests to the u64 device driver. In this way, it is
possible for two pairs of programs running on the host and target to
communicate through a single channel without interference.
480

NINTENDO DRAFT GAMESHOP DEBUGGER
Rmon Theory of Operation

As mentioned in the previous section, rmon consist of three threads that run
under the operating system, but these threads run very infrequently. The
rmon main thread consists of a command parser, a command dispatcher,
and a collection of service routines. In operation, the debugger sends a
request to the target. This request consists of a number of 32-bit words that
describe the work to be done; for example, “read 40 words starting at
address 0x10000000 in the address space of thread 6.”

Note: All threads run in the same address space in this environment, but the
debugger could support a more complex environment where this was not
the case. The debugger does consider the RCP to be a separate address space
internally.

This request is passed through dbgif to the driver. The host (through
operation of the driver) alerts the target that it wishes to send a message. A
very small, high-priority thread called the rmon IO thread responds to the
interrupts that occur when the driver writes to one of the GIO registers. Only
one access to the “virtual ROM” is allowed at a time, so the host must wait
until any DMA access in progress is completed.

When this has happened, the target notifies the host that it is now possible
to use the memory. At this point, the target system starts a high-priority
system thread (the rmon spin thread) that keeps the game from running and
starting any more accesses to virtual ROM. Since the game is not accessing
this memory, the host is now free to load the request packet into a
predetermined location at the high end of memory. When the packet has
been deposited in memory, the host notifies the target that a request has
arrived. This stops the rmon spin thread. The rmon IO thread notifies the
main rmon thread and waits for the next interrupt.

The rmon main thread wakes up in response to the message from the rmon
IO thread. It fetches the incoming packet and dispatches a service routine
based on what service was requested. In our example, rmonReadMem will
be called. This function examines the arguments, reads the memory, and
deposits the contents in another section of virtual ROM as part of a reply
packet. It then sends an interrupt to the host, alerting it to the arrival of the
reply packet in memory. The host responds to this interrupt by copying the
reply packet out of virtual ROM and sending another interrupt to the target.
481

NINTENDO 64 PROGRAMMING MANUAL DRAFT
This provides feedback to the target that the host has finished with the reply
buffer and the target may use it again.

Most transactions between the host and target follow this model, but there
are a few exceptions. It is likely that the target will asynchronously send a
packet to the host that is not a reply to a host request. This occurs whenever
a breakpoint has been encountered, for example. Both host and target “sign
on” when starting, and each has a reply that it sends to the other when such
a sign-on is received. The debugger can also process notification that a
thread has been created and destroyed. While not currently used, these may
be added in the future.

Target-generated interrupts are received by the driver on the host system
and routed to processes (for example, dbgif) that have registered that they
would like to receive a given set of interrupts. (Interrupts are associated with
a six-bit value identifying which interrupt occurred.) Thus, rmon sends a
specific interrupt code to the host. This code indicates that the message
should be send to dbgif and not some other process. The driver does not read
the communication buffers except as an agent for dbgif or another
application process.

Programming Model

While a game may use any programming style desired by its author(s), there
are certain restrictions imposed by the debugger. Those developers who
want to use the debugger must conform to the rules of the programming
model to obtain the benefits of source-level debugging. This section
discusses the restrictions that apply.

The most obvious requirement is that you must use the OS, since the
debugger depends on it. It will not work under an OS of your own design,
because it is designed for the Nintendo 64 OS.

Use of the debugger also requires that you restrict thread priorities to a
specific range. User threads (those that are part of the game) are assigned the
range 1 through 127, with 127 being the highest-priority thread. The OS does
not prevent you from assigning thread priorities higher than 127, but you
will be unable to debug them. In fact, use of priorities in this range may
prevent the debugger from working at all. While the OS does not impose any
restrictions on the idlethread (other than the requirement that there be one),
482

NINTENDO DRAFT GAMESHOP DEBUGGER
the debugger requires that the idlethread be assigned priority level zero. It
is not sufficient that it be the lowest priority thread in the system: it must be
zero. Otherwise, the debugger may attempt to suspend it, which will lock up
the system. The rmon main thread should be set to priority
OS_PRIORITY_RMON.

The boot procedure for the system is described elsewhere, but some parts of
it are repeated here because a review is helpful. Each application has a boot
function, which is called at startup (after security checking, of course). The
boot function initializes the operating system, and then creates and starts the
main thread. The boot procedure may also do other things, such as hardware
initialization, if desired. It can also create other threads, but starting a thread
is always the last thing the boot procedure does. The reason for this is
simple; once control is transferred to a thread, there is no way to get back to
the boot procedure. To enable as much debugging of your start-up code as
possible, the boot procedure should be minimal—probably just the three
function calls that are required to start the main thread.

The main thread starts other threads within the system, including the
debugger thread. There is more flexibility here, although the ability to debug
system startup is significantly better if the recommended model is followed.
The recommended model is for the main thread to create all other threads in
the system, start only the rmon thread(s), and then lower its own priority
and become the idle thread. Again, you don’t have to do this, but debugging
will work much better if you do.

Clearly, you can’t debug any code that comes before starting the debugger
(rmon) thread. It is also the case that you can’t really debug code that has
already executed by the time the debugger starts up. This is not so much a
function of time as it is of the traditional approach used in debugging
embedded systems like the Nintendo 64. That is, if you want to watch the
system start from inside the debugger, then you can’t really start running the
application. Since the debugger is just another thread under the OS, it does
not keep your application from running off and executing the game
application. Some debuggers may “hold off” the application until the
debugger is ready; this one doesn’t.

Of course, this does not mean that you can’t debug the startup of your
application. It just means you must bring up your system in a stopped state
and start it running from within the debugger. To do this, your code should
start only two threads (although it can create as many as it wants, since
483

NINTENDO 64 PROGRAMMING MANUAL DRAFT
creating a thread does not cause it to run). The two threads are the rmon
thread, which is considered to be only one thread for now, and the idle
thread. Comment out or conditionally compile in the osStartThread calls for
other threads so that they do not run until told to do so. Running a thread
from the debugger is exactly like calling osStartThread.

What happens if you don’t follow this procedure and you start all the
threads in your system? Unfortunately, in most cases the debugger will be
harder to start, since it needs a stopped thread to connect to. The idle thread
and the debugger threads will be running, but it is likely that all your
application threads will be blocked on some event. Since the OS now allows
waiting threads to be stopped, you may bring up the application in a
running state, use the multithread view to stop the thread to which you will
attach, and then use Switch Thread to connect.

Using the Debugger

Once you have all the required software installed on your system, you can
modify your application to include rmon. Since rmon is rather passive, it
does not require you to run the debugger. It just waits for incoming requests
and does not interfere with the game operation unless requests arrive. An
include file, rmon.h, is provided as part of the distribution. It should be
included by the file that creates and starts the rmon thread.

Once you have built your application, you are ready to debug it.

1. Start dbgif in a window of its own.

2. Download your application with gload.

3. You may now start gvd itself.

For the Nintendo 64, it is required that gvd be started with the name of
your executable (the boot executable, if there is more than one) on the
command line. For example, if your executable is named sample, you
would enter:

gvd sample &

The debugger starts. It makes no attempt to contact the target system
yet.
484

NINTENDO DRAFT GAMESHOP DEBUGGER
You should have a source window and a small status window (which
may be minimized if desired). Now you must establish a link to the
target.

4. Select the Admin pulldown menu and click Switch Thread.

You will be prompted for the ID of the thread to which you wish to
connect. Under the OS, threads do not really have small integer ID’s;
instead, they are referenced by the address of their thread control
blocks. When you created the thread initially, you assigned it an ID for
the debugger to use.

5. Specify the ID you assigned to the thread to which you will be
attaching.

You may only attach to a thread that is in a stopped state. If you start
the application with all threads stopped as recommended above, you
will not have any problems attaching.

Once you have successfully attached, the host and target will communicate
to pass information about the system state back and forth. This takes a few
seconds, or even longer if you have many threads. Once completed, you may
bring up other views as appropriate to your debug session. Open views by
selecting the Views pulldown menu and then clicking on the view you wish
to see. The most frequently used of these are:

• register view

This is where you may examine or modify the contents of all R4300
registers (except for some system control registers). Note that these
registers apply to the thread to which you are currently attached.
Switching threads with this view open refreshes it with the register
contents for the new thread. You can only examine and modify the
registers of a thread that is stopped.

• memory view

As you would expect, this is where you examine and modify memory
contents. You may specify the window origin by address or symbol.
This window has two modes. In single-word mode, it displays and
modifies exactly one memory word without touching any other
locations. This is the mode you would use for dealing with
memory-mapped registers. In block mode, it displays a block of
memory from the specified starting address. The size of the block is
mostly determined by the size of the window on your screen.
485

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Stretching the window gives you more memory to look at. Shrinking it
gives you less. You may specify the base in which you wish memory to
be displayed.

• disassembly view

This view shows you memory contents as disassembled code based on
the current PC value, or else disassembled from some address you
specify. The source line corresponding to the disassembled memory is
also displayed. There are a number of configuration options for this
window that let you customize it to the display that you find most
useful.

• trap manager

This view shows you all breakpoints that are set. Breakpoints also show
up in the source and disassembly windows as pink lines. The current
PC shows up as a green line.

The source view, which is the main view of gvd, consists of a set of control
buttons for running and stopping the selected thread, plus two other
windows. The source window (the middle portion of the view) displays the
source at the current PC (by default), and tracks the program counter to keep
it on screen whenever possible. You may set breakpoints here by clicking in
the margin to the left of the line at which you wish to set the breakpoint.

The bottom of the source view is a small command line window where you
may enter commands and see the results. The mouse cursor must be in this
window to use it. This window is usually used to examine data objects like
structures. For example, if you wish to look at a message queue called
audioMQ, you can enter print audioMQ, and the contents of the structure
(including all its members) will be printed. Since the compiler and debugger
were designed to work together, the debugger has quite good type
information for displaying complex structures like this.

If you plan to use this window much, it is probably a good idea to move the
debugger higher on the screen and stretch the bottom down to enlarge the
command portion of the view. The default size is a bit small. This window
accepts most dbx commands, for those of you familiar with this popular
UNIX debugger.

The command window is also useful for setting breakpoints in functions
that are not on screen because they are in a different source file. While you
486

NINTENDO DRAFT GAMESHOP DEBUGGER
can always change source files and set a breakpoint, it is more convenient
(providing you wish to stop at the start of a function) to use the “stop in”
command. If you know that you are trying to isolate a problem in a function
called sendDisplayList, then it is probably best to type stop in
sendDisplayList in the command window, then click Continue. This
will run your application until any thread enters the specified function.

Note: Encountering a breakpoint stops all threads with priorities in the user
range (1 through 127). In general, coprocessor interrupts are blocked while
rmon is running, and CPU interrupts are enabled.

The Admin pulldown menu also contains a few other useful items. First, this
is how you exit the debugger. You may also change to a different executable
here, but you should then do another Switch Thread command. There is a
multithread view in this menu, which is useful to have opened if you use
more than one thread. It allows you to start and stop threads as a group, and
indicates whether a given thread is running or stopped. If stopped, it shows
you which function it was executing. It also shows you the name of the
thread data structure used in thread system calls.

You will probably find gvd to be fairly intuitive, especially if you have used
other source level debuggers. The online help should answer most questions
that arise in debugger operation.
487

NINTENDO 64 PROGRAMMING MANUAL DRAFT
488

NINTENDO DRAFT ULTRA 64 PERFORMANCE TUNING
PART

Ultra 64 Performance Tuning VII
Chapter 1

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO DRAFT PERFORMANCE TUNING GUIDE
Chapter 26

26. Performance Tuning Guide

The following sections will discuss

• Data Reduction

• Geometry Tuning

• Raster Tuning

• CPU Tuning
491

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Data Reduction

Game World Organization

The most important performance tuning technique in graphics is to discard
as much geometry as possible before animation computation and rendering.
Depending on your game, you can organize the geometry in several ways
that enable rapid culling of large quantities of data. One example is a simple
grid of fixed-sized regions:

Figure 26-1 Fixed Size Grid Database Organization
492

NINTENDO DRAFT PERFORMANCE TUNING GUIDE
You could also build a hierarchy of different-sized grids to give you a
quadtree:

Figure 26-2 Quadtrees

You can extend this into 3D and get either a fixed size cube organization or
octrees. Keep in mind that you are trying to eliminate work; not just graphics
rendering but also texture loads and animation processing such as collision
detection.

The grid need not be regular either, you could also use other boundaries if it
suits your data. One example of this is a “portal connectivity” organization
inside of a building. In a building with rooms and hallways, the possible list
of things that you can see can be represented by a portal connectivity
description, which lists which rooms of the building are possibly visible.
493

NINTENDO 64 PROGRAMMING MANUAL DRAFT
You can further reject more data by testing a list of screen projected portal
rectangles against visibility to determine whether to consider data in a
particular room or hallway.

Figure 26-3 Portals Connectivity Visibility
494

NINTENDO DRAFT PERFORMANCE TUNING GUIDE
Hierarchical Culling

Throwing away geometry to eliminate processing does not have to stop at
the top level. A common organization at the object level is a bounding
volume test to eliminate objects (see gSPCullDisplayList()).

Figure 26-4 Bounding Sphere Test
495

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Geometry Tuning (gspFast3D - Precise Microcode)

The standard gspFast3D microcode contains very precise subpixel x,y
calculations for antialiasing and precise s,t calculations for large screen area
textures. This precision is required for terrain or background polygons that
are large.

This microcode is full featured, including lighting, clipping, texture
coordinate generation (reflection mapping).

Vertex Grouping

The geometry microcode has a local vertex cache. Loading a block of
vertexes can amortize the cost of per vertex calculations (transformation,
lighting, texture coordinate computation).

Careful organization of the database can minimize these calculations. In
general, it is best to load the vertex cache with as many vertices as possible,
then draw all the geometry which uses those vertices.

Pre Lighting

For non-dynamic lighting effects, lighting computations can be calculated at
model time, then rendered with simple Gouraud shading.

Clipping and Lighting

This microcode does not have enough instruction space to hold lighting and
clipping code. It swaps them in from the dram using a least recently used
algorithm. Since lighting occurs during vertex load and clipping occurs
during polygon drawing, there are natural blocks of work following each
ucode load. Loading just a few vertices and then drawing a small number of
triangles will cause this microcode loading to “thrash”.
496

NINTENDO DRAFT PERFORMANCE TUNING GUIDE
Note: We have not seen performance degradation due to this swap in any
games. Game developers did not realize that this was happening until we
told them. Large block DMA transfers (such as microcode loads) are very
efficient.

Kinds of Polygons

The cost of geometric processing in the RSP is listed below in the order of
decreasing performance.

• Flat Shade (using gDPSetPrimColor (3P) to select the color)

• Gouraud Shade

• Gouraud Shade + Z- buffer

• Gouraud Shade + Texture

• Gouraud Shade + Z-buffer + Texturing

Textures instead of Geometry

When possible, use textures to represent complex geometry. The RCP is
designed to draw high-quality textured primitives. Achieving complexity
by using additional geometry will always be slower than using textures.

Geometric Level of Detail

When objects get far away or have rapid animation, you can render it with
less detail without noticeable loss of detail.
497

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Geometry Tuning (Turbo Microcode)

The gspTurbo3D microcode is a feature-limited, precision-reduced,
optimized version of the 3D polygon microcode. It uses a completely
different display list organization that is more efficient, but less general.

Because of the reduced precision, the turbo microcode is not suitable for
drawing backgrounds or objects with precise textures. It is designed to draw
“characters”, objects that generally remain in the middle of the viewing
frustum.

The following features are not supported with the turbo microcode:

• clipping

• dynamic lighting

• perspective-corrected textures

• matrix stacks

• antialiasing (anti-alising is supported, but not as well).

Current performance measurements of this microcode are >5K polygons per
frame @ 60 Hz. For more information, consult the man page for gspTurbo3D
(3P).

This microcode is in it’s first release and may change.
498

NINTENDO DRAFT PERFORMANCE TUNING GUIDE
Raster Tuning (Fillrate)

Disable Atomic Primitives

Atomic primitive mode (gPipelineMode(G_PM_1PRIMITIVE)) is intended
to avoid span buffer coherency problems which can be caused by sucessive
primitives with overlapping spans during “read-modify-write” modes
(z-buffered or blended modes). The 1PRIMITIVE mode inserts a delay into
the pipeline between each primitive to make sure there are no overlaps.

In reality, the overlap case is very rare, and would be hard to see unless you
were looking for it. In the worst case, the lost cycles between primitives can
add up to about 1-1.5Mpixels/sec of lost fillrate.

To disable the atomic primitive mode, use the command
gPipelineMode(G_PM_NPRIMITIVE).

Partial Sorting for Z-Buffer

A “partial sorting” of objects being drawn can accelerate rendering when
using z-buffering. The z-buffer test is a conditional write, so if objects are
drawn in roughly front-to-back order, this test will often prevent the write
to update the z-buffer value.

No Z-Buffer

Z-buffer causes major penalty in fillrate. Antialiasing also causes some
performance loss in fillrate. We have included a simple performance tool
(blockmonkey) in the release to give you a feel for geometry and fillrate
performance.

There are many visibility sorting algorithms available and even more
hybrids of these algorithms. There are also properties of particular games
that impart valuable information about depth order. If a game can use these
techniques and avoid z-buffering, performance will improve.
499

NINTENDO 64 PROGRAMMING MANUAL DRAFT
Convex Objects

If a group of objects are all convex, a centroid or bounding volume sort and
back-face rejection will give the proper rendering order.

Meshed Objects

Many meshed objects have a small number of mesh traversal orders which
are correct sorts at arbitrary orientation, even though they are concave.
Meshed object are topologically 2D, for example, a torus, a terrain height
field, building corridors, etc. With one batch of vertex points, one of several
polygon descriptor display lists could be selected by view location. For
example, the polygons in a terrain mesh might have four orders across the
mesh, S+T+, S-T+, S+T-, S-T-. The two sides of the mesh then closest to the
view point select the order.

Cell Based Scenes

Cells are simply a higher level of mesh, where the cell draw order can be
determined from view.

Layered Scenes

Often layers of data are known never to be behind another (buildings on a
landscape, furniture in a room). then the layers can be drawn in this order,
with only a sort within each layer.

Bucket Sort

Attractive since data need only be accessed once. A linked list of buckets can
avoid local overflow without excessive memory usage. the bucket can be a
display list, for example, of calls to clumps.

Avoid Cyclic Objects

Clumps of polygons in which NO sort order is correct (three long triangles
arranged in a triangle in which at each corner a different triangle is in front)
have no visibility solution without subdivision.
500

NINTENDO DRAFT PERFORMANCE TUNING GUIDE
 Game-Specific Visibility

Many game situations provide implied visibility order between objects or
even within objects. Consider a jet fighter flight simulator game: The player
is always moving “forward” (in general) and targets attack from a limited
number of directions. This could allow you to model the targets carefully
and achieve correct surface visibility determination, even if they are not
strictly convex.

No Antialiasing

Turning off antialiasing can help increase fillrate. To minimize the aliasing
effects, you can increase the horizontal resolution of the framebuffer.
Performance tests (blockmonkey) show that 512x240 “no AA no ZB” is faster
than 320x240 “AA no ZB” on large polygons. In some cases, this is better
than a 25% gain, in exchange for an increase in framebuffer size.

On smaller polygons, you will pay a 5% to 10% fixed overhead due to
additional video bandwidth. Both antialiasing and dither filter video
hardware require fetching 3 scanlines and filter down to produce a single
scanline of video.

Reduced Aliasing

Reduced Aliasing refers to a blender mode (see the G_RM_RA* macros in
gbi.h) in which the color and the pixel coverage are only written instead of
the normal read/modify /write cycle. In this mode silouette edges will be
antialiased, but internal edges of an object will not be antialiased. This
mode works with and without z-buffering.

 Silouettes can also have artifacts in this mode when displayed on top of a
surface which has edges through it, such as a tesselated background, which
has also been rendered in this mode. This is because the edges in the
background will be partial, rather than fully covered. In this case, the pixel
will have multiple partial fragments, and the antialiasing on the silouette
will look wrong. A possible workaround for this problem is to render the
background in non-antialiased mode, which will write full coverage to the
framebuffer. Then render the foreground characters using this reduced
antialiasing mode.
501

NINTENDO 64 PROGRAMMING MANUAL DRAFT
CPU Tuning

Parallel Execution of the CPU and the RCP

Full speed rendering in the Nintendo64 can only be accomplished by fully
utilizing all of it’s resources. One of the most powerful is the coarse-grain
parallelism that can be achieved between the CPU and the RCP.

There are many ways you can exploit this parallelism, here are some ideas:

• compute game and animation parameters for frame (n+1) while
frame (n) is rendered with the RCP.

• compute game and animation parameters while another RCP task
is computing. If your game includes several RCP tasks per frame,
you can pipeline them so the CPU and the RCP are always busy at
the same time.

• instruct the RDP to render from a DRAM display list while the RSP
is used to compute another task, such as audio.

Sorting

A detailed analysis of sorting algorithms is beyond the scope of this
document. The reader is referred to texts by Knuth1 or Sedgewick2, among
others. It is useful to review major properties of sorting algorithm analysis
and see how they relate to real-time system performance.

Properties of sorting algorithms which we want to compare include:

• best case sorting time

• worst case sorting time

• average case sorting time

1 Knuth, D. E., The Art of Computer Programming, Volume 3: Searching and Sorting, Addison-Wesley
Publishing, 1973, ISBN: 0-201-03803-X.

2 Sedgewick, R., Algorithms in C, Addison-Wesley Publishing, 1990, ISBN: 0-201-51425-7.
502

NINTENDO DRAFT PERFORMANCE TUNING GUIDE
• additional memory requirements

• size of the code to implement

• ability to exploit coherence.

The time to sort is probably the most important; obviously we want to
choose an algorithm that is fast. But it is not that easy. Some of the fastest
sorting algorithms have the widest disparity between their average time and
their worst-case time. This makes it difficult to predict performance
necessary for a real-time system.

Often the difference between worst-average-best-case performance is the
initial order of the data. By knowing what we are sorting (and why) we can
choose a better sort. For example, if we are sorting Z-values in order to
determine visibility drawing order, we can reason that this order varies only
slightly from frame to frame (objects do not move “dramatically” and sort
interchanges are local). By exploiting this frame to frame coherence, we can
choose a sort with linear performance for the “already nearly sorted” case,
speeding up our sort tremendously.

Additional memory requirements are also a major concern in an embedded
system. They must be minimal, and most of all, predictable. Consider the
sorting problem when designing your data structures.
503

NINTENDO 64 PROGRAMMING MANUAL DRAFT
504

NINTENDO DRAFT INDEX
Index VIII
Chapter 1

NINTENDO 64 PROGRAMMING MANUAL DRAFT

NINTENDO DRAFT
Symbols
.aiff file 374
.bnk file 426
.ctl file 373, 378, 402, 447, 451
.inst file 76, 397, 449, 451, 457, 458, 459, 462
.sbk file 423, 451, 454
.seq file 451
.sym file 402
.tbl file 402, 426, 451
/usr/sbin 31
/usr/src/PR 30
/usr/src/PR/assets 30
/usr/src/PR/conv 31
/usr/src/PR/libultra 31
/usr/src/PR/relnotes 30
__clearAudioDMA 444
_gsDPLoadTextureBlock_4b 262

Numerics
0x0 122, 139
0x80000400 120
1/w 184, 186
3D transformations 63
4Dgifts 70
64-bit, R4300 46
9-bit RDRAM 318

A
AA_EN 337
a-buffer 340
accuracy, z 325
active page register 58
ADD render mode 344, 345
address 47
ADPCM 369, 373, 385, 401, 402, 405, 412, 413, 414, 426, 435,

455
ADPCM decoder 437
ADPCM decompressor 436
ADPCM predictor 436
ADPCM tools 455
ADSR 406, 430, 457, 458
AI 48, 86, 95, 102, 111, 114
AIFC 76, 412, 413, 435, 451, 455
AIFC spec 435
AIFF 76, 374, 405, 412, 413, 426, 435, 451, 455, 462
AIFF file 459
AIFF-C 405
AL_FX_CUSTOM 388
AL_FX_ECHO 391

AL_FX_SMALLROOM 392
alAudioFrame 65, 372, 382, 383, 395, 469, 470, 475
ALBank 427
ALBankFile 373, 377, 426
alBnkfNew 373, 378, 426
ALCSeq 376
alCSeqGetLoc 377
alCSeqNew 376, 377
alCSeqNewMarker 377
alCSeqNextEvent 377
alCSeqSecToTicks 377
alCSeqSetLoc 377
alCSeqTicksToSec 377
alCSPDelete 379
alCSPGetChlFXMix 380
alCSPGetChlPan 379
alCSPGetChlPriority 380
alCSPGetChlProgram 380
alCSPGetChlVol 380
alCSPGetSequence 379
alCSPGetState 379
alCSPGetTempo 379
alCSPGetVol 379
alCSPNew 379
alCSPPlay 379
alCSPSendMidi 380
alCSPSetBank 379
alCSPSetChlFXMix 380
alCSPSetChlPan 380
alCSPSetChlPriority 380
alCSPSetChlProgram 380
alCSPSetChlVol 380
alCSPSetSequence 379
alCSPSetTempo 379
alCSPSetVol 379
alCSPStop 379
ALDMANew 382
ALDMAproc 382, 383, 384
ALEnvelope 430
alHeapAlloc 447
alHeapInit 372
Alias 70, 71, 72
aliased 271
aliasing 271, 301
alignment 48
alignment, 16-bit 37, 58
alignment, 16-byte 48
alignment, 64 byte 36
alignment, 64-bit 37, 58, 139, 320
507

NINTENDO DRAFT
alignment, 64-byte 210
alignment, color index palette 244
alignment, image 320
alignment, memory 58
alignment, screen 272
alInit 372, 382, 383, 386
ALInstrument 428
ALKeyMap 431
alpha 287, 332, 336
alpha combiner 291
alpha compare 205, 278, 298, 356
alpha dither 312, 336
alpha times coverage 337
ALPHA_CVG_SEL 337, 338
ALSeq 376
alSeqGetLoc 377
alSeqNew 376, 377, 378
alSeqNewMarker 376, 377
alSeqNextEvent 376, 377
ALSeqpConfig 397
alSeqpDelete 379
alSeqpGetChlFXMix 380
alSeqpGetChlPan 379
alSeqpGetChlPriority 380
alSeqpGetChlProgram 380
alSeqpGetChlVol 380
alSeqpGetSequence 379
alSeqpGetState 379
alSeqpGetTempo 379
alSeqpGetVol 379
alSeqpLoop 380
alSeqpNew 378, 379
alSeqpPlay 378, 379
alSeqpSendMidi 380
alSeqpSetBank 378, 379
alSeqpSetChlFXMix 380
alSeqpSetChlPan 380
alSeqpSetChlPriority 380
alSeqpSetChlProgram 380
alSeqpSetChlVol 380
alSeqpSetSeq 378
alSeqpSetSequence 379
alSeqpSetTempo 379
alSeqpSetVol 379
alSeqpStop 378, 379
alSeqSecToTicks 376, 377
alSeqSetLoc 377
alSeqTicksToSec 376, 377
alSndpAllocate 373, 375

alSndpDeallocate 374, 375
alSndpDelete 374, 375
alSndpGetSound 375
alSndpGetStates 375
alSndpNew 373, 375
alSndpPlay 374, 375
alSndpPlayAt 375
alSndpSetFXMix 375
alSndpSetPan 375
alSndpSetPitch 375
alSndpSetPriority 375
alSndpSetSound 373, 374, 375
alSndpSetVol 375
alSndpStop 374, 375, 458
ALSound 373, 429
alSynAddPlayer 384, 393, 394
alSynAllocFx 393
alSynAllocVoice 384, 393
alSynDelete 393
alSynFreeFx 393
alSynFreeVoice 393
alSynGetFXRef 394
alSynGetPriority 393
alSynNew 382, 393
alSynRemovePlayer 393
alSynSetFXMix 386, 393
alSynSetFXParam 394
alSynSetPan 393
alSynSetPitch 393
alSynSetPriority 385, 393
alSynSetVol 393
alSynStartVoice 385, 393
alSynStartVoiceParams 393
alSynStopVoice 385, 393
ALVoice 384
ALVoiceHandler 395
ALWaveTable 373, 374
ALWavetable 432
ambient 156
animation, sprite 273, 293
antialiasing 46, 63, 74, 119, 175, 203, 204, 207, 301, 302, 327,

340, 342, 343, 356, 496, 498, 501
application thread 33
artifacts, aliasing 271
artifacts, antialiasing 328
artifacts, filtering 274
aspMainDataStart 474
aspMainTextStart 474
attack 374
508

NINTENDO DRAFT
attack-decay-sustain-release 406, 430
audio 33, 372
audio buffers 442
audio command list 383
audio DAC 41
audio development tools 449
audio DMA callback 383, 470
audio heap 372, 382, 386, 442, 447
audio interface 43, 46, 86, 102
audio library 64, 65, 369
audio playback 52
audio playback rate 382
audio processing 45
audio system 449
audio tools 401
audio waveform 373
Autodesk 3DStudio 71

B
back-face rejection 63, 154, 500
back-facing polygon 329
background image 297
bank 447, 457, 462
bank control file 447
bank file 377, 426, 449, 451, 454
bank object 403
bank, MIDI 30
bilinear filter 193
billboard 205, 262, 286, 332, 333
binary separating planes (BSP) 70
bitmap 354
BL 45, 176, 203, 204, 205
blend 337
blend color 205, 206
blender 45, 203, 301, 305, 310, 317, 327, 331, 345
blender equation 310
blender mode bits, cycle-dependent 345, 346
blender mode bits, cycle-independent 345
blender mode, creation 345
blending 63
blockmonkey 499
blue screen photography 201
Boot 87
boot location 120
bounding volume 495
bounding volume sort 500
box filter 193
breakpoint 93, 486
bss 123

buffers, audio command list 442, 446
buffers, audio output 442
buffers, audio sample DMA 442, 444
buffers, audio sequence 442
buffers, sequence 447
buffers, sequencer event 442, 446
buffers, synthesizer update 442, 446
bus bandwidth 48
byte ordering 425
bzero 119, 123

C
C programming language 38, 47, 58, 67, 77, 137, 457
C, middle C 431, 439, 452
c_dev 30
C3 452
C4 452
cache coherency 55
cache flushing 54
cache invalidate 48
cache line 55, 118
cache line tearing 48
cache, data 118
cache, two-way set-associative 55
cache, vertex 72, 149
cache, write back 118
cached address 128
cached, unmapped 47
CART 95
CaseVision 30
CAUSE register 93
CC 45, 176, 195, 200
cell based scenes 500
centroid sort 500
chroma key 201
CI 190, 215, 221, 290
clamp, coverage 333
CLD_SURF 343, 344, 345
clip ratio 152
clipping 63, 152, 496, 498
clock speed 48
cloud 287, 336
cloud surface 342
cloud surface mode 344
clouds 316
CLR_ON_CVG 330, 337, 338
codebook 436
codecs 65
coherency, span buffer 182
509

NINTENDO 64 PROGRAMMING MANUAL DRAFT
color combiner 45, 193, 195, 200, 278, 288, 291, 295
color combiner input 196
color combiner registers 197
color combiner sources 195
color index 188, 290
color index texture 240
color space conversion 194
command buffer, RDP 109
command list size, audio 446
command list, audio 469
command list, graphics 469
comp.graphics 70
comp.sys.sgi 70
compare, Z 320
compiler, C 77
compiler_dev 30
compressed audio 373
compression 281
Computer Midi Interface 421
computer monitor 74
concave 500
controller input 66
controller interface 86
controllers, sequence player 381
conversion tools 31
convex 501
convex objects 500
coordinate system 146
coprocessor 0, R4300 56
Coprocessor Unusable 93
copy mode 180, 277, 298
copy pipeline mode 276
COUNTER 95
coverage 184, 304, 306, 314, 333, 335, 337, 340, 342
coverage overflow 337
coverage unit 306
coverage value 331, 332
coverage, zap 338
CPU 41, 45, 48, 52, 54, 84, 89, 91, 113, 127, 450, 469, 502
CPU Fault 37
CPU_BREAK 95
cracks 306
culling 492
culling, hierarchical 495
culling, polygon 154
culling, volume 154
CVG_DST 337, 338
CVG_DST_SAVE 317
CVG_X_ALPHA 337, 338

cyclic objects 500

D
DAC 370, 372, 450, 469
data cache, R4300 46, 47, 54, 118, 139
dbgif 31, 67, 480, 481, 482, 484
dbx 486
debugger 67, 90, 93, 124, 479, 480, 481, 482, 484
debugging 37
DEC_LINE 339, 341
decal 295, 337, 343
decal line mode 334, 340
decal surface 332, 333, 334
decay 374
degenerate polygons 331
delta Z 304, 321, 323, 328, 341
depth compare 320
detail texture 229, 230, 233
detune value 459
dev 30
development board 479
development system 48
device driver 101, 480
Device Manager 107
DI 95
diffuse 156
disassembler 37
display list 61, 115, 116, 135, 137, 141, 218
display list, audio 65
display list, optimal 142
display list, RDP 45
dither filter 501
dither, alpha 312
dither, color 210
dither, noise 312
dither, screen coordinate based 312
dithering, color 211
divot 334
DM 107
DMA 37, 44, 46, 48, 54, 55, 56, 58, 101, 112, 114, 139, 383,

445, 470
DMA, audio 445
DMedia 5.5 421
dmedia_eoe (version 5.5) 30
DMEM 44, 115, 135
DP 86, 109, 114
DRAM 60, 63, 239, 475
DRAM, 9-bit 119, 210
dynamic memory allocation 58
510

NINTENDO DRAFT
E
effects 386
envelope 373, 377, 402, 406, 457, 458, 461
environment color 197
environment mapping 168
error, Z 325
event 84
example application 384
exception 37, 85, 93
exception handler 85
executable 484
explosions 316

F
far plane 325
fast clears 45
FAULT 34, 95
fault handler 34, 93
file system 87
fill color 211
fill mode 180
FILL_COLOR 352
filter 271
filter, average 276
filter, bilinear 193, 272, 274
filter, bilinear restrictions 193
filter, box 193
filter, point sampling 193
filter, triangular 275
filter, video 314
fixed-point 144, 147, 185, 271
flip, texture 279
floating-point, R4300 46
flt2c 31, 72
fog 169, 179, 203, 205, 206, 313
fog alpha 318
fog color 205
FORCE_BL 317, 337, 338
format, image 318
fractal 234
frame rate, audio 443
FRAME_LAG 445
framebuffer 41, 43, 45, 46, 48, 49, 119, 203, 205, 210, 298
framebuffer alignment 210
framebuffer, color 58
framebuffer, depth 58
frequency, texture 271
FRUSTRATIO_1 152
frustum clipping 63

ftp 70

G
G_AC_DITHER 206, 316, 336
G_AC_NONE 206
G_AC_THRESHOLD 206, 298, 315
G_AD_DISABLE 312
G_AD_NOISE 312
G_AD_NOTPATTERN 312
G_AD_PATTERN 312
G_BL_1 317
G_BL_A_FOG 317
G_BL_CLR_IN 317
G_BL_CLR_MEM 317
G_CC_ADDRGB 198
G_CC_ADDRGBDECALA 198
G_CC_BLENDI 199
G_CC_BLENDIA 199
G_CC_BLENDIDECALA 199
G_CC_BLENDPEDECALA 289
G_CC_BLENDRGBA 199
G_CC_BLENDRGBDECALA 199
G_CC_CHROMA_KEY2 202
G_CC_DECALRGB 198
G_CC_DECALRGBA 198
G_CC_HILITERGB 199
G_CC_HILITERGBA 199
G_CC_HILITERGBDECALA 199
G_CC_INTERFERENCE 200
G_CC_MODULATEI 199
G_CC_MODULATEI_PRIM 199, 288
G_CC_MODULATEI2 200
G_CC_MODULATEIA 199
G_CC_MODULATEIA_PRIM 199
G_CC_MODULATEIDECALA 199
G_CC_MODULATEIDECALA_PRIM 199
G_CC_MODULATERGB 199
G_CC_MODULATERGB_PRIM 199
G_CC_MODULATERGBA 199
G_CC_MODULATERGBA_PRIM 199
G_CC_MODULATERGBDECALA 199
G_CC_MODULATERGBDECALA_PRIM 199
G_CC_PASS2 200
G_CC_PRIMITIVE 198
G_CC_REFLECTRGB 199
G_CC_REFLECTRGBDECALA 199
G_CC_SHADE 198
G_CC_SHADEDECALA 198
G_CC_TRILERP 200
511

NINTENDO 64 PROGRAMMING MANUAL DRAFT
G_CD_BAYER 312
G_CD_DISABLE 312
G_CD_MAGICSQ 312
G_CD_NOISE 312
G_CK_KEY 202
G_CULL_BACK 154
G_CULL_BOTH 154
G_CULL_FRONT 154
G_CV_K0 194
G_CV_K1 194
G_CV_K2 194
G_CV_K3 194
G_CV_K4 194
G_CV_K5 194
G_CYC_1CYCLE 181, 206, 310, 314
G_CYC_2CYCLE 181, 207, 263, 290, 310, 314, 344
G_CYC_COPY 181, 205, 276, 277, 315, 316, 344
G_CYC_FILL 181, 205, 315, 344
G_FOG 169, 207
G_IM_FMT_CI 189
G_IM_FMT_I 189, 288
G_IM_FMT_IA 189
G_IM_FMT_RGBA 189
G_IM_FMT_YUV 189
G_IM_SIZ_16b 189
G_IM_SIZ_32b 189
G_IM_SIZ_4b 189
G_IM_SIZ_8b 189
G_LIGHTING 168
G_MAXFBZ 211
G_MTX_LOAD 145
G_MTX_MODELVIEW 145, 157
G_MTX_MUL 145
G_MTX_NOPUSH 145
G_MTX_PROJECTION 145, 157
G_MTX_PUSH 145
G_OFF 150
G_ON 150
G_PM_1PRIMITIVE 183, 499
G_PM_NPRIMITIVE 183, 499
G_RM_AA_TEX_EDGE 287, 289, 291
G_RM_AA_ZB_OPA_SURF 204
G_RM_AA_ZB_OPA_SURF2 204
G_RM_CLD_SURF 317
G_RM_FOG_PRIM_A 204, 205, 207
G_RM_FOG_SHADE_A 204, 205, 206, 314
G_RM_NOOP 299, 315
G_RM_OPA_SURF 344
G_RM_PASS 204, 205

G_RM_TEX_EDGE 289, 316
G_RM_VISCVG 346
G_RM_VISCVG2 346
G_RM_ZB_CLD_SURF 317
G_RM_ZB_OPA_SURF 299
G_RM_ZB_OPA_SURF2 206
G_TD_CLAMP 192
G_TD_DETAIL 192
G_TD_SHARPEN 192
G_TEXTURE_GEN 168
G_TEXTURE_GEN_LINEAR 168
G_TF_AVERAGE 194, 276
G_TF_BILERP 194, 273, 275
G_TF_CONV 194
G_TF_FILT 194
G_TF_FILTCONV 194
G_TF_POINT 194, 272, 273
G_TL_LOD 192
G_TL_TILE 192, 290
G_TP_NONE 191, 269
G_TP_PERSP 191
G_TT_IA16 192
G_TT_NONE 192
G_TT_RGBA16 192
G_TX_CLAMP 189
G_TX_LOADTILE 225, 248, 292
G_TX_MIRROR 189, 279
G_TX_NOLOD 190, 279
G_TX_NOMASK 189
G_TX_NOMIRROR 189, 279
G_TX_RENDERTILE 225, 248, 273, 275, 276, 292
G_TX_WRAP 189, 283
G_ZS_PRIM 299
gain 377
game controller 29, 43, 46, 112
game timing 55
GameShop 30, 67
gamma correction 74
GBI 61, 62, 188, 216, 218, 248, 351
GBI assembly 62
gbi.h 137, 139, 337, 501
gdis 37
gDPFullSync 36
gDPSetColorImage 35
gDPSetMaskImage 35
gDPSetPrimColor 497
gDPSetTextureImage 35, 216
gDPSetTextureLUT 244, 246
gdSPDefLights0 157
512

NINTENDO DRAFT
gEndDisplayList 353
General MIDI 467
generation of the MIP maps 232
geometric level of detail 497
geometry 61
ginv 28
GIO 48, 49, 479, 480, 481
GIO board 27
gl_dev 30
gload 31, 34, 37, 78, 87
Gouraud 496
GPACK_RGBA5551 211
GPACK_ZDZ 211
graphics 33
graphics binary interface 61, 62, 72, 137, 216
graphics overrun 471
graphics pipeline 45, 135
gsDPFillRectangle 172
gsDPFullSync 182
gsDPLoadMultiBlock 292
gsDPLoadMultiTile 291, 292
gsDPLoadMultiTile_4b 291
gsDPLoadSync 192, 216, 248
gsDPLoadTextureBlock 163, 166, 216, 225, 262
gsDPLoadTextureTile 189, 248, 282
gsDPLoadTextureTile_4b 189, 288
gsDPLoadTile 216, 225, 248
gsDPLoadTLUT 216, 225
gsDPPipelineMode 183
gsDPPipeSync 181, 311
gsDPSetAlphaCompare 206, 316, 337
gsDPSetAlphaDither 312
gsDPSetBlendColor 311, 315
gsDPSetColorDither 312
gsDPSetCombineKey 202
gsDPSetCombineMode 262, 288, 291
gsDPSetCycleType 169, 181, 206, 263, 276, 277, 310
gsDPSetCyleType 290
gsDPSetDepthSource 299, 309
gsDPSetEnvColor 289
gsDPSetFogColor 169, 205, 207, 311, 313, 318, 344
gsDPSetKeyGB 202
gsDPSetKeyR 202
gsDPSetPrimColor 207, 288, 311
gsDPSetPrimDepth 299, 309, 311
gsDPSetRenderMode 169, 204, 205, 206, 291, 314, 337, 344, 345,

346
gsDPSetScissor 185, 311
gsDPSetTextureConvert 217

gsDPSetTextureDetail 192, 217
gsDPSetTextureFilter 217, 272, 273, 275, 276
gsDPSetTextureImage 248
gsDPSetTextureLOD 192, 217, 290
gsDPSetTextureLUT 216
gsDPSetTexturePersp 191, 216, 269, 270
gsDPSetTile 216, 225, 248, 263
gsDPSetTileSize 216, 225, 248, 263
gsDPTextureRectangle 269, 273, 275, 276, 288
gsDPTextureRectangleFlip 280
gsDPTileSync 192, 216
gsLoadTLUT 191
gSPCullDisplayList 495
gSPDisplayList 35
gSPEndDisplayList 36
gspFast3D 63, 137, 156, 161, 496
gspFast3D_dramDataStart 474
gspFast3D_dramTextStart 474
gspFast3DDataStart 474
gspFast3DTextStart 474
gsPipelineMode 499
gspLine3D 63
gspLine3D_dramDataStart 474
gspLine3D_dramTextStart 474
gspLine3DDataStart 474
gspLine3DTextStart 474
gSPMatrix 35
gSPSegment 138
gSPSetGeometryMode 206
gspTurbo3D 63, 498
gSPVertex 35
gSPViewport 35, 152
gsSetAlphaDither 312
gsSetConvert 194
gsSetFillColor 211
gsSetPrimColor 198
gsSetTextureConvert 194
gsSetTextureFilter 194
gsSetTextureLUT 192
gsSP1Triangle 171
gsSPBranchList 142
gsSPClearGeometryMode 154
gsSPClipRatio 153
gsSPCullDisplayList 154
gsSPDisplayList 141
gsSPEndDisplayList 142, 154
gsSPFogPosition 169, 206, 207
gsSPLine3D 171
gsSPMatrix 145
513

NINTENDO 64 PROGRAMMING MANUAL DRAFT
gsSPPerspNormalize 146, 308
gsSPPopMatrix 145
gsSPSetGeometryMode 154, 168, 169, 206, 207
gsSPSetLights0 159
gsSPTexture 150, 216, 228
gsSPTextureRectangle 172, 216
gsSPTextureRectangleFlip 172, 173
gsSPVertex 149, 160
gsSPViewport 308
guLookAt 144, 152, 163
guLookAtHilite 162
guLookAtReflect 166
guOrtho 144
guParseGbiDL 35
guParseRdpDL 35
guPerspective 144, 146, 152
gvd 31, 34, 67, 87, 124, 480, 484, 486

H
heap library 58
hidden bits 318, 324
high resolution 46
hinv 28
host overrun 470
HW2 interrupt 96

I
I 188, 215, 221, 240, 247, 288
I/O 56, 86, 101, 103
I/O, asynchronous 104
I/O, synchronous 104
IA 188, 215, 221, 240, 247, 289
ic 76, 402, 403, 413, 462
idle thread 33, 90
ie 420
IM_RD 317, 337
image conversion 70
image conversion software 74
image format 318
IMEM 44, 115, 135, 138
immediate mode rendering 61
Indy video input 29
Indy workstation 27, 28, 29, 30, 48, 49, 421
Indy, and MIDI 421
initOsc 397, 398, 399
instruction cache, R4300 46
instrument 376, 377, 398, 404, 427, 429, 457, 461
instrument compiler 362, 402, 403, 412, 435
Instrument Editor 420

integration 33
Intel 425
interference pattern 296
interference texture 261
internal edge 326, 327, 328, 330, 332, 333, 336
interpenetration 303, 337, 338, 342, 343
interpenetration mode 335
interpolation, bilinear 193, 274
interpolation, video filter 326
interrupt 54, 85, 91, 93, 482
interrupt messages 54
inverse kinematics 71
IRIX 30, 67, 77

K
kernel 83
kernel mode 47
keymap 377, 405, 457, 458, 461
Knuth 502
KSEG0 34, 47, 114, 117, 121, 122, 126

L
layered scenes 500
ld 58
level of detail, geometric 70, 497
level of detail, texture 186, 232
libaudio.h 386
libultra 469
libultra.a 31, 77, 78
libultra_d.a 77, 78
light structure 156
lighting 63, 156, 157, 261, 496, 498
line 331
line mode 340
load block 253
load block, line limits 264
load block, restrictions 254
load tile 250
LOD 186, 200, 228, 229, 235
LOD, restrictions 259
log 87
loop 414, 436, 440, 455, 463
loop point 440, 455
low resolution 46

M
M_AUDTASK 474
M_GFXTASK 474
Mach band 211, 312
514

NINTENDO DRAFT
Macintosh 421
makerom 77, 88, 115, 119, 123, 126
matrix stack 144, 475, 498
matrix stack operations 63
memory allocation 58, 125
memory interface 45, 210, 318
memory management 85, 113
memory map 58
memory, block transfer 250
memory, texture 239
meshed objects 500
message 54, 56, 84, 85, 89, 91, 93
message passing 54
message queue 93, 104, 372, 472
MI 45, 176, 210, 318
microcode, audio 44, 369
microcode, boot 137
microcode, graphics 44, 61, 63
microcode, RSP 43, 45, 47, 60, 137, 216, 469
microcode, task 137
MIDI 30, 64, 79, 369, 376, 378, 401, 402, 403, 407, 416, 423, 454,

457
Midi 421
MIDI file 449, 463
MIDI file format 425
MIDI implementation 449
MIDI key number 405
MIDI message 463
MIDI note 458, 460, 461
MIDI note number 402, 405
MIDI note off 406
MIDI note on 406
MIDI port, Indy 421
MIDI sequence 450
MIDI sequence bank 423
MIDI sequence file 451
MIDI velocities 405
MIDI, compressed 376, 463
MIDI, compressed file format 439
MIDI, standard 376
MIDI, type 0 376
midicmp 75
midicomp 416, 417, 463
midicvt 75, 416, 463
midiDmon 419
midiprint 416
MIP 232
MIP maps, generation 232
mipmapping 150, 179, 184, 223, 229, 232, 291, 333

MIPS R4300 41
mirror, texture 280, 281, 295
mksprite 351
mode, copy 180
mode, decal line 334
mode, fill 180
mode, interpenetration 335
mode, one cycle 177
mode, particle system 336
mode, point sample 338
mode, texture edge 333
mode, two cycle 178
modeling matrix 144
modeling software 70
modulate, color 288
morphing 71, 228, 292
MULTIBIT_ALPHA 262
MultiGen 31, 70
multiple tile effects 261
Music Composition 75
mutual exclusion 105

N
near plane 325
Nichimen Graphics 71
NinGen 70, 72
Nintendo 64 development board 27, 28, 31
NMI 95, 96
noise 302, 312, 337
non-maskable interrupt 96
non-preemptive execution 54
NOOP render mode 344, 345
NTSC 46
NURB 71
Nyquist’s Law 271

O
ocean waves 261
octree 493
one cycle mode 177
OPA_DEC 343
OPA_DECAL 339
OPA_INTER 339
OPA_SURF 339, 341, 343, 345
OPA_TERR 339, 341
opaque surface 327, 329, 330, 332, 333, 335, 337, 338, 341
OpenGL 62, 138
operating system 33, 43, 47, 55, 83, 85, 89, 91, 93
OS 480, 482, 484
515

NINTENDO 64 PROGRAMMING MANUAL DRAFT
OS_EVENT_PRENMI 96, 97
OS_K0_TO_PHYSICAL 121
OS_PRIORITY_RMON 483
OS_TASK_DP_WAIT 474
OS_YIELD_DATA_SIZE 476
osAiGetLength 111
osAiGetStatus 111
osAiSetFrequency 111, 372
osAiSetNextBuffer 111, 372
oscDelay 398
oscDepth 398
oscillator 397, 398, 399
osContGetQuery 112
osContGetReadData 112
osContInit 112
osContReset 112
osContStartQuery 112
osContStartReadData 112
oscRate 398
osCreatePiManager 111
osCreateRegion 125
osCreateScheduler 472
osCreateThread 59, 92
osCreateViManager 109
oscState 398
oscType 398
osDestroyThread 92
osDpGetStatus 109
osDpSetNextBuffer 109
osDpSetStatus 109
osFree 126
__osGetCause 98
__osGetCompare 99
__osGetConfig 99
__osGetCurrFaultedThread 34, 100
__osGetFpcCsr 99
osGetIntMask 96
__osGetNextFaultedThread 34, 100
osGetRegionBufCount 126
osGetRegionBufSize 126
__osGetSR 99
osGetThreadId 93
osGetThreadPri 93
osGetTime 55
__osGetTLBASID 99
__osGetTLBHi 99
__osGetTLBLo0 99
__osGetTLBLo1 99
__osGetTLBPageMask 99

osInitialize 88
osInvalDCache 119, 123
osInvalICache 123
osMalloc 125
osMapTLB 127
osPiGetStatus 111
osPiRawReadIo 111
osPiRawStartDma 111
osPiRawWriteIo 111
osPiReadIo 111
osPiStartDma 112
osPiWriteIo 111
osScAddClient 472
osScGetTaskQ 476
OSScTask 473
__osSetCause 98
__osSetCompare 99
__osSetConfig 99
osSetEventMesg 96, 97, 106
__osSetFpcCsr 99
osSetIntMask 96
__osSetSR 99
osSetThreadPri 93
osSetTLBASID 127
osSpTaskLoad 476
osSpTaskStart 109, 383
osSpTaskYield 109, 471
osSpTaskYielded 109
osStartThread 91, 92, 484
osStopThread 93
osSyncPrintf 33, 87
OSTask 137, 383
OSThread 90
osUnmapTLB 127
osUnmapTLBALL 127
osViGetCurrentField 110
osViGetCurrentFramebuffer 110
osViGetCurrentLine 110
osViGetCurrentMode 110
osViGetNextFramebuffer 110
osViGetStatus 109
osVirtualToPhysical 121
osViSetEvent 110
osViSetMode 46, 110
osViSetSpecialFeatures 110
osViSetXScale 110
osViSetYScale 110
osViSwapBuffer 110
osYieldThread 92
516

NINTENDO DRAFT
output buffer size, audio 446
overlay segments 123
OVL_SURF 343

P
paint software 70, 74
painter’s algorithm 340
PAL 46
pan 373, 377, 381, 402, 461
pan values 452
parallel interface 46
particle system mode 336
particle systems 71
PASS render mode 344, 345
patch format 426
PBMPLUS 70
PBUS 49
PC 486
PCL_SURF 339, 341, 343, 345
percussion instrument 406
performance profiling 55
performance tuning 491
performance, CPU 54
peripheral interface 56, 86, 102
peripherial device 43
perspective correction 215, 277, 498
perspective normalization 144
physical address 44, 45, 47, 114, 115, 122, 139
physical voice 384
PI 48, 56, 86, 95, 102, 106, 111, 114
PI manager 46, 56, 86, 90, 95, 111
PIF 46, 102
pinwheel 327, 338, 341
pipeline mode, copy 205, 276
pipeline mode, fill 205, 210
pipeline mode, one cycle 205
pipeline mode, two cycle 187, 200, 203, 228, 232, 244
pitch 402, 405
pixel 46
pixel format, color 210
pixel format, z 210
playback rate 453, 459
player 372
playseq 384, 388, 389
point sample mode 338
point sample, restrictions 259
point sampling 193, 271, 342
polygon fragment 327
polygon rasterization 61, 63

portal connectivity 493
position 402
PRE_NMI_MSG 97
precision, z 308
preemption 54
preemptive 84, 92
PRENMI 95, 96
PRIM_TILE 235
primitive 269, 297
primitive color 197, 288
primitive tile number 228
PRIMITIVE_COLOR 352
priority 381
program crash 38
projection matrix 144
punchthrough 329, 335

Q
quadrication 254
quadtree 493

R
R4000 44, 46, 135
R4300 42, 47, 54, 55, 61, 77, 89, 93, 96, 113, 127, 137, 485
R4300 CPU 46
RAM 373
ramrom 49
rasterization setup 63
rasterizer 45, 184
RCP 41, 48, 49, 55, 60, 61, 65, 94, 102, 113, 135, 301, 351, 383,

388, 426, 469, 497, 502
rcp.h 110, 111
RDP 43, 45, 52, 60, 86, 102, 150, 175, 178, 213, 269
RDP attribute 182
RDP pipeline 178
RDP primitive 182
RDRAM 48, 49, 58, 102, 105, 109, 318, 442
Reality CoProcessor 41, 43, 113
Reality Display Processor 43, 45, 102, 175, 213, 269
Reality Signal Processor 43, 44, 102
real-time scheduling 55
rectangle 45, 184, 269
rectangle, texture 269
reduced aliasing 501
reduction, polygon count 70
reflection mapping 63, 165, 168, 496
region allocation 125
region allocation library 58
region library 86
517

NINTENDO 64 PROGRAMMING MANUAL DRAFT
register, R4300 46
release 374
release notes 30
render mode 303
render mode, visualizing coverage 346
render modes 339, 341, 343, 344, 345
rendering mode 338
rendering order 333, 334, 335, 340, 500
rendering order, for antialiasing 204
RESET 96
retrace message 472
reverb 381
reverb amount 381
RGB, SGI image format 70, 72
rgb2c 72
RGBA 188, 215, 221, 240, 247, 290
RJ-11 29
RM_ADD 317
rmon 33, 34, 67, 95, 480, 481, 484
rmon.h 484
rmonMain 480
rmonPrintf 67, 68
rmonReadMem 481
ROM 58, 77, 105, 373, 383, 402, 426, 450, 453, 479
ROM cartridge 46, 48
ROM image 77
ROM packing 77
RS 45, 176, 184
RSP 34, 43, 44, 45, 47, 52, 60, 61, 102, 135, 206, 372, 450, 454
RSP data memory 44
RSP instruction memory 44
RSP Scalar Unit 44
RSP Vector Unit 44
rspbootTextEnd 474
rspbootTextStart 474

S
s/w 184, 186
sample converter 455
sample rate 459
sample rate, audio 443
sampled sound playback 369, 373
sampling 271
sampling, point 271
sampling, super 303
sampling, unweighted area 303
sbc 423, 438, 463
sbk 75
scaling, rectangle 271

scaling, sprites 294
scheduler 65, 469, 472
scheduler thread 65
scheduler, CPU 54
scheduling, priority 54
scintillate 271
scissor rectangle 185
scissoring 184
scissoring, rectangle 185
scissoring, restrictions 185
scrolling, of rectangles 275
scrolling, texture 286
Sedgewick 502
segment address 34, 44, 121, 127
segment number 121
segment offset 121
segment table 47
segmented address 45, 47, 115, 138, 174
semaphore 85
semitone 459, 460
sequence back compiler 438
sequence bank file 423
sequence bank format 438
sequence buffer 442
sequence data 376, 450
sequence loop point 376
sequence loops 380
sequence playback 376
sequence player 75, 369, 370, 372, 376, 378, 394, 398, 401, 404,

405, 425, 426, 450, 458, 461
sequence, audio 447
sequenced sound 376
sequencer 431
serial interface 46, 102
serial port manager, Indy 421
SETOTHERMODE 174
sgi.com 70
SH 284
sharpened texture 229, 230, 235
SI 48, 95, 102, 114
silhouette 303, 314, 327, 328, 330, 332, 343, 344
silhouette edge 204, 328, 333, 334, 337, 340
simple 384
simple, demo application 65
size, texture 289
SL 284
slide, texture 283
smoke 316
SNES 29, 74, 455
518

NINTENDO DRAFT
SoftImage 71
sort 330, 500
sorting 298, 330, 502
sorting algorithms 502
sound 457
sound bank 401
sound duration 374
sound effect 64, 450
sound loop point 374
sound pitch 374
sound playback rate 453
sound player 369, 370, 372, 373, 394, 401, 407, 426, 450, 458, 461
sounds, looped 374
sounds, unlooped 374
source file 487
SP 95, 109, 114, 122
SP_BREAK 95
SP_CUTOUT 356
SP_DRAM_STACK_SIZE8 475
SP_EXTERN 357
SP_FASTCOPY 356
SP_FRACPOS 357
SP_HIDDEN 356
SP_SCALE 356
SP_TEXSHIFT 356
SP_TEXSHUF 357
SP_TRANSPARENT 356
SP_UCODE_DATA_SIZE 474
SP_UCODE_SIZE 474
SP_Z 356
span buffer coherency 182, 499
sparkles 336
spClearAttribute 352
spColor 352
spDraw 353, 356, 359
specular 156
specular highlight 161
spFinish 351
spgame 360
spInit 351
spMove 352
sprite 45, 70, 262, 269, 273, 279, 293, 294, 297, 298, 349
sprite library 349
sprites, attribute 352, 355
sprites, bitmap structure 354
sprites, color 352
sprites, creating 351
sprites, cutout 356
sprites, drawing 353

sprites, examples 360
sprites, in COPY mode 356
sprites, moving 352
sprites, re-use 359
sprites, scaling 352, 356
sprites, scissoring 353
sprites, structure 354
sprites, transparent 356
sprites, z-buffered 352
spScale 352
spScissor 352
spSetAttribute 352
spSetZ 352
sptask.h 137
stack overflow 55
stack, thread 59
stacktool 446
stereo 46
stipple transparency 336
stopOsc 397, 398, 399
SU 44
SUB_SURF 338, 339, 341
SUB_TERR 340, 342
subpixel 306
subpixel mask 306
Super Famicom 74
Super Nintendo Entertainment System 29
surface types 203
sustain 381
SW1 95
SW2 95
sync command 45
sync, pipe 45
synchronization, of rendering pipeline 181
synthesis driver 369, 370, 382, 394
synthesizer 372

T
t/w 184, 186
tabledesign 76, 412, 462
task 65, 89, 109, 137, 469, 502
task header 137
task list 43, 60, 137
tasks 42, 43
terrain 335, 340, 496
terrain mode 338, 341
TEX_EDGE 317, 332, 339, 341, 345
TEX_INTER 339
TEX_TERR 339, 342
519

NINTENDO 64 PROGRAMMING MANUAL DRAFT
texel 271
texel format 215, 221, 247, 287
texel size 215, 221
texture clamping 224, 255
texture coordinate 150, 215, 219, 236, 269, 284
texture coordinate mask 223
texture coordinate shift 223
texture coordinate transformation 166, 167
texture coordinate, accuracy 260
texture coordinate, automatic generation 156
texture coordinate, bilerp 236
texture coordinate, high 224
texture coordinate, low 224
texture coordinate, point sampled 236
texture coordinate, restrictions 260
texture copy, restrictions 259
texture edge 344
texture edge mode 332, 333
texture engine 186
texture filter 193, 289
texture filter unit 45
texture filter, restrictions 259
texture format 188
texture line 222
texture line stride 222
texture loading 188, 248
texture loading, 4-bit 254
texture loading, block 188
texture loading, tile 188
texture mapping 213
texture memory 45, 214, 239
texture mirroring 222, 223, 255
texture palette 222
texture sampling 191
texture synchronization 192
texture tile 186, 219
texture tile coordinates 219
texture tile descriptor 225, 228
texture tile line padding 250
texture tile restrictions 220
texture tile, multi tile textures 187
texture tile, multiple 261
texture tile, restrictions 187, 260
texture unit 45
texture wrapping 189, 224, 255
texture wrapping (large texture) 251
texture, 4-bit 254
texture, alignment 259
texture, clamped 215

texture, color index 190, 240
texture, color lookup 190
texture, detail 233
texture, high frequency 232
texture, how stored in TMEM 249
texture, interference 261
texture, level of detail 229
texture, load block 253
texture, mirrored 215
texture, quadricated 254
texture, restrictions 259
texture, sharpen 235
texture, wrapped 215
texture, YUV 242
textured rectangle 297
textures, large 297
texure load padding 222
TF 45, 176, 193
TH 284
thread 54, 84, 89, 480
thread ID 485
thread priority 482
thread stacksize, audio 446
thread, audio manager 65
thread, data structure 90, 92
thread, debug 67, 68
thread, game 66, 106
thread, idle 90
thread, priority 90, 92, 93
thread, runnable 91
thread, running 91
thread, scheduler 65
thread, state 90
thread, stopped 91
thread, switch 485
thread, waiting 91
THREAD_STATUS 95
threads 42
tile descriptor 186, 192, 221, 225, 228, 282, 283, 292, 294
tile selection 228
tile, loading 250
tiling, large texture 297
timer 55
timers 87
TL 284
TLB 34, 47, 55, 85, 114, 126
TLB miss 128
TLUT 189, 190, 244, 245, 290, 351, 360
TLUT restrictions 191
520

NINTENDO DRAFT
TMEM 45, 150, 186, 188, 190, 214, 222, 239, 292, 297, 298, 358
TMEM address 222
Translation Lookaside Buffer 85
translation lookaside buffer 55, 114, 126
translation, rectangle 271
transparency 182, 203, 205, 278, 289, 298, 301, 331, 336
transparent decal surface 342
transparent line 334
transparent lines 332
transparent surface 329, 330, 331, 333, 334, 337, 340, 341, 342
transparent texture 356
tremolo 397, 398
triangle 45, 184
tri-linear interpolation 327
trilinear MIP mapping 229, 233
Tron mode 334
two cycle mode 178
TX 45, 176, 186, 187
type, texture 288

U
ultra 30
ultra64.h 78, 137
union, C 139
UNIX 480, 486
updateOsc 397, 398, 399

V
vadpcm_dec 412, 414, 415
vadpcm_enc 76, 412, 413, 414, 462
vertex 327
vertex buffer 149
vertex cache 496
vertex normal 157
vertex normals 164, 166
vertex transformation 144
vertical retrace 57, 86, 110, 446
VI 48, 57, 86, 95, 102, 109
VI manager 57, 95, 109, 110, 472, 476
VI mode 110
vibrato 397, 398
video filter 314, 326
video interface 43, 46, 86, 102, 110, 328, 334
video mode 46, 57
video retrace 472
video, composite 29, 46
video, RGB 29, 46
video, S-video 29, 46
viewing frustum 498

viewing matrix 144
virtual address 47, 113, 114
virtual ROM 479, 481
virtual voice 384
visibility 494, 499
visibility, game-specific 501
visual complexity 497
voice 384, 395, 453
voice processing estimate 454
voice stealing 385
voice, physical 384
voice, virtual 384
volume 373, 381, 452, 461
VU 44

W
w coordinate 145, 147
waves, ocean 261
wavetable data 402, 405
wavetable file 426
wavetable format 426
wavetable synthesis 64, 369, 414
weather map effect 201
WorkShop 30, 67
wrap, coverage 333, 335, 337, 340
wrap, texture 282, 295

X
XLU_DEC 343
XLU_DECAL 339
XLU_INTER 339
XLU_LINE 331, 339, 341
XLU_SURF 317, 339, 341, 343, 345

Y
yield 60, 84, 89, 109, 476
yield buffer 476
yielding 65
YUV 188, 215, 221, 240

Z
Z compare 320
Z_CMP 337, 338
Z_UPD 337
zap coverage 338, 341
z-buffer 48, 58, 63, 70, 72, 119, 170, 171, 175, 179, 182, 184, 203,

204, 210, 270, 299, 301, 305, 320, 328, 329, 338, 340,
352, 356, 499

z-buffer, alignment 210
521

NINTENDO 64 PROGRAMMING MANUAL DRAFT
z-buffer, format 322
z-buffer, lines 171
ZMODE 337
ZMODE_OPA 317
Z-stepper 308
522

	Contents
	List of Figures xvii
	List of Tables xxi
	PART I Getting Started
	1. Hardware and Software Installation Notes 27
	2. Troubleshooting Software Bringup 33

	PART II Ultra 64 System Overview
	3. Hardware Architecture 41
	4. Runtime Software Architecture 51
	5. Compile Time Overview 69

	PART III Ultra 64 Operating System
	6. Operating System Overview 83
	7. Operating System Functionality 89
	8. Input/Output Functionality 101
	9. Basic Memory Management 113
	10. Advanced Memory Management 121

	PART IV Ultra 64 Graphics
	11. Graphics Microcode 131
	12. RSP Graphics Programming 135
	13. RDP Programming 175
	14. Texture Mapping 213
	15. Texture Rectangles (Hardware Sprites) 269
	16. Antialiasing and Blending 301
	17. Sprites 349
	18. Sprite Microcode 361

	PART V Ultra 64 Audio
	19. The Audio Library 369
	20. Audio Tools 401
	21. Audio File Formats 425
	22. Nintendo 64 Audio Memory Usage 441
	23. Using The Audio Tools 449
	24. Scheduling Audio and Graphics 469

	PART VI Ultra 64 Development Tools
	25. GameShop Debugger 479

	PART VII Ultra 64 Performance Tuning
	26. Performance Tuning Guide 491

	PART VIII Index
	List of Figures
	List of Tables

	PART
	Getting Started

	Chapter 1
	Hardware and Software Installation Notes

	Hardware Installation
	Figure 1-1 Nintendo 64 GIO Card

	Software Installation
	READMEs and Release Notes
	Other Sources
	Executables
	Chapter 2
	Troubleshooting Software Bringup
	Operating System
	Game locks up immediately.
	Game encounters a CPU exception.

	Graphics
	There is no picture on the screen, but the drawing loop is running.
	Figure 2-1 CPU KSEG0-3 Addresses
	Figure 2-2 RSP Addresses

	Ending a Display List
	Flaky Video

	Audio
	Integration
	DMA Alignment

	Debugging CPU Faults

	PART
	Ultra 64 System Overview

	Chapter 3
	Hardware Architecture
	Figure 3-1 Nintendo 64 Hardware Block Diagram

	Execution Overview
	RCP: Reality CoProcessor
	Figure 3-2 Block Diagram of the RCP

	RSP: Reality Signal Processor
	RDP: Reality Display Processor
	Video Interface
	Audio Interface
	Parallel Interface
	Serial Interface

	R4300 CPU
	Memory Issues
	Addressing
	Data Cache
	Alignment

	Clock Speeds and Bus Bandwidth
	Development Hardware
	Figure 3-3 Development System

	Chapter 4
	Runtime Software Architecture

	Resource Access and Management
	Figure 4-1 Application Resources

	CPU Access
	Message Passing Priority Scheduled Threads
	CPU Data Cache
	No Default Memory Management
	Timers
	Variable TLB Page Sizes
	MIPS Coprocesser 0 Access
	Figure 4-2 I/O Access and Management Software Components

	PI Manager
	VI Manager

	Memory Management
	No Default Dynamic Memory Allocation
	Region Library
	Memory Buffer Placement
	Memory Alignment

	RCP Access and Management
	Graphics Interface
	Graphics Binary Interface
	Figure 4-3 Graphics Pipeline

	GBI Geometry and Attribute Hierarchy
	Figure 4-4 Graphics Binary Interface (GBI) of an Airplane

	GBI Feature Set
	Table 4-1 GBI Feature Set
	Processor
	Functionality

	RSP Geometry Microcode

	Audio Interface
	RCP Task Management
	The “Simple” Example
	The Scheduler Thread
	Other Application Threads

	GameShop Debugger
	WorkShop Debugger Heritage
	Debugger Components
	Figure 4-5 Debugger Components

	Chapter 5
	Compile Time Overview

	Database Modeling
	NinGen
	Alias
	Other Modeling Tools
	Custom Modeling Tools

	Model to Render Space Database Conversion
	Existing Convertors
	Custom Convertors
	Conversion Considerations

	Gamma Correction
	Music Composition
	Wavetable Construction
	Building ROM Images
	C Compiler Suite
	ROM Image Packer
	Headers and Libraries

	Host Side Functionality
	PART
	Ultra 64 Operating System

	Chapter 6
	Operating System Overview
	Overview
	Figure 6-1 Nintendo 64 System Kernel

	Threads
	Messages
	Events
	Memory Management
	Input and Output
	Timers
	Controller Pack File System
	Debugging Support
	Boot Procedure
	1. Initialize the R4300 CP0 registers
	2. Initialize the RCP (such as halt RSP, reset PI, blank video, stop audio)
	3. Initialize RDRAM and CPU caches
	4. Load 1 MB of game from ROM to RDRAM at physical address 0x00000400
	5. Clear RCP status
	6. Jump to game code
	7. Execute game preamble code (which is similar to crt0.o and is linked to game during makerom process)
	8. Boot entry routine should call osInitialize(3P)

	Chapter 7
	Operating System Functionality
	Overview
	System Threads, Application Threads, and the Idle Thread
	Thread Data Structure
	Thread State
	Scheduling and Preemption
	Thread Functions
	Exceptions and Interrupts
	Table 7-1
	Name
	Cause
	Description

	Events
	Table 7-2 Events Defined for the Nintendo 64 System
	Event Name
	Event Description
	Owner

	Event and Interrupt Functions
	Non-Maskable Interrupts and PRENMI
	Internal OS Functions

	Chapter 8
	Input/Output Functionality
	Overview
	9. device-independent system interface
	10. device drivers
	11. interrupt handlers
	Figure 8-1 Logical View of RCP Internal Major Devices and Interface Modules

	Design Approach
	Synchronous I/O vs. Asynchronous I/O
	Mutual Exclusion
	I/O Components
	Figure 8-2 Interactions Between I/O Components Servicing Simple I/O Request

	System Exception Handler
	Device Manager
	Figure 8-3 Interaction Between I/O Components and a Shared Device

	Device-Dependent System Interface
	Signal Processor (SP) Functions
	Display Processor (DP) Functions
	Video Interface (VI) Functions
	Audio Interface (AI) Functions
	Peripheral Interface (PI) Functions
	Controller Functions

	Chapter 9
	Basic Memory Management
	Introduction
	Hardware Overview
	CPU Addressing
	Table 9-1 32 Bit Kernel Mode Addressing
	Beginning
	Ending
	Name
	Behavior

	Mixing CPU and SP Addresses
	Flushing the CPU Data Cache
	Clearing uninitialized data (Bss) section
	Physical Memory Allocation

	Chapter 10
	Advanced Memory Management
	Introduction
	Mixing CPU and SP Data
	Using Overlays
	Using Multiple Waves
	Using the Region Allocation Routines
	Managing the Translation Lookaside Buffer

	PART
	Ultra 64 Graphics

	Chapter 11
	Graphics Microcode

	Microcode Functionality
	gspFast3D
	gspF3DNoN
	gspLine3D
	gspTurbo3D
	gspSprite2D
	gspSuper3D

	RSP to RDP command passing
	Chapter 12
	RSP Graphics Programming
	Figure 12-1 Nintendo 64 Graphics Pipeline

	RSP Overview
	Display List Format
	Segmented Memory and the RSP Memory Map
	Interaction Between the RSP and R4300 Memory Caching

	Display List Processing
	Connecting Display Lists
	Table 12-1 gsSPDisplayList(Gfx *dl)
	Parameter
	Values

	Branching Display Lists
	Table 12-2 gsSPBranchList(Gfx *dl)
	Parameter
	Values

	Ending Display Lists
	Table 12-3 gsSPEndDisplayList(void)
	Parameter
	Values

	A Few Words about Optimal Display Lists

	Matrix State
	Insert a Matrix
	Table 12-4 gsSPMatrix(Mtx *m, unsigned int p)
	Parameter
	Values

	Pop a Matrix
	Table 12-5 gsSPPopMatrix(unsigned int n)
	Parameter
	Values

	Perspective Normalization
	Figure 12-2 Perspective Normalization Calculation
	Table 12-6 gsSPPerspNormalize(unsigned short int s)
	Parameter
	Values

	Note on Coordinate Systems and Big Numbers
	A Few Words About Matrix Precision

	Vertex State
	Table 12-7 gsSPVertex(Vtx *v, unsigned int n, unsigned int v0)
	Parameter
	Values

	Texture State
	Table 12-8 gsSPTexture(int s, int t, int levels, int tile, int on)
	Parameter
	Values

	Clipping and Culling
	Table 12-9 gsSPSetGeometryMode(unsigned int n)
	Parameter
	Values
	Table 12-10 gsSPClearGeometryMode(unsigned int n)

	Parameter
	Values

	Vertex Lighting State
	RSP Microcode
	Normal Vector Normalization
	Ambient and Directional Lighting
	Important note on Matrix Manipulation
	Light Structure Definition
	Note on Light Direction
	Lighting State Set Up
	Object Rendering
	NOTE ON MATERIAL PROPERTIES

	Specular Highlights
	Specular Highlight Structure Definition
	Texture Loading
	Texture Coordinate Transformations
	Highlight Position Description
	Lighting State Set Up
	Object Rendering

	Reflection Mapping
	Structure Definition
	Texture Loading
	Texture Coordinate Transformations
	Compatibility with Specular Highlighting
	Environment Mapping

	Vertex Fog State
	Primitives
	Table 12-11 gsSP1Triangle(int v0, int v1, int v2, int flag)
	Parameter
	Values
	Table 12-12 gsSPLine3D(int v0, int v1, int flag)

	Parameter
	Values
	Table 12-13 gsDPFillRectangle(unsigned int ulx, unsigned int uly, unsigned int lrx, unsigned int lry)

	Parameter
	Values
	Table 12-14 gsSPTextureRectangle(unsigned int ulx, unsigned int uly, unsigned int lrx, unsigned int lry, int tile, short int s, short int t, short int dsdx, short int dtdy)

	Parameter
	Values
	Table 12-15 gsSPTextureRectangleFlip(unsigned int ulx, unsigned int uly, unsigned int lrx, unsigned int lry, int tile, short int s, short int t, short int dtdx, short int dsdy)

	Parameter
	Values

	Controlling the RDP State
	Chapter 13
	RDP Programming
	Table 13-1 Cycle Types

	Type
	Performance
	RDP Pipeline Blocks
	Table 13-2 Basic Operations of RDP Subblocks
	Block
	Functionality

	One-Cycle-per-Pixel Mode
	Figure 13-1 One-Cycle Mode RDP Pipeline Configuration
	Table 13-3 RDP Pipeline Block Functionality in One-Cycle Mode
	Block
	Functionality

	Two-Cycles-per-Pixel Mode
	Figure 13-2 Two Cycle Mode RDP Pipeline configuration
	Table 13-4 RDP Pipeline Block Functionality for Two-Cycle Mode
	Block
	Functionality

	Fill Mode
	Copy Mode

	RDP Global State
	Cycle Type
	Table 13-5 gsDPSetCycleType(type)
	Parameter
	Values

	Synchronization
	Table 13-6 gsDPPipeSync()
	Parameter
	Values
	Table 13-7 gsDPFullSync()

	Parameter
	Value

	Span Buffer Coherency
	Table 13-8 gsDPPipelineMode(mode)
	Parameter
	Value

	RS: Rasterizer
	Figure 13-3 RS State and Input/Output
	Scissoring
	Figure 13-4 Scissor/Clipping/Screen Rectangles
	Table 13-9 gsDPSetScissor(ulx, uly, lrx, lry)
	Parameter
	Value

	TX: Texture Engine
	Figure 13-5 TX State and Input/Output
	Texture Tiles
	Figure 13-6 Tile Descriptors and TMEM

	Multiple Tile Textures
	Texture Image Types and Format
	Table 13-10 Texture Format and Sizes
	Type
	4b
	8b
	16b
	32b

	Texture Loading
	Table 13-11 gsDPLoadTextureTile(timg, fmt, siz, width, height, uls, ult, lrs, lrt, pal, cms, cmt, masks, maskt, shifts, shiftt)
	Table 13-12 gsDPLoadTextureTile_4b(pkt, timg, fmt, width, height, uls, ult, lrs, lrt, pal, cms, cmt, masks, maskt, shifts, shiftt)
	Parameter
	Value

	Color-Indexed Textures
	Figure 13-7 CI TMEM Partition
	Table 13-13 gsLoadTLUT(count, tmemaddr, dramaddr)
	Parameter
	Value

	Texture-Sampling Modes
	Table 13-14 gsDPSetTexturePersp(mode)
	Parameter
	Value
	Table 13-15 gsDPSetTextureDetail(mode)

	Parameter
	Value
	Table 13-16 gsDPSetTextureLOD(mode)

	Parameter
	Value
	Table 13-17 gsSetTextureLUT(type)

	Parameter
	Value

	Synchronization

	TF: Texture Filter
	Figure 13-8 Texture Filter State and Input/Output
	Filter Types
	Table 13-18 gsSetTextureFilter(type)
	Parameter
	Value

	Color Space Conversion
	Table 13-19 gsSetTextureConvert(mode)
	Parameter
	Value
	Table 13-20 gsSetConvert(k0,k1,k2,k3,k4,k5)

	Parameters
	Value

	CC: Color Combiner
	Figure 13-9 Color Combiner State and Input/Output
	Color and Alpha Combiner Inputs Sources
	Figure 13-10 RGB Color Combiner Input Selection
	Figure 13-11 Alpha Combiner Input Selection

	CC Internal Color Registers
	Table 13-21 gsSetPrimColor(minlevel, frac, r, g, b, a), gsDPSetEnvColor(r, g, b, a)
	Parameter
	Value

	One-Cycle Mode
	Table 13-22 One-Cycle Mode Using gsDPSetCombineMode(mode1, mode2)
	Parameter
	Value

	Two-Cycle Mode
	Table 13-23 Two-Cycle Mode Using gsDPSetCombineMode(mode1, mode2)
	Parameter
	Value

	Custom Modes
	Chroma Key
	Figure 13-12 Chroma Key Equations

	BL: Blender
	Figure 13-13 Blender State and Input/Output
	Surface Types
	Figure 13-14 Surface Types

	Antialiasing Modes
	Table 13-24 One-Cycle Mode gsDPSetRenderMode(mode1, mode2)
	Parameter
	Value
	Table 13-25 Two-Cycle Mode gsDPSetRenderMode(mode1, mode2)

	Parameter
	Value

	BL Internal Color Registers
	Table 13-26 gsDPSetFogColor(r, g, b, a) gsDPSetBlendColor(r, g, b, a)
	Parameter
	Value

	Alpha Compare
	Table 13-27 gsDPSetAlphaCompare(mode)
	Parameter
	Value

	Using Fog
	Depth Source

	MI: Memory Interface
	Figure 13-15 Memory Interface State and Input/Output
	Image Location and Format
	Figure 13-16 Color and Z Image Pixel Format

	Fill Color
	Figure 13-17 Fill Color Register LSB Replication
	Table 13-28 gsSetFillColor(data32bits) NEED READABLE TITLE FOR THIS!
	Parameter
	Value

	Dithering
	Chapter 14
	Texture Mapping
	Figure 14-1 Texture Unit Block Diagram

	Graphics Binary Interface for Texture
	Primitive Commands
	Tile Related Commands
	Load Commands
	Sync Commands
	Mode Commands

	Example Display List
	Texture Image Space
	Figure 14-2 Image Space and Tile Space

	Tile Attributes
	Format
	Table 14-1 Tile Format Encodings
	Format Value
	Format

	Size
	Table 14-2
	Size Value
	Size of texel in bits

	Line
	Tmem Address
	Palette
	Mirror Enable S,T
	Mask S,T
	Shift S,T
	Table 14-3 Shift Encoding
	Shift Value
	Shift

	SL,TL
	SH,TH
	Clamp S,T

	Tile Descriptor Loading
	Texture Pipeline
	Figure 14-3 Texture Pipeline
	Figure 14-4 Texture Pipeline, contd.

	Tile Selection
	Functionality
	LOD Disabled
	Table 14-4 Tile Descriptor Index Generation with LOD Disabled
	Cycle
	Tile Index

	LOD Enabled
	Table 14-5 Example of Tile Address and LOD Index Relationship
	Tile Address
	LOD Index
	Table 14-6 Generation of Tile Descriptor Index With LOD Enabled and Magnifying

	Cycle
	Detail
	Sharpen
	!Detail & !Sharpen
	Table 14-7 Generation of Tile Descriptor Index With LOD Enabled and Not Magnifying

	Cycle
	Detail
	Sharpen
	!Detail & !Sharpen

	MIP Mapping
	Figure 14-5 MIP Map Tile Descriptors

	Magnification
	Figure 14-6 Magnification Interval Relative to LOD
	Detail Texture
	12. Make the low-res image by filtering the high-res image to the desired size. This will become the base level.
	13. Any nxn sub-tile of the high-res image can be used as a detail-texture. This sub-tile should preferably be modified to match across s and t borders so that when it is repeated on the base-texture, the seams are not visible. Detail textures can ha...
	Figure 14-7 MIP Map With Detail Texture Tile Descriptors

	Sharpen Mode
	Bilinear Filtering and Point Sampling
	Figure 14-8 Sharpen Extrapolation

	Texture Memory
	Memory Organization
	1. Load a texture tile into Tmem.
	2. Describe attributes of the texture tile.
	3. Render primitives that use this tile.
	Figure 14-9 Physical Tmem Diagram
	Figure 14-10 Tmem Loading
	Table 14-8 Maximum tile sizes in TMEM

	Texel Type
	Maximum Texel Count
	Figure 14-11 Four-Bit Texel Layout in Tmem
	Figure 14-12 Eight-Bit Texel Layout in Tmem
	Figure 14-13 Sixteen-Bit Texel Layout in Tmem
	Figure 14-14 YUV Texel Layout in Tmem
	Figure 14-15 Thirty-Two Bit RGBA Texel Layout in Tmem
	Figure 14-16 Tmem Organization for Eight-Bit Color Index Textures
	Figure 14-17 Tmem Organization for Four-Bit CI textures

	Texel Formatting
	Table 14-9 Texel Output Formatting
	Type
	Size
	Input Format
	Output Format
	Red
	Green
	Blue
	Alpha

	Texture Loading
	Figure 14-18 Texel Formats in DRAM
	Load Tile
	Figure 14-19 Example of LoadTile Command Parameters

	Wrapping a Large Texture Using Load Tile
	Figure 14-20 Wrapping a Large Texture Using Two Tiles
	Figure 14-21 Wrapping a Large Texture Using One Tile

	Load Block
	Figure 14-22 Example of LoadBlock Command Parameters

	Examples
	Figure 14-23 Wrapping, Mirroring, and Clamping
	Figure 14-24 Wrapping Within a Texture Tile
	Figure 14-25 Example of Texture Decals

	Restrictions
	Texture Types and Modes
	Point Sample
	Filter
	Copy
	LOD

	Alignment
	Tiles
	Coordinate Range

	Applications
	Multiple Tile Effects
	Interference Textures
	Lighting with Textures
	Extended Alpha Using Multiple Textures

	Appendix A: LoadBlock Line Limits
	Table 14-10 Limits on Number of Lines for LoadBlock Command
	Width
	(16b texels)
	Max Lines
	Absolute
	Max Lines
	Chapter 15
	Texture Rectangles (Hardware Sprites)
	Example 15-1 Texture Rectangle Command
	Example 15-2 Texture Rectangle Example
	Figure 15-1 Texture Rectangle Definition

	Sampling Overview
	Figure 15-2 Aliasing in a Sampled Image
	Point Sampling
	Example 15-3 Enable Point Sampling
	Figure 15-3 Point Sampling Scaling Problem
	Example 15-4 Scaled, Point Sampled Textures

	Bilinear Filtering
	Example 15-5 Enable Bilinear Filtering
	Figure 15-4 Bilinear Filtering
	Figure 15-5 Triangular Filtering
	Example 15-6 Scaled, Bilerped Textures

	Average mode for 1:1 Ratio Sampling
	Example 15-7 Enable Average Filtering
	Example 15-8 Averaging Textures

	Copy
	Example 15-9 Enable Copy Mode
	Figure 15-6 Copy Mode
	Example 15-10 Copy Mode Texture Rectangle

	Simple Texture Effects
	Flip
	Figure 15-7 Flipping Texture Rectangles
	Example 15-11 Flip a Texture in X
	Example 15-12 Flip a Texture in Y (non power-of-two size)
	Example 15-13 TextureRectangleFlip command
	Figure 15-8 TextureRectangleFlip Command

	Mirror
	Figure 15-9 Mirrored Tree
	Example 15-14 Mirrored Tree

	Wrap
	Figure 15-10 Wrapping on Several Boundaries of the Same Texture
	Example 15-15 Wrapped and Mirrored Tree
	Figure 15-11 Wrapped and Mirrored Tree

	Sliding Textures
	Figure 15-12 Effect of Changing SL, TL
	Example 15-16 Sliding Texture Using SL, TL
	Figure 15-13 Biasing Texture Coordinates for Positive SL, TL
	Example 15-17 Biased Coordinates for Positive SL

	Smooth Scrolling
	Example 15-18 Accurate Positioning Using S and T

	Billboards
	Figure 15-14 Texture Billboard

	Cloud (CLD) Render Mode

	Texture Types
	Intensity (I) Textures
	Example 15-19 Intensity Texture Modulating Primitive Color
	Example 15-20 Two-Color Texture

	Intensity Alpha (IA) Textures
	Color (RGBA) Textures
	Color Index (CI) Textures
	Combining Types
	Example 15-21 Interpolate Between Two Tiles

	Multi-Tile Effects
	Simple Morph
	Example 15-22 Interpolate Between Two Tiles

	Smoothing Flip-Book Animations
	Example 15-23 Smoothing an Animation Sequence

	Shrinking Sprites
	Figure 15-15 Shrinking a Sprite
	Example 15-24 Shrinking a Sprite

	Texture Decals
	Figure 15-16 Texture Decals

	Interference Effects
	Figure 15-17 Modulation

	Tiling Large Images
	Color Index Frame Buffer
	Z-Buffering Texture Rectangles
	Primitive Z
	Chapter 16
	Antialiasing and Blending

	Antialiasing
	Figure 16-1 Edge With and Without Antialiasing
	Figure 16-2 Unweighted Area Sampling
	Figure 16-3 Antialiasing Data Flow

	Coverage Unit
	Figure 16-4 Coverage Calculation
	Figure 16-5 Complementary Edges

	Z Stepper
	Figure 16-6 Z-Buffer Planes
	Figure 16-7 Subpixel Correction of Z

	Blender
	Color Blend Hardware
	Equation 1 Blend Equation
	Table 16-1 P and M Mux Inputs

	Mux Select
	Source
	Table 16-2 A Mux Inputs

	Mux Select
	Source
	Table 16-3 B Mux Inputs

	Mux Select
	Source

	Fog
	Table 16-4 Fog Mux Controls
	Mux
	Source Selected
	Equation 2 Fog Blend Equation

	Coverage Calculation
	Equation 3 Stored Coverage

	Alpha Compare Calculation
	Figure 16-8 Alpha Compare in Copy Mode for 8-bit Framebuffer
	Figure 16-9 Alpha Compare in One/Two-Cycle Mode

	Blender ADD Mode
	Color Image Format
	Figure 16-10 Hidden Bits

	Image Alignment Requirements
	Figure 16-11 Color Image Formats

	Z Calculation
	Equation 4 DeltaZ Calculation
	Equation 5 Max DeltaZ Calculation
	Equation 6 Max Z Test
	Equation 7 Farther Compare
	Equation 8 Nearer Compare
	Equation 9 In Front Compare

	Z Image Format
	Figure 16-12 Z Encoding
	Equation 10 DeltaZ Encoding
	Figure 16-13 Z Memory Format

	Z Accuracy
	Figure 16-14 Z Worst-Case Error

	Video Filter
	Equation 11 Video Filter Interpolation

	Blender Modes and Assumptions
	Opaque Surface Antialiased Z-Buffer Algorithm, OPA_SURF
	Transparent Surfaces, XLU_SURF
	Equation 12

	Transparent Lines, XLU_LINE
	Texture Edge Mode, TEX_EDGE
	Decal Surfaces, OPA_DECAL, XLU_DECAL
	Decal Lines, DEC_LINE
	Interpenetration, OPA_INTER, XLU_INTER
	Particle System Mode, PCL_SURF
	Blender Modes Truth Table
	Table 16-5 Antialiased Z-buffered Rendering Modes, G_RM_AA_ZB
	Table 16-6 Antialiased Non-Z-Buffered Rendering Modes, G_RM_AA
	Table 16-7 Point-Sampled Z-Buffered Rendering Modes, G_RM_ZB
	Table 16-8 Point-Sampled Non-Z-Buffered Rendering Modes, G_RM

	Creating New Blender Modes
	Visualizing Coverage
	1. Render you entire scene, but don’t send FullSync yet.
	2. Send the following display list:

	Chapter 17
	Sprites

	Application Program Interface (API)
	Making Sprites
	Manipulating Sprites
	Drawing Sprites

	Data Structures and Attributes
	Bitmap Structure
	Sprite Structure
	Attributes
	SP_TRANSPARENT
	SP_CUTOUT
	SP_HIDDEN
	SP_Z
	SP_SCALE
	SP_FASTCOPY
	SP_TEXSHIFT
	SP_FRACPOS
	SP_TEXSHUF
	SP_EXTERN

	Tricks and Techniques
	Sparse Sprites
	Early-Ending Sprites
	Variable Size Bitmaps
	Explosions
	Bitmap Re-use
	Sprite Re-use

	Examples
	Backgrounds
	Text (Fonts)
	Simple Game
	Chapter 18
	Sprite Microcode

	Sprite Microcode Functionality
	Sprite Microcode API
	PART
	Ultra 64 Audio

	Chapter 19
	The Audio Library
	Figure 19-1 Audio Software Architecture

	Generating Audio Output
	1. Create and initialize the neccessary resources. (Typically, an audio heap, a synthesizer, and a player)
	2. Repeatedly make calls to alAudioFrame to generate the audio task lists.
	3. Execute these audio tasks lists on the RSP.
	4. Set the output DAC’s to point to the audio output, with a call to osAiSetNextBuffer().

	1. Create an audio heap with a call to alHeapInit.
	2. Set the hardware output frequency with a call to osAiSetFrequency.
	3. Create a synthesizer with a call to alInit(). (alInit will require that you have a callback routine to initialize the audio dma structures)
	4. Create message queues for receiving signals that allow you to time your audio processing.
	5. Create a player, (such as a sound player or sequence player) to sign into the synthesizer.
	6. Initialize the resources specific to the player(s) that you have created.

	Sampled Sound Playback
	Representing Sound
	Playing Sounds
	1. Create and initialize the basic resources described in the section Generating Audio Output.
	2. Instantiate the Sound Player with alSndpNew(). The Sound Player created also signs in as a client to the Synthesis Driver.
	3. Copy the sound bank’s .ctl file into RAM, and initialize it with a call to alBnkfNew.
	4. Allocate a sound with a call to alSndpAllocate().
	5. Set the Sound Player’s target sound to reference your sound with alSndpSetSound().
	6. Play the sound with alSndpPlay().
	7. Stop the sound when you are finished with alSndpStop(). Note that if the sound is not looped, the sound player will take care of stopping the sound when it is finished playing. However, you can stop the sound at any time during playback with this ...
	Table 19-1 Sound Player Functions

	Function
	Description

	Sequenced Sound Playback
	Representing the Sequence
	Table 19-2 Sequence Functions
	Type 0 MIDI Sequence Player Function
	Compressed MIDI Sequence Player Function
	Description

	Representing Instruments
	Table 19-3 Bank Functions
	Type 0 MIDI Sequence Player Function
	Compressed MIDI Sequence Player Function
	Description

	Playing Sequences
	1. Create and initialize the basic resources described in the section Generating Audio Output.
	2. Initialize the sequence by using alSeqNew().
	3. Copy the bank file’s .ctl file into RAM, and initialize the bank by using alBnkfNew().
	4. Initialize the sequence player by using alSeqpNew().
	5. Set the sequence player’s bank by using alSeqpSetBank().
	6. Set the sequence player’s target sequence by using alSeqpSetSeq().
	7. Play the sequence by using alSeqpPlay().
	8. Stop the sequence when you are finished with it, by using alSeqpStop().
	9. If the sequence player is no longer needed it can be removed from the Synthesis Driver’s client list by using alSeqpDelete().
	Table 19-4 Sequence Player Functions

	Type 0 MIDI Sequence Player Function
	Compressed MIDI Sequence Player Function
	Description

	Loops in Sequence Players
	Controllers in Sequence Players

	The Synthesis Driver
	Initializing the Driver
	Building and Executing Command Lists
	Synthesis Driver Sound Data Callbacks
	Assigning Players to the Driver
	Allocating and Controlling Voices
	Effects and Effect Busses
	Creating Your Own Effects
	Figure 19-2 Effects Primitives

	Parameter Description
	Figure 19-3 A simple echo effect
	Figure 19-4 A nested all-pass inside a comb effect

	Summary of Driver Functions
	Table 19-5 Synthesizer Functions
	Function
	Description

	Writing Your Own Player
	Initializing the Player
	Example 19-1 Player Initialization

	Implementing a Voice Handler
	Example 19-2 The Voice Handler

	Implementing Vibrato and Tremolo
	The initOsc routine
	The updateOsc routine
	The stopOsc routine
	Chapter 20
	Audio Tools

	The Instrument Compiler: ic
	Invoking ic
	Table 20-1 ic Command Line Options
	Command Line Option
	Function

	Writing ic Source Files
	The Bank Object
	The Instrument Object
	The Sound Object
	The Keymap Object
	The Envelope Object
	A Complete Example

	The ADPCM Tools: tabledesign, vadpcm_enc, vadpcm_dec
	tabledesign
	Invoking tabledesign
	Table 20-2 tabledesign Command Line Options
	Command Line Option
	Function

	vadpcm_enc
	Invoking vadpcm_enc
	Table 20-3 vadpcm_enc Command Line Options
	Command Line Option
	Function

	vadpcm_dec
	Invoking vadpcm_dec
	Table 20-4 vadpcm_dec Command Line Options
	Command Line Option
	Function

	The MIDI File Tools: midicvt, midiprint & midicomp
	midicvt
	Invoking midicvt
	Table 20-5 midicvt Command Line Options
	Command Line Option
	Function

	midiprint
	Invoking midiprint
	Table 20-6 midiprint Command Line Options
	Command Line Option
	Function

	midicomp
	Invoking midicomp
	Table 20-7 midicomp Command Line Options
	Command Line Option
	Function

	Making files that will compact better.

	Midi Receiving with Midi Daemon: midiDmon
	Instrument Editor
	Table 20-8 ie Command Line Options
	Command Line Option
	Function
	Editor
	Bank Editing
	Viewing Assets
	Editing Assets
	Viewing and Editing Children
	Auditioning Assets
	The File Menu
	The Edit Menu
	The Asset Menu
	The Select Menu
	Effects
	Effects Viewing
	Effects Editing
	Effects Auditioning
	Effects Saving and Restoring

	Nintendo 64 Player and Profiler
	.Nintendo 64 Configuration
	Nintendo 64 MIDI Playback
	Nintendo 64 Profiling
	Table 20-9 ie Profiled Resources
	Profiled Resource
	Description

	The Nintendo 64 Menu
	Table 20-10 ie Configuration Parameters
	Configuration Parameter
	Description

	Bugs

	Midi and the Indy
	The sbc Tool
	sbc

	Sequence Banks
	Compressed Midi File Format
	1. There are no note offs, instead note ons are followed by a variable length number that specifies the number of ticks duration. As an example, a note on of middle C with a velocity of 80 and a duration of 240 ticks would be expressed by the followi...
	2. Only two types of meta events are supported, tempo events and end of track events, and they are both slightly altered. Tempo events are composed of a meta status byte, (0xFF) a subtype byte (0x51) and three bytes that contain the new tempo. (Note ...
	3. Loops are allowed using a combination of loop start and loop end events. A track can have up to 128 loops which can be nested. Each loop within a track has a unique loop number. The loop start event is composed of four bytes; a meta status byte (0...
	4. Running status is supported for all events except across meta events and across loop points.

	Chapter 21
	Audio File Formats

	Bank Files
	ALBankFile
	Table 21-1 ALBankFile Structure
	Field
	Description

	ALBank
	Table 21-2 ALBank Structure
	Field
	Description

	ALInstrument
	Table 21-3 ALInstrument Structure
	Field
	Description

	ALSound
	Table 21-4 ALSound STructure
	Field
	Description

	ALEnvelope
	Table 21-5 ALEnvelope Structure
	Field
	Description

	ALKeyMap
	Table 21-6 ALKeyMap Structure
	Field
	Description

	ALWavetable
	Table 21-7 ALWavetable Structure
	Field
	Description
	Table 21-8 ALADPCMWaveInfo structure

	Field
	Description
	Table 21-9 ALRawWaveInfo structure

	Field
	Description
	Table 21-10 ALADPCMLoop structure

	Field
	Description
	Table 21-11 ALADPCMBook structure

	Field
	Description
	Table 21-12 ALRawLoop structure

	Field
	Description

	ADPCM AIFC Format
	Chapter 22
	Nintendo 64 Audio Memory Usage

	Overview of audio RDRAM usage.
	Audio Buffers
	Sample Rate, Frame Rate, and Other Factors

	Optimizing Buffer Sizes.
	Audio DMA Buffers
	Table 22-1 DMA Buffer Length.
	DMABufLength
	MaxDMA/Frame
	MaxDMABuffers
	BufLen*MaxBufs

	Command List Size
	Output Buffer Size
	Audio Thread Stacksize
	Synthesizer Update Buffers and Sequencer Event Buffers
	The Audio Heap
	The Sequence Buffer
	The Bank Control File Buffer
	Chapter 23
	Using The Audio Tools

	Overview of Audio System
	Brief description of audio system
	Typical Development Process
	1. Create the samples as AIFF files.
	2. Encode the samples into AIFC files.
	3. Create a .inst file.
	4. Compile the .inst file, with the samples into the bank files.
	5. Create the MIDI sequence files.
	6. Compile the MIDI sequence files into .seq files, and then compile the .seq files into a .sbk file.
	7. Deliver the .tbl .bnk and .sbk files to the programmer.

	Common Values

	Dealing With Constraints and Allocating Resources
	Determining Hardware Playback Rate
	Limits of Voices and Processing Time
	Division of Sounds and Music Into Banks
	Limits of ROM

	Creating Samples
	Playback Parameters and .inst Files
	Setting Sample Parameters in the .inst File
	Differences Between Sound Player and Sequence Player Use of .inst Files
	Envelopes
	Keymaps and Velocity Zones
	Tuning for Samples Recorded at the Hardware Playback Rate
	Tuning for Samples Recorded at Varying Rates
	Table 23-1 Tuning to hardware playback rates.
	Add to MIDI Value
	Hardware Playback Rate of 44100
	Hardware Playback Rate of 32000
	Hardware Playback Rate of 22050

	Sounds
	Instruments
	Banks
	Creating Bank Files
	1. Record the samples and save as .AIFF files.
	2. Encode the samples using tabledesign and vadpcm_enc.
	3. Create the .inst file.
	4. Compile the bank using ic.

	MIDI Files
	1. Create the sequences and save them as MIDI files of either Type 0 or Type 1.
	2. Convert the sequences using either midicvt or midicomp.
	3. Compile the sequences using sbc.

	Loops in the sequences.
	Putting Things Together Into Makefiles

	General MIDI and the Nintendo 64
	Chapter 24
	Scheduling Audio and Graphics

	Scheduling Issues
	Command List Generation
	Command List Processing

	Using the Scheduler
	Creating the Scheduler: osCreateScheduler()
	Adding Clients to the Scheduler: osScAddClient()
	Creating Scheduler Tasks: The OSScTask Structure
	Table 24-1 OSScTask structure fields
	Field
	Description
	Table 24-2 OSTask structure fields

	Field
	Description

	Sending Tasks to the Scheduler: osScGetTaskQ()
	PART
	Ultra 64 Development Tools

	Chapter 25
	GameShop Debugger
	Hardware Environment
	Software Environment
	Rmon Theory of Operation
	Programming Model
	Using the Debugger
	1. Start dbgif in a window of its own.
	2. Download your application with gload.
	3. You may now start gvd itself.
	4. Select the Admin pulldown menu and click Switch Thread.
	5. Specify the ID you assigned to the thread to which you will be attaching.

	PART
	Ultra 64 Performance Tuning

	Chapter 26
	Performance Tuning Guide

	Data Reduction
	Game World Organization
	Figure 26-1 Fixed Size Grid Database Organization
	Figure 26-2 Quadtrees
	Figure 26-3 Portals Connectivity Visibility

	Hierarchical Culling
	Figure 26-4 Bounding Sphere Test

	Geometry Tuning (gspFast3D - Precise Microcode)
	Vertex Grouping
	Pre Lighting
	Clipping and Lighting
	Kinds of Polygons
	Textures instead of Geometry
	Geometric Level of Detail

	Geometry Tuning (Turbo Microcode)
	Raster Tuning (Fillrate)
	Disable Atomic Primitives
	Partial Sorting for Z-Buffer
	No Z-Buffer
	Convex Objects
	Meshed Objects
	Cell Based Scenes
	Layered Scenes
	Bucket Sort
	Avoid Cyclic Objects
	Game-Specific Visibility

	No Antialiasing
	Reduced Aliasing

	CPU Tuning
	Parallel Execution of the CPU and the RCP
	Sorting
	Index

	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

