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NINTENDO DRAFT HARDWARE AND SOFTWARE INSTALLATION NOTES
Chapter 1

1. Hardware and Software Installation Notes

This chapter describes how to install the Nintendo  64 development board 
into a Silicon Graphics Indy workstation. It also describes how to install the 
Nintendo 64 development software and where the software components 
are. located

This chapter is not a complete installation guide. You must be familiar with 
the standard SGI software installation procedures and GIO board 
installation in an Indy workstation.
27
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Hardware Installation

The Nintendo 64 Development Board is installed in the Indy workstation as 
described in the Indy Workstation Owner’s Guide (see the chapter 
“Installing the GIO Option Board”). The following  instructions supplement 
that chapter and serve as an errata. Figure 1-1 shows the placement of the 
Nintendo 64 Development board in the Indy workstation. 

The board is secured in the workstation by four screws that attach it to the 
standoffs on the base board. When you install the board, be careful not to 
damage any jumper wires that may be present on the board.

The Nintendo 64 Development board is not supported by the hinv 
command. Once the board and software have been successfully installed, 
the boot monitor will echo “U64 Device found” during the power-up 
procedure.  The application ginv in /usr/scr/PR/ginv can be used to print 
information about the installed development board such as the RCP version 
number, clock speed, and video mode.

Figure 1-1 Nintendo 64 GIO Card

GIO
connectors

game controller
ports

AV out

1
6
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The AV out port connector type is the same as that used on the current Super 
Nintendo Entertainment System. The cable that connects this port to an 
external television can be obtained from most stores that sell the SNES 
device. You can buy different cables to support Composite, S-Video RGB, or 
other formats that are standard in your country.

Note that the AV out can optionally be routed back to the Indy video input 
and audio inputs, allowing you to view and hear the gameboard on the local 
Indy workstation. The workstation accepts composite or S-video input as 
provided on separate SNES cables.

The game controller ports accept RJ-11 connectors (available on the U64 
Development game controllers provided by Nintendo). There are 
connectors for six ports, though only connectors 1 through 4 are active. The 
connectors are named 1 through 6, and are numbered from left to right 
(when you view the connector from the back of the workstation).  Plugging 
a controller into port 5 will cause the machine to hang.
29
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Software Installation

The Nintendo 64 development software image is not the only software 
required for development. Your Indy workstation must also contain the 
following 5.3 products:

• dev

• c_dev

• compiler_dev

• gl_dev

• CaseVision, version 2.4

• WorkShop, version 2.4

Three products are bundled with the Nintendo 64 development software:

• GameShop

• ultra

• dmedia_eoe (version 5.5)

 Note:  Casevision and Workshop need to be installed before Gameshop.  
Workshop needs to be version 2.4 or earlier.

READMEs and Release Notes

After installation of Nintendo 64 development software, You will find a 
collection of sample demonstration applications in /usr/src/PR. A 
README_DEMOS file which describes each applications key features. You 
will also find the release notes in /usr/src/PR/relnotes. The release notes 
summerizes the differences from the last release and various bugs, 
workarounds and caveats of the system.

Other Sources

In /usr/src/PR/assets, you will find the source files for building the general 
MIDI bank. We created an initial complete general MIDI bank for testing 
purposes. For a game, we assume that you will gut the bank down to 
30
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including only those instrument and sounds that you need. Therefore, this 
directory gives you a starting point to do that.

In /usr/src/PR/libultra, you will find some pieces of the Nintendo 64 
system library code (libultra.a). These are supplied to give a starting point 
on writing your own custom versions of these sub components. However, 
these sources require extensive SGI source tree build environment tools to 
actually build. Therefore, only the non buildable sources are shipped 
currently.

Executables

The first piece of software you will need to use is gload. This program 
downloads the ROM image onto the Nintendo 64 development board and 
starts execution. Soon after, you will need to use dbgif and gvd to debug 
your program.

• /usr/sbin/gload

• /usr/sbin/dbgif

• /usr/sbin/gvd

There are also conversion tools that help in converting data into Nintendo 64 
format. For example, flt2c convertss a MultiGen database into a C data 
structure that can be compiled into binary form. Most of these tools reside in 
/usr/sbin but some are suppiled in source form in /usr/src/PR/conv.  
Keep in mind that these are templates for your own custom database 
conversion tools. We can not possibly address the need of all developers.
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NINTENDO DRAFT TROUBLESHOOTING SOFTWARE BRINGUP
Chapter 2

2. Troubleshooting Software Bringup 

This chapter describes common problems that you might encounter when 
you start bringing up your Nintendo 64 software. The potential problem 
areas are:

• operating system

• graphics

• audio

• integration

Operating System

Game locks up immediately.

A common error is to start the rmon thread at the same priority as the 
spawning thread. Rmon then immediately goes to sleep and locks up the 
system. The recommended way for starting the system is to create an idle 
thread in the boot procedure at a high priority. From the idle thread start all 
the other application threads, then lower the priority to zero and loop 
forever to become the idle thread.   Note that the rmon thread is not needed 
for printfs. See the osSyncPrintf (3P) man page.

Game encounters a CPU exception.

During the development of your game, you may (intentionally or 
unintentionally) encounter various CPU exceptions (or faults) such as TLB 
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miss, address error, or divide-by-zero. Currently, the system fault handler 
saves the context of the faulted thread, stops the faulted thread from 
execution, sends a message to any thread registered for the 
OS_EVENT_FAULT event, and dispatches the next runnable thread from 
the system run queue. If rmon is running, it would register for the 
OS_EVENT_FAULT event, receive the message from the exception handler, 
stop all user threads (except the idle thread), and send the faulted thread 
context to the host. If gload is running on the host, it would receive the 
faulted thread context and print its content to the screen. If gvd is running 
on the host, it would receive the fault notification and point you to where the 
fault occurred. If rmon is not running on the target, you probably experience 
a strange behavior (i.e. hang) in your game since the faulted thread can no 
longer run.

If you want to catch the OS_EVENT_FAULT event (instead of using rmon), 
you can use two internal OS functions to find the faulted thread and handle 
the exception yourself. They are __osGetCurrFaultedThread (3P) and 
__osGetNextFaultedThread (3P). Please refer to their man pages for more 
information.

Graphics

There is no picture on the screen, but the drawing loop is running.

You are probably handing a bad segment address to the RSP graphics 
pipeline. This problem is easy to overlook, as there are no warnings. Make 
sure you thoroughly understand how a MIPS family processor performs 
addressing and how KSEG0 works (most games run in KSEG0). It allows 
cached access with no TLB translation. All CPU registers are accessible. 
KSEG addresses use the most significant bits of the address to indicate the 
addressing modes.

Figure 2-1 CPU KSEG0-3 Addresses

1

031
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The RSP uses a segment addressing scheme with base pointers. It is very 
easy to hand a CPU KSEG0 address to the RSP by mistake and spend hours 
locating a simple error. Note that KSEG0 CPU address would reference a 
invalid segment if decoded as an RSP address.

Figure 2-2 RSP Addresses

For example, if you have the following code, the RSP/RDP pipeline will 
receive garbage:

Mtx matrix;
gSPMatrix(gdl++, &matrix, G_MTX_.....);

matrix is a KSEG0 CPU address 0x8xxxxxxx. When this is handed to RSP, 
it fetches garbage. Below is a list of common commands with pointers:

• gDPSetColorImage

• gDPSetTextureImage

• gDPSetMaskImage

• gSPMatrix

• gSPViewport

• gSPVertex

• gSPDisplayList

Keep in mind that CPU addresses and RSP/RDP addresses uses different 
addressing schemes and are not interchangeable.

One useful way to debug possible display list problems is to link with the 
GBI dumping routines in libgu, and print out the display list. This will 
immediately show bad pointers and garbage matrices. See the man page for 
guParseGbiDL (3P) and guParseRdpDL (3P).

031 24

   RSP
segment

 RSP
offset
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Ending a Display List

Make sure that your recent gbi display edit has gSPEndDisplayList in each 
display list. Without this, the RSP will probably hang. The RDP requires a 
gDPFullSync at the end of the entire display list sequence to make the DP 
interrupt the CPU for notification.

Flaky Video

The beginning of the framebuffer and z-buffer addresses must be 64 byte 
aligned.

Audio

Alignment Issues

The audio system shares several data structures between the 4300 and the 
RCP. In order to avoid alignment problems, any  buffer used by both the 
4300 and the RCP should be allocated using the alHeapAlloc() routine. This 
will generate buffers with 16 byte alignment, avoiding all alignment issues 
as well as cache tearing issues.

Size and Number of buffers

A  common error is to run out of buffers, particularly DMA buffers. Because 
the number of buffers needed is largely dependent on the music and sound 
effects used, it is not possible to provide guidelines. As music and sound 
effect complexity increases, the number of buffers needed will increase.

Audio Pops and Clicks

To avoid audio pops and clicks, all samples should start with at least one 
value of zero. Upon receiving a pre-nmi message it is important that the 
audio fade to zero output, or on subsequent bootup, there is a potential for 
a pop. If audio does not run at a high enough priority, the audio may not be 
generated before the previous buffer has completed. If this occurs there will 
be a period where no samples are played. This will usually generate a clear 
pop.
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Integration

DMA Alignment

All DMA transactions in the Nintendo 64 must use 64 bit aligned for data in 
RDRAM. DMA transactions for data in ROM must use 16 bit aligned 
addresses.

Debugging CPU Faults

The “gdis” disassembler is a powerful debugging aide that can help you 
turn a cryptic crash dump (i.e the text that is printed in your gload window 
when your program takes an exception) into useful debugging information.

For example, you can disassemble the section named “code” (as specified in 
the spec file) in the “chrome” example application executable as follows:

% gdis -S -t .code.text letters

Here is a portion of the output ...

[ 144] 0x80200050:  27 bd ff 90       addiu     sp,sp,-112
[ 144] 0x80200054:  af bf 00 1c       sw        ra,28(sp)
  145:     int i, *pr;
  146:     char *ap;
  147:     u32 *argp;
  148:     u32 argbuf[16];
  149:
  150:     /* notice that you can’t call rmonPrintf() 
until you set
  151:      * up the rmon thread.
  152:      */
  153:
  154:     osInitialize();
[ 154] 0x80200058:  0c 08 04 c4       jal               
osInitialize
[ 154] 0x8020005c:  00 00 00 00       nop
  155:
  156:     argp = (u32 *)RAMROM_APP_WRITE_ADDR;
[ 156] 0x80200060:  3c 0e 00 ff       lui       t6,0xff
[ 156] 0x80200064:  35 ce b0 00       ori       
t6,t6,0xb000
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[ 156] 0x80200068:  af ae 00 60       sw        t6,96(sp)
  157:     for (i=0; i<sizeof(argbuf)/4; i++, argp++) {
[ 157] 0x8020006c:  af a0 00 6c       sw        
zero,108(sp)
  158:  osPiRawReadIo((u32)argp, &argbuf[i]); /* Assume no 
DMA */
[ 158] 0x80200070:  8f af 00 6c       lw        t7,108(sp)
[ 158] 0x80200074:  8f a4 00 60       lw        a0,96(sp)
[ 158] 0x80200078:  27 b9 00 20       addiu     t9,sp,32
[ 158] 0x8020007c:  00 0f c0 80       sll       t8,t7,2
[ 158] 0x80200080:  0c 08 05 4c       jal               
osPiRawReadIo
[ 158] 0x80200084:  03 19 28 21       addu      a1,t8,t9
[ 157] 0x80200088:  8f a8 00 6c       lw        t0,108(sp)
[ 157] 0x8020008c:  8f aa 00 60       lw        t2,96(sp)
[ 157] 0x80200090:  25 09 00 01       addiu     t1,t0,1
[ 157] 0x80200094:  2d 21 00 10       sltiu     at,t1,16
[ 157] 0x80200098:  25 4b 00 04       addiu     t3,t2,4
[ 157] 0x8020009c:  af ab 00 60       sw        t3,96(sp)
[ 157] 0x802000a0:  14 20 ff f3       bne       
at,zero,0x80200070
[ 157] 0x802000a4:  af a9 00 6c       sw        t1,108(sp)
  159:     }

...

Notice that the C source is interleaved with the disassembled code, and that 
the PC is given in the second column. 

When your program crashes, you can look up the error PC listed in the crash 
dump (it is identified as “epc”) to determine where the program crashed and 
find the corresponding line in the source/disassembly listing.
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NINTENDO DRAFT HARDWARE ARCHITECTURE
Chapter 3

3. Hardware Architecture

This chapter describes the hardware architecture of the Nintendo 64 game 
machine, in order to help you write software for the machine. Later sections 
of this manual describe the details you need to know to program each 
component.

The Nintendo 64 game consists of a number of hardware components that 
work together to produce the graphics and audio for the game. The heart of 
the system is the Reality CoProcessor (RCP). Attached to the RCP are 
memory chips, the MIPS R4300 CPU, and some miscellaneous I/O chips. 

The RCP is the center of the game; all data must pass through it. It acts as the 
memory controller for the CPU. The RCP runs the graphics and audio 
microcode. The display portion of the RCP renders into the graphics 
framebuffer located in main memory. The video and audio portions of the 
RCP, DMA framebuffer, and audio data from main memory to drive the 
video and audio DACs. Figure 3-1, “Nintendo 64 Hardware Block 
Diagram,” on page 42 is a block diagram of the Nintendo 64 system.
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Figure 3-1 Nintendo 64 Hardware Block Diagram

Execution Overview

The CPU and RCP are both processors that can execute at the same time. 
Threads execute on the CPU and tasks execute on the RCP. Accesses to main 
memory from threads and tasks also occur in parallel. 

The game program runs on the R4300 CPU as a collection of threads, each of 
which has its own stack. The operating system is a collection of routines that 
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can be called in a thread. The operating system controls which thread is 
running on the CPU. A thread can access all of physical memory. See 
Chapter 6, “Operating System Overview,” for more information.

Tasks run on the RCP, which is a microcode engine that processes  a task list. 
Task lists are generated by a thread running on the R4300 CPU and are 
stored in main memory. The game program creates the task list, calls an OS 
routine to load the appropriate microcode, and then starts the RCP running 
to process the task list. The microcode on the RCP reads the task list from 
main memory. The RCP task can also write into main memory.

RCP: Reality CoProcessor

The RCP is really a collection of processors, memory interfaces, and control 
logic. The Reality Signal Processor (RSP) is the microcode engine that 
executes audio and graphics tasks. The Reality Display Processor (RDP) is 
the graphics display pipeline that renders into the framebuffer. The memory 
interfaces provide access to main memory for the CPU, RSP, RDP, video 
interface, audio interface, peripherial devices, and serial game controllers. It 
is very important to remember that these interfaces may be active at the 
same time and that the RSP and RDP are running in parallel.
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Figure 3-2 Block Diagram of the RCP

RSP: Reality Signal Processor

The RSP is the processor used by the graphics and audio microcode. The RSP 
consists of a Scalar Unit (SU), a Vector Unit (VU), instruction memory 
(IMEM), and data memory (DMEM). The microcode is fetched from IMEM 
and has direct access to DMEM. The RSP can also access main memory using 
DMA. All memory references in the RSP are physical. However, the 
microcode uses a segment address table to translate segmented addresses 
provided in the task lists into physical addresses. The IMEM and DMEM are 
both 4 KB. The SU implements  a subset of the R4000 instruction set. The VU 
has eight 16-bit elements.
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For information on how the RSP is used to implement part of the graphics 
pipeline, see Chapter 12, “RSP Graphics Programming”.  Chapter 19, “The 
Audio Library,” describes how the RSP is used in audio processing

RDP: Reality Display Processor

The RDP is the graphics display pipeline that executes an RDP display list 
generated by the RSP and CPU. The RDP consists of a Rasterizer (RS), a 
Texture Unit (TX), 4 KB of texture memory (TMEM), a Texture Filter Unit 
(TF), a Color Combiner (CC), a Blender (BL), and a Memory Interface (MI). 

The RS rasterizes triangles and rectangles. The TX samples textures loaded 
in TMEM. The TF filters the texture samples. The CC combines and 
interpolates between two colors. The BL blends the resulting pixels with 
pixels in the framebuffer and performs z-buffer and anitaliasing operations. 
The MI performs the read, modify, and write operations for the individual 
pixels at either one pixel per clock or one pixel for every two clocks. The MI 
also has special modes for loading  the TMEM, filling rectangles (fast clears), 
and copying multiple pixels from the TMEM into the framebuffer (sprites).

The RDP accesses main memory using physical addresses to load the 
internal TMEM, to read the framebuffer for blending, to read the z-buffer for 
depth comparison, and to write the z and framebuffers. The microcode on 
the RSP translates the segmented addresses in the task list into physical 
addresses.

The global state registers are used by all stages of the pipeline. There are a 
number of sync commands to provide synchronization. For example, a pipe 
sync is used before changing one of the rendering modes. This ensures that 
all previous rendering affected by the mode change occurs before the mode 
change.

The command list for the RDP usually comes directly from the RSP. 
However, it is possible to feed the RDP pipeline from a command list that 
has been stored in main memory.

See Chapter 13, “RDP Programming,” for more information on the RDP.
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Video Interface

The video interface reads the data out of the framebuffer in main memory 
and generates the composite, S-video, and RGB signals. The video interface 
also performs the second pass of the antialias algorithm. The video interface 
works in either NTSC or PAL mode, and can display 15- or 24-bit color 
pixels, with or without filtering, at both high and low resolutions. The video 
interface can also scale up a smaller image to fill the screen. For more 
information on how to set one of the 28 video modes and control the special 
features, see the man page for osViSetMode (3P).  Chapter 8, “Input/Output 
Functionality” also contains information on the video interface.

Audio Interface

The audio interface reads audio data out of main memory and generates the 
stereo audio signal.  See Chapter 19, “The Audio Library” and Chapter 8, 
“Input/Output Functionality” for more information.

Parallel Interface

The parallel interface is the DMA engine that connects to the ROM cartridge.  
The PiManager thread is used to set up the actual DMA commands for all 
other threads.   See Chapter 8, “Input/Output Functionality” for the list of 
PI functions. 

Serial Interface

The serial interface connects the RCP with the game controllers through the 
PIF chip.  To get the current state of the controllers, the application must 
send a command to query all the game controllers.  The data will be available 
later.  See Chapter 8, “Input/Output Functionality” for a list of all the 
controller functions.

R4300 CPU

The R4300 CPU is part of the MIPS R4000 family of processors. The R4300 
consists of an execution unit with a 64-bit register file for integer and 
floating-point operations, a 16 KB instruction cache, an 8 KB writeback data 
cache, and a 32-entry TLB for virtual-to-physical address calculation. The 
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Nintendo 64 game runs in kernel mode with 32-bit addressing. 64-bit integer 
operations are available in this mode. However, the 32-bit C calling 
convention is used to maximize performace.

For more information on the R4300 and the operating system control of the 
CPU see the MIPS Microprocessor R4000 User’s Manual  and Chapter 6, 
“Operating System Overview”.

Memory Issues

The main memory in the system is used in parallel by the R4300 CPU, the 
RSP microcode engine, the RDP graphics pipeline, and the other I/O 
interfaces of the RCP. The software is responsible for defining the memory 
map.  See Chapter 9, “Basic Memory Management” for more details.

Addressing

The R4300 CPU can use physical or virtual addresses. The TLB maps virtual 
addresses into physical addresses. It is anticipated that programs will 
mainly use KSEG0 (cached, unmapped) addresses for instructions and data. 
The RSP hardware uses physical addresses. The microcode imposes a 
segmented addressing scheme to generate the physical addresses. Bits 24 
through 27 of the segmented address are used to index into a 16-entry table 
to obtain the base address of the segment. The upper 4 bits are masked off.  
The lower bits are an offset into the segment. This scheme is used to create 
dynamic RSP task lists easily. The RDP hardware uses physical addresses. 
The RSP microcode translates the segmented addresses stored in the task list 
into physical addresses. The segment table in the RSP is initialized to all 
zeros.  Every segment initially references memory starting at zero.

Data Cache

The R4300 CPU has an 8 KB writeback data cache. This means that when the 
CPU writes a variable, it may not be written to main memory until later. 
Since the RSP reads the task list directly from main memory, the dynamic 
portion of the task list must be flushed from the data cache before the RSP 
starts. 
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Take care in DMA operations also. The data buffer must be flushed from the 
cache before the write from memory occurs. The data buffer must be 
invalidated in the cache before a read into memory occurs. If the cache 
invalidate does not occur, a writeback from the cache may destroy data that 
has just been transfered into main memory by a read DMA. It is also a good 
idea to align I/O buffers on the 16-byte data cache line size, to avoid cache 
line tearing. Tearing occurs when a buffer and a unrelated variable share a 
cache line. The potential writeback of the variable could destroy data read 
into the I/O buffer.

Alignment

Note the various alignment restrictions:

• 8 byte alignment for most DMA

• 8 byte alignment for main memory, 2 byte alignement in ROM for PI

• 64 byte alignment for color  framebuffers (cfb) and z-buffer

• 8 byte alignment for textures

Clock Speeds and Bus Bandwidth

Various system statistics and bandwidths:

• CPU - 94.0 Mhz

• RDRAM - 250 Mhz (9 bit bytes at 500 M/sec)

• RCP - 62.6 Mhz

• AI - variable, 3000-368000hz on NTSC, 3050-376000 on PAL

• VI - (depends on mode) NTSC, PAL, MPAL

• PI - 50 Meg/sec peak, 5 Meg/sec from typical slow ROMs

• SI - really slow 

Development Hardware

The development system consists of an Nintendo 64 game card on a GIO 
card for the Indy workstation. The ROM cartridge is replaced by 16 
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megabytes of RAM, called the ramrom,  that is accessible from both the Indy 
workstation over the GIO bus and the RCP over the PBUS. The workstation 
downloads the game software onto the GIO card and then the Nintendo 64 
executes the game. The ramrom is also used to pass information by the 
debugger.  The 4 Megabytes of main memory uses the 9 bit RDRAMs.  The 
color and framebuffers can be placed anywhere in memory.

Figure 3-3 Development System
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Chapter 4

4. Runtime Software Architecture

This chapter describes the runtime Nintendo 64 software architecture. It is 
intended as a brief tour of the overall architecture and discusses the basic 
design guidelines. More specific details are provided in subsequent 
chapters. 

This chapter briefly covers the following topics:

• CPU: threads, messages, interrupts, cache coherency, tlbs

• IO: device library, device manager

• Memory: static allocation, region library

• RCP: tasks, command lists, yielding

• Graphics: graphics interface

• Audio: sequencer, audio player, driver, wavetable synthesis

• Application: typical application framework

• Debugger: debugger support for CPU and RSP
51



NINTENDO 64 PROGRAMMING  MANUAL DRAFT
Resource Access and Management

The Nintendo 64 game machine is made up of a variety of resources.  These 
resources include the CPU, memory, memory  bus bandwidth, IO devices, 
the RSP, the RDP, and peripheral devices.  The software is designed to 
provide raw access to all of the resources. The software layer basically 
translates logical functions and arguments into exact hardware register 
settings. 

Management of most resources is left up to the game itself. Resources such 
as processor access and memory usage are too precious to waste by using 
some general management algorithm that is not tailored to a particular 
game’s requirement. The only management layers provided are the audio 
playback and I/O device access. 

The audio playback mechanism is fairly consistent from game to game. Only 
the sounds themselves are different. Therefore, a general tool to stream 
audio playback is useful. The I/O devices can be managed to provide 
simultaneous multiple access contexts for different threads. For example, 
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streaming audio data and paging in graphics database might require sharing 
access to the ROM.

Figure 4-1 Application Resources
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CPU Access

Message Passing Priority Scheduled Threads

To provide access to CPU compute cycles, Silicon Graphics provides a 
simple CPU scheduler to help the game manage multiple threads of control. 
These are the attributes of this scheduling scheme:

• Non-preemptive execution: The currently running thread will continue 
to run on the CPU until it wishes to yield. Preemption does occur if 
there is a need to service another, higher-priority thread awakened by 
an interrupt event. The interrupt service thread must not consume 
extensive CPU cycles. In other words, preemption is only caused by 
interrupts.  Preemption can also occur explicitly with a yield, or 
implicitly while waiting to receive a message.

• Priority scheduling: A simple numerical priority determines which 
thread runs when a currently executing thread yields or an interrupt 
causes rescheduling.

• Message passing: Threads communicate with each other through 
messages. One thread writes a message into a queue for another thread 
to retrieve.

• Interrupt messages: An application can associate a message to a 
particular thread with an interrupt.

CPU Data Cache

The R4300 has a write back data cache to improve CPU performance.  That 
means that when the CPU reads data, the cache may satisfy the read request 
eliminating the extra cycles needed to access main memory.  When the CPU 
writes data, the data is written to the cache first and then flushed to main 
memory at some point in the future.  Therefore, when CPU modifies data for 
the RCP’s or IO DMA engine’s consumption via memory, the software must 
perform explicit cache flushing. The application can choose to flush the 
entire cache or just a particular memory segment.  If the cache is not flushed, 
the RCP or DMA may get stale data from main memory.
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Before the RCP or IO DMA engines produce data for the CPU to process, the 
internal CPU caches must be explicitly invalidated. You don’t want the CPU 
to be examining old stale data that is in the cache.  The invalidation must 
occur before the RCP or DMA engine place the data in main memory.   
Otherwise, there is a chance that a write back of data in the cache will clobber 
the new data in main memory.

Since the software is responsible for cache coherency, keeping data regions 
on cache line boundaries is a good idea. A single cacheline containing 
multiple data produced by multiple processors can be difficult to keep 
coherent.

No Default Memory Management

As shown above, the Nintendo 64 operating system provides 
multi-threaded message-passing execution control. The operating system 
does not impose a default memory management model. It does provide a 
generic Translation Lookaside Buffer (TLB) access. The application can use 
the TLB to provide for a variety of operations such as virtual contiguous 
memory or memory protection. For example, an application can use TLBs to 
protect against stack overflows.

Timers

Simple timer facilities are provided, useful for performance profiling, 
real-time scheduling, or game timing. See the man page for osGetTime (3P) 
for more information.

Variable TLB Page Sizes

The R4300 also has variable translation lookaside buffer (TLB) page size 
capability. This can provide additional, useful functionality such as the 
“poorman’s two-way set-associative cache,” because the data cache is 8 KB 
of direct-mapped memory and TLB pages size can be set to 4 KB. The 
application can roll a 4 KB cache window through a contiguous chunk of 
memory without wiping out the other 4 KB in cache.
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MIPS Coprocesser 0 Access

A set of application programming interfaces (APIs) are also provided for 
coprocessor 0 register access, including CPU cycle accurate timer, cause of 
exception, and status.

I/O Access and Management

The I/O subsystem provides functional access to the individual I/O 
hardware subcomponents. Most functions provide for logical translation to 
raw physical access to the I/O device.

Figure 4-2 I/O Access and Management Software Components
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VI Manager

A simple video interface (VI) device manager keeps track of when vertical 
retrace and graphics rendering is complete. It also updates the proper video 
modes for the new video field. The VI manager can send a message to the 
game application on a vertical retrace.  The game can use this to synchronize 
rendering the next frame.
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Memory Management

No Default Dynamic Memory Allocation

The Nintendo 64 software does not impose a memory map on the game.  The 
Nintendo 64 system leaves the memory allocation problem up to the game 
application. It assumes that the application knows the memory partitioning 
scheme most suitable for the particular game.  However, the Nintendo 64 
library does have a heap library that is available.

Region Library

The Nintendo 64 system does provide a region allocation library that can 
partition a memory region specified by the application into a number of 
fixed-sized blocks. This gives the application the capability of using a 
dynamic memory allocation scheme. However, the game application must 
be able to handle the case when memory in the region has run out.

Memory Buffer Placement

There are some optimizations on the placement of memory buffers. For 
example, it is best to keep the color and depth buffers on separate 1 MB 
memory banks. The RDRAM has an active page register for each megabyte.  
Spliting the color and z-buffers into seperate megabytes, prevents the 
memory system from constantly having to change the page register.  This 
technique minimizes page misses.

Memory Alignment

The DMA engines responsible for shuffling data around in the hardware all 
require the 64-bit aligned source address, the destination address, and  
lengths. Addresses in ROM do not have this 64 bit alignment restriction.  
ROM addresses only need to be 16-bit aligned.  The loader from the compiler 
suite (see the man page for ld (1))  makes sure that all C-language long 
long types are 64-bit aligned.
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Using C language, the stack for a thread must also be 64-bit aligned. 
Therefore, all stacks should be defined as long long and type-casted 
when calling osCreateThread. See the man page for more details.
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RCP Access and Management

The CPU has control over access to the RCP.  The RSP and RDP portions of 
the RCP can be used individually, or as a group.  The CPU creates a task list 
that specifies what microcode to run and what command list to execute.  The 
task is then run on the RSP.  There are OS commands to start the task and to 
yield (ie preempt) a task.  The RDP usually receives graphics rendering 
commands directly from the RSP.  However, it is also possible to drive the 
RDP from a list that is in DRAM.
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Graphics Interface

Nintendo 64 uses a display list hierarchy to describe what to render. 3D 
geometry transformation and rasterization are accelerated by RSP and RDP 
respectively. There is no immediate mode rendering.  The R4300 CPU 
generates the display list in memory, then the RCP fetches the displaylist 
and renders the graphics.

Graphics Binary Interface

Nintendo 64 renders graphics using a display list interface called graphics 
binary interface (GBI). The CPU assembles the GBI structure in RDRAM for 
the RSP/RDP to render. The RSP must first be downloaded with graphics 
microcode to perform geometry transformation. The RDP performs polygon 
rasterization. RSP and RDP state machines are described in more detail in 
Chapter 12, “RSP Graphics Programming” and Chapter 13, “RDP 
Programming”.

Figure 4-3 Graphics Pipeline

GBI Geometry and Attribute Hierarchy

The GBI structure describes a hierarchy of geometry and its attributes. This 
tree is traversed depth first and the graphics pipeline attributes are 
sequentially modified during traversal. Both geometry (RSP) and raster 
(RDP) attributes are contained in a GBI structure.

R4300
game processing
animation
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3D geometry
transformation +
lighting

RDP
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rasterization +
texturingGBI assembly
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Figure 4-4 Graphics Binary Interface (GBI) of an Airplane

GBI Feature Set

The graphics binary interface (GBI) contains many 3D graphics features. An 
algorithmic description of many of these features is in the OpenGL 
Programmer’s Guide. Table 4-1, “GBI Feature Set,” on page 62 lists the basic 
features of the GBI pipeline.

Table 4-1 GBI Feature Set

Processor Functionality

CPU GBI assembly

fuselage left
wing

xform

vertexes triangles

vertexes triangles

xform
left

xform
right

generic
wing

generic
wing

right
wing

geometry
attributes

raster
attributes

wingwing
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RSP Geometry Microcode

There are three different versions of RSP geometry microcode: gspFast3D, 
gspLine3D, and gspTurbo3D.  The gspFast3D microcode is the optimized, 
full-featured 3D polygonal geometry  microcode.  The gspLine3D is the 
optimized, full-featured 3D line geometry  microcode.  The gspTurbo3D is 
the optimized, reduced-featured 3D polygonal geometry microcode.  All of 
these microcode types come in two versions.   One version of the microcode 
has the RSP output the rasterization and attribute commands directly to the 
RDP. The other version outputs RDP commands to DRAM.  Writing the 
RDP commands to DRAM could be used to overlap graphics and audio.  For 
example, you could use the RSP for audio processing while the RDP is 
processing commands stored in DRAM.  Storing the RDP commands in 
DRAM may also be useful for debugging.

RSP matrix stack operations

3D transformations

frustum clipping and back-face rejection

lighting and reflection mapping

polygon and line rasterization setup

RDP polygon rasterization

texturing/filtering

blending

z-buffering

antialiasing

Table 4-1 GBI Feature Set

Processor Functionality
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Audio Interface

Access to the audio subsystem is provided through the functions in the 
Audio Library. The Audio Library supports both sampled sound playback 
for sound effects and wavetable synthesis from MIDI files for background 
music. For more information on the Audio Library, please refer to 
Chapter 19, “The Audio Library”.
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RCP Task Management

Both the audio and graphics libraries provide support for generating 
command lists to be executed on the RCP, but they do not handle the 
command list execution. It is therefore necessary for the application to 
manage the scheduling and execution of RCP tasks (command lists and 
microcode) on the RCP. To facilitate this, the development package includes 
an example RCP scheduler. 

The “Simple” Example

The structure of the scheduler included with the “Simple” application is 
described briefly below. Please refer to the example code in the “Simple” 
directory for more details.

The Scheduler Thread

The scheduler thread is responsible for collecting display/command lists 
from other threads and assigning them to RCP tasks for scheduling and 
execution so that real-time constraints are met. This thread has the highest 
priority of the application threads, to insure that scheduling occurs 
periodically.

The scheduler executes task on the RCP based on the retrace interrupt and 
then monitors the progress, yielding the graphics tasks periodically to 
interleave audio tasks, if necessary.

Other Application Threads

The next highest priority application thread is the Audio Manager thread. It 
is responsible for creating audio display lists, sending them to the scheduler 
for execution, and transferring the finished audio to the codecs. It has a 
higher priority than the game thread, to prevent audio clicks caused when 
the audio thread can’t meet its real-time constraints.

Note:  The Audio Manager thread is essentially a low-level wrapper around 
the alAudioFrame call (see “The Synthesis Driver” on page 382 for details). 
Higher-level Audio Library calls are made from the game thread.
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The game thread is responsible for generating graphics display lists and 
sending them to the scheduler for execution. In addition, the game thread 
handles the controller input, makes calls to the Audio Library, and performs 
other tasks traditionally found in the game’s “main loop.”
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GameShop Debugger

WorkShop Debugger Heritage

The GameShop debugger (gvd) derived its heritage from the Silicon 
Graphics WorkShop application development tools. It is a source level 
windowing debugger environment that enables debugging of both the CPU 
and RSP software.

Debugger Components

The debugger is actually composed of several different components shown 
in Figure 4-5, “Debugger Components,” on page 67

There are two debugging paths. The first path is a C source level windowing 
debugger, gvd, which has most of the features of common multi-threaded 
debuggers. It talks to dbgif, which interfaces to the rmon debug thread 
through the Nintendo 64 device driver in IRIX.

The second path is the popular printf traces within the application. 
rmonPrintf() display the messages in the shell that executed dbgif.

Figure 4-5 Debugger Components

UNIX host machine Nintendo64 development board
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The rmon debugger thread is actually a high-priority thread in the game 
application and uses many operating system resources. Therefore, the 
debugger and rmonPrintf cannot be used to debug system-level code.

For information on using GameShop Debugger see Chapter 25, “GameShop 
Debugger.”
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Chapter 5

5. Compile Time Overview

This chapter describes the flow of tools required to go from 3D model design 
and music composition to cutting the actual ROM cartridge. In addition to 
the standard C compiler suite, the Nintendo 64 software release supplies a 
number of other tools particular to the Nintendo 64 software development 
environment. The source code to some of these tools is provided as an 
example to help you create your own customized tools that give your game 
an advantage in the game marketplace. This chapter includes the following 
sections:

• database modeling

• model space to render space database conversion

• music composition

• wavetable construction

• building ROM images

• host side functionality
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Database Modeling

To do real-time 3D graphics, you need modeling tools to create geometry. 
Because many off-the-shelf modeling tools are available, there is no 
modeling package in the Nintendo 64 development kit from Silicon 
Graphics. Nintendo has contracted two top modeling package companies to 
provide the database modeling solution (MultiGen and Alias).

For texture-map images and traditional 2D sprite-type games, you may 
desire image conversion, editing, and paint software. These are not 
provided as part of the Nintendo 64 development kit.

All of the example applications and source code, including sample image 
conversion programs, use the popular SGI RGB image format. Additional 
related, but unsupported software, may be obtained from SGI via the 
4Dgifts product, anonymous ftp via sgi.com, or from the user community 
on the internet (see comp.graphics or the comp.sys.sgi hierarchy). 
One of the more popular publicly available packages containing image 
conversion and manipulation software is PBMPLUS, widely available on the 
internet.

NinGen

NinGen is a 3D modeling package from MultiGen. It is a derivative of their 
traditional 3D modeling software, together with an Nintendo 64 database 
format convertor. The traditional key strength of MultiGen is their ability to 
provide 3D modeling tools for the real-time commercial and military 
flight/vehicle simulation market.

For this market, many database techniques developed for a real-time flight 
simulator are available in NinGen. Some basic features include:

• Geometric level of detail.

• Binary separating planes for depth-ordered rendering. This is required 
if you don’t use the z-buffer.

• Many polygon count reduction tools. The goal is the best model with 
the lowest polygon count.
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Alias

Historically, Alias has provided 3D animation and modeling tools for the 
computer-generated film and animation market segment. Beautiful models, 
sophisticated motion paths, and fast development time are all vital to 
success in this marketplace. Here is a sample of some of the strong features 
of the Alias software package:

• NURBs based modeler provides smooth surfaces on models.

• Motions paths and inverse kinematics give complex motion.

• Special effects such as particle systems, many different kinds of lights, 
and texturing capabilities improve picture quality.

Other Modeling Tools

Besides Alias and MultiGen, there are other modeling packages on the 
market. SoftImage and Nichimen Graphics are also traditional film and 
animation market tool suppliers. On the PC, the Autodesk 3DStudio is 
entering the animation market from the very low end of the price spectrum.

Film and animation tools have many features that can be extracted for 
real-time animation. Figuring out how to extract these special features out of 
theses tools can help you give your game application an advantage. For 
example, you might be able to use particle system tools to generate texture 
maps. Flipping this texture book on some morphing geometry to 
approximate the group motion of a system of particles. This may give you 
fire, water, and other interesting objects.

Custom Modeling Tools

For special game application requirements, you may need to create your 
own custom modeling packages. Obviously, it is time-consuming to build 
such a software package in house. The advantage, however, is that you can 
customize the databases to the requirements of your game. For example, you 
might be able to gain rendering display performance if you are able to give 
hints to your modeler about how to order geometry.
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Model to Render Space Database Conversion

This section outlines issues you may face when converting from a modeling 
database to a rendering database.

Existing Convertors

Both NinGen and Alias software packages have database convertors to 
convert to the Nintendo 64 format (Graphics Binary Interface).

Custom Convertors

Some of you may want to write your own database convertors because you 
want to manage a certain resource or attribute in a different way, tailored to 
your game. Silicon Graphics provides a sample convertor, flt2c(1P), from the 
MultiGen flt file format to the Nintendo 64 format. In addition, Silicon 
Grapics provides a converter from the SGI IRIS image format to the 
Nintendo 64 texture memory format, rgb2c(1P).These sample convertors are 
not complete, nor are they designed to be totally efficient; they are just meant 
to be a template to help you understand what a convertor is and what it 
needs to do.

Conversion Considerations

There are many efficiency considerations to keep in mind when you are 
writing a database convertor. Here are a few:

• Redundant hierarchical transformations should be eliminated. 
Transformations should be used for articulated parts or instancing, not 
for preserving modeling hierarchy.

• Since the geometry transformation subsystem has a vertex cache, block 
loading 16 vertexes to render as many triangles as possible has better 
performance.

• On-chip texture memory is not large (4 KB). If you are stamping trees in 
your scene, you should render in texture order. Keep in mind that 
texture order may require a z-buffer, which requires additional dram 
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bandwidth. You may need to experiment to find the best trade-off for 
your game.

• The display pipeline has many attribute states. You may want to 
determine which sets are global and local to an object. Learn how to 
manage these attributes to best fit the kind of game you are creating.
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Gamma Correction

The SNES and Super Famicom do not have gamma correction hardware but 
the Nintendo 64 does. Some developers have indicated that the colors on the 
Nintendo 64 look “washed out” with gamma correction turned on.

If you are currently writing games for SNES or Super Famicom (or any 
machine that does not have gamma correction), your production path is 
likely to be setup to compensate for the lack of gamma correction hardware. 
In other words, you are probably picking pre gamma corrected colors. If you 
use this same production path and turn Nintendo 64 gamma correction on, 
you will get the wash out effect because you would have gamma corrected 
twice.

To undo the first gamma correction, square and shift down by 8 each color 
component (assuming 8 bit color) or rework your path to exclude the gamma 
correction stop, leaving gamma correction to the hardware.

Every step in your production path must be involved in the color selection 
process: modeling/paint software, computer monitors, image conversion 
software, the game software, and the Nintendo 64 hardware.

Gamma correction on the Nintendo 64 is recommended; the antialiasing and 
video hardware work best when it is enabled.
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Music Composition

Music composition involves the creation of midi sequences and then 
importing them into the game. Midi sequences can be created using any of a 
variety of sequencer applications. (Performer, Vision, Cubase, 
MasterTracks, to name a few) After the sequences are saved as Midi files, 
they should  be converted before being included in the game. If you are 
planning to use the compact Midi sequence player, the sequences should be 
run through midicmp. If you are using the regular sequence player, the 
sequences are run through midicvt. After the sequences are converted, they 
can be assembled into sequence banks with the sbk tool. This is optional, 
midi sequences can be used without being part of a sequence bank. To 
actually include the sequences in the game, a segment containing the 
sequence data should added to the spec file. (See the demo app. simple for 
an example of this.)

For information on how to use sequences in a game see,Chapter 19, “The 
Audio Library,”
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Wavetable Construction

The audio library can use either compressed or uncompressed wavetables 
for sound reproduction. In either case, the wavetables are first created using 
the digital recording/editing system of the sound designer’s choice. The 
wavetables are then stored as AIFF files.  If the samples are to be 
compressed, the first step is to produce a compression table using 
tabledesign. After the compression table has been built, the wavetable is 
compressed using vadpcm_enc. This will generate a type of AIFC file that is 
unique to the Nintendo. (Note that AIFC files created with other software 
tools are not compatible with the compression scheme used by the 
Nintendo.)

After the wavetables have been converted to AIFC files, (or left as AIFF files 
if no data compression is desired) they need to be assembled into banks so 
that the Audio Library can reference them correctly. To accomplish this, the 
sound designer must first create a .inst file, which is a text file that specifies 
the parameters for sound playback and the wavetable files. The .inst file is 
then used by ic to create the bank files. The bank files can then be included 
in the game by placing them in segments in the applications spec file. (The 
creation of .inst files and the use of ic is covered in detail in  Chapter 20, 
“Audio Tools,”)
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Building ROM Images

A final set of tools, headers and libraries are available to pack your database 
and code into a final ROM images for the Nintendo 64. The Nintendo 64 
development environment heavily leverages the C compiler and 
preprocessor tools to process symbolic data into binary objects. A ROM 
packing tool, makerom(1P) packs these objects into a single monolithic ROM 
images according to a specification of where these objects go.

C Compiler Suite

Currently, the Nintendo 64 development environment has only been 
verified with the IRIX 5.3 MIPS C-compiler suite. The interfaces provided do 
not rely on proprietary features of this compiler; however backend tools 
such as makerom may rely on specifics of the MIPS symbol table format.

It is required that all modules be compiled or assembled with the 
-non_shared and -G 0 compilation flags; neither position independent 
code or a global data area is supported. Since the MIPS R4300 supports the 
MIPS II instruction set, the -mips2 flag is also recommended, as well as 
optimization flags (-O and -O3).

ROM Image Packer

The ROM image packer (makerom) takes as input relocatable objects created 
by the compiler and performs the final relocations of code symbols. To 
perform these relocations, it invokes a next generation link editor that allows 
objects to be linked at arbitrary addresses specified by the developer. After 
these relocations, makerom extracts the code and initialized data portions of 
the resulting binary and packs them onto a ROM image. The makerom tool 
can also copy raw data files to the ROM as desired.

Note:  When building a ROM image for the console (as opposed to the 
development system), be sure to

• link with libultra.a and not libultra_d.a

• remove all calls to printf and its variations from your application.
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• remove any functions specific to the development board (such as 
command line parsing or logging) from your application.

Headers and Libraries

Although the Nintendo 64 API includes interfaces for a wide variety of 
areas, the interfaces are made available by including a single header file, 
/usr/include/ultra64.h, and by linking with a single library, 
/usr/lib/libultra.a (or /usr/lib/libultra_d.a).The library routines are 
broken into their finest level of granularity, so applications “pay as they go”, 
only including routines they actually use.

Note there are two versions of the Nintendo 64 library: a debug version 
(/usr/lib/libultra_d.a) and a non-debug version (/usr/lib/libultra.a). The 
debug version of the library provides additional run time checks at the 
expense of some space on the ROM and DRAM, as well as some 
performance. The kinds of checks performed include argument checking 
(especially hard to find alignment problems), improper use of interfaces, 
audio resource problems, etc. It is recommended that the debug library be 
used in initial development, and then replaced by the non-debug library 
later in the development cycle.

In case of error, the game loading program gload(1P) will interpret and 
display the errors on the host.
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Host Side Functionality

During development, it may be desirable to copy data to and from the Indy 
host to the game. For example, a MIDI sequence could be repeatedly edited 
on the host and them played on the Nintendo 64. Of course this could be 
accomplished by recreating and downloading the image repeatedly, but the 
design cycle could be reduced significantly by simply copying the new 
sequence to the Nintendo 64 while the application is still running.

For these applications, a host side, as well as a game side API is provided. 
The game side interfaces are, as always defined by including 
/usr/include/ultra64.h and linking with /usr/lib/libultra[_d].a. The host 
side interfaces are declared in /usr/include/ultrahost.h and defined in 
/usr/lib/ultrahost.a.
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Chapter 6

6. Operating System Overview

Overview

The Nintendo 64 system runs under a small, real-time, preemptive kernel. It 
is supplied as a set of run-time library functions, so that only those portions 
that are actually used are included in the game’s run-time image. In the 
remainder of this document, it is referred to as the operating system, 
although it is so minimal that it has not been given an official name.

The kernel can be considered as being layered into core functionality and 
higher-level system service

VI/Timer Mgr

FileThreads
Messages

Events

Controller
 Interface

PI
Mgr

Raw I/ODebug

System

s, as illustrated in Figure 6-1.

Figure 6-1 Nintendo 64 System Kernel
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Threads, messages, events, and raw I/O compose the kernel of the Nintendo 
64 operating system. Upon this base are built some additional services that 
facilitate access to the raw hardware.

In this introductory section, a brief overview of these services will be 
provided.

Threads

All code that runs under the operating system runs in the same address 
space.That is, the game runs as one process. While it is possible to structure 
a game application as one monolithic program, it is usually advantageous to 
subdivide it into smaller, more manageable subprograms called threads. 
With its own stack, each thread usually performs one function, often 
repetitively. This subdivision leads to simplicity for each thread; thus, it is 
easier to “get it right” and to minimize interference between threads. The 
threads section describes these threads, how they are scheduled, and how 
various operations may be performed on them.

Threads may be created, destroyed, stopped, or blocked (the latter by 
waiting on a message). Threads normally run until they require some 
resource or event to continue, at which point they yield the CPU to another 
thread. Each thread has an assigned priority level, used to determine which 
thread gets the CPU at any given time. In response to an external event, a 
thread may be forced to yield control of the CPU. The operating system 
preserves the state of the thread properly for restarting at a later time. Thus, 
the system can properly be described as preemptive. Threads may even be 
preempted during system calls when it is safe to do so.

However, there is no concept of a swap clock or “round-robin” scheduling 
as is found in UNIX and other time-sharing systems. Thus, two or more 
threads that run at the same priority level do not alternate in use of the CPU. 
The thread that “has” the CPU runs until it yields or is preempted by a 
higher priority thread in response to an exception.

Messages

Since the operating system is message-based, messages are among the most 
important of the resources available to the user. Unlike many popular 
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real-time kernels, no semaphores or event flags are provided. All 
synchronization is provided via sending and receiving messages. This has 
deliberately been made very efficient, and the lack of other synchronization 
primitives should not be a problem. In fact, there are advantages to using 
only this mechanism. The operating system code itself is smaller and less 
intrusive on game space than it would be if it had to provide multiple 
facilities for thread synchronization. Also, since it is often the case that 
information must be transferred when threads synchronize, we get more 
usage out of a single operation.

Of course, messages are also useful in simply transferring information from 
one thread to another. In this operating system, they are also used to transfer 
information when a system event occurs.

Events

The operating system manages interrupts and exceptions on behalf of the 
game system in a relatively unobtrusive way. Some interrupts must be 
handled by the system code itself. Others require further decoding to 
determine which event has actually occurred when the CPU is interrupted.

The exception handler built into the operating system performs the 
decoding of interrupts and other exceptions and maps them to system 
events. If the system event is one that may be handled by the game itself, 
then a message is sent to an associated event mailbox and the game 
application is notified. In this way, the game designer can provide an 
interrupt handler to deal with the exception as required by the game 
requirements.

Memory Management

In this operating system, the responsibility of memory management is left 
up to the game. That is, the operating system provides no heap or dynamic 
memory allocation mechanism for the game. Since the game can access the 
entire memory map, it has total control on how memory is partitioned and 
used. The operating system simply runs in the kernel mode (kseg0) with 
cache and direct mapping enabled. In this mode, the virtual address 
0x80000000 is mapped directly to physical address 0x0. Translation 
Lookaside Buffer (TLB) is not used by the operating system to provide 
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virtual memory support. However, low-level routines are available for game 
developers to program the TLBs directly. Furthermore, a region library is 
provided to simplify the task of allocating and de-allocating fixed-size 
memory buffers.

Game developers should also be aware of the importance of invalidating 
and flushing caches before transferring data between either cartridge ROM 
or RCP and main memory. The operating system provides useful functions 
to invalidate both instruction and data caches and to write back data cache.

Input and Output

The Nintendo 64 system spends a good deal of its time performing I/O 
operations. The operating system provides an optimized I/O interface layer 
that directly communicates with the hardware. Some of these interfaces 
include:

• VI—the video interface.   The interface routines communicate with a 
video manager system thread, called the VI/Timer manager. This 
thread receives all vertical retrace interrupts and programs the video 
hardware. In addition, it also receives all counter interrupt messages 
and implements timer services.

• PI—the peripheral interface. The PI also has an associated I/O manager 
thread, the PI manager. It manages access to the ROM cartridge so that 
two threads do not attempt to DMA from ROM to RAM at the same 
time.

• AI—the audio interface. This interface programs the audio hardware to 
output the desired sample rate and manages access to the audio data 
buffer.

• DP—This is the RDP interface. It is mostly of interest because it has an 
associated system event when a DP operation is complete.

• Cont—the controller interface. This interface resets, detects, obtains 
status, queries and reads data from the game controllers.
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Timers

The operating system provides convenient functions to start and stop both 
countdown and interval timers. These timers are expressed in CPU count 
register cycles, which depend on the video clock. That is, a counter tick in a 
PAL system occurs more frequently than the one in a NTSC system. 
Developers can also set and get real time counter value. 

Controller Pack File System

The Nintendo 64 controller supports an add-on RAM pack that can store 
either 32 KB or 64 KB of data. The operating system implements a simple file 
system on this pack where developers can find, create, delete, read and write 
files.

Debugging Support

In addition to the support for the high-level GameShop debugger gvd(1P), 
the operating system also provides additional useful facilities for 
debugging. Developers can use convenient routines to log messages to 
pre-allocated buffer for delay transfer to the host Indy. Since this logging 
utility has low performance impact, it may be well suited for debugging 
real-time problems or running performance analysis. Developers can also 
use the printf-like utility osSyncPrintf(3P) to display text formatted 
messages on the host Indy.

Boot Procedure

When using the Nintendo 64 development system, the developer needs to 
run the game loader gload(1P) program to download his prepared ROM 
image into the cartridge memory on the development board. After the 
memory image is loaded, gload can optionally read back the memory and 
verifies the contents. Then, it generates a reset signal to the development 
board, causing the R4300 to jump to the reset vector where it starts executing 
the boot code from the PIF rom.

Some of the important tasks performed by the boot code include:
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1. Initialize the R4300 CP0 registers

2. Initialize the RCP (such as halt RSP, reset PI, blank video, stop audio)

3. Initialize RDRAM and CPU caches

4. Load 1 MB of game from ROM to RDRAM at physical address 
0x00000400

5. Clear RCP status

6. Jump to game code

7. Execute game preamble code (which is similar to crt0.o and is linked to 
game during makerom process)

• clear BSS for boot segment (as defined in the spec file)

• set up boot segment stack pointer, 

• jump to boot entry routine

8. Boot entry routine should call osInitialize(3P) 
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Chapter 7

7. Operating System Functionality

Overview

Threads, messages, and events work together to form the core of the 
Nintendo 64 operating system. Nintendo 64 applications run under a small, 
multithreaded operating system. Simply put, this means that the R4300 CPU 
switches between several independent components called threads. Each 
thread consists of a sequence of instructions, a stack, and (possibly) static 
data that is used only by the thread. Subdividing an application into threads 
has several advantages. You can effectively isolate each part of the 
application to avoid interference. You can divide your application into 
small, easily-debugged modules. Since each thread can be written 
independently to perform exactly one function, complexity is reduced.

Messages are a mechanism by which threads communicate with one 
another. While this could be done using shared global variables, such an 
approach is often unsafe. One thread must know when it is safe to read data 
that is being written by another. Message passing makes communication 
between threads an atomic operation; a message is either available or not 
available, and the associated data arrives at the receiving thread at one time.

A second, perhaps more important function of messages is to provide 
synchronization between threads. Often a thread reaches a point in its 
execution where it cannot continue until another thread has completed some 
task. In this case, the running thread has no useful work to do, so it should 
yield the processor until the task is completed. You use messages to provide 
the mechanism for the thread to wait until that time.
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Often a thread needs to wait for an exception such as an interrupt. 
Exceptions are trapped by the operating system and turned into events. 
Threads may register to receive notification of system events by requesting 
that the operating system send them a message whenever a system event 
occurs.

System Threads, Application Threads, and the Idle Thread

There are several types of threads in a typical application. There is a 
distinction (using priority) between system threads, application threads, 
and the idle thread. 

The PI manager, described in the IO section, is typical of system threads. It 
acts as a resource manager, allowing multiple user threads to share a critical 
resource safely—in this case, the cartridge ROM. 

The idle thread, which has the lowest priority (a priority of 0) of any thread 
in the system, runs only when all other threads are blocked awaiting some 
event. Note that the idle thread is required; the system will not run without 
it. The game application itself is composed of user threads. User threads are 
defined as those threads having priorities between 1 and 127.

Thread Data Structure

Each thread is associated with a data structure of type OSThread declared 
by the user. The address of this structure is the only identifier used in thread 
system calls. Since the thread data structure is essentially part of the 
application itself, you should take care not to overwrite it inadvertently. The 
structure contains the thread’s context (mostly, this consists of its register 
contents) when the thread is not running. Each thread has a priority used in 
scheduling, and an identifier used only by the debugger. These are also 
maintained in the thread data structure.

Thread State

A thread is always in one of four states. The state of the thread is maintained 
in its thread data structure for use by the operating system. A good 
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understanding of thread state is helpful in designing your application, since 
it leads to a better understanding of how the operating system will behave.

• Running. Only one thread in the system is in running state at a time. 
This is the thread that is currently executing on the CPU.

• Runnable. A thread in runnable state is ready to run, but it is not 
running because some other thread has higher priority. It will gain 
control of the CPU once it becomes the highest-priority runnable 
thread.

• Stopped. A stopped thread will not be scheduled for execution. Newly 
created threads are in this state. Threads are frequently stopped by the 
debugger, and an application may stop a thread at any time. Stopped 
threads become runnable via an osStartThread system call.

• Waiting. Waiting threads are not runnable because they are waiting for 
some event to occur. A thread that is blocked on a message queue is in 
waiting state. Arrival of a message returns a waiting thread to runnable 
or running state.

Scheduling and Preemption

Once the OS is running, the highest-priority runnable thread in the system 
always has control of the CPU. When a thread gains control of the CPU, it 
continues to run until it requires some resource or event to continue. It then 
relinquishes control of the CPU and the next highest priority thread gets to 
run. Typically, this happens as a result of the running thread calling the 
function to receive a message. If no message is present in the message queue, 
the running thread will block until a message arrives. Note that the thread is 
no longer runnable when it is blocked on a message queue, so it no longer 
fits the criterion of being the highest-priority runnable thread.

More frequently, the running thread loses control of the CPU through 
preemption. In response to an exception (for example, an interrupt), a higher 
priority thread becomes runnable. Since that thread should now be the 
running thread, the state of the interrupted thread will be saved in its thread 
data structure, the state of the newly-runnable thread will be loaded to the 
CPU, and the new thread will resume execution at the point where it last ran. 
The preempted thread is still runnable; it just doesn’t have the highest 
priority. When it once again becomes the highest priority thread, it will run 
again from the point where the interrupt occurred.
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Note that the running thread does not need to be at a sequence point (for 
example, a system call) to lose control of the CPU. Thus, this fits the classical 
description of a preemptive system. 

Multiple threads within an application frequently need to synchronize their 
execution. For example, thread A cannot continue until thread B has 
performed some operation. The message-passing functions provide the 
needed synchronization mechanism, and are described in the chapter on 
messages.

Thread Functions

There are eight functions associated with threads. Please refer to the 
reference (man) pages for specifics about the arguments, return values, and 
behavior of these functions.

• osCreateThread

This function is called once per thread to notify the system that a thread 
is to be created. Creating a thread initializes its thread data structure 
with the starting program counter, initial stack pointer, and other 
information. Once the thread data structure has been initialized, the 
thread can be run. 

• osDestroyThread

This function removes a thread from the system. Once called, the 
thread cannot be run any more.

• osYieldThread

This function notifies the operating system that the running thread 
wishes to yield the CPU to any other thread with higher or equal 
priority. If all other runnable threads have lower priority, the running 
thread will continue. (In practice, it is not possible for a runnable thread 
to have higher priority than the running thread.)

• osStartThread

This function call makes a thread runnable. If the specified thread is of 
higher priority than the running thread, the running thread will yield 
the CPU. If not, the running thread will continue and the started thread 
will wait until it becomes the highest priority thread in the system.
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• osStopThread

This function call changes the state of a thread to stopped, after which 
the thread will not be able to run until restarted. If the thread was 
waiting on a message queue, it will be removed from that queue.

• osGetThreadId

This function returns the ID of a thread assigned when the thread was 
created. It is used only by the debugger.

• osSetThreadPri

This function changes the priority of a thread. If the running thread is 
no longer the highest-priority runnable thread in the system as a result 
of this change, it will yield the CPU to the new highest-priority thread.

• osGetThreadPri

This function returns the running thread’s priority level.

Exceptions and Interrupts

The R4300 CPU used in the Nintendo64 processes a number of exception 
types. Most share a common vector, where the operating system receives 
them, reads the CAUSE register, and determines which of the 16 legal causes 
occurred. With the exception of the Interrupt cause (which may be either 
internal or external), all exceptions are internally generated within the CPU. 
For example, an attempt to fetch a word from an odd address will generate 
an address error exception.

The operating system has exception handlers for Coprocessor Unusable, 
Breakpoint, and Interrupt exceptions. All other exceptions are considered to 
be faults and are passed to the fault handler. The fault handler stops the 
faulted thread, sends a message to any thread (i.e., rmon) registered for the 
OS_EVENT_FAULT event, and dispatches the next runnable thread from 
the system run queue. If the debugger is present, a message is sent from the 
target to the host and the debugger can show you exactly where the fault 
occurred. Breakpoint exceptions are also handled in this way. The debugger 
will stop all user threads in the event of a breakpoint or a fault.
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When an interrupt occurs, the CAUSE register is examined to see which 
interrupt caused the exception. The R4300 supports eight interrupts 
described below.

Table 7-1

If the RCP interrupts the R4300, then an RCP register is read to see which of 
the RCP interrupts is being asserted. Thus, processing RCP interrupts is a 
two stage process - first the cause of the CPU interrupt is determined, then 
the cause of the RCP interrupt is isolated.

Normally, the Nintendo 64 game threads run with all interrupts enabled. It 
is possible to change the interrupt masks of the R4300 and RCP via a system 
call. Clearly, this must be used with great caution, as disabling a critical 
interrupt can cause the system to lock up or prevent real time response.

Events

Once the cause of the interrupt (or other exception) has been determined, it 
is mapped to one of 14 events defined for the Nintendo 64 system. Table 7-1 

Name Cause Description

Software 1 CAUSE_SW1 Software generated interrupt 1

Software 2 CAUSE_SW2 Software generated interrupt 2

RCP CAUSE_IP3 RCP interrupt asserted

Cartridge CAUSE_IP4 A peripherial has generated an interrupt

Pre-nmi CAUSE_IP5 User has pushed reset button on console

RDB Read CAUSE_IP6 Indy has read the value in the RDB port.

RDB Write CAUSE_IP7 Indy has written a value to the RDB port.

Counter CAUSE_IP8 Internal counter has reached its terminal count
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shows the events, why they occur, and who normally registers to receive a 
message when each event occurs.

Table 7-2Events Defined for the Nintendo 64 System

Event Name Event Description Owner

SW1 System software interrupt 1 
asserted

SW2 System software interrupt 2 
asserted

CART Peripherial has generated an 
interrupt.

OS

COUNTER Internal counter reached terminal 
count

VI/Timer 
manager

SP RCP SP interrupt; Task Done/Task 
Yield

Game

SI RCP SI interrupt; controller input 
available

Game

AI RCP AI interrupt; audio buffer 
swap

Game

VI RCP VI interrupt; vertical retrace VI/Timer 
manager

PI RCP PI interrupt; ROM to RAM 
DMA done

PI manager

DP RCP DP interrupt; RDP processing 
done

Game

PRENMI An NMI has been requested and 
will occur in 0.5 seconds

 Game

CPU_BREAK R4300 has hit a breakpoint Rmon

SP_BREAK RCP SP interrupt; RCP has hit a 
breakpoint

Rmon

FAULT R4300 has faulted Rmon

THREAD_STATUS Thread created or destroyed Rmon
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Event and Interrupt Functions

• osSetEventMesg

This function call specifies a message queue and message to be sent in 
response to a system event.

• osGetIntMask

This function returns the current interrupt mask (including both the 
R4300 and RCP masks).

• osSetIntMask

This function specifies a new interrupt mask (including both the R4300 
and RCP masks).

Non-Maskable Interrupts and PRENMI

When the console RESET switch is pushed, the hardware generates a HW2 
interrupt to the R4300 CPU. The interrupt is serviced by the OS event 
handler which sends a message of type OS_EVENT_PRENMI to the 
message queue associated with that event.

The HW2 interrupt will be followed in 0.5 seconds by a non-maskable 
interrupt (NMI) to the R4300 CPU (unless the RESET switch is pushed and 
held for more than 0.5 seconds, in which case the NMI will occur when the 
switch is released).

After the NMI occurs, the hardware is reinitialized, and:

• The first Meg of the game in ROM is copied into the first  megabyte 
of RAM after the boot address

• The BSS for the boot segment is cleared

• The boot procedure is called.

Note:  There are some minor differences between power on reset and 
NMI reset. After power on reset, the caches are invalidated. After NMI 
reset, the caches are flushed and then invalidated. Also, the power on 
reset configures the RAM, while NMI reset leaves the RAMs alone.
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After NMI reset, the contents of memory, except for the 1 Meg that is copied 
in, are the same as before the NMI occured.  The global variable, 
osResetType, is set to 0 on a power up reset and to 1 on a NMI.

If your game does not use the scheduler (see Chapter 24, “Scheduling Audio 
and Graphics”), it should set up to respond to the OS_EVENT_PRENMI 
event by associating a message queue with the event early in the game code. 
This is accomplished as follows:

osSetEventMesg(OS_EVENT_PRENMI, <some_message_queue> )

If your game does use the scheduler, it needs only to test for a message of 
type PRE_NMI_MSG on its client message queue. The scheduler performs 
the event initialization, and forwards the OS_EVENT_PRENMI message to 
the client message queue as soon as it is received.

Exactly how a game should behave when it receives OS_EVENT_PRENMI 
includes Nintendo policies on game consistency (such as fading the screen 
to black or ramping the audio volume down), but from a technical 
standpoint, when the game receives the OS_EVENT_PRENMI message it 
should do the following:

• Stop issuing graphics tasks to prevent the RDP from being stopped 
in a non-restartable state.

• Stop issuing audio tasks to prevent audio “pops”

• Stop issuing ROM (PI) DMAs

To test this, you can generate an NMI on development board by running the 
following program on the Indy. This is equivalent to pushing the RESET 
switch on the Nintendo 64 machine.

/*
 * Program to simulate pressing and releasing the RESET
 * switch on the Ultra 64.
 *
 * Copy this code to resetu64.c and type “make resetu64”
 *
 */
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/u64gio.h>
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#include <PR/R4300.h>

#define GIOBUS_BASE     0x1f400000
#define GIOBUS_SIZE     0x200000        /* 2 MB */

main() 
{
    int mmemFd;
    unsigned char *mapbase;
    struct u64_board *pBoard;

    if ((mmemFd = open(“/dev/mmem”, 2)) < 0) {
        perror(“open of /dev/mmem failed”);
        return(1);
    }

    if ((mapbase = (unsigned char *)mmap(0, GIOBUS_SIZE,
                    PROT_READ|PROT_WRITE,(MAP_PRIVATE),
                    mmemFd, PHYS_TO_K1(GIOBUS_BASE))) ==
                   (unsigned char *)-1) {
        perror(“mmap”);
        return(1);
    }

    pBoard = (struct u64_board *)(mapbase);
    pBoard->reset_control = _U64_RESET_CONTROL_NMI;
    sginap(10);
    pBoard->reset_control = 0;
}

Internal OS Functions

Some of the internal OS functions are briefly described below. Broken into 
three groups, these functions are mentioned here with the purpose to reduce 
potential duplicate effort from developers. Most of these functions are 
simple routines to access various R4300 registers, Translation-Lookaside 
Buffer (TLB) information, and internal active thread queue. Please refer to 
the reference (man) pages for specifics about the arguments, return values, 
and behavior of these functions.

The first group provide functions to access various common R4300 registers:

• __osGetCause, __osSetCause
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These functions returns and specifies the content of the R4300 Cause 
register, respectively.

• __osGetCompare, __osSetCompare

These functions returns and specifies the content of the R4300 Compare 
register, respectively.

• __osGetConfig, __osSetConfig

These functions returns and specifies the content of the R4300 
Configuration register, respectively.

• __osGetSR, __osSetSR

These functions returns and specifies the content of the R4300 Status 
register, respectively.

• __osGetFpcCsr, __osSetFpcCsr

These functions returns and specifies the content of the R4300 
floating-point Control/Status register, respectively.

The second group provide functions to access TLB information:

• __osGetTLBASID

This function returns the TLB Application Space ID in the R4300 
EntryHi register.

• __osGetTLBPageMask

For a specified TLB entry, this function returns the content of the R4300 
PageMask register.

• __osGetTLBHi

For a specified TLB entry, this function returns the content of the R4300 
EntryHi register.

• __osGetTLBLo0

For a specified TLB entry, this function returns the content of the R4300 
EntryLo0 register.

• __osGetTLBLo1

For a specified TLB entry, this function returns the content of the R4300 
EntryLo1 register.
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The third group provide functions to access internal active thread queue to 
find faulted thread(s):

• __osGetCurrFaultedThread

This function returns the most recent faulted thread.

• __osGetNextFaultedThread

This function returns the next faulted thread from the internal active 
thread queue.
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Chapter 8

8. Input/Output Functionality

Overview

The Input/Output (I/O) subsystem exists on most operating systems for 
three main reasons: 

• to hide device-specific details in device drivers through which the 
operating system transfers data and control

• to provide a fair and safe access scheme to the devices, since most of 
them are shared resources

• to provide a consistent, uniform, and flexible interface to all devices, 
allowing programs to reference devices by name and perform 
high-level operations without knowing the device configuration. 

Usually, the I/O software is structured in layers:

9. device-independent system interface

10. device drivers

11. interrupt handlers

The interrupt handler is mainly responsible for waking up a device driver 
after an I/O operation completes. The device driver performs 
device-specific operations, such as setting up registers for DMA and 
checking device status. The device-independent system interface provides a 
uniform interface to user-level software and common I/O functions (that is, 
protection, blocking, buffering) that can be performed across different 
devices. 
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For the RCP, there are two modes of I/O operations: 

• DMA provides a minimum of 64-bit transfer between the RDRAM and 
any of the devices

• IO provides a 32-bit transfer between the CPU and any of the devices

The RCP consists of the following major devices and interfaces (see 
Figure 8-1):

• Reality Signal Processor (RSP). This internal processor supports both 
DMA and IO operations between RDRAM and I/Dmem addresses.

• Reality Display Processor (RDP). This internal processor supports only 
DMA from either RDRAM or Dmem addresses to its internal buffer.

• Video Interface (VI). This write-only interface connects to the video 
DAC. It supports only DMA from RDRAM to a specific video buffer 
address and allows you to change video modes and configurations.

• Audio Interface (AI). This write-only interface connects to the audio 
DAC. It supports only DMA from RDRAM to a specific audio buffer 
address and allows you to set the audio frequency.

• Peripheral Interface (PI). This read-write interface connects to the ROM 
cartridge and other mass storage devices. It supports DMA as well as 
IO Read/Write to ROM addresses.

• Serial Interface (SI). This read-write module interfaces to the PIF, which 
connects to the game controller and modem devices. It supports DMA 
as well as IO Read/Write to PIF RAM addresses.
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Figure 8-1 Logical View of RCP Internal Major Devices and Interface Modules

Design Approach

Since Nintendo 64 operates in a real-time environment, its I/O subsystem is 
one of the most time-critical areas. Furthermore, the customized Nintendo 
64 environment contains a well-known set of device interfaces that remains 
unchanged for some time to come. Therefore, its I/O subsystem is mainly 
designed for optimal throughput and response, and not for portability and 
generality. This design approach coincides with the main Nintendo 64 
design philosophy, which has always been (and still is) to follow the 
minimal approach.

The Nintendo 64 I/O subsystem contains these components:

• a device-dependent system interface

• a device manager for shared devices
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• a system exception handler

These components represent a much trimmed-down version of the typical 
I/O layers. All overhead associated with device-independent interfaces 
(that is, naming and buffering) has been removed; protection is 
implemented only on shared devices. Low-level (raw) I/O interface is also 
available, allowing you to customize device interfaces based upon your 
specific needs. The result is a very lightweight and optimized interface that 
allows you to access (in most cases) the devices directly.

Each of these components is described further in the sections below. 
However, first it is important to discuss some properties (such as synchrony 
and mutual exclusion) that the Nintendo 64 I/O subsystem should exhibit.

Synchronous I/O vs. Asynchronous I/O

Synchronous I/O and asynchronous are two fundamental methods of 
servicing I/O requests. In synchronous systems, the calling process is 
blocked after issuing an I/O request, thus allowing I/O to overlap with the 
execution of other processes. In asynchronous systems, the process is 
allowed to continue execution after initiating an   I/O operation. Most 
systems implement the synchronous I/O method since it is easier to use and 
generally preferred by high-level language programmers.

However, in the Nintendo 64 environment, asynchronous I/O is the 
preferred choice, mainly because of the asynchronous nature of the real-time 
game environment. For example, a game might want to start paging in the 
next scene data in the background while working on the graphics task list. 
Therefore, asynchronous I/O has the potential to enhance the throughput 
on a thread basis. Furthermore, synchronous I/O can be easily implemented 
on top of the asynchronous facility by having the calling process blocks on a 
message queue immediately after initiating the I/O operation.

Therefore, all interrupt-based DMA operations are asynchronous operations 
and all asynchronous notification is handled via the message queue facility.
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Mutual Exclusion

On most systems, some devices such as disks and printers are shared 
resources. The I/O subsystem must ensure that only one process can use a 
device at any one time, thus excluding other requesting processes and 
forcing them to wait. 

In the Nintendo 64 environment, each device can process only one I/O 
transaction at any given time. For example, if there is a DMA transfer in 
progress between ROM and RDRAM, you cannot issue an I/O read from a 
different ROM location. If such a read is issued, the current DMA transaction 
will probably fail. Therefore, protection (or mutual exclusion) should be 
provided for devices that support both DMA operation and I/O read/write.

In this system, mutual exclusion is not implemented as a general scheme for 
all devices, but rather as a specific scheme for each identified shared device.

I/O Components

The Nintendo 64 I/O software subsystem consists of the following major 
components: system exception handler, device manager for shared devices, 
and device-dependent system interface. Figure 8-2 shows the interaction 
between some of these components to service an I/O request. This 
interaction assumes that the device is not shared, and therefore, requires no 
mutual exclusion.
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Figure 8-2 Interactions Between I/O Components Servicing Simple I/O Request

System Exception Handler

The Nintendo 64 system contains a system-wide exception handler that 
traps all exceptions and interrupts. This handler is simply an optimized 
event notifier. That is, upon receiving an event (either a supported exception 
or interrupt), the handler searches the event table for an associated message 
queue and message, sends the message to the queue, and simply returns. 
The handler does not perform any device-specific operations. The 
osSetEventMesg system call is provided to register a message queue and 
a message with a specified event.

Device Manager

Depending on the user application, a device in the Nintendo 64 environment 
may be shared between two or more threads. Furthermore, if you want to 
utilize both DMA and IO operations on a device, you must ensure that these 
two operations cannot overlap. For each device that requires protection, you 
can use the concept of a device manager to implement mutual exclusion.
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The Device Manager (DM) is simply a thread that runs at a high priority. The 
main purpose of this manager is to process all DMA requests to and from a 
device (that is, ROM devices), thus guaranteeing safe and orderly usage of 
the device. Upon start-up, the manager registers an event, its event message 
queue, and a message with the system. The manager is then blocked 
listening on its input command queue for request messages. The manager 
simply reads from the front of the queue and processes one request of a time. 

After calling the corresponding low-level device routine to initiate the I/O 
operation, the manager then blocks on listening on the input event queue, 
waiting for the event sent from the exception handler, signaling I/O 
completion. Once awakened, the manager then notifies the calling thread 
(I/O requestor) by simply sending the request message to a pre-registered 
message queue. The manager, then, returns to listen on the input command 
queue for new requests. 

The reason for alternating the listening between these two queues 
(command and event queues) is that there can be only one outstanding I/O 
transaction at any given time. Figure 8-3 summarizes the interaction 
between various I/O components to service an I/O request on a shared 
device. 
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Figure 8-3 Interaction Between I/O Components and a Shared Device

Device-Dependent System Interface

The device-dependent system interface is actually composed of two layers 
of function calls: a high-level abstraction layer and a low-level, raw I/O 
layer. In addition to providing mutual exclusion on devices that support 
both DMA and IO operations, the high-level layer also uses the lower layer 
to initiate raw I/O operation. The reason for exposing the raw I/O layer is 
to allow you to construct your own custom I/O software interface. 
Furthermore, if the user application requires no protection for accessing 
devices, using the low-level layer directly is the optimal way to request I/O 
operation. 
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In the following sections, the functions are partitioned and described under 
each device/interface separately. For high-level operation, each function 
name starts with os<DeviceName> for easy identification. For low-level 
operation, the function name starts with os<DeviceName>Raw. Please refer 
to the appropriate reference (man) pages for specifics about the arguments, 
return values, and behavior of these functions.

Signal Processor (SP) Functions

• osSpTaskStart

This function loads a task and starts it running.

• osSpTaskYield

This function asks a task running on the SP to yield.

• osSpTaskYielded

This function checks to see if a recently completed task has yielded.

Display Processor (DP) Functions

• osDpGetStatus

This function returns the value of the DP status register. The include 
file rcp.h contains bit patterns that can be used to interpret the device 
status.

• osDpSetStatus

This function allows you to set various features in the DP command 
register. Refer to the include file rcp.h for bit patterns and their usage.

• osDpSetNextBuffer

This function sets up the proper registers to initiate a DMA transfer 
from RDRAM address to the DP command buffer.

Video Interface (VI) Functions

• osCreateViManager

This function creates and starts the VI manager (VIM) system thread.

• osViGetStatus
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This function returns the value of the video interface status register. 
The include file rcp.h contains bit patterns that can be used to interpret 
the device status.

• osViGetCurrentLine

This function returns the current half line.

• osViGetCurrentMode

This function returns the current VI mode type.

• osViGetCurrentFramebuffer

This function returns the currently displaying frame buffer.

• osViGetNextFramebuffer

This function returns the next frame buffer to be displayed.

• osViGetCurrentField

This function returns the current field (either 0 or 1) being access by VI 
manager.

• osViSetMode

 This function sets the VI mode to one of the possible 28 modes. The 
new mode takes effect at the next vertical retrace interrupt.

• osViSetEvent

This function registers a message queue with the VI manager to receive 
the notification of a vertical retrace interrupt.

• osViSet[X/Y]Scale

These two functions allow you to change the horizontal scale-up factor 
(x-scale) and vertical scale-up factor (y-scale), respectively.

• osViSetSpecialFeatures

This function enables/disables various special mode bits in the control 
register.

• osViSwapBuffer

This function registers the frame buffer with the VI manager to be 
displayed at the next vertical retrace interrupt.
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Audio Interface (AI) Functions

• osAiGetStatus

This function simply returns the value of the audio interface status 
register. The include file rcp.h contains bit patterns that can be used to 
interpret the device status.

• osAiGetLength

This function simply returns the number of bytes remained in the audio 
interface DMA length register.

• osAiSetFrequency

This function configures the audio interface to support the requested 
frequency (in Hz). It calculates necessary values to program internal 
divisors and returns the closest frequency that the divisors can 
generate.

• osAiSetNextBuffer

This function programs the next DMA transfer based on the input 
length and starting buffer address.

Peripheral Interface (PI) Functions

• osCreatePiManager

This function creates and starts the PI manager (PIM) system thread.

• osPiGetStatus

This function simply returns the value of the hardware status register. 
The include file rcp.h contains bit patterns that can be used to interpret 
the peripheral status (that is, DMA busy and IO busy).

• osPiRawStartDma

This low-level function sets up the proper registers to initiate a DMA 
transfer between ROM and RDRAM.

• osPiRaw[Read/Write]Io

These two low-level functions perform an IO (32-bit) read/write 
from/to ROM address space, respectively.

• osPi[Read/Write]Io
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These two functions perform IO (32-bit) read/write from/to ROM 
address space, respectively. Since they provide mutual exclusion for 
accessing the PI device, these routines are both blocked I/O calls.

• osPiStartDma

This function generates an asynchronous I/O request to the PI manager 
to initiate a DMA transfer between RDRAM and ROM address space. 
Upon I/O completion, PI manager notifies the requestor by returning 
the I/O request message to the message queue specified by the 
requestor.

Controller Functions

• osContInit

This function initializes all the game controllers and returns a bit 
pattern to indicate which game controllers are connected.

• osContReset

This function resets all game controllers and returns their joysticks to 
neutral position.

• osContStartQuery

This function issues a query command to all game controllers to obtain 
their status and type.

• osContGetQuery

This function returns the game controllers’ status and type.

• osContStartReadData

This function issues a read data command to all game controllers to 
obtain their input settings.

• osContGetReadData

This function returns the game controllers’ joystick data and button 
settings.
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Chapter 9

9. Basic Memory Management

Introduction

This chapter 

• describes the hardware and software features of the Nintendo 64 
platform that relate to memory management, and

• discusses how an application may use them for efficient, correct 
memory utilization and access. 

The software interface of the Nintendo 64 platform allows  you to take 
advantage of the hardware capabilities of the machine, which include high 
flexibility and high performance. However, with this flexibility comes a 
corresponding decrease in ease of programming, which this chapter 
addresses.

Hardware Overview

Recall that the primary processing elements of the machine are the MIPS 
R4300 CPU and the Reality CoProcessor (RCP). The CPU executes 
application code directly from the DRAM, transparently caching instruction 
and data references in on-chip caches. The code itself makes references to 
CPU virtual addresses, which are translated by on-chip hardware to 
physical memory addresses. 
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The RCP is primarily composed of two elements: the  Signal Processor (SP) 
and the Display Processor (DP). The SP is a microcoded engine that 
processes task lists for audio and graphics. The DP is, for the most part, 
driven by the SP. The RCP can be treated as a single processor for the 
purposes of memory management.

Finally, a number of DMA engines also access DRAM directly: the DP, as 
well as the Audio Interface (AI), Serial Interface (SI), and Parallel Interface 
(PI).

At the hardware level, all of these agents make references to physical DRAM 
addresses. These physical addresses are derived in very different ways, 
however. 

CPU Addressing

CPU virtual address translation takes place in either of two ways:  either via 
direct mapping or through the translation lookaside buffer (TLB).  When 
running in kernel mode (as applications do on the Nintendo 64 platform) the 
address ranges have the behavior described in Table 9-1.

Table 9-1 32 Bit Kernel Mode Addressing

The KSEG0 address space is expected to be the most popular, if not only, 
address space used.  In this address space, the physical memory locations 
corresponding to be KSEG0 address can be determined by stripping off the 
upper three bits of the virtual address.  For example, virtual address 
0x80000000 corresponds to physical address 0x0000000, and so on. 

Beginning Ending Name Behavior

0x00000000 0x7fffffff KUSEG TLB mapped

0x80000000 0x9fffffff KSEG0 Direct mapped, cached

0xa0000000 0xbfffffff KSEG1 Direct mapped, uncached

0xc0000000 0xdfffffff KSSEG TLB mapped

0xe0000000 0xffffffff KSEG3 TLB mapped
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SP Addressing

The SP microcode makes address references also, but these references are 
only to the local memory (IMEM and DMEM) on the chip.  With the current 
software architecture, the application does not program the SP directly, and 
need not concern itself with IMEM and DMEM accesses. 

DRAM references, however, concern the application, because large data 
structures stored in DRAM are passed by reference. These include matrices, 
vertex lists, textures, and the display lists themselves.  As for the CPU, the 
addresses given to be SP for these data objects are also virtual addresses, but 
the mapping from virtual to physical address is significantly different.   The 
SP microcode maintains 16 locations in DMEM that act as segment base 
registers. An “SP virtual” address is presented to the SP microcode in the 
form of a <segment number, segment offset> pair encoded into a 32-bit 
word. To compute a physical DRAM address, the microcode adds the 
contents of the corresponding segment base register to the given offset. 

DMA Engine Addressing

As indicated above, the Nintendo 64 includes  DMA engines that access 
DRAM directly.  Since these DMA operations are initiated by the CPU, the 
DRAM addresses passed to the interface routines are CPU virtual addresses.  
These routines perform the mapping from virtual to physical addresses and 
give the resulting physical DRAM address to be appropriate hardware 
registers.

Makerom and Memory Management

In addition to its more obvious role of creating the application ROM image, 
makerom (1P) is a powerful tool for both memory and symbol table 
management.  Segments to makerom mean more than SP addressable 
memory regions.  To makerom, a segment is any contiguous, coherent 
region of bytes in memory or on the ROM.

The ROM specification file given to makerom provides virtual or segment 
addresses to segments. A segment consisting of MIPS 4300 code or data to 
run on the CPU can be given a virtual address with an address statement. 
A segment consisting of static display list data is given a segment address by 
specifying the segment number with a number statement.
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Briefly, makerom does the following:

• scans the input specification file for syntax errors;

• sizes the segments, creating absolute symbols for segment addresses 
and ROM locations;

• performs final relocations of relocatables that comprise the segment, 
using a link editor that can link an arbitrary number of segments to 
different addresses;

• extracts the text and initialized data portions for each segment from the 
resulting fully linked binary, and packs these portions of the segment 
onto the ROM image.

Mixing CPU and SP Addresses

It is permissible to link segments given a CPU virtual address with those 
given a SP segment address.  It may appear counter-intuitive and 
error-prone to link relocatables of entirely incompatible address spaces.  As 
it turns out, the benefits outweigh the potential risks, because it allows the 
application code to address SP display list data symbolically.

For example, suppose a segment is composed of the following display list 
data:

static Vp vp = {
    SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/2, 0,/* scale */
    SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/2, 0,/* translate */

};

Gfx rspinit_dl[] = {
    gsSPViewport(&vp),
    gsSPClearGeometryMode(0xffffffff),
    gsSPSetGeometryMode(G_SHADE | G_SHADING_SMOOTH),
    gsSPEndDisplayList(),
};

The beginning of the display list rspinit_dl is embedded somewhere in the 
segment. Rather than computing its offset into the segment, the display list 
is simply provided symbolically: 
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gSPDisplayList(glistp++, rspinit_dl);

The compiler and linker do the work of computing the address of 
rspinit_dl within the segment. Thus, if the relative location of the display 
list rspinit_dl changes, the code will still remain valid (and more 
readable). Note that the CPU does not reference any of the data in this 
display list; the CPU just passes a reference to the display list data to the SP.

A more complicated example involves using the mixed symbol table to work 
with memory regions created by the CPU and read by the SP.  In this case, a 
single SP segment refers to two different underlying DRAM regions.  This 
technique can be useful when static display lists need to refer to dynamic 
data that is double buffered. The actual DRAM location currently being 
pointed to is swapped by setting the appropriate SP segment register.

The actual memory for the dynamic data can be declared and created within 
a KSEG0 code segment as follows:

typedef struct {
    Mtx projection;

    Mtx modeling;
    Gfx glist[2048];
} Dynamic_t;

Dynamic_t dynamicBuffer[2];
Dynamic_t *dynamicPointer = &dynamicBuffer[0];

The segment contents can then be modified by the CPU directly:

guOrtho(&dynamicp->projection,
-SCREEN_WD/2.0, SCREEN_WD/2.0,
SCREEN_HT/2.0, SCREEN_HT/2.0, 1, 10, 1.0);

guRotate(&dynamicp->modeling, theta, 0.0, 0.0, 1.0);

The SP view of the dynamic segment is created by creating a relocatable with 
the following parallel definition and assigned to, for example, segment 
register 4 in the ROM specification file:
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Dynamic_t rspdynamic;

Since the relocatable contains only uninitialized data (bss), no actual bits on 
the ROM are used. But more importantly, the symbol rspdynamic is made 
available to other objects. Its value is the segment address of the dynamic 
segment. 

The SP segment register 4 is then mapped to the actual memory for the 
dynamic segment with the following command:

gSegment(glistp++, 4, osVirtualToPhysical(dynamicp);

Then the SP addresses of the dynamic structure can be used, even from static 
display lists, to build display lists that reference components of the dynamic 
section:

gsSPMatrix(&dynamic.projection,
  G_MTX_PROJECTION|G_MTX_LOAD|G_MTX_NOPUSH);

gsSPMatrix(&dynamic.modeling,
  G_MTX_MODELVIEW|G_MTX_LOAD|G_MTX_NOPUSH);

As with the previous example, using the compiler and linker to generate 
addresses allows the data structures to be modified, reordered, and so on, 
without changes to unaffected areas of the application. 

Flushing the CPU Data Cache

The MIPS R4300 CPU transparently caches data accesses on a onboard data 
cache.  Ordinarily this cache is of no concern to the application, but when an 
external agent such as the SP or DMA engine is involved, the application 
must be aware of the caching implications.

The data cache implements a “write back” replacement policy which means 
that data stores are held in the cache until the entire cache line is written 
back, usually due to a cache miss thatrequires the same cache line.  The cache 
is not coherent with respect to physical memory and thus cache lines must 
be explicitly written back to memory prior to their use by another processor 
such as the SP.
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Using the above example, the dynamic data can be written with a single 
procedure call as follows.  It is expected that this will be done prior to the 
task list being executed by the SP.

osWritebackDCache(dynamicp, sizeof(Dynamic_t));

Clearing uninitialized data (Bss) section

Prior to loading a segment into memory, the application must invalidate the 
corresponding cache lines. The makerom(1P) makes appropriate symbols 
available to the application that can be used to construct the arguments to 
the osInvalDCache(3P) routines. Then the actual DMA from ROM to DRAM 
may be performed, as well as the clearing of the uninitialized data (bss) 
section of the segment. It is important that the clearing be performed before 
the Bss section can be used. Again, makerom(1P) generated symbols may be 
used for the bzero() call. Here is some sample code that illustrates the 
process:

extern char _newSegmentRomStart[], _newSegmentRomEnd[];
extern char _newSegmentStart[];
extern char _newSegmentDataStart[], _newSegmentDataEnd[];
extern char _newSegmentBssStart[], _newSegmentBssEnd[];

osInvalDCache(_newSegmentDataStart,
    _newSegmentDataEnd-_plainSegmentDataStart);
osPiStartDma(&dmaIOMessageBuf, OS_MESG_PRI_NORMAL,OS_READ,
    (u32)_newSegmentRomStart, _newSegmentStart,
    (u32)_newSegmentRomEnd - (u32)_newSegmentRomStart,
    &dmaMessageQ);

bzero(_newSegmentBssStart,
      _newSegmentBssEnd-_newSegmentBssStart);

(void)osRecvMesg(&dmaMessageQ, NULL, OS_MESG_BLOCK);

Physical Memory Allocation

The Nintendo 64 hardware contains four megabytes of “nine bit” DRAMS. 
The normally hidden ninth bit is used for antialiasing and z-buffering 
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hardware. It is recommended that the framebuffer and z-buffer reside on 
different megabyte banks to take advantage of caching in the DRAM 
circuitry

By default, the boot location resides at directed mapped address 0x80000400.  
(or physical address 0x400). The first 1024 (0x400) bytes of physical memory 
are reserved for exception vectors and configuration parameters. This boot 
location can be changed by simply inserting an address statement in the boot 
segment of the makerom (1P) specification file. For example, the following 
code specifies the boot location to be at 0x80200000, which is the beginning 
of the third megabyte of memory.

beginseg
        name “code”
        flags BOOT OBJECT
        entry boot
        address 0x80200000
        stack bootStack + STACKSIZE
        include “codesegment.o”
        include “$(ROOT)/usr/lib/PR/rspboot.o”
        include “$(ROOT)/usr/lib/PR/gspFast3D.o”
        include “$(ROOT)/usr/lib/PR/gspFast3D.dram.o”
        include “$(ROOT)/usr/lib/PR/aspMain.o”
endseg

The boot process of the Nintendo 64 will copy one megabyte of data 
beginning with the boot segment specified in the specification file to the boot 
location.
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Chapter 10

10. Advanced Memory Management

Introduction

This chapter explores techniques and features that are not required in the 
simplest of applications.  It contains useful information and tricks that may 
be used in certain situations, but it is not expected that all applications will 
use all the techniques described here.

Mixing CPU and SP Data

In the previous chapter it was implied that CPU and SP data should be in 
separate segments as they are addressed differently. This is not mandatory, 
however, as the addressing can be easily reconciled. Suppose the application 
defines a display list and includes it in a segment given a CPU addressable 
KSEG0 address. The physical address of this display list can be easily 
determined with the OS_K0_TO_PHYSICAL(3P) macro or the 
osVirtualToPhysical(3P) routine. The resulting physical address 
corresponds to an SP address with segment number if 0, and a segment 
offset equal to the physical address. This is because the encoding of the SP 
segment address is as follows:

0242831

xxxx seg ID segment offset
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If the application creates a mapping using segment 0 to a beginning physical 
address of 0x0, the SP can correctly access objects in DRAM when given a 
physical address.

This simplifies the situation somewhat, but the SP microcode takes it a step 
further: Since the upper four bits of a segment address are not used, they are 
ignored. Thus an implicit mapping is done from a KSEG0 address to a 
physical address, and no explicit conversion need be done by the 
application.

To summarize, as long as an SP segment table mapping is done from 
segment number 0 to offset 0, CPU KSEG0 addresses can be interpreted 
correctly by the SP.

Using Overlays

The total application code size and data will probably be greater than what 
is actively being used at any point in time. To conserve DRAM, applications 
may choose to only have active code and data resident. To facilitate this, the 
application can be partitioned into a number of segments, where some 
segments share the same memory region during different phases of 
execution. Here is an excerpt from a specification file that contains a kernel 
code segment that can call routines in either of two overlay segments, 
texture and plain:
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beginseg
        name “kernel”
        flags BOOT OBJECT
        entry boot
        stack bootStack + STACKSIZE
        include “kernel.o”
        include “$(ROOT)/usr/lib/PR/rspboot.o”
        include “$(ROOT)/usr/lib/PR/gspFast3D.o”
endseg

beginseg
        name “plain”
        flags OBJECT
        after “kernel”
        include “plain.o”
endseg

beginseg
        name “texture”
        flags OBJECT
        after “kernel”
        include “texture.o”
endseg

beginwave
name “overlay”
include “kernel”
include “plain”
include “texture”

endwave

Note the use of the after keyword to place both of the overlay segments at 
the same address.

Prior to loading a segment into memory, the application must invalidate the 
corresponding instruction and data cache lines. The makerom(1P) makes 
appropriate symbols available to the application that can be used to 
construct the arguments to the osInvalICache(3P) and osInvalDCache(3P) 
routines. Then the actual DMA from ROM to DRAM may be performed, as 
well as the clearing of the uninitialized data (bss) section of the segment. 
Again, makerom(1P) generated symbols may be used for the bzero() call. 
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After the segment is loaded, any procedure in the segment may be called or 
any data in the segment referenced. Here is some sample code that illustrates 
the entire process:

extern char _plainSegmentRomStart[], _plainSegmentRomEnd[];
extern char _plainSegmentStart[];
extern char _plainSegmentTextStart[], _plainSegmentTextEnd[];
extern char _plainSegmentDataStart[], _plainSegmentDataEnd[];
extern char _plainSegmentBssStart[], _plainSegmentBssEnd[];

osInvalICache(_plainSegmentTextStart,
    _plainSegmentTextEnd-_plainSegmentTextStart);
osInvalDCache(_plainSegmentDataStart,
    _plainSegmentDataEnd-_plainSegmentDataStart);
osPiStartDma(&dmaIOMessageBuf, OS_MESG_PRI_NORMAL,OS_READ,
    (u32)_plainSegmentRomStart, _plainSegmentStart,
    (u32)_plainSegmentRomEnd - (u32)_plainSegmentRomStart,
    &dmaMessageQ);

bzero(_plainSegmentBssStart,
      _plainSegmentBssEnd-_plainSegmentBssStart);

(void)osRecvMesg(&dmaMessageQ, NULL, OS_MESG_BLOCK);

Using Multiple Waves

The previous example linked both overlays into a single, fully relocated 
binary. This binary is used for two purposes. First, the text and data sections 
are extracted from this binary and packed on the ROM. Second, this binary 
can be given to the Nintendo 64 debugger, gvd(1P). Although the 
specification file above will create an operationally correct ROM image, the 
binary will confuse the debugger. This is because multiple symbols will map 
to the same address, and gvd may err when it tries to find the correct source 
line for a given program counter value, for example.

This problem can be circumvented by creating multiple binaries, or waves, 
each with a distinct symbol table. The following specification file excerpt 
illustrates this:

beginwave
       name “plain_wave”
       include “kernel”
       include “plain”
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endwave

beginwave
       name “texture_wave”
       include “kernel”
       include “texture”
endwave

Using this technique, procedure and variable names from the plain segment 
are kept distinct from those of the texture segment. The “Switch Executable” 
menu entry from the gvd “Admin” menu can be used to select the symbol to 
use while debugging.

There is one significant caveat when using multiple waves. The contents of 
each segment must be identical in each of the waves the segment is included 
in. For example, the kernel segment above is included in both plain_wave 
and texture_wave, so its relocated image must be identical in both. The usual 
consequence of this rule is that the segment procedure entry point in both of 
the overlay segments must be at the same location. This requirement can be 
easily met by ensuring that the segment procedure is always the first 
procedure of the first relocatable that comprises the overlay segment. Then 
the calling segment code can always jump to the beginning address of the 
overlay segment(s) and execute valid code there.

Using the Region Allocation Routines

Previous examples were primarily concerned with static memory allocation; 
many applications may find it necessary to do some form of dynamic 
allocation. For situations where the allocation is always done in fixed size 
chunks, a family of region allocation routines are provided. These routines 
will carve up a larger buffer into fixed some memory regions that are 
managed by the library. The routines of interest are:

• osCreateRegion

This function initializes an allocation arena given a memory address, 
size, and alignment.

• osMalloc
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This function allocates and returns the address to a single fixed sized 
and properly aligned buffer from a given region. This function will fail 
and return NULL is there is no available free buffer in the region.

• osFree

This routine returns a previously allocated buffer to the given region 
pool.

• osGetRegionBufCount

This function returns the total number of buffers in the region. 

• osGetRegionBufSize

This function returns the actual buffer size, after having been possibly 
padded to the given alignment.

The following code sample creates a region, allocates a buffer, and then frees 
it.
        void *region;
        char regionMemory[REGION_SIZE];
        u64 *buffer;

        region = osCreateRegion(regionMemory,
                               sizeof(regionMemory),
                               BUFFER_SIZE, OS_RG_ALIGN_16B);
        buffer = osMalloc(region);
 
        /* do some work that uses ‘buffer’ */

        osFree(region, buffer);

Incidentally, if the fixed size regions are intended to hold entire segments, 
the maxsize keyword of the makerom specification file may be of interest. 
See makerom(1P) for details.

Managing the Translation Lookaside Buffer

Although most applications will find the direct mapped KSEG0 address 
space of the CPU sufficient, it is possible to use the mapped address space 
by setting appropriate Translation Lookaside Buffer (TLB) entries.
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Perhaps the biggest restriction with using the TLB is that individual entries 
operate only on relatively large, aligned memory regions (pages).  
Nevertheless, it may be helpful for memory protection or relocation of CPU 
addresses. In addition, TLBs can be used as yet another method to reconcile 
SP segment addresses with CPU addresses, since SP addresses fall within 
the range of the mapped CPU address space.

 The translation lookaside buffer (TLB) of the R4300 has 32 entries, each of 
which maps two physical pages. The TLB is fully associative, which means 
each entry is essentially independent—the index number implies nothing 
about the mapping and any entry can hold any mapping. A number of page 
sizes are supported: 4 KB, 16 KB, 64 KB, 256 KB, 1MB, and 16MB. Each TLB 
entry may map a different page size. The following routines are used to 
manage the TLB:

• osMapTLB

This function sets the contents of a single TLB entry to the given virtual 
address, even and odd physical address, page size, and address space 
identifier. 

• osUnmapTLB

This function invalidates both the odd and even physical page 
mappings of a given TLB entry.

• osUnmapTLBALL

This function invalidates all mappings in the TLB.  This should be done 
by the application prior to using the TLB.

• osSetTLBASID

This function sets the current address space identifier register.

Using the TLB requires some care. The following paragraphs describe some 
problem areas.

• Two TLB entries cannot map the same virtual address space. If this 
occurs, accesses to the address will cause a TLB refill exception. Any 
overlapping mapping creates this condition, even when a mapping 
with a smaller page size is a subset of another mapping with a larger 
page size:

osMapTLB(0, OS_PM_16K,(void *)0x0,0xa0000,-1,-1);
osMapTLB(1, OS_PM_4K, (void *)0x2000, 0xb000, -1, -1);
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Another case involves different TLB entries, each of which map 
different pages of an odd/even pair. The following mappings, which 
individually map an even and an odd physical page, will create an 
overlap condition:

osMapTLB(0, OS_PM_4K, (void *)0x2000,0xa000,-1, -1);
osMapTLB(1, OS_PM_4K, (void *)0x2000,-1,0xb000, -1);

Instead, the application should set a single entry with both mappings:

osMapTLB(1, OS_PM_4K, (void *)0x2000, 0xa000, 0xb000, -1);

• The mapped addresses must be aligned to the page size. This applies to 
both the virtual and physical pages mapped.

This implies that if one intends to map SP segment addresses via the 
TLB, the SP segment must be loaded at a page-aligned address.

• Multiple mappings of a cached address must be of the same “color.” 
CPU caches are physically tagged, but virtually indexed, which 
introduces a situation in which more than one cache line references the 
same physical memory locations. Avoid the problem by using the same 
virtual address consistently for a particular physical address.

If you cannot use the same virtual address, the mappings should all be 
the same color, where the “color” is defined as bits [14..6] of the 
instruction address (for instruction fetches) or bits [15 ..5] of the data 
address (for data accesses).

Finally, no support is provided  for handling and recovering from TLB 
misses.  A TLB miss is an unrecoverable fault to the Nintendo 64 system.

More information about these topics can be found in the MIPS R4300 
documentation.
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Chapter 11

11. Graphics Microcode

Graphics are rendered in Nintendo64 games by creating a graphics display 
list, and passing this display list to the RSP. In order for the RSP to process 
this display list, the application, using system calls, loads graphics 
microcode. This section discusses the different microcode object files 
available to applications.

There are six basic versions of the graphics microcode, and each basic 
version has up to three subtypes. The basic versions are know as, gspFast3D, 
gspF2DNoN, gspLine3D, gspTurbo3D, gspSuper3D, gspSprite2D. Each 
basic version has a different set of graphics rendering features. Each subtype 
has the same set of graphics features, but varies according to how the RSP 
passes commands to the RDP. The three subtypes are regular, .dram and 
.fifo. The object files for the microcode are labeled, <basicType>.o, 
<basicType>.dram.o, and <basicType>.fifo.o.
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Microcode Functionality

gspFast3D

gspFast3D microcode is the most full-featured of the microcode objects. It is 
also the microcode used in the majority of the demo applications. gspFast3D 
supports 3D triangles, 3D clipping, z-buffering, near and far clipping, 
lighting, mip-mapped textures, perspective textures, fog, and matrix stack 
operations. It does not support the GBI command, gSPLine3D.

gspF3DNoN

The gspF3DNoN microcode is similar to the gspFast3D microcode, except it 
does not handle near plane clipping in the same manor. When using the 
gspFast3D microcode, objects between the eye and the near plane are 
clipped. When using the gspF3DNoN microcode, objects between the eye 
and the near plane are not clipped. However, the area between the eye and 
the near clipping plane does not implement zbuffering. This means that 
objects that fall into this area must be drawn in order from far to near.

gspLine3D

gspLine3d microcode features many of the features of gspFast3D, except 
instead of drawing triangles, it draws 3D lines. This is useful for producing 
wireframe effects. If a gSP1Triangle command is encountered it will draw 
the three edges of the triangle, but not the center portion of the triangle.

gspTurbo3D

gspTurbo3D microcode is a reduced-feature, reduced-precision, microcode 
that delivers significantly faster performance. The features not supported by 
gspTurbo3D are: Clipping, lighting, perspective-corrected textures, and 
matrix stack operations. The quality of the anti-aliasing also suffers, due to 
the lack of precision used by gspTurbo3D. This loss of precision can also 
manifest itself as various visual artifacts, depending on the content. 
gspTurbo3D uses a different format for the display list. 
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gspSprite2D

gspSprite2D microcode is optimized for drawing 2D sprite images. Sprites 
are implemented as textured screen rectangles. gspSprite2D does not 
support 3D lines 3D triangles, vertices operations, matrix operations, 
lighting, or fog. All of the DP commands such as blender modes, and color 
combiner modes are supported. Zbuffering can be used to arrange the order 
of the sprites from front to back

gspSuper3D

gspSuper3D is a reduced precision microcode that supports the same 
display list format as gspFast3D. This reduced precision will increase 
performance, but can cause visual artifacts. Although gspSuper3D uses the 
same display lists as gspFast3D, gspSuper3D does not support perspective 
corrected textures. 
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RSP to RDP command passing

All types of RSP microcode generate commands for the RDP. The method 
used to pass the commands from the RSP to the RDP determines the suffix 
used to name the microcode object. In the “regular” method the commands 
are written to a buffer in dmem, which can hold up to six RDP commands. 
If the buffer fills, the next time the RSP tries to write a command it will stall 
until there is space in the buffer. Microcode versions that use this type of 
command passing have no special suffix, just a “.o” appended to their name. 

Alternatively, the RSP can write all the commands to a larger fifo buffer in 
rdram. This helps to prevent the RSP from stalling when the RDP gets bound 
by processing large triangles. Microcode that uses this method has the 
“.fifo.o” suffix appended to its name.

When using the fifo version of a microcode, the application must pass a 
pointer to a buffer to be used as the fifo buffer, in the task output_buff field. 
The size of the fifo buffer is put in the output_buff_size field. In order for fifo 
to have a positive effect on performance the size of the buffer should be 
greater than 1K. 

The microcode also provides another option for the RSP to write all of the 
RSP commands to an rdram buffer. In this case the application must start the 
RDP task separately with a call to osDpSetNextBuffer(). (This form of 
command passing is very useful for debugging in conjunction with the tool 
dlprint which can print display lists in a human readable form.) Microcode 
designed to use this method has the “.dram.o” suffix appended to its name.

Tasks using the .dram microcode need a pointer to a buffer in the 
output_buff field of the task structure, and a size in the output_buff_size. 
Because RSP commands usually expand when converted into RDP 
commands, this buffer needs to be larger than the size of the RSP display list.
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Chapter 12

12. RSP Graphics Programming

This document describes the graphics state machine of the RCP, with a 
particular focus on the RSP (see “RSP: Reality Signal Processor” on page 44).

The RSP is an R4000-like CPU with an 8-element vector unit, featuring a 
small instruction memory, IMEM (4K bytes or 1K instructions) and small 
data memory, DMEM (4K bytes). Software running on this processor 
implements a large portion of the geometry display pipeline.

In addition, the RSP provides visibility for all of the RCP functionality, 
through a variety of software conventions and hardware exposure. All 
“display lists” for the RCP graphics features must pass through the RSP. 
There are several important features which require the application 
programmer to be consciously aware of the distinctions between the RSP 
and the RDP (and program each of them separately), but for the most part, 
the RSP serves as the single interface between the application program and 
the graphics pipeline:

Figure 12-1 Nintendo 64 Graphics Pipeline

R4300
game processing
animation

RSP
3D geometry
transformation +
lighting

RDP
polygon
rasterization +
texturingGBI assembly
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Topics covered in this document include:

• RSP overview

• display list processing

• matrix state

• vertex state

• vertex lighting state

• texture state

• clipping and culling

• primitives

• controlling the RDP state
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RSP Overview

A program which runs on the RSP is called a task; the application is 
completely responsible for scheduling and invoking tasks on the RSP.

The interface between the application and the RSP task is accomplished with 
a series of operating system calls, and a structure called the task list (or task 
header) which is type OSTask (defined in sptask.h). The task list contains all 
the information necessary to begin task execution, including pointers to the 
microcode to run. This structure is filled in by the application program.

A detailed description of invocation of a task on the RSP is beyond the scope 
of this section (see “RCP Task Management” on page 65), but the essential 
procedure is straightforward:

• the RSP is assumed to be halted (or the R4300 halts it).

• the R4300 DMA’s the boot microcode into the RSP IMEM.

• the R4300 DMA’s the ‘task header’ into the RSP DMEM.

• the R4300 sets the RSP PC to 0.

• the R4300 clears the RSP halt status (allowing it to run).

From this point, the boot microcode takes over, loading the task microcode 
(and data) specified in the task list, and jumping to the beginning of the task.

One item in the task header is a pointer to the initial data to process (in the 
case of a graphics task, this is a display list pointer).

Display List Format

The display list which the gspFast3D, gspF3DNoN, or gspLine3D microcode 
running on the RCP interprets is defined as a stream of 64-bit commands.

Applications written in C will usually use the interface from the file gbi.h., 
which will be included via inclusion of  ultra64.h. Although the construction 
of display lists looks like a familiar series of function calls, they are actually 
just bit-packing macros. These macros are described in detail in their 
individual man pages.
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Each macro has two forms, i.e. gSPTexture() and gsSPTexture(). The 
difference between ‘g’ and ‘gs’, is that the ‘g’ form is an in-line form which 
requires an additional argument (pointer of the display list being 
constructed). The display list pointer must be of the form “ptr++”, in order 
for the macros to work properly.

The ‘gs’ form is for static declarations, and generates the appropriate C 
structure initialization sequence.

Throughout this document, only the ‘gs’ form is mentioned, however the ‘g’ 
form also applies, and could always be substituted.

All of the display list building macros also embed an ‘SP’ or a ‘DP’ to 
describe the functional unit of the RCP which will operate on this command. 
This is certainly confusing, especially to application programmers familiar 
with higher-level graphics API’s such as OpenGL. In order to achieve 
maximum performance, it is necessary to expose the two major units of the 
RCP to the application programmer. The primary reason for this is resource 
constraints; there is simply not enough RSP IMEM to build a display list 
processor that is rich enough to hide these details from the application 
programmer. In addition, given the dedicated application of the RCP (video 
games), any CPU cycles spent “gift-wrapping” the graphics API are a waste 
of time. The binary encoding of most of the display list commands is the 
lowest possible level: they are the bits that control the hardware. 

Exposing the two functional units of the RCP also limits the amount of state 
shared between them. The major drawback of this design decision is that 
you must often tell the same thing to the RSP and the RDP. For example, in 
order to “turn on texture mapping” you must turn it on in the RSP and turn 
it on in the RDP. This may seem clumsy at first, and indeed this is a common 
source of display list bugs, but the parallel execution of the RSP and RDP, 
plus the lean display list processing machine make this trade-off 
worthwhile.

Segmented Memory and the RSP Memory Map

All DRAM addresses in the display list are segmented addresses. The 
mapping of segments and their base addresses is provided using the 
gsSPSegment() macro. It is the responsibility of the application to maintain 
this mapping and inform the RSP via the display list.
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The RSP maintains an associative table of up to 16 segment ID’s and their 
base addresses. Any DRAM address in the display list is ‘physical-ized’ 
using this table.

The RDP only uses physical addresses, and one of the chores of the RSP is to 
do the address translation necessary for the RDP.

Note: By convention, segment table entry 0 is reserved for physical 
addressing, and should be set to 0x0.

The RSP software can only access DMEM. All data must first be transferred 
into DMEM using DMA operations, which must be 64-bit aligned. 
Invocation of the DMA engine is handled by the RSP software, but the 
application programmer needs to be aware of the boundary requirements. 
Any data structure that is to be passed to the RSP must be aligned to a 64-bit 
boundary. The structures in gbi.h use C unions to guarantee this.

Since the DMA engine is shared between the R4300 and the RSP, the 
application program should also avoid unnecessary DMA activity while the 
RSP is running.

Interaction Between the RSP and R4300 Memory Caching

The most prevalent example of communication between the CPU and the 
RSP is that of the CPU creating a display list in DRAM for eventual 
interpretation by the RSP. The display list data is read from DRAM via a 
DMA mechanism. Unfortunately, DRAM locations may be “stale” with 
respect to newer data being held in the R4300’s data cache. The R4300 cache 
mechanism implements a “write-back” caching policy which means 
individual stores to memory are not immediately written to memory. To 
update the memory contents with more recent cached data, the CPU must 
first write back cached data to the DRAM. Then, and only then, will the RSP 
be able to DMA the correct data for display list processing.

Conversely, the contents of memory may be more recent than cached data in 
some situations when the RSP modifies memory (an obvious example is 
updating the color frame buffer). In this case, the CPU’s cache may contain 
stale data and the CPU should invalidate the cached data to force an access 
directly to DRAM and get the most recent data.
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As a practical note, this second scenario only arises in advanced 
applications.
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Display List Processing

Understanding the basics of the RSP display list processing is necessary to 
construct efficient, compact display lists for an application.

The display list (or command list) can be thought of as a hierarchical 
structure, up to 10 levels deep. A display list may contain a pointer to 
another display list, and so on. The RSP processes the display list using a 
stack, pushing and popping the current display list pointer.

For animation, it will be desirable to “double-buffer” parts of the display list; 
rendering one frame while the data for the next frame is updated. In this 
case, only the minimum amount of data need be duplicated; only the data 
which will change for each frame. Swapping between doubled buffers is 
efficiently done by changing the segment base addresses (and organizing 
your display list appropriately).

During computation by the RSP, all display lists and their data must remain 
in the same location until the RSP is finished. This sounds obvious, but is a 
very common bug, usually the result of incorrect usage of double-buffering 
techniques. In addition, if the RSP task is interrupted (see “Signal Processor 
(SP) Functions” on page 109), all of the data must remain in the same 
location when/if the task is restarted

Connecting Display Lists

Hierarchical display list connection can be made with the gsSPDisplayList() 
macro. The current display list location is pushed on the display list stack 
and processing begins with the new display list.

Table 12-1 gsSPDisplayList(Gfx *dl)

Parameter Values

dl pointer to the display list to attach.
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Branching Display Lists

A display list branch without a push allows you to “chain” together 
fragments of display lists for more efficient memory utilization.

Table 12-2 gsSPBranchList(Gfx *dl)

Ending Display Lists

All display lists must terminate with an “end” command.

Table 12-3 gsSPEndDisplayList(void)

A Few Words about Optimal Display Lists

The display list processor running on the RSP caches display list commands 
in groups of about 32. This means the optimal display list size is a multiple 
of 32. A display list of 33 commands (or 65, etc.) would require the display 
list cache to be refilled during processing, possibly causing a wait state 
(depending on the DMA engine activity). Obviously not all display lists can 
keep the list processor running 100% optimally, but it is something to keep 
in mind when tuning your application.

Another form of display lists which cause less than optimal processing are 
display lists that look like this:

Parameter Values

dl pointer to the display list to attach.

Parameter Values

 none none
142



NINTENDO DRAFT RSP GRAPHICS PROGRAMMING
Since the display list engine is stack-based, a display list that has lots of 
unnecessary indirect pointers will cause lots of unnecessary pushes and 
pops, which do have a cost.

Constructs like this are unavoidable sometimes, like when sharing 
geometries among objects, but if you have a choice try not to group indirect 
display list pointers together.
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Matrix State

The “geometry engine” in the RSP implements a fixed-point matrix engine 
with the following matrix state:

A 10-deep modeling matrix stack. New matrices can be loaded onto the 
stack, multiplied with the top of the stack, popped off of the stack, etc.  This 
matrix stack is primarily used for manipulating objects within the world 
coordinate system (often combinations of rotations, translations, and 
sometimes scales).

A 1-deep projection and viewing matrix “stack”. New matrices can be 
loaded onto the stack, multiplied with the top of the stack, but cannot be 
pushed or popped.  This matrix “stack” is primarily used for the projection 
matrix and the viewing matrix.  The projection matrix (often created with the 
guPerspective or the guOrtho functions) is loaded onto the stack, and then 
the viewing matrix (often created with the guLookAt function) is multiplied 
on top of it.

A “perspective normalization” factor. This is used to improve precision of 
the fixed-point perspective computation.

When a group of vertices is loaded, they are first transformed by the matrix 
MP (the current top of the modeling stack multiplied by the projection 
matrix). All vertex transformations are done only when they are loaded; 
sending a new matrix down later will not change any points already in the 
points buffer.

The modeling matrix stack resides in DRAM. It is the application’s 
responsibility to allocate enough memory for this stack and provide a 
pointer to this stack area in the task list.

The format of a matrix is a bit unusual. It is optimized for the RSP’s vector 
unit (used during the multiplies and transformations.) This format groups 
all of the integer parts of the elements, followed by all of the fractional parts 
of the elements. This unusual format is not exposed to the user, unless 
he/she chooses not to use the matrix utilities in the libraries.
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Insert a Matrix

Inserts a new matrix into the display list.

Table 12-4 gsSPMatrix(Mtx *m, unsigned int p)

Pop a Matrix

This command pops the matrix stack.

Table 12-5 gsSPPopMatrix(unsigned int n)

Perspective Normalization

This scale value is used to scale the transformed w coordinate down, prior 
to dividing out w to compute the screen coordinates (which are similarly 
scaled). The effect of this is to maximize the precision of this divide.

Parameter Values

 m

p

 pointer to the new matrix.

G_MTX_MODELVIEW or G_MTX_PROJECTION,

G_MTX_MUL or G_MTX_LOAD,

G_MTX_PUSH or G_MTX_NOPUSH

Parameter Values

 n  unused
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The library function guPerspective() returns one approximation for this 
scale value, which is a good estimate for most cases:

Figure 12-2 Perspective Normalization Calculation

Note on Coordinate Systems and Big Numbers

The RSP is a fixed point machine, so keeping coordinate systems within a 
certain range is important.  If numbers in the final coordinate system (or 
intermediate coordinate systems) are too big, then the geometry of objects 
can be distorted, textures can shift erratically, and clipping can fail to work 
correctly.  In order to avoid these problems keep the following notes in 
mind:

1) No coordinate componant (x, y, z, or w) should ever be greater  than 
32767.0 or less than -32767.0

2) The difference between any 2 vertices of a triangle should not have 
any componants greater  than 32767.0

Table 12-6 gsSPPerspNormalize(unsigned short int s)

Parameter Values

 s 16-bit unsigned fractional perspective normalization scale.

near plane far plane

1
s
--- near far+ 

2
--------------------------------=

so s 2
near far+ 

--------------------------------= (represented as an unsigned 16-bit fraction)

This approximation normalizes w=1.0 halfway between the near
and far planes.
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3) The sum of the difference of w’s of any 2 vertices plus the sum of the 
differneces of any  of the x, y, or z componants should be less than 
32767.0.  In other words for any 2 vertices in a triangle, 
v1=(x1,y1,z1,w1), and v2=(x2,y2,z2,w2) , these should all be true:

abs(x1-x2) + abs(w1-w2) < 32767.0
abs(y1-y2) + abs(w1-w2) < 32767.0
abs(z1-z2) + abs(w1-w2) < 32767.0

One way to check this is to take the largest vertices that you have and run 
them throught the largest matrices you are likely to have, then check to make 
sure that these conditions are met.

A reccommended way of avoiding trouble is to never allow any componant 
to get larger than 16383.0 or smaller than -16383.0.  To ensure this find:

M = the largest componant (x, y, or z) of the largest model in your 
database.

S = The largest scale  (ie number in the upper 3 rows of the matrix) in 
the matrix made up of the concatenation of the largest modeling matrix, 
the largest LookAt matrix, and the largest Perspective matrix you will 
use.

T = the largest translation (ie number in the 4th row of the matrix) in 
the 
matrix made up of the concatenation of the largest modeling matrix, the 
largest LookAt matrix, and the largest Perspective matrix you will use.

Now  M * S + T < 16383.0 should be true.  If you experience textures 
wobbling or shifting over a surface, clipping not working correctly, or 
geometry behaving erratically, this is a good place to check.

A Few Words About Matrix Precision

The RSP uses fixed-point 32-bit multiplies during matrix operations. Since 
the product of two 32-bit numbers is a 64-bit number, only the middle 32 bits 
of the answer is retained. Overflow of intermediate terms is possible, 
especially in large coordinate systems or unusual projection matrices.
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In order to avoid fixed-point precision problems, in some cases it may be 
desirable to compute the matrix in floating point on the R4300 and just load 
it.

Matrix multiplies are very fast on the RSP, but they are not free. If possible, 
reduce matrix operations by pre-multiplying the matrices at modeling time 
or compile time.
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Vertex State

The RSP state includes a vertex buffer, holding up to 16 vertices. This buffer 
can be loaded with any number of consecutive vertices, beginning at any 
location.

Table 12-7 gsSPVertex(Vtx *v, unsigned int n, unsigned int v0)

At the time the vertices are loaded, they are transformed by the current 
matrix state and possibly shaded by the current lighting state.

Vertices are not re-transformed again, if the matrix state changes, the old 
(previously-transformed) vertices are not affected. This feature can be 
exploited to construct data that is knit together between two groups of 
points with different transformations (such as an elbow joint of a character).

Since the vertex processing is heavily vectorized and pipelined, it is 
important that each load loads as many vertices as possible.

Since the vertex loading is a relatively slow operation, it is also important 
that any triangles that share vertices be rendered using the same vertex state, 
rather than re-loading these same vertices later.

See the “Note on Coordinate Systems and Big Numbers” on page 146 for 
info on keeping your coordinates from becoming too big.

Parameter Values

 v

n

v0

 pointer to a list of vertices.

number of vertices

vertex buffer location to load vertices into.
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Texture State

The following command sets the RSP texture state:

Table 12-8 gsSPTexture(int s, int t, int levels, int tile, int on)

As explained previously, a vertex’s s and t coordinates are texel-space 
coordinates in a S10.5 format. The texture coordinate usually ranges from 0 
to (texel_size - 1), possibly larger to implement “wrapped” textures. The 
maximum number of times that a texture may be wrapped is limited by the 
number of integer bits in this coordinate.

Since the s and t coordinate texture scale parameters are only fractional 
numbers, they cannot represent values >= 1.0. For non-scaled textures, 
applications typically use a vertex texture coordinate format of S9.6, and a 
scale value of 0.5 (0x8000 in 16-bit unsigned format).

The levels parameter tells the pipeline the maximum number of mipmap 
levels to use, if mip-mapping is enabled.

The tile parameter tells the pipeline which of the 8 possible tiles in the RCP 
texture memory to use when texturing the following primitives

The on parameter turns texturing on or off in the RSP. If texturing is turned 
off in the RSP, textured primitives will not be generated, regardless of the 
RDP state. 

Likewise, setting the RSP state is necessary, but not sufficient to generate 
textured primitives. The RDP state must also be set in the appropriate 
manner, see “TX: Texture Engine” on page 186.

Parameter Values

 s

t

levels

tile

on

s-coordinate texture scale (16-bit unsigned fraction)

t-coordinate texture scale (16-bit unsigned fraction)

(maximum number of mip-map levels) - 1

which tile in the TMEM

G_ON or G_OFF
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Texturing is sensitive to large numbers and overflows.  Refer to the 
Note on Coordinate Systems and Big Numbers in the  Matrix State 
section for notes on how to avoid texturing problems such as textures 
shifting across surfaces, textures tearing, and edges between polygons 
becoming visible in the texture.
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Clipping and Culling

3D clipping is automatically enabled all the time.  There are two modes 
which can be adjusted for performance and appearance: ClipRatio and 
NearClipping. See also “Scissoring” on page 184.

3D clipping is expensive and should be avoided. Methods employed by the 
host application which can reduce the amount of geometry that gets clipped 
are a good idea. Crude visibility determination algorithms, geometric 
level-of-detail, and careful scene construction can help improve clipping 
performance dramatically.

The clipping algorithm is sensitive to large numbers and overflows.  Refer to 
the Note on Coordinate Systems and Big Numbers in the  Matrix State 
section for notes on how to avoid clipping problems.

Clip Ratio

The Clip Ratio feature helps the application to clip less.

Generally (ie when ClipRatio is set to FRUSTRATIO_1) the RSP clips to the 
clipping frustrum which is defined by the projection and viewing matrices 
(often created using guPerspective and guLookAt respectively).  This is the 
area which is mapped by the gSPViewport command and usually 
corresponds to the entire frame buffer.  Objects outside this area are 
scissored by the RDP, so clipping them is not neccessary.  The ClipRatio 
command can set the area which is clipped between 1 and 6 times the size of 
the viewing frustrum.  Polygons which are completely on the screen are 
drawn without clipping.  Polygons which are partially onscreen but 
completely within the enlarged frustrum are drawn without clipping (the 
extra portions are scissored away).  Polygons which are entirely offscreen 
are trivially rejected (whether they are inside or outsid the frustrum).  The 
only polygons which are clipped are the large polygons which stretch all the 
way from onscreen to outside the enlarged clipping boundary.    There is 
some overhead for drawing sections of polygons which are then scissored 
away, but it is much smaller than the time to draw actual onscreen pixels and 
is usually faster than clipping.  Different values of ClipRatio can be tried to 
obtain the best performance.  High values of ClipRatio are suspected to  be 
associated with “texture shuffle” bugs, so if you see the texture shuffling you 
could try lower values of ClipRatio.
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To set the ClipRatio so that the clipping frustrum is 3x the size of the screen:

    gsSPClipRatio(FRUSTRATIO_3),

You can use values of FRUSTRATIO_1, FRUSTRATIO_2, ..., 
FRUSTRATIO_6

Near Clipping and gspF3DNoN microcode

3D clipping causes geometry which is outside of a 3D box called the 
“clipping Frustrum” to be clipped away (ie not rendered).  The left, right, top 
and bottom of this clipping frustrum box correspond to the left, right, top, 
and bottom of the screen.  However the side facing towards the viewer and 
the side facing away from the viewer do not correspond to physical parts of 
the screen.  The “far plane” is the side of the box farthest from the viewer.  
Objects which are farther away than this plane are not rendered.  Likewise 
the “near plane” is the side of the box closest to the viewer.  Objects which 
are closer to the viewer than this plane are not rendered.  The near and far 
clipping planes can cause visual problems.  Objects which get too far away 
will suddenly dissappear as the cross the far clipping plane.  Also, objects 
which get too close to the viewer will suddenly dissappear as the cross the 
near clipping plane.  

There is a solution to these problems.   The near plane problem can be 
partially solved by using the gspF3DNoN microcode (which is an acronym 
for Fast 3D No Near clipping).  The gspF3DNoN microcode will not clip 
objects between the viewer and the near clipping plane (objects which 
would have been clipped away by the gspFast3D microcode).  However, Z 
buffering will not work correctly in this area.  Objects between the viewer 
and the near plane will hide objects which are behind the near plane, but 
objects between the viewer and the near plane will not correcly hide other 
objects between the viewer and the near plane.  For this reason it is 
important for the application to ensure that only one object at a time comes 
closer to the viewer than the near plane.

There is a solution to the far plane problem too.  Objects which get farther 
away from the viewer than the far plane visually “pop” out of view, and 
objects approaching the viewer “pop” into view.  The Fog effect can be used 
to make objects gradually fade into a distant fog, or slowly appear through 
a distant fog, instead of popping into and out of view.  See  the  Vertex Fog 
State section for details.
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Back-Face Polygon Culling

The geometry engine of the RSP implements a flexible polygon culling 
algorithm; either the front-facing, the back-facing, neither, or both types of 
polygons can be culled before rasterization.

This offers the programmer the most database flexibility. Geometry can be 
ordered in any direction or re-used with different culling flags in order to 
achieve effects such as interior surfaces, 2-sided polygons, etc..

Table 12-9 gsSPSetGeometryMode(unsigned int n)

Table 12-10 gsSPClearGeometryMode(unsigned int n)

Volume Culling

The RCP can perform volume culling.  The volume of an object is described 
to the RCP and the RCP only draws the object if the described volume is 
entirely or partially onscreen.  If the volume is entirely offscreen then the 
display list is quickly skipped.

The volume of an object is described with a number of vertices surrounding 
the object.  The vertices may be part of the object or not.  They can be 4 
vertices describing a pyramidal volume, 8 points describing a cube, or any 
other convex shape.  These vertices should be sent to the RCP using a 
gSPVertex command just like regular vertices (note: you may want to turn 
lighting and fog off when these vertices are sent for better performance).  
Then the gsSPCullDisplayList command is sent.  If the volume is entirely off 
the screen then the command acts like gsSPEndDisplayList and the rest of 

Parameter Values

 n  G_CULL_FRONT

G_CULL_BACK

G_CULL_BOTH

Parameter Values

 n  G_CULL_FRONT

G_CULL_BACK

G_CULL_BOTH
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the display list is skipped.  Otherwise the command acts as a NOOP and the 
display list processing continues.
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Vertex Lighting State

The RCP graphics pipeline provides a number of sophisticated real-time 
lighting effects, including ambient (uniform) lighting, diffuse (directional) 
lights, specular highlights, and automatic texture coordinate generation (fog 
is discussed in its own section later). To achieve these effects and perform 
the lighting operations, the following steps must be carried out:

1) Reference the gspFast3D microcode in the “spec” file.

2) Replace colors with normal components in the vertices of objects to 
be rendered.

3) Define light structures with the parameters of the directional and 
ambient lights and send them to the RCP.

4) Modify the state of the RCP to “turn on” lighting.

5) Define a texture map of the shape of the specular highlights to be 
used and describe them to the RCP.

6) Define structures with the parameters of specular highlights and 
send them to the RCP.

7) Render the objects.

Steps 1), 2), 3), 4), and 7) are required for diffuse and ambient lighting.  All 
steps are required for specular lighting.  These steps are described in further 
detail below.

RSP Microcode

Lighting requires the gspFast3D or gspF3DNoN microcode. This microcode 
must be referenced in the “spec” file when the rom image is created. The part 
of the microcode that performs the lighting calculations is not normally 
resident, but is brought in through an overlay when lighting calls are made. 
This has performance implications for rendering scenes with some objects 
lighted and others colored statically. Moreover, the lighting overlay 
overwrites the clipping microcode, so to achieve highest performance, it is 
best to minimize or avoid completely clipped objects in lighted scenes.
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Normal Vector Normalization

To light an object, the vertices which make up the object must have normals 
instead of colors specified. The normal consists of 3 signed 8-bit numbers 
representing the x, y, and z components of the normal. Each component 
ranges in value from -128 to +127. The x component goes in the position of 
the red color of the vertex, the y into the green, and the z into the blue. Alpha 
remains unchanged. The normal vector must be normalized. This means 
that square_root(x*x + y*y + z*z)== 127. To normalize the normal (x,y,z) 
determine d=127/square_root(x*x + y*y + z*z). Then form XN=x*d; 
YN=y*d; ZN=z*d. The normalized normal vector is (XN,YN,ZN). (Note the 
libultra/gu square_root function is sqrtf().)

Ambient and Directional Lighting

Lighting helps achieve the effect of depth by altering the way objects appear 
as they change their orientation. The RSP microcode supports up to 7 
directional lights and 1 ambient light in a scene. Each directional light has a 
direction and a color. Ambient lights have color only.  Regardless of the 
orientation of the object and the viewer, each directional light will continue 
to shine in the same direction (relative to the “world”) until the light 
direction is changed. In addition, one ambient light provides uniform 
illumination. Shadows are not explicitly supported.

Important note on Matrix Manipulation

It is important, when lighting, that the projection matrix and the viewing 
matrix (ie matrices which describe the view into the world coordinate 
system) be placed on the projection matrix stack(G_MTX_PROJECTION), 
while matrices used to describe the position and orientation of objects within 
the world coordinate system are placed on the modeling matrix stack 
(G_MTX_MODELVIEW).

Light Structure Definition

Lighting information is passed to the RSP in light structures. Since the 
number of diffuse lights can vary from 0 to 7, there are 8 macros used to 
define lights: gdSPDefLights0, gdSPDefLights1, gdSPDefLights2, ... , 
gdSPDefLights7. The number which is the last character in the macro 
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signifies the number of diffuse lights in the scene. Correspondingly, the 
number of diffuse lights to be rendered determines which macro to use in 
defining the light structure. There is always one ambient light.

To define a light structure use gdSPDefLights# where # is the number of 
diffuse lights to be turned on. For example, for 3 lights:

Lights3 light_structure1 = gdSPDefLights3(
        ambient_red, ambient_green, ambient_blue,
        light1red, light1green, light1blue,   
                   light1x, light1y, light1z,
        light2red, light2green, light2blue,   
                   light2x, light2y, light2z,
        light3red, light3green, light3blue,   
                   light3x, light3y, light3z);

will define a structure called light_structure1 with an ambient light and 3 
directional lights. The variables with red, green, blue suffixes represent the 
color of the light and take on values ranging from 0 to 255. The variables 
with the x, y, z suffixes represent the direction of the light and take on the 
range from -128 to +127.  The light direction does not need to be normalized. 
The convention is that the light direction points toward the light. This means 
the light direction indicates the direction TO the light and NOT the direction 
that the light is shining. Note the direction the light is shining is the negative 
of the light direction. For example if the light is coming from the upper left 
of the world, the direction might be x=-80, y=80, z=0. If this diffuse light is 
green, and the ambient light is red, this structure would be defined by:

Lights1 my_light = gdSPDefLights1(
        /* ambient color red */
        255, 0, 0,
        /* green light from the upper left */
        0, 255, 0,   -80, 80, 0);

To avoid any ambient light, make the ambient light black (0,0,0). To include 
only ambient light, and no diffuse directional light, use gdSPDefLights0:

Lights0 my_ambient_only_light = gdSPDefLights0(
        /* blue ambient light */
        0, 0, 255);
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Note on Light Direction

The light direction does not need to be normalized.  However, there are 
some problems that can arise from using light directions with magnitudes 
that are too large or too small.  The Light direction is multiplied times the 
Modelview Matrix (actually the transpose of the model matrix).  If the 
Modelview matrix has a scale associated with it then the light direction 
might overflow or underflow.  If the Modelview matrix has a scale S 
associated with it and the magnitude of the light direction is L then you 
should ensure that

1 < L*S < 23040

in order to keep the light working consistantly.  If L*S is too big then the 
normalization of the lights will overflow and you will get lights that are too 
bright.  If L*S is too small then the nortmalization will underflow and you 
will get lights that are too dim.  Note the number 23040 comes from the 
formula: (L/128)*S < sqrt(32768) because the result of the matrix multiply of 
L (which is a s.7 number, thus the /128) times the matrix (thus S, the scale of 
the matrix, which is an s15.16 matrix) must produce a number which can be 
squared (thus the square root) to produce a number which is s.15 (up to 
32768).

Lighting State Set Up

To activate a set of lights in a display list use the macros: gsSPSetLights0, 
gsSPSetLights1, gsSPSetLights2, ... , gsSPSetLights7. For example, the 
following macros would activate the lights defined in the examples above

gsSPSetLights3(light_structure1), or
gsSPSetLights1(my_light), or
gsSPSetLights0(my_ambient_only_light),

in a static display list. (To activate the lights in a display list dynamically the 
corresponding gSPSetLights# macros would be used.) Once lights are 
activated, they will remain on until the next set of lights is activated. This 
implies that setting up a new structure of lights overwrites the old structure 
of lights in the RSP.
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To turn on the lighting computation so that the lights can take effect, the 
lighting mode bit needs to be turned on. This is accomplished using the 
macro:

gsSPSetGeometryMode(G_LIGHTING)

Object Rendering

Objects are rendered by issuing geometric primitive commands (see 
Primitives section). The objects drawn will use lighted colors instead of 
vertex colors. This means any color combiner mode will use lighted colors in 
the combination operation in a manner exactly analogous to vertex color use 
in non-lighted rendering.  Note that lighting is performed at Vertex 
processing time.  Therefore it is important that lighting state be established 
prior to gSPVertex and gsSPVertex commands describing vertices in a lit 
primitive.  Lighting state established between a gSPVertex command and a 
gSP1Triangle command will have no effect on that triangle.

NOTE ON MATERIAL PROPERTIES

Material properties are not explicitly supported.  Instead material colors and 
light colors have been combined in the Light structure.  To obtain the correct 
light color in a particular situation, multiply the the color of the material 
times the color of the light foreach light source and use the result as the lights 
color.  Since colors range from 0 to 255, the result will have to be normalized 
by dividing by 255 in order to obtain a resulting light color in the 0 to 255 
range.  In other words, if your material color is (mr, mg, mb) and your light 
is (lr,lg,lb), then the light color you would use would be (mr*lr/255, 
mg*lg/255, mb*lb/255).  For example to light a purple object 
(color=255,0,255) with yellow ambient light (color=255,255,0) and cyan 
directional light (color=0,255,255) you could use:

Lights1 material1_light = gdSPDefLights1(
        /* ambient color red = purple * yellow */
        255, 0, 0,
        /* blue directional light = purple * cyan */
        0, 0, 255,   -80, -80, 0);

If you then want to change the material color (eg to light an object of 
different color) you can define a 2nd Light structure with different light 
colors but the same directions and send it to the RCP after the first object’s 
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vertices and before the second objects vertices.  For example to light a second 
object which is yellow (color=255,255,0) with the same yellow and cyan light 
as above you could use:

Lights1 material2_light = gdSPDefLights1(
        /* ambient color yellow = yellow * yellow */
        255, 255, 0,
        /* green directional light = yellow * cyan */
        0, 255, 0,   -80, -80, 0),

PERFORMANCE NOTE: the gsSPSetLights# macros incur a certain 
overhead when they are called in order to recalculate the new position of the 
light.  If the colors of the lights are being altered but the directions will 
remain the same you can use the gSPLight macro to send the new light 
structure after the 1st primitives vertex command and before the second 
primitive’s.  Note that the directional lights are always referred to as lights 
1-N (where N is the number of directional lights in the scene) and the 
ambient light is always referred to as light N+1.  For the example above, the 
entire sequence would look like:

gsSPSetGeometryMode(G_LIGHTING),
gsSPSetLights3(material1_light),
gsSPVertex( /* define vertices for object 1 */ );
/* render object 1 here */
gsSPLight(&material2_light.l[0], LIGHT_1),
gsSPLight(&material2_light.a, LIGHT_2),
gsSPVertex( /* define vertices for object 2 */ );
/* render object 2 here */

Specular Highlights

A specular highlight is the bright spot that shiny objects exhibit when the 
viewing direction lines up properly with a highly directional light source.It 
is caused by the light from the light source being directly reflected into the 
eye of the observer. A specular highlight appears on a shiny object wherever 
the normal of the object bisects the angle between the direction of the light 
and the direction of the eye. The gspFast3D microcode can support zero, 
one, or two specular highlights on an object. If there are more than 2 lights 
in a scene, a quite impressive specular highlight effect can still be achieved 
by choosing the two most important lights and rendering the highlights 
from them. Specular highlights use texture mapping so specular highlights 
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cannot usually be used with texture mapped surfaces. Specular highlighting 
when combined with diffuse lighting (described above) can produce very 
realistic looking surfaces.  While specular highlighting is not required to be 
on when diffuse lighting is on, diffuse lighting must be on when specular 
lighting is on.  However, the specular highlights do not neccessarily have to 
correspond to the diffuse lights at all.

A specular highlight is basically a reflection of a light source. To render it on 
the RCP requires a texture map of an image of the light. The specular 
highlight from most lights can be represented by a round dot with an 
exponential or gaussian function representing the intensity distribution. If 
the scene contains highlights from other, oddly shaped lights such as 
fluorescent tubes or glowing swords, the difficulty in rendering is no greater 
provided a texture map of the highlight can be obtained. The center of the 
image of the light should be in the center of the texture map and the texture 
map must be a power of 2 in width and height.  In general shinier objects 
reflect smaller, sharper highlights.  A dull object might have a large white 
dot for a specular highlight whether it is lit by a glowing sphere or a flaming 
sword.  A shiny metallic object would reflect the sword as a picture of the 
sword and the texture map used for highlighting different types of objects 
can portray this difference.  Note that many objects, such as human skin and 
cloth, which reflect specular highlights to some extent, often can benefit 
more from a regular texture map (eg hair on the body or a pattern on the 
cloth.  Since these materials are not shiny the texture mapping ability may be 
better spent on a conventional textutre map.

Specular Highlight Structure Definition

Specular lighting information is passed to the RSP in structures, analogous 
to the diffuse light case. The utility procedure guLookAtHilite fills in the 
elements of 2 structures, Hilite and LookAt, for use in highlighting. To 
accomplish this, the two structures must be part of the dynamic segment, 
declared as

Hilite hilite;
LookAt lookat;

and guLookAtHilite must be called for each object in the following manner:

guLookAtHilite(&throw_away_matrix, &lookat, &hilite,
                Eyex,      Eyey,    Eyez,
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                Objectx,   Objecty, Objectz,
                Upx,       Upy,     Upz,
                light1x,   light1y, light1z,
                light2x,   light2y, light2z,
                tex_width, tex_height);

where the arguments in common with guLookAt have the same meaning.  
Objectx, Objecty, and Objectz are the world coordinates of the center of the 
object.  light1x, light1y, and light1z are the direction of the light which is 
reflected in the 1st highlight (should be the same as the direction specified in 
the gdSPDefLights# macro).  light2x, light2y, and light2z are the direction of 
the light which causes the second highlight (if you are only using one 
highlight these may be zero).  tex_width and tex_height are the size of the 
texture to be used for the highlight and must be powers of 2.

The information in the LookAt structure is sent to the RSP with the LookAt 
macro:

gsSPLookAt( &lookat ),

Texture Loading

The texture for the highlights must be loaded with gsDPLoadTextureBlock 
or similar loadblock command. For example, the following call loads a 
tex_width by tex_height 4-bit intensity texture:

gsDPLoadTextureBlock_4b(hilight_texture, G_IM_FMT_I,
                        tex_width, tex_height, 0,
                        G_TX_WRAP | G_TX_NOMIRROR,
                        G_TX_WRAP | G_TX_NOMIRROR,
                        tex_width_power2,
                        tex_height_power2,
                        G_TX_NOLOD, G_TX_NOLOD),

where tex_width_power2, tex_height_power2 are the logarithms to the base 
2 of the texture width and height. Note that wrapping must be turned on, 
and the texture sizes must be a power of 2 for proper operation. The texture 
loadblock macro sets a texture tile with the parameters necessary for 
rendering one texture, and thereby one of the specular highlights. Setting a 
second texture tile with the parameters for rendering a second specular 
highlight can be done by loading another texture, but generally the same 
texture can be used for both highlights. Instead, setting up a second tile if the 
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specular highlights are sharing one texture map can be accomplished with a 
set tile call. The example following assumes the same 4 bit intensity texture 
as used for the first highlight:

gsDPSetTile(G_IM_FMT_I, G_IM_SIZ_4b,
                      ((tex_width/2)+7)>>3,
                        0, G_TX_RENDERTILE+1, 0,
                        G_TX_WRAP | G_TX_NOMIRROR,
                        tex_width_power2, G_TX_NOLOD,
                        G_TX_WRAP | G_TX_NOMIRROR,
                        tex_height_power2, G_TX_NOLOD),

Texture Coordinate Transformations

Specular highlighting utilizes the projection of the vertex normals in the x 
and y directions in screen space to derive the s and t indices respectively for 
referencing the texture. The normals must be normalized as described 
above. The normal projections are scaled to obtain the actual s and t values 
for the reference. The scaling is applied in the RSP. It maps the negative most 
projection of a unit normal, or -1, into zero. It maps the positive most 
projection, or +1, into a scale value passed in through the gsSPTexture 
command. Suppose the maximum texture s, t coordinates are tex_s_max and 
tex_t_max. The following command sets the scale, so that a normal project 
of +1 in the x direction in screen space will be mapped with the texel with s 
coordinate tex_s_max:

gsSPTexture((tex_s_max)<<6, (tex_t_max)<<6, 0, 
                          G_TX_RENDERTILE, G_ON), 

The left shift of argument by 6 bits is done to account for the S10.5 16-bit 
internal representation of the texture coordinates (see Texture State below) 
and  a multiplication by one-half in the microcode.

Highlight Position Description

After the texture is loaded, the highlight position information must be sent 
to the RSP. This information is contained in the Hilite structure, and is sent 
to the RSP with the following macros:

gsDPSetHilite1Tile(G_TX_RENDERTILE,&hilite,
                tex_width, tex_height),
gsDPSetHilite2Tile(G_TX_RENDERTILE+1,&hilite,
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                tex_width, tex_height),

where both highlights share the same texture.

Lighting State Set Up

Specular highlighting requires the lighting and texture generation mode bits 
to be turned on using the macro:

gsSPSetGeometryMode(G_LIGHTING | G_TEXTURE_GEN),

Object Rendering

As with diffuse lighting, objects are rendered by issuing geometric primitive 
commands (see Primitives section). For two specular highlights, the 2 cycle 
mode can be used, with a cycle devoted to each highlight. In addition, since 
each highlight can have a different color, two registers are needed to hold 
the colors for combining. The Primitive Color register holds the first 
highlight’s color and the Environment register holds the second highlight’s 
color. As an example, the following calls:

gsDPSetCycleType(G_CYC_2CYCLE),
gsDPSetEnvColor(0, 255, 255, 255),        /* cyan   */
gsDPSetPrimColor(0, 0, 255, 255, 0, 255),    /* yellow */
gsDPSetRenderMode(G_RM_PASS, G_RM_AA_ZB_OPA_SURF2),
gsDPSetCombineMode(G_CC_HILITERGBA, G_CC_HILITERGBA2),

set up rendering of a cyan and an yellow highlight in opaque z-buffered 
antialiased mode. Note that for most materials the highlight color is the same 
as the light’s color, in contrast to the diffuse light case where the resultant 
color is often affected by the color of the object it is striking (although 
metallic objects like gold and brass usually have material-colored 
highlights).

Reflection Mapping

Reflection mapping maps a texture onto an object using the normals of the 
object to specify where on the object the texture will be mapped. If this 
texture is an image of the surroundings of the object, then this rendering will 
make the object appear to reflect its surroundings. This effect simulates the 
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rendering of objects made of chrome or having a highly reflecting, 
mirror-like surface.

Structure Definition

As with diffuse and specular lighting, information for reflection mapping is 
passed to the RSP in a structure. The utility procedure guLookAtReflect fills 
in the elements of a LookAt structure for use in reflection mapping. To 
accomplish this, the structure must be part of the dynamic segment, 
declared as

    LookAt lookat;

and guLookAtReflect must be called for each object in the following manner:
 
   guLookAtReflect(&throw_away_matrix, &lookat, 
                Eyex,      Eyey,    Eyez,
                Objectx,   Objecty, Objectz,
                Upx,       Upy,     Upz      );

where the arguments in common with guLookAt have the same meaning.  
Objectx, Objecty, and Objectz are the world coordinates of the center of the 
object. 

The LookAt structure contains information about the orientation of the 
object relative to the viewing direction. This information is sent to the RSP 
with the LookAt macro:

  
  gsSPLookAt( &lookat )

Texture Loading

The texture for reflection mapping must be loaded with a loadblock 
command such as  gsDPLoadTextureBlock, described in the example above. 
As in the specular highlighting case, wrapping must be turned on, and the 
texture sizes must be a power of 2 for proper operation.

Texture Coordinate Transformations

Reflection mapping utilizes the projection of the vertex normals in the x and 
y directions in screen space to derive the s and t indices respectively for 
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referencing the texture. The normals must be normalized as described 
above. The normal projections are scaled to obtain the actual s and t values 
for the reference. The scaling is applied in the RSP. It maps the negative most 
projection of a unit normal, or -1, into zero. It maps the positive most 
projection, or +1, into a scale value passed in through the gsSPTexture 
command. Suppose the maximum texture s, t coordinates are tex_s_max and 
tex_t_max. The following command sets the scale, so that a normal project 
of +1 in the x direction in screen space will be mapped with the texel with s 
coordinate tex_s_max:

    gsSPTexture((tex_s_max)<<6, (tex_t_max)<<6, 0, 
                          G_TX_RENDERTILE, G_ON), 

The left shift of argument by 5 bits is done to account for the S10.5 16-bit 
internal representation of the texture coordinates (see Texture State below) 
after a multiplication by one-half in the microcode.

The texture coordinate transformation depends on the geometry mode of 
the RSP. Two modes are supported, regular and linear. 

The first mode (regular) derives the texture coordinates from the x and y 
projection values, multiplied by the above mentioned scale.   In this mode 
the S coordinate represents the x componant in world coordinates of the 
direction from the object to the point which should be reflected.  The T 
coordinate represents the Y componant.  This means that your texture map 
should represent the following mapping:  1) The center of the texture map is 
what is directly behing you. 2) The circle inscribed in the texture map 
boundaries is what is directly in front of you. 3) The circle with a radius of 
0.707 times the radius of the circle in 2) is the objects directly to your left, 
right, up, down, etc.  4) other points map respectively.

The second mode (linear) derives the texture coordinates from the inverse 
cosine of the x and y projection values, multiplied by the scale. In this mode 
the S coordinate is the angle of the direction of the reflected vector in the XZ 
plane.  The T coordinate is the angle of the direction in the YZ plane.  This 
mode is useful because you can use a panoramic picture of the horizon for 
your texture map.  The center og the texture map should be the horizon 
directly behind you.  The extremes of the texture map to the left and right 
should be the horizon in the direction which is directly in front of you.  The 
top of the panoramic texture map should be a constant sky color, and the 
bottom a constant ground color.  When the yaw of the viewing angle 
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changes it is a simple matter to adjust the S position of the texture map so 
that the new “directly behind” position is the new center of the texture map.

Reflection mapping requires the lighting and texture generation mode bits 
to be turned on. The first mode (regular) is set using the macro

gsSPSetGeometryMode(G_LIGHTING | G_TEXTURE_GEN),

while the second mode (linear) is set with

gsSPSetGeometryMode(G_LIGHTING| G_TEXTURE_GEN| 
G_TEXTURE_GEN_LINEAR),

Compatibility with Specular Highlighting

Reflection mapping uses texture mapping so it cannot be used with objects 
which are otherwise texture mapped. However, reflection mapping can be 
used in conjunction with one specular highlight. This is analogous to 
rendering two specular highlights, and utilizes the 2 cycle mode. The 
specular highlight texture is set for a second tile and accessed in the second 
cycle. Alternatively, specular highlights can be combined with reflection 
mapping by incorporating the specular highlights (as bright dots) into the 
reflection map texture wherever the lights are located. This technique 
permits an unlimited number of specular highlights.

Environment Mapping

Reflection mapping provides a simple means for carrying out environment 
mapping. The texture map needs to be an image of the environment as seen 
from the “viewpoint” of the reflecting object. The main difficulty with this 
procedure is, of course, generating a suitably realistic texture map.

One simple, yet effective, way to generate an environment map is to first 
render the scene as viewed by the object.  Render all the objects in the scene 
using a viewing matrix obtained from a guLookAt call where the Eyex, 
Eyey,Eyez is at the center of the object and Atx, Aty, Atz is at the eyepoint.  
Render this scene into a 16 bit, 32 pixel x 32 pixel framebuffer which is not 
part of the main framebuffer.  Then re-render the entire scene into the main 
framebuffer using the previously rendered 32x32 pixel texture map as an 
environment map for the reflective object.  Larger texture maps can be used 
by playing with tiling.  This is not a mathematically perfect way to generate 
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an environment map. but it is relatively cheep, and very effective. Try using 
different aperature angles in the perspective call while rendering the texture 
map and turning G_TEXTURE_GEN_LINEAR on or off to tweak the effect.
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Vertex Fog State

Fog alters the color of objects based on their distance from the eye position.  
Fog can be used to make objects blend into the background color as they get 
farther away.  One problem which can be fixed by fog is that when an object 
goes beyond the far clipping boundary and is clipped away it  suddenly 
dissapears.  If fog is enabled the object can be made to look more and more 
like the background color until, when the object reaches the far clipping 
plane, the object is exactly the same color as the background and no one 
notices when it dissappears.

The use of fog requires that the following steps be taken:

    1) run in two cycle mode.

    2) Set the render mode to blend the fog color with the primitive color.

    3) Set the fog position.

    4) Enable fog.

    5) Set the Fog Color.

For example:

/* 2 cycle mode */
gsDPSetCycleType(G_CYC_2CYCLE),
/* blend fog in AA ZB mode */
gsDPSetRenderMode(G_RM_FOG_SHADE_A,G_RM_AA_ZB_OPA_SURF2),
/* set fog position and enable fog */
gsSPFogPosition(FOG_MIN, FOG_MAX)
gsSPSetGeometryMode(G_FOG),
/* set the fog color */
gsDPSetFogColor(RED,GREEN,BLUE, ALPHA),

FOG_MIN specifies the position where fog begins and FOG_MAX 
represents where fog is thickest.  Both values are integers and are mapped 
linearly such that 0={at the near clipping plane}, and 1000={at the far 
clipping plane}.  FOG_MAX is generally set to 1000 so that objects are 
completely “fogged out” when they hit the far plane, but not before then.  
FOG_MIN is set to the position where fog starts.  A value of 0 will make the 
object slowly change to fog color as it retreats from the viewer, while a larger 
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value (eg 800) will make the object clearly visible until it gets 80% of the way 
to the far plane where it will finally begin to “fog out.”   Note that 
perspective makes distant objects look *much* farther away than nearby 
objects.  Because of this some objects which don’t appear to be very far away 
may be more affected by fog than expected even though the FOG_MIN 
value is fairly high.  To remedy this problem simply increase the FOG_MIN 
value until you get the desired effect.  For example if you set FOG_MIN to 
500, but objects which are about midway between the far and near planes 
look foggier than they should, just increase the value of FOG_MIN until they 
look better.

Fog works well when the horizon is a constant color (the same as the fog 
color).  When the horizon color is complicated (eg clouds, gradient colors, 
etc), you can make objects become transparent when they are distant.  To do 
this don’t set the G_RM_FOG_SHADE_A render mode or the Fog color.  Just 
enable fog, use a transparent render mode, and swap FOG_MAX and 
FOG_MIN.  FOG_MIN should be set to 1000 to make the object completely 
transparent when it is at the far clipping plane.  FOG_MAX should be a large 
enough value that fog has no effect until the object is farther away than any 
other objects are likely to be (ie beyond mountains and other terrain, etc.).  
Because transparency is used, the z-buffer will not keep things behind the 
transparent-fogged object from being hidden, so it should only be enabled 
for objects which are already fairly far from the viewer.  This special 
transparent-fog mode should be used with caution (as compared with the 
regular fog effect described in the preceding paragraphs which should work 
consistantly).

Fog is independant of lighting and texture mapping so it may be used in 
conjunction with any, all, or none of these other effects.
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Primitives

Availability of different geometry primitives depends on the version of the 
RSP microcode which has been loaded for execution.

Triangles

Table 12-11 gsSP1Triangle(int v0, int v1, int v2, int flag)

Other bits of the flag field are currently reserved.

Lines

Table 12-12 gsSPLine3D(int v0, int v1, int flag)

Lines are only available when running the line microcode. All the normal 
vertex attributes (color, texture, z) are also available for lines. Lines however 
require separate rdp rendermodes to be set than for polygons. Consult the 
man pages for more details. Z-buffered lines will only do reads of the 
z-buffer, and not writes. Thus z-buffered lines should be drawn after 
z-buffered polygons.

Rectangles

All rectangles are 2D primitives, specified in screen-coordinates. They are 
not clipped, but they are scissored in a limited fashion. In 1CYCLE and 

Parameter Values

 v0

v1

v2

flag

 vertex buffer index of the first coordinate. (0-15)

vertex buffer index of the second coordinate. (0-15)

vertex buffer index of the third coordinate. (0-15)

used for flat shading; ordinal id of the vertex parameter to use for 
shading: 0, 1, or 2

Parameter Values

 v0

v1

flag

 vertex buffer index of the first coordinate. (0-15)

vertex buffer index of the second coordinate. (0-15)

unused (should be 0)
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2CYCLE mode, rectangles are scissored in the same way as triangles. In 
COPY and FILL modes, rectangles are scissored to four pixel boundaries; 
meaning that additional scissoring may be necessary in the application 
program.

Filled rectangles are implemented entirely in the RDP, as “pass-through” 
commands with respect to the RSP. They are mentioned here for 
completeness:

Table 12-13 gsDPFillRectangle(unsigned int ulx, unsigned int uly, unsigned int lrx, 
unsigned int lry)

Textured rectangles require minimal RSP intervention, and are thus an SP 
operation:

Table 12-14 gsSPTextureRectangle(unsigned int ulx, unsigned int uly, unsigned int 
lrx, unsigned int lry, int tile, short int s, short int t, short int dsdx, short 
int dtdy)

There is a related macro, gsSPTextureRectangleFlip(), that is identical to 
gsSPTextureRectangle(), except that the texture is flipped so that the s 

Parameter Values

 ulx

uly

lrx

lry

 screen coordinate of upper-left x (10.2 format)

screen coordinate of upper-left y (10.2 format)

screen coordinate of lower-right x (10.2 format)

screen coordinate of lower-right y (10.2 format)

Parameter Values

 ulx

uly

lrx

lry

tile

s

t

dsdx

dtdy

 screen coordinate of upper-left x (10.2 format)

screen coordinate of upper-left y (10.2 format)

screen coordinate of lower-right x (10.2 format)

screen coordinate of lower-right y (10.2 format)

which tile in TMEM to use

s coordinate of upper-left corner (S10.5 format)

t coordinate of upper-left corner (S10.5 format)

change in s per change in x coordinate (S5.10 format)

change in t per change in y coordinate (S5.10 format)
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coordinate changes in the y direction, and the t coordinate changes in the x 
direction:

Table 12-15 gsSPTextureRectangleFlip(unsigned int ulx, unsigned int uly, unsigned 
int lrx, unsigned int lry, int tile, short int s, short int t, short int dtdx, 
short int dsdy)

Parameter Values

 ulx

uly

lrx

lry

tile

s

t

dtdx

dsdy

 screen coordinate of upper-left x (10.2 format)

screen coordinate of upper-left y (10.2 format)

screen coordinate of lower-right x (10.2 format)

screen coordinate of lower-right y (10.2 format)

which tile in TMEM to use

s coordinate of upper-left corner (S10.5 format)

t coordinate of upper-left corner (S10.5 format)

change in t per change in x coordinate (S5.10 format)

change in s per change in y coordinate (S5.10 format)
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Controlling the RDP State

The RSP performs two functions to support programming the RDP: 
segmented address fix-up and handling setothermode.

Segmented address fix-up. Since the RDP is a physical address machine, the 
RSP must translate the segmented addresses present in the display list into 
physical addresses for the RDP. It does so by filtering out any RDP 
command with an address (the ‘set image’ commands) and patching the 
address before passing it to the RDP.

The RDP setothermode register is a collection of state bits, affecting many 
different functions of the RDP. In order to simplify programming the RDP 
state, the RSP caches the SETOTHERMODE command, and presents a 
simpler “set/clear” interface through the display list. See Chapter 13, “RDP 
Programming” for more details of these macros.
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Chapter 13

13. RDP Programming

The Reality Display Processor (RDP) rasterizes triangles and rectangles, and 
produces high-quality, Silicon Graphics style pixels that are textured, 
antialiased, and z-buffered. 

The RDP has four main configurations where all the individual blocks work 
together to generate pixels. These main configurations are called “cycle 
types,” because they indicate how many pixels are generated per cycle. The 
following table indicates their peak performance. Keep in mind that these 
peak numbers are typically realized on large rectangle primitives. Triangles 
have variable short and long spans and these numbers degrade rapidly. The 
following table 

Table 13-1Cycle Types

lists the RDP’s performance.

Note:  These are theoritical peak performances. In reality, due the memory 
latency and buffering overhead, actual performance numbers are lower.

Type Performance

FILL 4 16 bit pixels/cycle

2 32 bit pixels/cycle

COPY 4 pixels/cycle

1CYCLE 1 pixel/cycle

2CYCLE 1 pixel/2 cycles
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RDP Pipeline Blocks

The RSP performs 3D geometric transformations while the RDP pipeline 
rasterizes the polygon. The RDP consist of several pipeline subblocks. There 
are six major logical RDP blocks: the RS, TX, TF, CC, BL, and MI. The 
connections between these blocks can be reconfigured to the four cycle types 
listed in Table 13-1, to perform different rasterization operations.

Table 13-2Basic Operations of RDP Subblocks

Note:  The six RDP blocks (RS, TX, TF, CC, BL, and MI) are purely logical 
blocks. For example, the hardware implementation of RS consist of several 
blocks. However, for programming, each can be treated as a single logical 
block.

Block Functionality

RS The RaSterizer generates pixel coordinates and their attributes’ 
slopes. Pixel coordinates consist of X and Y. Attributes consist of 
R, G, B, A, Z, S/W, T/W, 1/W, L, pixel coverage.

TX The TeXturing unit contains texture memory and samples the 
texture, based on which texel represents the pixel being 
processed in the pipeline.

TF The Texture Filter performs a 4-to-1 bilinear filter of 4 texel 
samples to produce a single bilinear filtered texel.

CC The Color Combiner performs general blending of color sources 
by linearly interpolating between two colors with a coefficient. 
For example, it may take the filtered texel samples and the 
shading color (RGBA) and combine them together.

BL The BLender blends the pipeline-processed pixels with the pixels 
in the framebuffer. The blender can do transparencies and also 
sophisticated antialiasing operations.

MI The Memory Interface performs the actual read/modify/write 
cycles to and from the framebuffer.
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One-Cycle-per-Pixel Mode

The pipeline configuration illustrated in Figure 13-1 shows how the RDP 
blocks are connected in one-cycle-per-pixel mode.

Figure 13-1 One-Cycle Mode RDP Pipeline Configuration

One-cycle mode fills a fairly high-quality pixel. You can generate pixels that 
are perspectively corrected, bilinear filtered, modulate/decal textured, 
transparent, and z-buffered, at one-cycle-per-pixel peak bandwidth.

Table 13-3RDP Pipeline Block Functionality in One-Cycle Mode

Block Functionality

RS Generates pixel and its attribute covered by the interior of the 
primitive.

TX Generates 4 texels nearest to this pixel in a texture map.

TF Bilinear filters 4 texels into 1 texel,

OR performs step 1 of YUV-to-RGB conversion.

CC Combines various colors into a single color,

OR performs step 2 of YUV-to-RGB conversion.

BL Blends the pixel with framebuffer memory pixel,

OR fogs the pixel for writing to framebuffer.

MI Fetches and writes pixels from and to the framebuffer memory.

RS TX TF CC BL MI

Rasterizer Per-Pixel Operators

texture maps
in dram

fr
am

eb
uf

fe
r

in
 D

R
A

M
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Note:  Reaching peak bandwidth is difficult. The framebuffer memory is 
organized in row order. In small triangles, it is rare to have long horizontal 
runs of pixels on a single scanline. In these cases, the pipeline is often stalled, 
pending memory access for read or write cycles.

Two-Cycles-per-Pixel Mode

The RDP blocks can be reconfigured into a two-cycle-per-pixel pipeline 
structure for additional functionality. Figure 13-2 shows the RDP pipeline in 
2-cycle mode where one pixel is generated every 2 clocks.

Figure 13-2 Two Cycle Mode RDP Pipeline configuration

Table 13-4RDP Pipeline Block Functionality for Two-Cycle Mode

Block Functionality

RS Generates a pixel and its attribute covered by the interior of the 
primitive.

TX0 Generates 4 texels nearest to this pixel in a texture map. This can 
be level X of a mipmap.

TX1 Generates 4 texels nearest to this pixel in a texture map. This can 
be level X+1 of a mipmap.

TF0 Bilinear; filters 4 texels into 1 texel. 

RS

Rasterizer Per-Pixel Operators

TX0 TF0

TX1

CC0

TF1

CC1 BL0 BL1 MI0 MI1

texture maps
in dram

fb
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Two-cycles-per-pixel mode contains more features than one-cycl- per-pixel 
mode. In addition to all of the features of one-cycle mode, two-cycle mode 
can also do mipmapping and fog.

Note:  MI0 and MI1 represent two cycles of the MI that access color and z 
framebuffer cycles, respectively. This is only a logical representation. The MI 
does not need to run two cycles to do color and z-buffer access. One cycle 
per pixel mode can also perform color and z-buffer accesses. The reason for 
this representation is to show that two MI access cycles are balanced in the 
two-cycle mode. In one-cycle mode, the pipeline is often stalled at MI, 
waiting for the framebuffer when accessing both color and z.

These RDP blocks are very flexible and can be configured to do many things. 
Table 13-4 outlines the typical usage of these blocks for a powerful 
rasterization pipeline. Study the following sections to understand what 
attribute state is programmable within each RDP block to master the raster 
subsystem.

TF1 Bilinear; filters 4 texels into 1 texel,

OR step 1 of YUV-to-RGB conversion.

CC0 Combines various colors into a single color,

OR linear interpolates the 2 bilinear filtered texels from 2 
adjacent levels of a mipmap,

OR performs step 2 of YUV-to-RGB conversion.

CC1 Combines various colors into a single color,

OR chroma keying.

BL0 Combines fog color with resultant CC1 color.

BL1 Blends the pipeline pixels with framebuffer memory pixels.

MI0 Read/modify/write color memory.

MI1 Read/modify/write Z memory.

Table 13-4RDP Pipeline Block Functionality for Two-Cycle Mode

Block Functionality
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Fill Mode

For high-performance framebuffer clearing, the RDP has a fill mode, which 
can fill 64 bits per clock. A programmable RDP color attribute is written into 
the framebuffer during each 64-bit write cycle. The RDP arithmetic pipeline 
is largely unused, because the computation can not keep up with the pixel 
fill rate. The fill mode is most commonly used for clearing color and 
z-buffers.

Note:  In fill mode, use the render mode 
g*DPSetRenderMode(G_RM_NOOP, G_RM_NOOP2) to put the blender 
into a safe state. Attempting to read Z when in fill mode can cause the RDP 
pipeline to hang.

Copy Mode

For high-performance image-to-image copies, RDP also supports a copy 
mode that can copy 64 bits or 4 pixels per clock. The RDP texture memory in 
the TX is just a buffer capable of holding up to 4 KB worth of image pixels. 
You can load bitmaps into this buffer as well as writing back out to the 
framebuffer. The is a common bit blit operation that many 2D graphics 
hardware systems support. Once again, the RDP arithmetic pipeline is 
largely unused in copy mode.

Note:  One important operation that does work in copy mode is alpha 
compare. This allows RDP to blit an image into the framebuffer and 
conditionally remove image pixels with alpha = 0. Usually, images with 
alpha = 0 represent transparency, see “Alpha Compare Calculation” on 
page 315 for more details.

Note:  In copy mode, use the render mode 
g*DPSetRenderMode(G_RM_NOOP, G_RM_NOOP2) to put the blender 
into a safe state.
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RDP Global State

Several state are global to the RDP, usually to specify pipeline configuration 
and synchronization.

Cycle Type

To configure the pipeline for rendering, choose one of the cycle types that 
offers the functionality required at peak performance.

Table 13-5gsDPSetCycleType(type)

Synchronization

You might ask “How does the primitive rendering pipeline synchronize 
with all of the different attribute states that the programmer can set?” 
Imagine that the last few pixels are being processed in the RDP pipeline 
when it receives a new attribute command, and this command affects the 
pixel currently being processed. You would not want the last few pixels of a 
primitive to have the attributes of a following primitive. You really want to 
have the attribute state only to modify the pixels of the primitive following 
the attribute state change. This synchronization is not implicit within the 
pipeline; the application must explicitly insert proper synchronization 
between attribute state changes and primitives.

Table 13-6gsDPPipeSync()

Parameter Values

type G_CYC_1CYCLE

G_CYC_2CYCLE

G_CYC_COPY

G_CYC_FILL

Parameter Values

none none
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This command synchronizes the attribute update with respect to primitive 
rendering. It ensures that the last pixels of a primitive are rendered prior to 
the attribute taking effect. Insert this inbetween an RDP primitive followed 
by an RDP attribute:

gDPSetCycleType(glistp++, G_CYC_FILL);
gDPFillRectangle(glistp++, 0, 0, 127, 127);
gDPPipeSync(glistp++);
gDPSetCycleType(glistp++, G_CYC_1CYCLE);

Note:  After a primitive (eg. gSPTriangle, gDPFillRectangle, 
gDPTextureRectangle) and before an RDP attributes (eg. gDPSet*), you need 
to insert a gDPPipeSync.

After processing all of the RDP display list, the host processor must be 
interrupted and notified.

Table 13-7gsDPFullSync()

gDPFullSync() also shuts down the RDP until given a new DP DL to 
eliminate excessive power consumption.

Span Buffer Coherency

For RMW cycles, the RDP is smart enough to prefetch a row of pixels as soon 
as the X, Y coordinates of the span are determined. The RDP then preloads 
the framebuffer content of this span into an RDP onchip span buffer. The 
RDP then waits for the pipeline to process the parameters for the outgoing 
pixels. When the outgoing pixels are computed, they are “combined” with 
the preloaded framebuffer pixels before writing back to the framebuffer. 

An example of this operation is z-buffer and transparency blending. (This is 
not shown in the logical pipeline description earlier, to simplify the 
understanding of the pipeline.)

Parameter Value

none none
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The RDP has enough onchip RAM to hold several span buffers. Therefore, 
what would happen if two spans in sequence happened to overlap the same 
screen area? The RDP would prefetch the first span into a span buffer while 
the pipeline starts processing this span. Then it would prefetch the next span 
into another span buffer. 

This is where the problems occur: the pixel data for the next span is not yet 
computed. The RDP does have span buffer coherency, at the cost of some 
performance. If errors are objectionable in your animation, use 
gsDPPipelineMode(G_PM_1PRIMITIVE) to cause all primitives to add 
between 30 to 40 null cycles after the last span of a primitive is rendered. 

Table 13-8gsDPPipelineMode(mode)

 

These dead cycles can be expensive in terms of fill rate so it is recommended 
not to use the 1PRIMITIVE mode be used unless absolutely necessary.

Parameter Value

mode G_PM_1PRIMITIVE

G_PM_NPRIMITIVE
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RS: Rasterizer

The Rasterizer’s main job is implied in its name: to generate pixels that cover 
the interior of the primitive. The primitives are either triangles or rectangles. 
For each pixel, the RS generates the following attributes:

• screen x, y location

• z depth for z-buffer purposes

• RGBA color information

• s/w, t/w, 1/w, lod for texture index, perspective correction, and 
mipmapping. 

These are commonly referred to as s, t, w, l.

• coverage value. 

Pixels on the edge of primitives have partial coverage values. Interiors 
are full.

These values are sent to the pipelined blocks downstream for other 
computations, such as texture sampling, color blending, and so on.

Figure 13-3 RS State and Input/Output

Scissoring

Scissoring is commonly used to eliminate running performance-intensive 
clipping code in the geometry processing stage of a graphics pipeline. You 
do this by projecting the clipping rectangle at the near plane larger than the 

RS

scissor rectangleTriangle or
Rectangle

Stepped Pixels
(xyzrgbastwl, cvg)
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scissor rectangle. The rasterizer can then efficiently eliminate the portion 
outside of the screen rectangle.

The RSP geometry processing is performed in fixed-point arithmetic. The 
clipped rectangle boundary is not a perfect rectangle, because of precision 
errors. This artifact can also be eliminated using the scissoring rectangle.

Figure 13-4 Scissor/Clipping/Screen Rectangles

Triangle A is scissored, but not clipped. B, C and E are trivially rejected 
because no pixels are enumerated. Only D is clipped and scissored.

Table 13-9gsDPSetScissor(ulx, uly, lrx, lry) 

Note:  Rectangles are scissored with some restrictions. In 1CYCLE and 
2CYCLE mode, rectangles are scissored the same as triangles. In FILL and 
COPY mode, rectangles are scissored to the nearest four pixel boundary; this 
might require rectangles to be scissored in screen space by the game 
software.

Parameter Value

ulx

uly

lrx

lry

upper left x

upper left y

lower right x

lower right y

scissor/screen rect

clipping rect @near plane

A

B

C

D

E
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TX: Texture Engine

The Texture Engine takes s/w, t/w, 1/w, and lod values for a pixel and 
fetches the onboard texture memory for the four nearest texels to the screen 
pixel. The game application can manipulate TX states such as texture image 
types and formats, how and where to load texture images, and texture 
sampling attributes.

Figure 13-5 TX State and Input/Output

Texture Tiles

TX treats the 4 KB on-chip texture memory (TMEM) as general-purpose 
texture memory. The texture memory is divided into four simultaneous 
accessible banks, giving output of four texels per clock.

The game application can load varying-sized textures with different formats 
anywhere in the 4 KB texture map. There are eight texture tile descriptors 
that describe the location of texture images within the TMEM, the format of 
this texture, and the sampling parameters. Therefore, you can load many 

TX

texture image ptr

Stepped Pixel(stwl) Texel 0,1,2,3

texture modes
8 texture tile descriptor

4KB texture map

DRAM

memory (TMEM)
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texture maps in the TMEM at one time, but there are only eight tiles that are 
accessible at any time.

Figure 13-6 Tile Descriptors and TMEM

Note:  There are some restrictions, depending on texel size and 64-bit 
alignment within the texture memory.See “Alignment” on page 259.

Multiple Tile Textures

Given the eight texture tiles, you can use two- cycle pipeline mode to cycle 
TX twice and access eight texels (four from each of two tiles). This 
functionality, coupled with the use of up to eight texture tiles, allows the TX 
to perform mipmapping and detailed textures. 

Furthermore, there are no explicit restrictions requiring power of two 
tile-sized decrements for mipmaps. Multi-tile texture map sizes are all 
independently programmable. Therefore, using these tiles and the color 
combiner block (see Chapter 13, “CC: Color Combiner”), arithmetic logic 
can result in many special effects. For example, sliding two different 
frequency band tiles across a polygon surface while combining them with a 
blue polygon can give a nice ocean wave effect.

TMEM
TMEM location
size
wrap/clamp/mirror state
format

TMEM location
size
wrap/clamp/mirror state
format

tile 0

tile 7

8 tile total
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Texture Image Types and Format

Table 13-10 shows the legal combinations of data types and pixel/texel sizes 
for the Color and Texture images. For RGBA types, the 16-bit format is 
5/5/5/1, and the 32-bit format is 8/8/8/8. 

The Intensity Alpha type (IA) replicates the I value on the RGB channels and 
places the A value on the A channel. The IA 16-bit format is 8/8, the 8-bit 
format is 4/4, and the 4-bit format is 3/1

Table 13-10Texture Format and Sizes

.

Texture Loading

Several steps are necessary to load a texture map into the TMEM. You must 
block-load the texture map itself and set up the attributes for this tile. There 
are GBI macros that simplify all these steps into a single macro.

There are two ways of loading textures: block or tile mode. Block mode 
assumes that the texture map is a contiguous block of texels that represents 
the whole texture map. Tile mode can lift a subrectangle out of a larger 

Type 4b 8b 16b 32b

RGBA X X

YUV X

Color Index X X

IA X X X

I X X
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image. The following tables list block and tile mode texture-loading GBI 
commands respectively.

Table 13-11gsDPLoadTextureTile(timg, fmt, siz, width, height, uls, ult, lrs, lrt, pal, 
cms, cmt, masks, maskt, shifts, shiftt)

Table 13-12gsDPLoadTextureTile_4b(pkt, timg, fmt, width, height, uls, ult, lrs, lrt, 
pal, cms, cmt, masks, maskt, shifts, shiftt)

Parameter Value

timg Texture dram address.

fmt G_IM_FMT_RGBA

G_IM_FMT_YUV

G_IM_FMT_CI

G_IM_FMT_I

G_IM_FMT_IA

siz G_IM_SIZ_4b

G_IM_SIZ_8b

G_IM_SIZ_16b

G_IM_SIZ_32b

width, height Texture tile width and height in texel space.

pal TLUT palette.

cms, cmt clamping/mirroring for s/t axis

G_TX_NOMIRROR

G_TX_MIRROR

G_TX_WRAP

G_TX_CLAMP

masks, maskt Bit mask for wrapping.

G_TX_NOMASK or a number: A wrapping bit mask is represented 
by (1<<number) - 1.
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Color-Indexed Textures

There are some restrictions on the size and placement of CI texture maps 
within the TMEM. The TMEM is actually partitioned into two halves. Four 
texels are sampled from the first bank and fed into the second bank for 
texture/color/index table lookup (TLUT).

Figure 13-7 CI TMEM Partition

Four texels from the texture images are sent from first half banks to the 
second half banks. The second half banks contain color index palettes. Each 

shifts, shiftt Shifts applied to s/t coordinate of each pixel. This is how you 
“sample” the lower levels of a mipmap.

G_TX_NOLOD or a number: (s or t coord >> number) = s/t to 
sample other mipmap levels.

uls

ult

lrs

lrt

upper left s index of the tile within the texture image

upper left t

lower right s

lower right t

Table 13-11gsDPLoadTextureTile(timg, fmt, siz, width, height, uls, ult, lrs, lrt, pal, 
cms, cmt, masks, maskt, shifts, shiftt)

Table 13-12gsDPLoadTextureTile_4b(pkt, timg, fmt, width, height, uls, ult, lrs, lrt, 
pal, cms, cmt, masks, maskt, shifts, shiftt)

Parameter Value

first half bank
0 1 2 3

second half bank
0 1 2 3

C0
C1
:
Cn

C0
C1
:
Cn

C0
C1
:
Cn

C0
C1
:
Cn

pa
le

tt
e 

0

t0 t1 t2 t3
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color map entry is replicated 4 times for four simultaneous bank lookups. 
Therefore, 8-bit CI textures all require 2 KB (256 x 64 bits per entry) second 
half banks to hold the TLUT, while 4-bit CI texture can have up to 16 
separate TLUTs.

Note:  TLUT must reside on the second half of TMEM; while CI texture 
cannot reside on the second half of TMEM. Non-CI texture can actually 
reside on the second half of TMEM in unused TLUT palette/entries.

Texture-Sampling Modes

Software can enable and disable TX to perform the follow sampling modes: 

• perspective correction

• detail or sharpen textures 

• LOD (mipmap) or bilinear textures 

• RGBA or IA TLUT type.

Table 13-13gsLoadTLUT(count, tmemaddr, dramaddr)

Parameter Value

count Number of entries in the TLUT. For example, 4-bit texel TLUT 
would have 16 entries.

tmemaddr Where the TLUT goes in TMEM.

dramaddr Where the TLUT is in DRAM.

Table 13-14gsDPSetTexturePersp(mode)

Parameter Value

mode G_TP_NONE

G_TP_PERSP
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Synchronization

With TMEM and tile descriptor states, TX also requires explicit 
synchronization to render primitives with the proper attribute state. Texture 
loads after primitive rendering must be preceded by a gsDPLoadSync(), and 
tile descriptor attribute changes should be preceded by a gsDPTileSync().

Note:  If you use the high-level programming macros gsDPLoadTexture* or 
gsDPLoadTexture*_4b, then you don’t need to worry about load and tile 
syncs. They are embedded in the macro.

Table 13-15gsDPSetTextureDetail(mode)

Parameter Value

mode G_TD_CLAMP

G_TD_SHARPEN

G_TD_DETAIL

Table 13-16gsDPSetTextureLOD(mode)

Parameter Value

mode G_TL_TILE

G_TL_LOD

Table 13-17gsSetTextureLUT(type)

Parameter Value

type G_TT_NONE

G_TT_RGBA16

G_TT_IA16
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TF: Texture Filter

Texture filter takes the four texels generated by TX and produces a simple 
bilinear-filtered texel. The TF can also work together with the color combiner 
(see Chapter 13, “CC: Color Combiner”) to perform YUV-to-RGB color 
space conversion.

Figure 13-8 Texture Filter State and Input/Output

Filter Types

TF performs three types of filter operations: point sampling, box filter, and 
bilinear interpolation. Point sampling just selects the nearest texel to the 
screen pixel. In the special case where the screen pixel is always the center of 
four texels, the box filter can be used. In a typical 3D, arbitrarily rotated 
polygon, the bilinear filter is the best choice available.

Note:  For hardware cost reduction, the RDP does not implement a true 
bilinear filter. Instead, the three nearest texels are linearly interpolated to 
produce the result pixels. This has a natural triangulation bias. This artifact 
is not noticeable in normal texture images. However, in regular pattern 

TF

filter modes
Texel 0,1,2,3 Filtered Texel

yuv2rgb coeff
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images, it can be noticed. For example, notches can be seen in the crosshair 
on a image of grids. This can be eliminated by prefiltering the image with a 
wider filter.

Color Space Conversion

Color space conversion can be used to convert YUV textures into RGB. This 
could be a useful compression technique, or it could be used for MPEG 
video, or for special effects.

Table 13-19gsSetTextureConvert(mode)

Table 13-20gsSetConvert(k0,k1,k2,k3,k4,k5)

Note:  The default state of the RDP is G_TF_CONV (perform YUV2RGB), 
which is probably not what you want (if you are using RGB textures). A 
common bug is to forget to set this (usually it should be G_TF_FILT).

Table 13-18gsSetTextureFilter(type)

Parameter Value

type G_TF_POINT

G_TF_AVERAGE

G_TF_BILERP

Parameter Value

mode G_TF_CONV

G_TF_FILTCONV

G_TF_FILT

Parameters Value

k0, k1, k2

k3, k4, k5

G_CV_K0, G_CV_K1, G_CV_K2

G_CV_K3, G_CV_K4, G_CV_K5
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CC: Color Combiner

The color combiner (CC) combines texels from TX and stepped RGBA pixel 
values from RS. The CC is the ultimate paint mixer. It can take two color 
values from many sources and linearly interpolate between them. The CC 
basically performs this equation

newcolor A B–  C D+=

:

Here, A, B, C, and D can come from many different sources. Notice that if 
D=B, then this is a simple linear interpolator.

Figure 13-9 Color Combiner State and Input/Output

Most of CC programming involves setting the desired sources for (A,B,C,D) 
of the equation above. There are also programmable color registers within 
CC that can be used to source (A,B,C,D) input of the interpolator.

Color and Alpha Combiner Inputs Sources

The following picture describes all possible input selection of a general 
purpose linear interpolator for RGB and Alpha color combination.The input 

CC

combiner modes

Texels

Combined PixelStepped Pixel(rgba)

primitive color

environment color

yuv2rgb coeff

RGB chroma key

from RS
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in the shaded boxes are CC internal state that you can set. Most are 
programmable color registers.

Figure 13-10RGB Color Combiner Input Selection
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Figure 13-11Alpha Combiner Input Selection

CC Internal Color Registers

There are two internal color registers in the CC: primitive and environment 
color. The primitive color can be used to set a constant polygon face color. 
The environment color can be used to represent the ambient color of the 
environment. Both can be used as source for linear interpolation. The names 
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“primitive” and “environment” are purely arbitrary; you can use them for 
any purpose you wish.

Table 13-21gsSetPrimColor(minlevel, frac, r, g, b, a), gsDPSetEnvColor(r, g, b, a)

One-Cycle Mode

Many of the typical RGB and alpha input selections are predefined in 
Table 13-24. In 1 cycle mode bothe mode1 and mode2 should be the same. 
See the man page for gDPSetCombineMode for a description of each mode 
setting.

Parameter Value

minlevel minimum LOD level

frac LOD fraction for blending two texture tiles

r, g, b, a color

Table 13-22One-Cycle Mode Using gsDPSetCombineMode(mode1, mode2)

Parameter Value

mode1/2 G_CC_PRIMITIVE

G_CC_SHADE

G_CC_ADDRGB

G_CC_ADDRGBDECALA

G_CC_SHADEDECALA

mode1/2 Decal textures in RGB, RGBA formats

G_CC_DECALRGB

G_CC_DECALRGBA
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Note:  In one-cycle mode, mode1 and mode2 should be the same value.

mode1/2 Modulate texture in I, IA, RGB, RGBA formats

G_CC_MODULATEI

G_CC_MODULATEIA

G_CC_MODULATEIDECALA

G_CC_MODULATERGB

G_CC_MODULATERGBA

G_CC_MODULATERGBDECALA

G_CC_MODULATEI_PRIM

G_CC_MODULATEIA_PRIM

G_CC_MODULATEIDECALA_PRIM

G_CC_MODULATERGB_PRIM

G_CC_MODULATERGBA_PRIM

G_CC_MODULATERGBDECALA_PRIM

mode1/2 Blend texture in I, IA, RGB, RGBA formats.

G_CC_BLENDI

G_CC_BLENDIA

G_CC_BLENDIDECALA

G_CC_BLENDRGBA

G_CC_BLENDRGBDECALA

mode1/2 Reflection and specular hilite in RGB, RGBA formats.

G_CC_REFLECTRGB

G_CC_REFLECTRGBDECALA

G_CC_HILITERGB

G_CC_HILITERGBA

G_CC_HILITERGBDECALA

Table 13-22One-Cycle Mode Using gsDPSetCombineMode(mode1, mode2)

Parameter Value
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Two-Cycle Mode

Color Combiner (CC) can perform two linear interpolation arithmetic 
computations in two-cycle pipeline mode. Typically, the second cycle is 
used to perform texture and shading color modulation (in other words, all 
those modes you saw in one-cycle mode). However, the first cycle can be 
used for another linear interpolation calculation; for example, LOD 
interpolation between the two bilinear filtered texels from two mipmap tiles.

Table 13-23Two-Cycle Mode Using gsDPSetCombineMode(mode1, mode2)

Custom Modes

Color Combiner (CC) can be programmed more specifically when you 
design your own color combine modes. To define a new mode use the 
format:

#define G_CC_MYNEWMODE a,b,c,d, A,B,C,D

Where the color output will be (a-b)*c+d and the alpha output will be 
(A-B)*C+D. The values you can use for each of a, b, c, d, A, B, C, and D are:

COMBINED combined output from cycle 1 mode
TEXEL0 texture map output
TEXEL1 texture map output from tile+1
PRIMITIVE PrimColor
SHADE Shade color
ENVIRONMENT Environment color
CENTER chroma key center value
SCALE chroma key scale value

Parameter Value

mode1 G_CC_TRILERP

G_CC_INTERFERENCE

mode2 G_CC_PASS2

Most of the Decal, Modulate, Blend and Reflection/Hilite texture 
modes mentioned in one cycle mode. However, since they are 
values for mode2 parameter, the names must all end with 2. e.g. 
G_CC_MODULATEI2.
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COMBINED_ALPHA combined alpha output from cycle 1
TEXEL0_ALPHA texture map alpha
TEXEL1_ALPHA texture map alpha from tile+1
PRIMITIVE_ALPHAPrimColor Alpha
SHADE_ALPHA Shade alpha
ENV_ALPHA Environment color alpha
LOD_FRACTION LOD fraction
PRIM_LOD_FRAC Prim LOD fraction
NOISE noise (random)
K4 color convert constant K4
K5 color convert constant k5
1 1.0
0 0.0

Then you can use your new mode just like a regular mode:

gDPSetCombineMode(G_CC_MYNEWMODE, G_CC_MYNEWMODE);

Chroma Key

The color combiner can be used to perform “chroma keying”, which is a 
process where areas of a certain color are taken out and replaced with a 
texture. This is a similar effect to “blue screen photography”, or as seen on 
the television news weather maps.

The theory is quite simple; a key color is provided, and all pixels of this color 
are replaced by the texel color requested. The key color is actually specified 
as a center and width, allowing soft-edge chroma keying (for blended 
colors):

Figure 13-12Chroma Key Equations

KeyR = clamp(0, (-abs((R - RCen) * RScl) + RWd), 255)
KeyG = clamp(0, (-abs((G - GCen) * GScl) + GWd), 255)
KeyB = clamp(0, (-abs((B - BCen) * BScl) + BWd), 255)
KeyA = min(KeyR, KeyG, KeyB)

The center, scale, and width parameters have the following meanings:
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Center Defines the color intensity at which the key is active, 
0-255.

Scale (255/(size of soft edge)). For hard edge keying, set scale 
to 255.

Width (Size of half the key window including the soft 
edge)*scale. If width > 255, then keying is disabled for 
that channel.

In two-cycle mode, the keying operation must be specified in the second 
cycle (key alpha is not available as a combine operand). The combine mode 
G_CC_CHROMA_KEY2 is defined for this purpose.

The command

gsDPSetCombineKey(G_CK_KEY);

enables chroma keying.

The commands

gsDPSetKeyR(cR, sR, wR);
gsDPSetKeyGB(cG, sG, wG, cB, sB, wB);

allow you to set the parameters for each channel.
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BL: Blender

The BL takes the combined pixels and blends them against the framebuffer 
pixels. Transparency is accomplished by blending against the framebuffer 
color pixels. Polygon edge antialiasing is performed, in part, by the BL using 
conditional color blending based on depth range. The BL can also perform 
fog operations in two-cycle mode.

Figure 13-13Blender State and Input/Output

Surface Types

The BL can perform different conditional color-blending and z-buffer 
updating. Therefore, it can handle semantically different surface and line 
types. Figure 13-14 illustrates these types.

Figure 13-14Surface Types
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fog color
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framebuffer Pixel
from MI

interpenetrating
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surfaces

surface

transparent
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Antialiasing Modes

The most important feature of the BL is its participation in antialiasing. 
Basically, the BL conditionally blends or writes pixels into the framebuffer 
based on depth range. Then the video display logic applies a spatial filter to 
account for surrounding background colors to produce antialiased 
silhouette edges.

The antialiasing scheme properly antialiases most pixels; only a small set of 
corner cases have errors and are negligible. This algorithm requires ordered 
rendering sorted by surface or line types. Here is the rendering order and 
surface/line types for z-buffer antialiasing mode:

• All opaque surfaces are rendered.

• All opaque decal surfaces are rendered.

• All opaque interpenetrating surfaces are rendered.

• All of the translucent surface and lines are rendered last. These can 
be rendered in any order. However, the proper depth order gives 
proper transparency.

Note:  There is an additional optimization discussed later; if z-buffered 
surfaces in the scene are rendered in approximately front-to-backorder, 
the fill rate is improved because the z-buffer test is a read only (no write) 
for obscured pixels.

Besides the antialiased z-buffer rendering mode, the other three 
combinations also exist: antialiased/not z-buffered, z-buffered/not 
antialiased, not z-buffer/not antialiased.

Table 13-24One-Cycle Mode gsDPSetRenderMode(mode1, mode2)

Parameter Value

mode1 G_RM_FOG_SHADE_A

G_RM_FOG_PRIM_A

G_RM_PASS

or one of the primitive rendering modes.

e.g. G_RM_AA_ZB_OPA_SURF

mode2 e.g. G_RM_AA_ZB_OPA_SURF2
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Note:  Even if you are only in one-cycle mode, mode2 should be 
programmed. Mode2 value is always mode1 appended with “2”.

Note:  When setting the cycle type to G_CYC_FILL or G_CYC_COPY, make 
sure to use the command g*DPSetRenderMode(G_RM_NOOP, 
G_RM_NOOP2), to guarantee that the blender is in a safe state.

BL Internal Color Registers

BL has two internal color registers, fog and blend color. These values are 
programmable and can be used for geometry with fog or constant 
transparency.

Table 13-26gsDPSetFogColor(r, g, b, a) gsDPSetBlendColor(r, g, b, a)

Alpha Compare

BL can compare the incoming pixel alpha with a programmable alpha 
source to conditionally update the framebuffer. This has traditionally 
allowed nice tree-outlined billboards and other complex, outlined, billboard 

Table 13-25Two-Cycle Mode gsDPSetRenderMode(mode1, mode2)

Parameter Value

mode1 G_RM_FOG_SHADE_A

G_RM_FOG_PRIM_A

G_RM_PASS

mode2 same as one cycle mode mode2 values

Parameter Value

r, g, b, a color
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objects. Besides thresholding against a value, the BL can also compare 
against a dithered value to give randomized particle effect.

Table 13-27gsDPSetAlphaCompare(mode)

Note:  When using mode G_AC_THRESHOLD, alpha is thresholded against 
blend color alpha.

Note:  Another way to do billboard cutouts which often provides better 
antialiasing is ti turn Alpha Compare off (G_AC_NONE) and instead use 
one of the TEX_EDGE render modes, such as G_RM_AA_ZB_TEX_EDGE.

Using Fog

The blender performs the fog operation. Fog is described fully in “Vertex 
Fog State” on page 170. Fog is performed by the RSP and the RDP in 
cooperation. The RSP takes the z value and places it in the alpha channel of 
each pixel. The RDP then uses this alpha channel to blend the color from the 
color combiner with the fog color. The larger the Z value (the farther the 
pixel is from the viewers eye) the closerthe pixel’s color gets to the fog color. 
The RSP part of this operation is enabled with the gSPSetGeometryMode:

gsSPSetGeometryMode(G_FOG),

and can be adjusted with gsSPFogPosition:

gsSPFogPosition(FOG_MIN, FOG_MAX),

The RDP part of fogging is enabled by telling the blender how to use Alpha. 
Fog can be used in one cycle mode for non-antialiased opaque surfaces only:

/* 1cycle mode */
gsDPSetCycleType(G_CYC_1CYCLE),
/* blend fog in ZB mode (non-AA OPA_SURF modes only) */
gsDPSetRenderMode(G_RM_FOG_SHADE_A,G_RM_ZB_OPA_SURF2),

Parameter Value

mode G_AC_NONE

G_AC_THRESHOLD

G_AC_DITHER
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/* set the fog color */
gsDPSetFogColor(RED,GREEN,BLUE, ALPHA),
/* setup the RSP */
gsSPFogPosition(FOG_MIN, FOG_MAX)
gsSPSetGeometryMode(G_FOG),

It can be used for other surface types (or with antialiasing) in 2 cycle mode:

/* 2 cycle mode */
gsDPSetCycleType(G_CYC_2CYCLE),
/* blend fog. Use any standard render mode for cycle 2 */
gsDPSetRenderMode(G_RM_FOG_SHADE_A,G_RM_AA_ZB_OPA_SURF2),
/* set the fog color */
gsDPSetFogColor(RED,GREEN,BLUE, ALPHA),
/* setup the RSP */
gsSPFogPosition(FOG_MIN, FOG_MAX)
gsSPSetGeometryMode(G_FOG),

As an alternative to G_RM_FOG_SHADE_A (for the first cycle of 
gsDPSetRenderMode) you can use G_RM_FOG_PRIM_A which will use the 
alpha value in PrimColor to set the fog value. If you use this mode, then the 
RSP’s part of fog is unneccessary and the gsSPFogPosition and 
gsSPSetGeometryMode macros are not neccessary. Instead set the fog value 
per primitive with the gsDPSetPrimColor macro:

gsDPSetPrimColor(0,0,0,0,0, FOG_VALUE),

where the FOG_VALUE is 0 for no fog and 0xff for full-fog.

Note that objects with FOG can still be transparent. The alpha value used to 
modulate fog comes from the triangle renderer. The alpha value that comes 
from the color combiner is independant of that renderer fog alpha. For 
example the color combiner can be set to use the alpha value from a texture 
map, and fog will still work with the alpha value from the renderer. You 
cannot, however, use vertex alpha with fog. The per alpha supplied in the 
vertices will be ignored and if the color combiner selects a SHADE alpha, it 
will get the fog alpha value instead (not what was intended).
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Depth Source

The depth value used in the depth buffer compare is generally taken from 
the Z value of the pixel, determined by interpolating the z values at the 3 
vertices of the triangle containing the pixel. However it is sometimes 
desireable to set the Z value which will be used for an entire primitive. This 
is actually neccessary when rendering Z-buffered rectangles (gDPFillRect 
and gSPTextureRect) since these primitives do not have a Z value associated 
with them. To use a single Z value for an entire primitive the Z value is 
placed in the PrimDepth register and the Z source Select is set to get Z from 
the PrimDepth register:

gsDPSetDepthSource(G_ZS_PRIM),
gsDPSetPrimDepth(z, dz),

The value to use for z is the screen Z position of the object you are rendering. 
This is a value ranging from 0x0000 to 0x7fff, where 0x0000 usually 
corresponds to the near clipping plane and 0x7fff usually corresponds to the 
far clipping plane. To synchronize Z for PrimDepth with a Z for a triangle it 
is important to understand how the triangle’s Z gets computed. The 
modeling coordinate vertex is multiplied by the modelview and projection 
matrices resulting in a 4 componant homogeneous coordinate (x,y,z,w). The 
screen Z value is computed by the RSP as 

screenZ = 32*((z/w)*Viewport.vscale[2] + Viewport.vtrans[2])

Note:  Viewport.vscale and Viewport.vtrans[2] are usually both G_MAXZ/2 
= 0x1ff, which makes the formula: screenZ=(z/w)*0x3fe0 + 0x3fe0. Since 
(z/w) ranges from -1.0 to +1.0 the result will range from 0x0 to 0x7fc0.

Note:  For microcode progrmmers: The 32* part of this equation is done in 
the setup microcode. The other parts of this equation are done in the vertex 
processing microcode.

So if you want to position a rectangle at a specific modeling coordinate 
position, run the modeling ccordinate of the position through the 
modelview and projection matrix, and then comput its screenZ value based 
upon the formula above. This is the value to use for z in the 
gsDPSetPrimDepth command.
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The dz value should be set to 0. This value is used for antialiasing and objects 
drawn in decal render mode and must always be a power of 2 (0, 1, 2, 4, 8, ... 
0x4000). If you are using decal mode and part of the decalled object is not 
being rendered correctly, try setting this to powers of 2. Otherwise use 0.
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MI: Memory Interface

Memory Interface (MI) simply interfaces to the framebuffer memory. It has 
programmable color and z-buffer pointers, a 32-bit fill color value used in 
the FILL cycle type (see Chapter 13, “Fill Mode”), and an enable for color 
dither.

Figure 13-15Memory Interface State and Input/Output

Image Location and Format

The framebuffer is row-ordered, starting at the upper left. The color and 
z-buffer image pointers must be 64-byte aligned. The DRAM has dual banks, 
one on each 1 MB. By keeping the color and z-buffers on different banks, you 
can improve the DRAM access latency when the RDP is seeking DRAM 
bandwidth for rendering.

The Nintendo 64 system actually uses 9-bit DRAMs rather than 8-bit 
DRAMs, to gain two extra bits per color or z pixel. The color and z format 
are illustrated in Figure 13-16.

Figure 13-16Color and Z Image Pixel Format
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Fill Color

The MI has a 32-bit fill color register that is used in FILL cycle type. Fill color 
is typically programmed to a constant value to fill background color and 
z-buffers. Since two framebuffer pixels are 18x2=36 bits, while fill color 
register is 32 bits, a few of the bits are replicated. See Figure 13-17 for an 
illustration of how it works.

Figure 13-17Fill Color Register LSB Replication

Dithering

The RDP pipeline keeps full, 8-bit per RGB component precision 
throughout. Dithering can be enabled or disabled to write to the 5-bit per 
RGB component dram framebuffer format. Dithering is recommended since 
it can significantly reduce Mach banding effect.

Table 13-28gsSetFillColor(data32bits) NEED READABLE TITLE FOR THIS!

Parameter Value

data32bits 2 different macros, one each for color and z. each generate 16 bits. 
so do x << 16 | x to get 32 bits

GPACK_RGBA5551(r, g, b, a), a=1 is full coverage. (Typical)

GPACK_ZDZ(z, dz), z=G_MAXFBZ, dz=0. (Typical)

31 01516

02171935
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Chapter 14

14. Texture Mapping

Texture mapping, or texturing, is the process of applying an image to a 
polygonal surface. There are many graphics books that discuss this topic; 
this guide assumes that you are familiar with the basic principles of texture 
mapping. This chapter  explains the functionality of texture mapping as 
implemented in the Reality Display Processor (RDP).
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Figure 14-1 Texture Unit Block Diagram

The RDP contains an on-chip texture memory called Tmem, which buffers 
all source image data used for texturing. Tmem contains up to eight tiles (a 
tile is a rectangular region of an image). A tile is loaded into Tmem using the 
LoadTile, LoadBlock, or LoadTlut commands, and described using the 
SetTile and SetTileSize commands. If the image is too large to fit entirely in 
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Tmem, primitives must be subdivided in object space based on their texture 
coordinate values so that each primitive references a tile that fits in Tmem. 

Texture coordinates (S,T) for each pixel are input to the texture coordinate 
unit and can be perspective corrected. Perspective correction is typically 
enabled for 3D geometry and disabled for 2D sprites (tex_rect commands). 
During this time, the texture coordinate unit calculates which tile descriptor 
to use for this primitive. The texture image coordinates are converted to 
tile-relative coordinates and wrapped, mirrored, and clamped. These tile 
coordinates are then used to generate an offset into Tmem. The texture unit 
can address 2x2 regions of texels in one or two cycle mode, or 4x1 regions in 
copy mode. Copy mode is typically used for blits (block copy of texels) with 
a 1:1 texel pixel relationship. In one or two cycle mode, filter or point-sample 
can also be selected. Typically, filter will result in a smoother image with less 
aliasing. The texture unit also generates  S,T and L-fraction values  that are 
used to bi-linearly or tri-linearly interpolate the texels.

The texture unit supports ten different combinations of texel size and 
format:

• 4-bit intensity (I)

• 4-bit intensity w/alpha (I/A) (3/1)

• 4-bit color index (CI)

• 8-bit I

• 8-bit IA (4/4)

• 8-bit CI

• 16-bit red, green, blue, alpha (RGBA) (5/5/5/1)

• 16-bit IA (8/8)

• 16-bit YUV (Luminance, Blue-Y, Red-Y)

• 32-bit RGBA (8/8/8/8)

Significant memory savings can result from the smaller color-index textures 
or intensity textures over the more expensive 16-bit RGBA. It is a good idea 
to experiment with the different texel sizes. One can actually do 2-color 
textures using the intensity types. Also, the intensity-only textures place the 
texel value on the alpha channel as well where it can be used for blending or 
ignored.
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Graphics Binary Interface for Texture

The graphics binary interface (GBI) is a set of macros that create 64-bit 
commands that are read and parsed by the RSP microcode. Some of these 
commands cause actions or state changes in the RSP. Others are simply 
passed through the RSP to the RDP. Below is a list of GBI commands that 
control texture. See the corresponding reference (man) page for more details.

Primitive Commands

• g*SPTexture

• g*SPTextureRectangle*

Tile Related Commands

• g*DPSetTile

• g*DPSetTileSize

Load Commands

• g*DPLoadTile*

• g*DPLoadTextureBlock*

• g*DPLoadTLUT*

• gDPSetTextureImage

Sync Commands

• g*DPLoadSync

• g*DPTileSync

Mode Commands

• g*DPSetTextureLUT

• g*DPSetTexturePersp
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• g*DPSetTextureDetail

• g*DPSetTextureLOD

• g*DPSetTextureFilter

• g*DPSetTextureConvert
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Example Display List

The following display list fragment uses GBI display list commands to 
render an object using a 16-bit RGBA texture map. The texture is loaded into 
Tmem using the LoadBlock command. The texture coordinates are 
perspective corrected. Note that the texture is allowed to wrap on 32-texel 
boundaries in the s and t directions. The texture filter bilinearly interpolates 
the 2x2 texels output by the texture unit. Finally, the resulting texture color 
is multiplied with the object’s shade color in the Color Combiner for each 
pixel of the object.

/* Enable textured poly generation in RSP */
gSPTexture(glistp++, 0x8000, 0x8000, G_TX_RENDERTILE, G_ON);
gDPSetTextureFilter(glistp++, G_TF_BILERP);
gDPSetTexturePersp(glistp++, G_TP_PERSP);
gDPSetCombineMode(glistp++, 
G_CC_MODULATERGB,G_CC_MODULATERGB);
/* Load Texture Block */
gDPLoadTextureBlock(glistp++, RGBA16dana, G_IM_FMT_RGBA, 
G_IM_SIZ_16b, 32, 32, 0, G_TX_WRAP, G_TX_WRAP, 5, 5, 
G_TX_NOLOD, G_TX_NOLOD);
/* render model display list */
gSPDisplayList(glistp++, model);
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Texture Image Space

Texture coordinates are defined for textured primitives in Texture Image 
Space. This space has a range of +/- 1K texel. Tiles are smaller rectangular 
regions of a texture that fit into the on-chip texture memory of the RCP 
(Tmem). 

Figure 14-2 Image Space and Tile Space

Tiles are defined in Texture Image Space using SL, TL and SH, TH 
coordinates, as shown in Figure 14-2. Tile coordinates must lie in the 
positive S,T quadrant of Texture Image Space. However texture coordinates 
of the primitive can lie in any of the four quadrants of image space. In other 
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words, primitives can have negative texture coordinates which can be useful 
when wrapping a texture on a very large primitive. Tiles can be up to 1024 
columns wide and up to 256 rows tall. Tiles do not have to be sized to a 
power of 2 (wrapping and mirroring, however, happen on power-of-2 
boundaries).

The texture coordinates of the primitive (in Texture Image Space) are 
converted into Tile Space by subtracting the SL,TL from the (possibly 
perspective-corrected) texture coordinates of the pixel. This indirection 
allows arbitrary placement of the tile with respect to the primitive. This 
implies that the texture coordinates can be defined once in the database; and 
that the texture can be translated (or slid) with respect to the primitive by 
simply manipulating the SL,TL values using the SetTileSize RDP command.
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Tile Attributes

The RDP has a small on-chip memory for buffering up to eight tile 
descriptors at a time. A tile descriptor contains all the information for a 
texture tile including format; size; line; Tmem address; palette; mirror enable 
S, T; mask S, T; shift S, T; SL, TL; SH, TH; and clamp S, T.

Format

Format of texels in texture tile.

Table 14-1 Tile Format Encodings

Size

 Size of texels in texture tile

Table 14-2

.

Format Value Format

0 RGBA

1 YUV

2 CI

3 IA

4 I

Size Value Size of texel in bits

0 4

1 8

2 16

3 32
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Line

Number of 64-bit words in one  row of the tile. Dependent on tile row width 
as well as texel type/size. When tiles are loaded using  the LoadTile 
command, the rows are padded to 64-bit boundaries. When LoadBlock is 
used to load a texture, it is assumed that the rows have already been padded. 
Line can also be used to control the stride through TMEM. By controlling 
Line, smaller tiles can be pieced together into one larger continuous tile.

Tmem Address

Tile offset (0-511) in Tmem (64-bit) words.

Palette

Palette number (0-15) of 4-bit Color Index (CI) textures. An 8-bit index into 
the high half of Tmem is formed by placing the palette number in the 4 MSBs 
and the 4-bit texel value in the 4 LSBs. The color in Tmem at this index 
becomes the color of the pixel. Therefore, for a 4-bit CI texture, you may 
select one of 16 palettes with each palette having up to 16 entries. Palettes 
can be loaded into Tmem using the LoadTLUT command or, optionally, the 
LoadBlock command.

Mirror Enable S,T

Enables mirroring of texture coordinates. When the bit indicated by the  
(Mask Value + 1) is 0 the coordinates are unchanged. When this bit is 1, 
however, the coordinates are inverted. Useful for symmetric patterns like 
trees, faces, etc. For example, a mask of 2 with mirror enabled would yield 
the following texture coordinates:

0,1,2,3,4,5,6,7,...  Input coordinate
0,1,2,3,3,2,1,0,...  Mirrored Coordinate
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Mask S,T

Number of bits of tile coordinate to let through. For example, a mask of 1 
indicates one bit of the texture coordinate should come through the mask, 
giving a pattern of 0,1,0,1... As another example, a mask value of 5 indicates 
that the texture should wrap every 32 texels, i.e., the lower 5 bits are passed 
through the mask.  A mask value of 0 forces clamping the texture 
coordinates to be between (SL,TL),(SH,TH)  inclusive. The mask value + 1 
indicates the bit position that is looked at for mirroring. See discussion in 
Mirror Enable, above.

Shift S,T 

Shift texture coordinates after perspective divide. Used in  MIP maps and 
possibly for precision reasons (see the discussion of Detail texture later in 
this document).Also useful for combining two differently scaled textures.

Table 14-3 Shift Encoding

Shift Value Shift

0 no shift

1 >> 1

2 >> 2

3 >> 3

4 >> 4

5 >> 5

6 >> 6

7 >> 7

8 >> 8

9 >> 9

10 >> 10

11 << 5
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SL,TL 

When rendering, the starting texel column, row of tile in texture image 
space,  10.2 fixed point. Can be used to slide texture w.r.t. the primitive. 
When loading, the starting texel column, row within the DRAM texture 
image.

SH,TH

When rendering, the ending texel column, row of tile in texture image space, 
10.2 fixed point. Used for clamping only. When loading, the ending texel 
column, row within the DRAM texture image.

Clamp S,T

Enable clamp during wrap or mirror. When not masking, Clamp S,T is 
ignored and clamping is implicitly enabled. This bit allows clamping the 
texture coordinates when the mask is non-zero. Useful when you want to 
mirror and then clamp like an airplane wing insignia. The border of the 
insignia would have an alpha of 0. For example, SH = 11, mask = 2, mirror = 
1, clamp = 1:

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,...  Input Coordinate
0,1,2,3,3,2,1,0,0,1, 2, 3, 3, 3, 3, 3,...  Mirrored/Clamped 
Coordinates

12 << 4

13 << 3

14 << 2

15 << 1

Table 14-3 Shift Encoding

Shift Value Shift
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Tile Descriptor Loading

Tile descriptors must be loaded using the RDP command SetTile. This 
command loads the format, size, line, Tmem address, palette, clamp, mirror, 
mask, and shift parameters for the tile number specified. The SL, TL, SH, and 
TH parameters are set by the RDP commands SetTileSize, LoadTile, 
LoadBlock, and LoadTLUT.

One important point to keep in mind is that tile descriptors are used both 
when loading textures and when rendering textures. In particular, when 
loading a texture, the texture coordinate unit uses the Tmem address, line, 
format, and size information from the tile specified in the 
LoadTile/Block/TLUT command. Therefore, this information must be 
loaded  into the tile descriptor prior to executing the LoadTile/Block/TLUT 
command. Also, the LoadTile/Block/TLUT  command automatically writes 
the SL,TL,SH,TH information into the tile descriptor. In the case of a 
LoadTile command, this is probably the information you wanted. In the case 
of a LoadBlock or LoadTLUT command, however, this information must be 
overwritten with a SetTileSize command after the texture load.

The GBI commands for loading tile descriptors directly are:

• g*DPSetTile

• g*DPSetTileSize

The GBI commands that  effect tile descriptors are:

• g*DPLoadTile*

• g*DPLoadTextureBlock*

• g*DPLoadTLUT*

Note:  The load commands above use a double buffered tile system for 
loading/rendering.  When loading, the tile G_TX_LOADTILE is used, and 
when rendering the tile G_TX_RENDERTILE is used.  This simple scheme 
avoids having to insert TileSyncs between loading and rendering.  However, 
if you need to use more than one tile for some reason, make sure that you use 
the g*DPSetTile and g*DPSetTileSize to set the tile descriptors properly.
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Texture  Pipeline

Figure 14-3 Texture Pipeline
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Figure 14-4 Texture Pipeline, contd.
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Tile Selection

Functionality

Tile descriptors are used both when loading a texture and when rendering a 
texture. This section discusses the selection of tiles when rendering. The use 
of tiles descriptors when loading textures in discussed in the Loading 
Textures section.

There are basically two ways to index into tile memory: explicitly via a 
user-defined tile number, or indirectly using a combination of the 
user-defined tile number and the level of detail (LOD) of the pixel.

In two-cycle mode, it is possible to access different tile descriptors in each 
cycle. The computation of tile indices for each cycle depends on several 
mode bits and is described in the following sections.

 LOD Disabled

With LOD disabled, the user specifies the texture tile for a primitive directly  
using the gSPTexture command. This tile number is inserted by microcode 
into the header for each subsequent primitive and is referred to as the 
primitive tile number. 2-cycle non-LOD mode can be useful for combining 
two arbitrary textures (morphing, etc.) The calculation of the tile descriptor 
index is straight forward when LOD is disabled

Table 14-4 Tile Descriptor Index Generation with LOD Disabled

:

Cycle Tile Index

0 primitive tile

1 primitive tile + 1
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LOD Enabled

The lod_en mode bit in SetOtherModes determines if tile indices are 
determined using Level of Detail (LOD) or from the primitive command 
directly.

With LOD enabled, the tile index is a function of the Level of Detail (LOD) 
of the primitive. LOD is computed as a function of the difference between 
perspective corrected texture coordinates of adjacent pixels to indicate  the 
magnification/minification  of the texture in screen space (texel/pixel ratio). 
The LOD module also calculates an LOD fraction for third axis interpolation 
between MIP maps. The combination of LOD-derived tile coordinates and 
fraction, a particular tile descriptor arrangement, and tri-linear filtering 
allows the implementation of MIP maps. Notice that MIP mapping is a 
specialized use of the general texture hardware. Other types of mappings 
are possible. The LOD calculation makes the following features (and maybe 
more) possible:

• trilinear MIP mapping

• sharpened texture

• detail texture

The LOD calculation depends on the following inputs:

• LOD: level of detail@pixel (texels/pixel), derived per pixel

•  min_level (0.5): minimum LOD fraction clamp for sharpen or detail 
modes, from the SetPrimColor RDP command

• max_level (0-7): number of MIP maps minus one, from the primitive 
via the gSPTexture command.

• detail_en: enable for detailed texture, from SetOtherModes RDP 
command

• sharp_en: enable sharpen mode, from SetOtherModes RDP command

• prim_tile (0-7): primitive tile number, from the primitive via the 
gSPTexture command.

• lod_en: enable for LOD calculation, from SetOtherModes RDP 
command

The LOD calculation produces the following outputs:
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• l_frac (s,0.8): LOD fraction for 3rd axis interpolation

• l_tile (0-7): tile descriptor index into tile memory

The LOD per pixel is clamped to min_level. The LOD tile index is then 
calculated using the equation:

l_tile = log2((int)lod_clamp)

So, for example, an LOD of 7.5 would be converted to an l_tile of 2. This 
index is clamped to max_level and then added to the prim_tile. For example, 
the tile arrangement for a MIP map with a prim_tile = 2 and max_level = 3 
would be arranged as shown in Table 14-5.

Table 14-5 Example of Tile Address and LOD Index Relationship

 

The l_frac is derived by dividing the clamped LOD by 2 l_tile . For example, 
an LOD of 7.5 would yield an l_frac  of 0.875. The l_frac is modified 
depending on the mode bits detail_en and sharp_en. Note that the detail and 
sharpen modes discussed below are exclusive. If enabled simultaneously, 
special effects may result. If neither detail_en or sharp_en is true, then the 
l_frac is passed to the color combiner unmolested.

Sharpen and detail mode change the behavior of the tile index calculation 
when magnifying. The texture is magnified when you get so close to the  

Tile Address LOD Index

0 -

1 -

2 0

3 1

4 2

5 3

6 -

7 -
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primitive that one texel is being applied to many pixels, even using the 
highest resolution texture in the MIP map.

Table 14-6 Generation of Tile Descriptor Index With LOD Enabled and Magnifying

Table 14-7  Generation of Tile Descriptor Index With LOD Enabled and Not 
Magnifying

Also note that  l_tile is clamped to max_level when at the coarsest level of 
detail.

Cycle Detail Sharpen !Detail & 
!Sharpen

0 prim_tile + l_tile prim_tile + l_tile prim_tile + l_tile

1 prim_tile + l_tile 
+ 1

prim_tile + l_tile 
+ 1

prim_tile + l_tile

Cycle Detail Sharpen !Detail & 
!Sharpen

0 prim_tile + l_tile 
+ 1

prim_tile + l_tile prim_tile + l_tile

1 prim_tile + l_tile 
+ 2

prim_tile + l_tile 
+ 1

prim_tile + l_tile 
+ 1
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MIP Mapping

An example of the tile arrangement for a MIP map is shown in Figure 14-5.

Figure 14-5 MIP Map Tile Descriptors

To implement trilinear MIP mapping, the RDP must be in two-cycle mode. 
A tile is referenced in each of the cycles and linearly interpolated using the 
l_frac in the color combiner. 

For more control of interpolation between two texture tiles a register 
prim_frac (0.8)  is provided that can be used as an input to the color 
combiner. prim_frac is set by the SetPrimColor command.

Care should be taken in the off-line generation of the MIP maps. Depending 
on the filter used for generating the levels, the different levels can end up 
unaligned if not careful. For example, if using a simple box filter for 
generating the coarser levels, an offset of 0.5 should be added to the SL and 
TL of each level to insure that they align when laid on top of one another. 
Whether these or other offsets are necessary depends on the filter used. 
Typically higher order filters will result in higher quality MIP maps.

Another word of caution. In computer graphics, extremely high frequency 
textures are a bad thing. Going from black to white in one texel being the 
highest frequency. High frequency maps are more likely to alias (flicker) 
when edge on or far away. So when generating map data use common sense 
and possibly lower frequency texture data to avoid these problems.
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Magnification

Figure 14-6 Magnification Interval Relative to LOD

Detail Texture

Even with trilinear MIP mapping, textures can look blurry under 
magnification (that is, when 0.0 < LOD <= 1.0). One way of avoiding this is 
to use very large textures that contain high-frequency detail. But this would 
be expensive in Tmem.

Detail mode comes into play in magnification. The finest level of the base 
texture is combined with a (usually small) detail texture in such a way as to 
repeat the detail-texture over the base texture several times. A base-texel 
would, upon magnification, appear to contain four or more detail texels 
blended with the base-texel color, thus providing high-frequency 
information without having to sacrifice large amounts of Tmem. This can be 
used very effectively; for example, to provide motion cues when close to the 
terrain.
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Detail texture mode is most effective in situations where the high-frequency 
information and overall hue are relatively consistent throughout the texture. 
To convert a high-resolution image into a low-resolution image (for the base 
texture) and a detail texture, follow this procedure:

12. Make the low-res image by filtering the high-res image to the desired 
size. This will become the base level.

13. Any nxn sub-tile of the high-res image can be used as a detail-texture. 
This sub-tile should preferably be modified to match across s and t 
borders  so that when it is repeated on the base-texture, the seams are 
not visible. Detail textures can have a different texel type than the 
base-texture (subject to Tmem restrictions). Often, it is sufficient to use 
a 4-bit or 8-bit intensity detail-texture

A very effective and efficient implementation of detail texture involves use 
of the base texture itself as the detail texture but at a different resolution. 
This works well for objects and terrains with a ‘fractal character’ where 
different resolutions of the object look similar. In such cases it might be 
appropriate to set the min_level parameter to 0 to allow the detail texture to 
completely replace the base texture at high magnifications.

Since the detail texture is combined with the base texture, a color shift may 
result. This can be avoided by choosing the detail texture color scheme to 
match the  base texture colors so that this effect is minimized. The min_level 
parameter can also be used to keep the detail texture from completely 
replacing the base texture by setting it to a value greater than 0. This will 
cause a certain minimum amount of the base texture to always be blended 
in with the detail texture thus minimizing the color shift.

The  shift field of the tile pointing to the detail texture is used to shift the 
incoming s and t coordinates before indexing into the map. This shift then 
determines the base-texel to detail-texel ratio. 

For example, if the detail tile’s shift was set to shift left by 1 (the shift of the 
finest level of the base texture being 0, of course), each base-texel, upon 
magnification would display 4 detail-texels blended with the base-texel 
color. A shift left of 2 would result in 16 detail-texels per base- texel and so 
on. Larger shifts result in more aliasing in the detail-texture since the  
interpolation occurs between widely different magnifications. 
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Keep in mind that the shift values compromise between the base-texel to 
detail-texel ratio and the effectiveness of the bilerp operation on the detail 
texture. This is because the number of fractional bits in the s and t 
coordinates (s10.5) is limited to 5 bits. Hence, a shift left of 3 bits will leave 
only 2 bits of fraction within each texel to do the bilerp. 

Detail textures must always be pointed to using PRIM_TILE.

Figure 14-7 MIP Map With Detail Texture Tile Descriptors

If detail_en is true and the LOD is less than 1.0, indicating that the LOD is 
below the finest MIP map level, the fraction is a table lookup of the l_frac. 
Currently, the table lookup is simply identity, so the fraction is not modified 
in detail mode. In order to always to have a portion of the base-texture 
visible, l_frac is clamped to be greater than min_level.  Min_level should be 
determined by experimentation.  This fraction can then be used to 
interpolate between the detail-texture (pointed to by prim_tile) and the 
base-texture (pointed to by prim_tile+1). Filtering within the detail-texture 
can be controlled as usual by using the setOtherModes bits to be POINT or 
BILERP.

Sharpen Mode

Sharpen mode is used in a situation similar to that of detail texture. The 
advantage of sharpen over detail is that sharpen is essentially free. It doesn’t 
require an additional detail map. Instead it extrapolates using the two finest 
MIP map levels. An image with high contrast edges has been magnified to 
the point where the edge details are becoming blurry. Sharpen mode 
increases the apparent sharpness of the texture edge by inverting the l_frac 
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(extrapolating) as shown in Figure 14-8, “Sharpen Extrapolation,” on 
page 238.

Bilinear Filtering and Point Sampling

The DP hardware treats texture coordinates differently based on whether 
the DP is in point sample mode or bilerp mode. In point sample mode texels 
can be thought of as 1 x 1 squares with the sample point at the top left hand 
corner of the texel (where the ‘s’ and ‘t’ coordinate axes run left to right and 
top to bottom respectively. This means that to map a modeler’s floating 
point texture coordinate output (u,v) into the DP fixed point texture 
coordinates (s,t) for say a 32x32 sized texture (s ranges from 0 - 31 and t 
ranges from 0 - 31), the mapping

s = u*32;
t = v*32;

would work consistently and would map the full 32x32 texture onto a 
polygon with (u,v) coordinates in the range [0.0 - 1.0]. This is because the 
above mapping would result in u range of [0.0-1.0] to be mapped to an s 
range of [0-32] which would cover the region from the left edge of the texel 
0 to the right edge of texel 31.

On the other hand, in Bilerp mode the DP treats a texel as a 1 x 1 square with 
the sample point at the center and the above mapping would cover the 
region from the middle of texel 0 to the middle of texel 32 which goes beyond 
the extent of the texture.

The mapping

s = u*32 - 1;
t = v*32 - 1;

doesn’t work either since it maps a (u,v) range of 0.0 - 1.0 to an (s,t) range of 
0.0 - 31.0 which would cover a region from the middle of texel 0 to the 
middle of texel 31 which cause both texel 0 and texel 31 to be half displayed.

The mapping that would make the textured primitive match exactly to the 
artist’s rendition of the texture in Bilerp mode would be:

s = u*m - 0.5;
t = v*n - 0.5;
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since this would map a (u,v) range of [0.0-1.0] to an (s,t) range of [-0.5 - 31.5] 
which would cover the region starting on the left edge of texel 0 to the right 
edge of texel 31. However the bilerp filter requires two texels to bilerp 
between and in the s,t ranges [-0.5 - 0.0] and [31.0 - 31.5] there is only one 
texel available.  This can be solved by turning on clamping in the DP and 
setting SL,TL to 0,0 and SH,TH to 31,31. This will cause the bilerp filter to 
select texel 0 for both texels to bilerp between in the range [-0.5 - 0.0] and 
texel 31 for range [31.0 - 31.5]. This paradigm can be extended for wrapping 
textures by clamping only at the border coordinates of the primitive. For 
example a primitive with u,v in the range [0.0-4.0] in wrap mode would 
repeat the texture 4 times.  For the border texels to be displayed in full the s,t 
range would have to be [-0.5 - 127.5] (according to the above mapping) and 
the clamp parameters SL,TL and SH,TH would be set to 0,0 and 127,127 
respectively. (Note that SL and TL is subtracted from the incoming texture 
coordinates and is also used as the lower clamp value in clamp mode).

If the (power of 2) texture matches along the 4 edges, clamp can be turned 
off and the bilerp filter will use the texel from the other edge of the wrapping 
texture to filter to.

Note:  Since point sampled and bilerp modes cause a shift of 0.5 texels in the 
displayed primitive, to switch between point sampled and bilerp modes 
without shifting the texture one of the following methods may be used:  1) 
use a different primitive with a 0.5 shift in the texture coordinates; 2) Set the 
0.5 texel shift in SL and TL in the texture tile (SL and TL are subtracted from 
the incoming texture coordinates)

Note:  If the mxn texture is too large to fit in tmem, the polygon and the 
texture can be broken up along u,v and s,t in appropriately sized tiles. For 
the bilerp to work along the tile boundaries, an extra row (or column) of 
texels around each tile border needs to be loaded i.e the resulting polygons 
will be disjoint but each tile (that is not a border tiles) will have an overlap 
of 2 texels with any adjacent tile.
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Figure 14-8 Sharpen Extrapolation
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Texture Memory

Memory Organization

Because texturing requires a large amount of random accesses with 
consistent  access time to texture memory, it is impractical to texture directly 
from DRAM. The approach taken by the Nintendo64 system is to cache up to 
4 KB of an image in an on-chip, high-speed texture memory called Tmem. 
All primitives are textured using the contents of Tmem. The basic sequence 
of events needed to texture a primitive is:

1. Load a texture tile into Tmem.

2. Describe attributes of the texture tile.

3. Render primitives that use this tile.

Tmem should indeed be considered a cache from the programmer’s point of 
view. Since each tile must be loaded from DRAM, it makes sense to render 
as many primitives as possible, using the current tile before loading the next 
one in order to conserve DRAM bandwidth. 

Physically, Tmem is arranged as shown in Figure 14-9.  L0-3 are referred to 
as the low half of Tmem, H0-3 are referred to as the high half of Tmem.

Figure 14-9 Physical Tmem Diagram
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For loading, Tmem is arranged logically, as shown in Figure 14-10.

Figure 14-10Tmem  Loading

The following table shows the maximum tile sizes that can be stored in the 
4KB Texture Memory. Images larger than this will be tiled.

Table 14-8 Maximum tile sizes in TMEM

Texel Type Maximum Texel Count

4-bit (I, IA) 8K

4-bit Color Index 4K (plus 16 palettes)

8-bit (I, IA) 4K

8-bit Color Index 2K (plus 256-entry LUT)

16-bit RGBA 2K

16-bit IA 2K

16-bit YUV 2K Y’s, 1K UV pairs

32-bit RGBA 1K

64 bits

512 Words

Alignment Logic

Load Data

Load Address

Tmem
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Four-bit textures are stored in Tmem as shown, as shown in Figure 14-11.

Figure 14-11Four-Bit Texel Layout in Tmem

Eight-bit textures are stored in Tmem, as shown in Figure 14-12.

Figure 14-12Eight-Bit Texel Layout in Tmem
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Sixteen-bit textures (except YUV) are stored in Tmem, as shown in 
Figure 14-13.

Figure 14-13Sixteen-Bit Texel Layout in Tmem

Sixteen-bit YUV textures are stored in Tmem, as shown in Figure 14-14. Note 
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loaded per row and SH set accordingly to allow proper filtering of the last 
UV texel per row.

Figure 14-14YUV Texel Layout in Tmem

Thirty-two bit (RGBA) textures are stored in Tmem, as shown in 
Figure 14-15.

Figure 14-15Thirty-Two Bit RGBA Texel Layout in Tmem
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For color index (CI) textures, the texture is stored in the lower half of Tmem, 
and the Texture/Color Look-Up Table (TLUT) is stored in the upper half of 
Tmem. For 4-bit CI textures, the texels (or indices) addressed in the lower 
half of Tmem have the 4-bit palette number for the tile prepended to create 
an 8-bit address into the upper half of Tmem. Since four texels are addressed 
simultaneously, there must be four (usually identical) TLUTs stored in the 
upper half of Tmem across the four banks. 

For 4-bit CI textures, the palette effectively selects one of sixteen possible 
tables, each table having sixteen entries. Each table is aligned on 16-word 
boundaries. Note that there are two choices for the texel type that resides in 
the TLUT: 16-bit RGBA, or 16-bit IA. The type is selected using the 
gDPSetTextureLUT() command. This command also configures the Tmem 
as shown in Figure 14-16. Because of this, CI textures cannot be combined 
with other texture types in two-cycle mode.
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Figure 14-16Tmem Organization for Eight-Bit Color Index Textures

Eight-bit CI textures do not use the palette number of the tile, since they 
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Assuming that both textures together fit into the lower half of Tmem (2 KB), 
these textures could be co-resident in Tmem. It is also possible to have CI 
textures co-resident with other non-CI textures. 

In the above example, you are using only the first 70 words of upper Tmem 
for TLUTs. You could use the remaining 186 words to store a 4-bit I texture, 
for example. Note that even though you can store CI and other types 
together in Tmem, you cannot access these types simultaneously in 
two-cycle mode, because the configuration of the Tmem for CI textures is 
controlled with a mode bit that must be updated using the 
gDPSetTextureLUT command, as mentioned previously.

Figure 14-17Tmem Organization for Four-Bit CI textures
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Texel Formatting

In the RDP graphics pipeline, most operations are done on 
8-bit-per-component RGBA pixels. After looking up the texels, the texture 
unit converts them into the 32-bit RGBA format. Table 14-9 describes how 
each type is converted. The format for beatified descriptions is [MSB:LSB] 
where MSB is the most significant bit and LSB is the least significant bit. Bit 
fields are grouped together in braces {} with the most significant field on the 
left and the least significant field on the right

Table 14-9 Texel Output Formatting

.

Type Size Input 
Format

Output Format

Red Green Blue Alpha

I 4 I[3:0]  {[3:0], 
[3:0]}

{[3:0], 
[3:0]}

{[3:0], 
[3:0]}

{[3:0], 
[3:0]}

I 8 I[7:0] [7:0] [7:0] [7:0] [7:0]

IA 4 I[3:1], 
A[0]

{[3:1], 
[3:1], 
[3:2]}

{[3:1], 
[3:1], 
[3:2]}

{[3:1], 
[3:1], 
[3:2]}

255*[0]

IA 8 I[7:4], 
A[3:0]

{[7:4], 
[7:4]}

{[7:4], 
[7:4]}

{[7:4], 
[7:4]}

{[3:0], 
[3:0]}

IA 16 I[15:8], 
A[7:0]

[15:8] [15:8] [15:8] [7:0]

RGBA 16 R[15:11], 
G[10:6], 
B[5:1], 
A[0]

{[15:11], 
[15:13]}

{[10:6], 
[10:8]}

{[5:1], 
[5:3]}

255*[0]

RGBA 32 R[31:24], 
G[23:16]
, B[15:8], 
A[7:0]}

[31:24] [23:16] [15:8] [7:0]
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Texture Loading

Loading a texture actually consists of several steps. Internally, the RDP 
treats loading a texture as if it were rendering a textured rectangle into 
Tmem. To load a texture, you must describe the texture tile to be loaded, 
render (load) it into Tmem, and describe the tile to be rendered. An 
important consequence of these steps is that you can load a texture in one 
way and render it in completely different way.

For example, the GBI macro gsDPLoadTextureTile performs all the tile and 
load commands necessary to load a texture tile. The sequence of commands 
is shown below (macros shown without parameters):

gsDPSetTextureImage
gsDPSetTile /* G_TX_LOADTILE */
gsDPLoadSync
gsDPLoadTile /* G_TX_LOADTILE */
gsDPSetTile /* G_TX_RENDERTILE */
gsDPSetTileSize /* G_TX_RENDERTILE */

This sequence of commands loads a texture tile using the tile descriptor 
G_TX_LOADTILE (tile 7) and renders using G_TX_RENDERTILE (tile 0). 
Since the tile descriptor used to load the tile is different from the one used to 
render the texture, there is no possibility of tile usage conflict, so a TileSync 
command is unnecessary. The TileSync command is used in situations 
where you may want to use the same tile for both loading and rendering a 
texture. It basically inserts a bubble in the RDP pipeline to guarantee that the 
load tile descriptor isn’t changed by the render tile before the load is actually 
done. 

The gsDPSetTextureImage command sets a pointer to the location of the 
image. Then the gsDPSetTile is used to indicate where in Tmem you want to 
place the image, how wide each line is, and the format and size of the 
texture. A gsDPLoadSync command makes sure that any previous load is 
completely finished before this texture is loaded. Then the actual 
gsDPLoadTile command is issued, which loads the texture into Tmem. The 
final gsDPSetTile and gsDPSetTileSize are used to set the tile descriptors 
correctly for the tile used when rendering. 
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The textures are stored big-endian in memory and should obey the 
following format for a 64-bit word in memory.

Figure 14-18Texel Formats in DRAM
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Load Tile

The LoadTile command allows a programmer to load an  arbitrary 
rectangular region  of a larger texture in DRAM into Tmem. The following 
examples assume a 16-bit texel type.  

Figure 14-19Example of LoadTile Command Parameters

When textures are loaded as a tile, it means that (at least)  each line of the 
texture is a separate DRAM transfer. Each line’s transfer may be broken into 
multiple smaller transfers, depending on how big it is and whether it crosses 
DRAM page boundaries. Since the DRAMs are block transfer type devices, 
there is a fixed amount of overhead for each transfer, so long transfers are 
desirable. For this reason, you should try to load your texture using the 
longest dimension of the tile.  Also, each line of a tile is padded automatically 
to Tmem word (64-bit) boundaries.  If your tile line size is not a multiple of 
64-bits, some Tmem space is being wasted. Also when tiling a larger texture 
image into multiple tiles, an extra row and column are usually loaded to 
allow proper filtering of the texels along the border of the tile (to avoid 
seams).
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Note:  The RDP commands LoadTile, LoadBlock, and LoadTLUT set the tile 
parameters SL,TL,SH,TH when they are executed.  After the load command, 
it may be necessary to use the SetTileSize command to restore these 
parameters if you want parameters other than were used in the Load 
command.  In the gbi.h texture load macros, the SetTileSize command is 
always used following a Load command.

Wrapping a Large Texture Using Load Tile

It is possible to effectively ‘wrap’ large textures (textures too large to fit 
entirely in Tmem) by careful loading using the LoadTile command.  There 
are (at least two) methods for doing this.  Figure 14-20, “Wrapping a Large 
Texture Using Two Tiles,” on page 251 shows a large texture in memory.  
We want to load a tile as if the texture had been wrapped in the S direction, 
and the tile straddles the wrap region.

Figure 14-20Wrapping a Large Texture Using Two Tiles
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One way to effectively load the wrapped tile is to actually load two 
interleaved tiles.  To interleave two tiles in Tmem, load tile 1 but set the tile’s 
Line parameter to n+m Tmem words, where n is the number of words in a 
line of Tile 1 and m is the number of words in tile 2.  SL,SH,TL,TH should be 
set to load Tile 1.  Now load Tile 2, setting the tile’s Tmem Address to n.  Also 
set the SL,TL,SH,TH for Tile 2.  After the loads, reset the render tile’s Tmem 
Address to 0.  Set SL,SH,TL,SH to be the total composite tile size.  Note that 
only Tile 1’s width must be a multiple of Tmem words.  Tile 2’s width can be  
any number of texels and the remainder of the last Tmem word for each line 
will simply be undefined.

Another, possibly more straightforward method, relies on the fact that at the 
end of each line of the large texture, the addresses will naturally roll into the 
next line.  

Figure 14-21Wrapping a Large Texture Using One Tile

So, as shown in Figure 14-21, “Wrapping a Large Texture Using One Tile,” 
on page 252, you can load a single tile starting at address 60 minus m words.  
The tile’s Line parameter should equal m+n.  Set the Tmem Address 
parameter to 0 during the load.  Make sure to load T+1 lines.  After the load, 
set Tmem Address to m, and set the SL,SH,TL,TH to the actual tile size.  This 
method wastes m words at the beginning of Tmem and n words at the end 
of Tmem but has the advantage of using only one load.
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Load Block

A more memory-bandwidth efficient way to load textures is the LoadBlock 
command. This command essentially treats each texture as a single long line 
of data. This allows the MI to transfer the maximum amount of data for each 
transfer.  

Figure 14-22Example of LoadBlock Command Parameters

The LoadBlock command uses the parameter dxt to indicate when it should 
start the next line.  Dxt is basically the reciprocal of the number of words 
(64-bits) in a line.  The texture coordinate unit increments a counter by dxt 
for each word transferred to Tmem.  When this counter rolls over into the 
next integer value, the line count is incremented.  The line count is important 
because the data in odd lines is swapped to allow interleaved access when 
rendering.  This works great when dxt is a power of two.  However, if dxt is 
not a power of two, the line counter can be corrupted due to accumulated 
error.  Appendix A contains a table that indicates how many lines  for a 
certain size can be in a load block for a tile before the line count is corrupted.  

It is possible to load a set of texture tiles using a single LoadBlock command 
(MIP maps, for example).  However, if the tiles have different widths, the 
single dxt parameter is not enough to do proper interleaving.  In these cases, 
the data must be pre-interleaved and the dxt parameter should be set to zero.
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The LoadTlut command is an efficient way of loading texture look-up tables 
into the high half of TMEM. System memory is conserved using this 
command as each 16-bit color value is “quadricated” as it is read in and 
written to the TMEM. In other words, it isn’t necessary to store four times 
the data in memory. The load hardware will expand it out into a 64-bit word 
during the load. This saves system memory as well as memory bandwidth. 
Two types of TLUTs are supported: 16-bit RGBA and 16-bit IA. TLUT depth 
can range from 16 words (4-bit CI) to 256 words (8-bit CI). LoadTile or 
LoadBlock can still be used for loading the TLUT however the data will have 
to be quadricated in system memory first.

Loading Notes

4-bit types should be loaded as 16-bit types and then rendered as 4-bit types. 
This does not restrict 4-bit types in any way and still allows for rows with an 
odd number of 4-bit texels.

When using LoadBlock, no more than 2048 texels can be loaded at once. So 
for example if you wanted to load 4K 8-bit texels, load them as 2K 16-bit 
texels and then render them as 8-bit texels. If you’re using 16-bit or 32-bit 
there is no need for a special case since TMEM cannot hold more than 2K 
16-bit or 1K 32-bit texels.

To improve performance by minimizing the number of syncs required, the 
user can interleave the tile loads and renders with different tile indices. For 
example, load using tile 7 while rendering using tile 0.
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Examples

After texture coordinates are converted to Tile Space, they may be wrapped, 
clamped, or mirrored. Figure 14-23 shows how wrapping, mirroring, and 
clamping affect the tile-relative coordinates. The S and T coordinates have 
independent controls for wrapping, mirroring, and clamping.
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Figure 14-23Wrapping, Mirroring, and Clamping
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Figure 14-24Wrapping Within a Texture Tile
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Textured log using 3 textured cylinders. The 
middle cylinder sets the tile’s mask to 6 so 
that the texture wraps every 64 texels. The 
end cylinders set the tile’s clamp bit and have 
coordinates that access the jagged part of the 
texture. Advantages include easier modeling, 
use of one load command, and possibly 
tighter Tmem packing than if two separate 
textures were used.
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Figure 14-25Example of Texture Decals
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Restrictions

Texture Types and Modes

The following is a list of restrictions concerning the use of certain textures 
types in certain modes:

Point Sample

Clamp &/| (wrap | mirror) works for all texel types.

Filter

Clamp works for all texel types.  Wrap t | mirror t | (clamp t & wrap t) | 
(clamp t & mirror t) works for all texel types.

Wrap s | mirror s | (clamp s & wrap s) | (clamp s & mirror s) works for all 
texel types except YUV.

Copy

Clamping is implicitly disabled for copy mode.  32-bit RGBA and YUV texel 
types are not supported.  To copy these types, they should be loaded and 
copied as 16-bit RGBA type texels.  When using a 16-bit RGBA type to copy 
a 32-bit RGBA or YUV texture, mirroring in s is not supported.

Wrap or mirror works for 4, 8, and 16-bit types.

LOD

You must put the RDP in two-cycle mode to use texture LOD.

Alignment

The texture image pointer, as defined using the gDPSetTextureImage 
command, must be 8-byte aligned.  Additionally, each tile  must be aligned 
according to its size.  For example, 8-bit texture tiles must be aligned to 8-bit 
259



NINTENDO 64 PROGRAMMING  MANUAL DRAFT
boundaries, 16-bit textures to 16-bit boundaries, etc.  One exception is 4-bit 
tiles, which must be accessed on byte (8-bit boundaries).

Tiles

The maximum size of a tile is 256 rows (t coordinate) and 1024 texels (s 
coordinate) within the limits of Tmem size.  It is better to always make the s 
coordinate the longer coordinate in terms of load performance.

You should avoid shifting coordinates left using the shift parameter of a tile 
unless necessary.  See the example under  Multiple Tile Effects in the 
Applications section.

Coordinate Range

The valid texture coordinate range is currently from -1024.0 to +1023.99. A 
total range of 2K texels across a primitive. The texture hardware can handle 
this full range without any noticeable loss of accuracy. For small coordinate 
ranges however, if given a choice of coordinates close to zero or coordinates 
close to 1024, slightly higher quality may result from the lower coordinates. 
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Applications

Multiple Tile Effects

Interference Textures

Since you can access two separate tiles in two-cycle mode, it easy to achieve 
interference pattern effects.

X =

  Of course, you can use textures that are different 

sizes (wrap on different intervals) to decrease the amount of apparent 
repetition.  This is especially useful for textures on terrain or for waves on 
the ocean, for example.

Lighting with Textures

Multiple tiles can be used for lighting effects.  In the example below, a small 
texture is repeated many times but a small light texture is scaled up to create 
the effect of a spotlight.

Tex 0 Tex 1

0, 0

0, 50

200, 0

200, 50
Tex 0 coordinates

0, 0

0, 25

50, 25

50, 0

Tex 1 coordinates

  In this example you could use the input coordinates 

should be defined using Tex 0’s coordinates.  The shift parameter of the tile 
descriptor for Tex 1 could be used to right shift the input coordinates to the 
required values.  It would be a bad idea to use Tex 1’s coordinates as the 
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input coordinates and then left shift to obtain Tex 0’s coordinates.  This is 
because when you shift left, you shift zeros into the lsb’s of the coordinate, 
thus losing precision.

Extended Alpha Using Multiple Textures

The 16 bit RGBA texture type is often used to texture sprites and billboards 
because this is the only type that allows a large number of colors. 
Unfortunately, this type only has one bit of alpha (which means you cannot 
prefilter texture edges), and can lead to pixelated texture edges.

One way to get more bits of alpha (in order to create smoother outlines) is to 
use two tiles.  The first tile describes the RGB color of the texture, while the 
second tile describes the alpha channel of the texture.  Render the texture in 
two-cycle mode.  In the color combiner, select T0 as the source and in the 
alpha combiner select T1 as the source.

A code fragment indicates how to set the combine modes and load the 
textures:

#define MULTIBIT_ALPHA  0, 0, 0, TEXEL0, 0, 0, 0, TEXEL1

...
    /* use special combine mode */
    gsDPSetCombineMode(MULTIBIT_ALPHA, G_CC_PASS2),
...
    /*
     *  Load alpha texture at Tmem = 256, notice I use a
     *  different load macro that allows specifying Tmem
     *  address.
     */
    _gsDPLoadTextureBlock_4b(I4molecule, 256, G_IM_FMT_I,
            32, 32, 0,
             G_TX_WRAP, G_TX_WRAP,
             5, 5, G_TX_NOLOD, G_TX_NOLOD),

    /*
     *  Load color texture starting at Tmem=0
     */
    gsDPLoadTextureBlock(RGBA16molecule, G_IM_FMT_RGBA,
            G_IM_SIZ_16b, 32, 32, 0, G_TX_WRAP, G_TX_WRAP,
             5, 5, G_TX_NOLOD, G_TX_NOLOD),
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    /*
     *  Since normal load macros use tile 0 for render, I
     *  need to set tile 1 manually to point at alpha
     *  texture.
     */

    gsDPSetTile(G_IM_FMT_I, G_IM_SIZ_4b, 2, 256, 1,
        0,
        0, 0, 0,
        0, 0, 0),
    gsDPSetTileSize( 1, 0, 0, 31 << 2, 31 << 2),

...
    /* make sure in two-cycle mode */
    gsDPSetCycleType(G_CYC_2CYCLE),
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Appendix A: LoadBlock Line Limits

The table below lists the maximum number of lines that can be properly 
transferred for a given texture width.

Note:   The absolute max lines column refers to the number of lines that 
could be transferred if only limited by Tmem size. If absolute max lines field 
is empty, it indicates that the max lines was equal to absolute max lines. If 
max lines is empty it indicates that zero lines could be transferred correctly 
using these parameters.

This table only applies to 16-bit texels. 

Table 14-10 Limits on Number of Lines for LoadBlock Command

Width 

(16b texels)

Max Lines Absolute

Max Lines

4 512

8 256

12 170

16 128

20 102

24 85

28 73

32 64

36 56

40 51

44 20 46

48 42

52 26 39

56 14 36

60 19 34
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64 32

68 13 30

72 28

76 26

80 8 25

84 9 24

88 4 23

92 4 22

96 5 21

100 20

104 13 19

108 18

112 3 18

116 6 17

120 3 17

124 2 16

128 16

132-136 2 15

140 3 14

144 14

148 2 13

152 13

156 2 13

Table 14-10 Limits on Number of Lines for LoadBlock Command

Width 

(16b texels)

Max Lines Absolute

Max Lines
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160 1 12

164 12

168 4 12

172-184 2 11

188-192 2 10

196 4 10

200 10

204 --- 10

208 1 9

212 2 9

216 9

220 --- 9

224 1 9

228 8

232 --- 8

236 2 8

240 --- 8

244 1 8

248 --- 8

252 1 8

256 8

260-264 --- 7

268 1 7

Table 14-10 Limits on Number of Lines for LoadBlock Command

Width 

(16b texels)

Max Lines Absolute

Max Lines
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272 --- 7

276 1 7

280 --- 7

284 2 7

288-292 --- 7

296 1 6

300 --- 6

304 6

308-312 --- 6

316 4 6

320-324 --- 6

328 6

332-340 --- 6

344 1 5

348-356 --- 5

360 1 5

364-372 --- 5

376 1 5

380-388 --- 5

392 2 5

396-408 --- 5

412 1 4

416-428 --- 4

Table 14-10 Limits on Number of Lines for LoadBlock Command

Width 

(16b texels)

Max Lines Absolute

Max Lines
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432 4

436-452 --- 4

456 4

460-480 --- 4

484 1 4

488-508 --- 4

512 4

516-544 --- 3

548 2 3

552-584 --- 3

588 1 3

592-628 --- 3

632 2 3

636-680 --- 3

684 2

688-744 --- 2

748 1 2

752-816 --- 2

820 2

824-908 --- 2

912 2

916-1020 --- 2

Table 14-10 Limits on Number of Lines for LoadBlock Command

Width 

(16b texels)

Max Lines Absolute

Max Lines
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Chapter 15

15. Texture Rectangles (Hardware Sprites)

Warning:  Code fragments in this chapter have not been fully verified. 
A demo containing these examples will be included in a future software 
release.

A texture rectangle is a special primitive supported by the Reality Display 
Processor (RDP) hardware. This primitive is intended to provide simple 
‘sprite’ capabilities with a minimum number of parameters. Texture  
rectangles are screen-aligned rectangles whose coordinates are defined 
directly in screen space.

Example 15-1 Texture Rectangle Command

gsDPTextureRectangle(xl, yl, xh, yh, tile, s, t, dsdx, dtdy)

Texture coordinates are defined by specifying the start point S and T 
coordinates at the top left corner of the rectangle and the step in S per pixel 
in X and the step in T per pixel in Y.   Example 15-2 shows a rectangle 100 
pixels wide by 100 pixels high drawn at screen coordinates (100,100).  The 
texture coordinates at the top left corner of the rectangle are (0,0).  The 
texture steps 1 texel per pixel in both the S and T directions.   This example 
assumes that a texture has been previously loaded (see “Texture Loading” 
on page 248).

Example 15-2   Texture Rectangle Example

gsDPSetTexturePersp(G_TP_NONE),
gsDPTextureRectangle(100<<2, 100<<2, 200<<2, 200<<2, 

G_TX_RENDERTILE, 
0, 0, 
1<<10, 1<<10),
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Caution:  The perspective divide of the texture coordinates in the RDP must 
be disabled using the gsDPSetTexturePersp() command when rendering 
texture rectangles.

Texture rectangles are two-dimensional (2D)-- they may be translated in X 
and Y, but not rotated.  Texture rectangles may be z-buffered in a limited 
way, as described in “Z-Buffering Texture Rectangles” on page 299.  Even 
though they are simple and limited to two dimensions, texture rectangles are 
useful both in 2-D sprite games as well as for 2-D effects in 3-D games.  This 
chapter will explain some of the details associated with the texture rectangle 
primitive and provide some simple examples for new Nintendo-64 
programmers.  Some of the information found in this chapter may also be 
found in other chapters but is repeated here for completeness.

Figure 15-1 Texture Rectangle Definition

Screen

xl, yl (10.2 fixed point)

xh, yh (10.2 fixed point)
Texture

s,t (s,10.5)

dtdy (s,5.10)

dsdx (s,5.10)

0,0

increasing y

increasing x
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Sampling Overview

A texture is an array of values, where each value is a set of numbers 
(components) describing the attributes of a texture element, or texel. For the 
Nintendo 64, the numbers representing a texel are fixed-point.  The number 
of components per pixel and the number of bits per component is variable.  
“Color Index Frame Buffer” on page 298 describes the possible formats  for 
texels.

When displaying a texture on the screen of a display, we must perform a 
mapping from the texture space to the display image space.  In the case of 
texture rectangles, where the geometric operations are limited to scaling and 
translation, the main problem is how to sample and filter the source texture 
so that it is faithfully produced on the display. Figure 15-2 is one example of 
aliasing artifacts that can effect image quality.  In this example, 10 black bars 
are separated by 10 white bars with even spacing.  The bars cover a width of 
11 pixels on the screen.  Because we are sampling at a lower frequency than 
the texture, our output image is aliased.  Aliasing artifacts are caused by 
high-frequency information that is insufficiently sampled appearing as 
low-frequency information.  Furthermore, if the beginning sample point is 
moved slightly, the sampled image can shift dramatically. During 
animations this causes the displayed image to scintillate or flash.  Nyquist’s 
Law indicates that the sampling frequency should be greater than twice the 
highest frequency component in the texture to avoid aliasing artifacts.

Figure 15-2 Aliasing in a  Sampled Image

Point Sampling

Point sampling in the Nintendo 64 means that we assume that each texel 
maps to one pixel on the display, and we ignore any fractional overlap 

scanline

samples

sampling points
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between texels and pixels.  Example 15-3 shows how to enable point 
sampling.

Example 15-3 Enable Point Sampling

gsDPSetTextureFilter(G_TF_POINT)

Point sampling works well for mapping a rectangular texture to a 
screen-aligned rectangle of the same size on the display.  Problems occur if 
the sampling ratio is not 1:1, however, as shown in Figure 15-3.  In the first 
case, we display 10 texels using 10 pixels.  In the second case, we scale the 
image slightly by displaying 9 texels on 10 pixels.  This results in the middle 
pixel having the same color as the previous bar.  In general, point sampled 
images should be scaled by an integer power of two to avoid this problem.  
To achieve other scalings, it is necessary to use bilinear filtering.

Figure 15-3 Point Sampling Scaling Problem

Example 15-4 demonstrates 3 texture rectangles with the texture scaled by 1, 
2, and 4 respectively:

Example 15-4 Scaled, Point Sampled Textures

scanline

samples

sampling points

1:1 Scaling

scanline

samples

sampling points

10:9 Scaling
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gsDPSetTextureFilter(G_TF_POINT),
gsDPTextureRectangle(50<<2, 50<<2, 150<<2, 150<<2, 

G_TX_RENDERTILE, 
0, 0, 
1<<10, 1<<10),

gsDPTextureRectangle(60<<2, 60<<2, 160<<2, 160<<2, 
G_TX_RENDERTILE, 
0, 0, 
1<<9, 1<<9),

gsDPTextureRectangle(70<<2, 70<<2, 170<<2, 170<<2, 
G_TX_RENDERTILE, 
0, 0, 
1<<8, 1<<8),

Point sampling also implies that animated sprites will have to move in 
one-pixel increments.  Even though the rectangle can be positioned with 2 
bits of subpixel precision, and the texture can be offset to 5 bits of fractional 
precision, the point sampling only looks at the integer coordinate and so will 
not change until there is at least a one pixel change in position.  Bilinear 
filtering allows for smoother motion of sprites.

Bilinear Filtering

Instead of selecting a single texel for a given pixel, as in point sampling, 
bilinear filtering selects four texels surrounding the sample point and 
intepolates these points using fractional position information to determine 
the pixel color.  Example 15-5 shows how to enable texture filtering.

Example 15-5 Enable Bilinear Filtering

gsDPSetTextureFilter(G_TF_BILERP)
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An example of bilinear filtering is shown in Figure 15-4.

Figure 15-4 Bilinear Filtering

In the Nintendo-64, rather than doing a full bilinear interpolation using all 
four samples, a triangular interpolation is performed that uses only three 
points.  The texture filter selects which three points to use depending on 
where the sample point lies inside the 2x2 grid of texels.  In certain cases, the 
triangular filter can cause small anomalies.  These cases occur when there are 
drastic intensity changes from one texel to another in the texture as shown 
in Figure 15-5.  In this example, if the sampling point moves slightly from 
one side of the diagonal to the other, the resulting color changes abruptly.  In 

s_frac

t_frac
top =TL + s_frac(TR-TL)TL TR

BRBL

bot =BL + s_frac(BR-BL)

texel =top + t_frac(bot-top)

Sample Point
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general, it is best to prefilter an image so that these sharp texture edges at 
least a slight intensity ramp.

Figure 15-5 Triangular Filtering

With bilinear filtering, it is possible to scale a texture without the problems 
of point sampling.  Example 15-6 shows a texture rectangle with the texture 
scaled by 1.5 in S and T:

Example 15-6 Scaled, Bilerped Textures

gsDPSetTextureFilter(G_TF_BILERP),
gsDPTextureRectangle(50<<2, 50<<2, 150<<2, 150<<2, 

G_TX_RENDERTILE, 
0, 0, 
3<<9, 3<<9),

Smooth scrolling of texture rectangles is discussed in “Smooth Scrolling” on 
page 286.

s_frac

t_frac

TL TR

BRBL

s_frac

t_frac

TL TR

BRBL

TriInterp(TL,BL,BR)

TriInterp(TL,TR,BR)

Output
Texel

Sample point
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Average mode for 1:1 Ratio Sampling

There is a special case in which the texture filter can perform an exact 
average using all four texels.  This case occurs when the sample point lies 
exactly in the center, i.e. s_frac = t_frac = 0.5.  To enable the average mode 
use the command:

Example 15-7 Enable Average Filtering

gsDPSetTextureFilter(G_TF_AVERAGE)

In order to force the sample point to be in the middle of the texel, set the start 
point to 0.5 and then step by 1 texel per pixel.  Example 15-8 demonstrates 
this:

Example 15-8 Averaging Textures

gsDPSetTextureFilter(G_TF_AVERAGE),
gsDPTextureRectangle(50<<2, 50<<2, 150<<2, 150<<2, 

G_TX_RENDERTILE, 
1<<4, 1<<4, 
1<<10, 1<<10),

Copy

Copy mode is a special pipeline mode that allows fast image copies to the 
framebuffer.  Copy mode can be enabled as shown in 

Example 15-9 Enable Copy Mode

gsDPSetCycleType(G_CYC_COPY)
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In copy mode, four horizontally adjacent texels are copied per clock as 
shown in Figure 15-6.

Figure 15-6 Copy Mode

In copy mode, since four texels are copied each clock, the step in S per clock 
must be set to four. Example 15-10  shows a texture rectangle using copy 
mode.

Example 15-10 Copy Mode Texture Rectangle

gsDPSetCycleType(G_CYC_COPY),
gsDPTextureRectangle(50<<2, 50<<2, 150<<2, 150<<2, 

G_TX_RENDERTILE, 
0, 0, 
4<<10, 1<<10),

Since copy mode bypasses most of the RDP pipeline, the filter settings are 
not used.  However, it is still necessary to disable perspective correction as 
shown in Example 15-2.  Also, copy mode is not valid for all texture types, 
see “Copy” on page 259.

Texture in Tmem

Texture Rectangle

Frame Buffer

4 texels copied each clock
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It is possible to scale textures in copy mode in the T(Y) direction only.  Note 
that in this case, the rules for point sampled scaling apply, only integer 
power of two scalings.

In copy mode, textures are copied directly to memory, so there is no 
opportunity for color combiner operations, filtering, transparency, etc.  
Copying is a write-only operation so transparency using the normal 
blending hardware is impossible.  However, you can achieve ‘cutout’ and 
‘dithered’ types of transparency using the alpha compare logic, see “Alpha 
Compare Calculation” on page 315.
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Simple Texture Effects

This section describes some ‘sprite’-type effects that are commonly useful 
for texture rectangles.  This is  intended to be a starting point for 
programmers, not a complete list. Undoubtedly, clever programmers will 
find  the hardware allows many other effects.

Flip

Flip means to rotate an image 180 degrees around the X or Y axis or both as 
shown in Figure 15-7.

Figure 15-7 Flipping Texture Rectangles

If the texture map to be flipped has a size that is a power of two in the 
direction of the flip, then you can use the mirror_enable (“Mirror Enable 
S,T” on page 222)  bit in the tile descriptor to perform the flip.  For example, 
suppose we have loaded a 32x32 16-bit RGBA texture into Tmem.  To flip the 
texture in X we can use the code in Example 15-11.

Example 15-11 Flip a Texture in X

gsDPSetTile(G_IM_FMT_RGBA, G_IM_SIZ_16b, 8, 0,
G_TX_RENDERTILE,0,
G_TX_MIRROR, 5, G_TX_NOLOD, /* s */
G_TX_NOMIRROR, 5, G_TX_NOLOD), /* t */

gsDPTextureRectangle(50<<2, 50<<2, 150<<2, 150<<2, 
G_TX_RENDERTILE, 
32<<5, 0, /* start s on mirror boundary */
1<<10, 1<<10),

original flip X flip Y flip XY
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Note that the S start point is 32.  Since the texture will be mirrored when the 
S coordinate is between 32 and 63 if the mirror enable bit in the tile is set, we 
get the effect of a flipped texture.  If the mirror bit is disabled, the texture will 
remain unflipped.

For textures that are not power of two sizes, we must use another approach 
for flipping the textures.  Suppose we have loaded a 48x42 16-bit RGBA 
texture in Tmem and would like to flip the texture in T.  The  code in 
Example 15-12 would accomplish this.

Example 15-12 Flip a Texture in Y (non power-of-two size)
gsDPTextureRectangle(50<<2, 50<<2, 98<<2, 92<<2, 

G_TX_RENDERTILE, 
0, 41<<5, /* start t at bottom of texture */
1<<10, ((-1)<<10)&0xffff), /* step from bottom to top of 
texture*/

Note that we change the texture T coordinate to start at the bottom of the 
texture and change the increment in T so that we step from the bottom of the 
texture to the top, thus flipping the texture in Y.

There is also a variation of the texture rectangle called 
g*DPTextureRectangleFlip() that swaps the S and T coordinates in 
hardware.  If we had a display list as in Example 15-13

Example 15-13 TextureRectangleFlip command
gsDPTextureRectangleFlip(50<<2, 50<<2, 98<<2, 92<<2, 

G_TX_RENDERTILE, 
0, 0,
1<<10, 1<<10)
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we would get an resulting image as shown in Figure 15-8.

Figure 15-8 TextureRectangleFlip Command

Mirror

Mirroring is also useful for data compression in cases where the texture has 
axial symmetry.  For example, a tree  could be created with half of a tree 
texture that was mirrored in X as shown in Figure 15-9.

Figure 15-9 Mirrored Tree

As mentioned before, to use hardware mirroring, the texture must be a 
power of two size in the direction to be mirrored.  Suppose the tree texture 
above is a 16x40 16-bit RGBA texture.  Example 15-14 will render the 
mirrored tree as shown in Figure 15-9.

Example 15-14 Mirrored Tree

gsDPLoadTextureTile(tree, G_IM_FMT_RGBA, G_IM_SIZ_16b,
16, 40, 
0, 0, 15, 39,

original TextureRectangleFlip

original texture texture rectangle using mirroring
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0,
G_TX_MIRROR, G_TX_CLAMP, 
4, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(50<<2, 50<<2, 82<<2, 90<<2, 
G_TX_RENDERTILE, 
0, 0, 
1<<10, 1<<10),

Wrap

Wrapping  allows a small texture to fill a larger rectangle by repeating the 
texture over and over.  In the Nintendo-64, wrapping is enabled if the mask 
(see “Mask S,T” on page 223)  in the tile descriptor is non-zero and the clamp 
bit (see “Clamp S,T” on page 224) in the tile descriptor is not set for the 
coordinate in question.  The mask determines which power of two the wrap 
occurs on.   Figure 15-10 shows the results for various wrap boundaries 
using a single texture.  Wrapping can be used in copy mode except for

Figure 15-10Wrapping on Several Boundaries of the Same Texture

Wrapping can also be used in conjuction with mirroring.  Suppose we 
wanted to wrap the mirrored tree shown in Figure 15-9.  This could be done 
using the code in Example 15-15.

Example 15-15 Wrapped and Mirrored Tree

gsDPLoadTextureTile(tree, G_IM_FMT_RGBA, G_IM_SIZ_16b,

original texture

wrap at 4

wrap at 8

wrap at 16
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16, 40, 
0, 0, 15, 39,
0,
G_TX_MIRROR | G_TX_WRAP, G_TX_CLAMP, 
4, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(50<<2, 50<<2, 114<<2, 90<<2, 
G_TX_RENDERTILE, 
0, 0, 
1<<10, 1<<10),

Note that the G_TX_WRAP above is really unnecessary because wrapping is 
implicit as we have a non-zero mask value and are not clamping.  It is 
included just for documentation purposes.  The resulting image would look 
like Figure 15-11.

Figure 15-11Wrapped and Mirrored Tree

Sliding Textures

It is easy to slide a texture relative to the rectangle primitive by the changing 
the tile descriptor values of SL and TL (see “SL,TL” on page 224).  Using the 

original texture texture rectangle using wrapping and mirroring
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tile descriptor allows the texture coordinates to be statically defined.  The 
effect of changing SL, TL is shown in Figure 15-12.

Figure 15-12Effect of Changing SL, TL

Suppose we have a 32x32 4-bit I texture loaded in Tmem.  In Example 15-16, 
two rectangles are rendered with the texture placed in different positions 
using SL and TL.

Example 15-16 Sliding Texture Using SL, TL

gsDPSetTileSize(G_TX_RENDERTILE, 50, 50, 82, 82),
gsDPTextureRectangle(50<<2, 50<<2, 82<<2, 82<<2, 

G_TX_RENDERTILE, 
0, 0, 
1<<10, 1<<10),

gsDPSetTileSize(G_TX_RENDERTILE, 80, 100, 112, 132),
gsDPTextureRectangle(100<<2, 100<<2, 132<<2, 132<<2, 

G_TX_RENDERTILE, 
0, 0,
1<<10, 1<<10),

Note that SH and TH are only used when clamping.  Because SL and TL are 
unsigned, the texture rectangle coordinates must be offset to allow sliding 

-s

-t

+s

+t

texture rectangle
SL,TL=(50,50)

texture

SL,TL=(80,100)
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above the top edge or to the left of the left edge of the rectangle.  This is 
shown in Figure 15-13  and Example 15-17.

Figure 15-13Biasing Texture Coordinates for Positive SL, TL

Example 15-17 Biased Coordinates for Positive SL

gsDPSetTileSize(G_TX_RENDERTILE, 25, 50, 57, 82),
gsDPTextureRectangle(50<<2, 50<<2, 82<<2, 82<<2, 

-s

-t

+s

+t

SL,TL=(-25,50)

texture

-s +s

+t

texture rectangleSL,TL=(25,50)

texture

texture rectangle

Negative SL not allowed

Bias S coordinate so that 
SL can be positive

-t
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G_TX_RENDERTILE, 
50<<5, 0, 
1<<10, 1<<10),

Smooth Scrolling

Scrolling involves positioning texture rectangles on the screen and also 
positioning the texture within the rectangle.  The rectangle geometry can be 
positioned with 2 bits of fractional precision in X and Y.  The texture 
coordinates can be specified with 5 bits of fractional precision in S and T.  To 
get the smoothest scrolling, you can use the S and T start point as the 
fractional part and the rectangle’s X and Y position for the integer part.  So 
effectively, you are sliding the texture to achieve fractional displacements.  
Example 15-18 shows how such positioning could be achieved.  Keep in 
mind that a border area around the texture must be present so that the 
texture doesn’t clamp when it slides off the rectangle.  

Example 15-18 Accurate Positioning Using S and T

float xpos = 10.375, ypos = 19.432;
int xi, xf, yi, yf;

xi = (int) xpos;
yi = (int) ypos;
xf = 32 - 32 * (xpos - xi);
yf = 32 - 32 * (ypos - yi);
gDPTextureRectangle(glistp++,

xi<<2, yi<<2, (xi+32)<<2, (yi+32)<<2, 
G_TX_RENDERTILE, 
xf, yf, 
1<<10, 1<<10);

Billboards

Billboards are textures that define complex outlines by using texture 
transparency.  For example, rather than creating a tree using polygons, you 
can use an image of a tree, with the portion of the image outside the tree 
having an alpha of 0 (transparent) and the interior of the tree having an 
alpha of 1 (opaque).  This is shown graphically in Figure 15-14.  This 
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technique allows complex scenes to be built by compositing simple images 
together.  

Figure 15-14Texture Billboard

It is important to consider the antialiasing of the edges created by the 
texture’s alpha pattern.  If only 1 bit of alpha is used, then the pixel is either 
written or not.  If more bits of alpha are used to create a smoother transition 
from opaque to transparent the edges will be blended with the background.  
Billboards should be rendered after all opaque background objects have 
been rendered.  There are several texel formats that allow multiple bits of 
alpha (see “Color Index Frame Buffer” on page 298) and ways of combining 
different types (see “Combining Types” on page 290). To render this type of 
antialiased texture billboard, you must be in one or two cycle mode and you 
should use the render mode G_RM_AA_TEX_EDGE.  See “Texture Edge 
Mode, TEX_EDGE” on page 332 for further details. 

Texture billboards can also be rendered in a write-only fashion but this also 
implies no antialiasing of the texture edge.  This mode is called ‘alpha 
compare’ and basically thresholds the texel alpha with a register alpha value 
or a random alpha source to generate a write enable for the pixel.  See 
“Alpha Compare Calculation” on page 315 for more details.

Cloud (CLD) Render Mode

Cloud render mode is intended for rendering texture billboards that are not 
opaque, i.e. smoke clouds, explosions, etc.  These are special cases because 
care must be taken not to disturb the antialiased edges of things behind the 
transparent cloud, because these edges will be seen through the cloud.  

original texture texture rectangle using wrapping and mirroring

Alpha 0

Alpha 1, opaque

transparent
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Texture Types

Intensity (I) Textures

Intensity textures are useful because they are quite compact and should be 
used in cases where a large number of colors is not necessary.  For example, 
a 4-bit I texture can be as large as 128x64 texels.  Normally, the user would 
like the primitive to have some specific color, and the I texture should 
modulate that color.  For example, to create a tree you could use two I 
textures, one for the brown trunk and one for the green treetop.  You can use 
one of the many register colors in the color combiner to define the primitive 
color.  In Example 15-19 we use primitive color to define the colors of the 
trunk and treetop.

Example 15-19 Intensity Texture Modulating Primitive Color

gsDPSetCombineMode(G_CC_MODULATEI_PRIM, G_CC_MODULATEI_PRIM),
gsDPSetPrimColor(0, 0, 205, 51, 51, 255), /* brown */
gsDPLoadTextureTile_4b(trunk, G_IM_FMT_I, 16, 40, 

0, 0, 15, 39,
0,
G_TX_MIRROR, G_TX_CLAMP, 
4, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(50<<2, 100<<2, 82<<2, 140<<2, 
G_TX_RENDERTILE, 
0, 0, 
1<<10, 1<<10),

gsDPSetPrimColor(0, 0, 0, 139, 0, 255), /* green */
gsDPLoadTextureTile_4b(treetop, G_IM_FMT_I,32, 32, 

0, 0, 15, 39,
0,
G_TX_MIRROR, G_TX_CLAMP, 
5, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(44<<2, 68<<2, 108<<2, 100<<2, 
G_TX_RENDERTILE, 
0, 0, 
1<<10, 1<<10),

By interpolating between two different colors using the intensity as the 
parameter, it is possible to achieve two-color textures.  The combine mode 
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G_CC_BLENDPEDECALA  interpolates between primitive color and 
environment color using an I texture.  For this combine mode, when the 
texture is 0 the pixel will be environment color, when the texel is all ones, the 
pixel will be primitive color.  Example 15-20 assumes an I texture has 
already been loaded into Tmem.

Example 15-20 Two-Color Texture

gsDPSetCombineMode(G_CC_BLENDPEDECALA, G_CC_BLENDPEDECALA),
gsDPSetPrimColor(0, 0, 205, 51, 51, 255), /* brown */
gsDPSetEnvColor(0, 0, 0, 200, 0, 255), /* green */
gsDPTextureRectangle(50<<2, 100<<2, 82<<2, 140<<2, 

G_TX_RENDERTILE, 
0, 0, 
1<<10, 1<<10),

Since for intensity textures the texel value is also copied onto the alpha 
channel, you can achieve transparency using an intensity texture.  For 
example, if you define a 4-bit texture of some text to have an intensity of 0xf 
for the characters and a value of 0 elsewhere, and then render using the 
combine mode G_CC_BLENDPEDECALA and the render mode 
G_RM_TEX_EDGE, the text will have the primitive color and be transparent 
elsewhere.  Note that if the edges of the text are filtered to give smooth 
edges, then the text will have an intensity ramp at the edges.  If you use an 
antialiased render mode, such as G_RM_AA_TEX_EDGE, then the text will  
look smoother than if a 1-bit alpha texture like 4-bit IA or 16-bit RGBA were 
used.

Intensity Alpha (IA) Textures

This texture type defines an intensity (I) channel and a separate alpha 
channel (A).  This type is convenient where the transparency of the texture 
must be defined separately from the intensity.  The sizes include 4-bit (3 bits 
of I and 1 bit of A), 8-bit (4 bits of I and 4 bits of A), 16-bit (8 bits of I and 8 
bits of A).  Keep in mind when using 1-bit alphas that the pixel will be either 
written or not, depending on the alpha bit.  Therefore, the transparency 
channel is not antialiased (the texture filter cannot ‘create data’ to smooth the 
edge).  Scaling a 1-bit alpha texture can result in blocky-looking outlines.
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Color (RGBA) Textures

There are two sizes of RGBA textures: 16-bit (5 bits R, 5 bits G, 5 bits B, 1 bit 
A), and 32-bit (8 bits R, 8 bits G, 8 bits B, 8 bits A).  While 16-bit RGBA 
textures are popular because they are easy to create and model with, they 
have the disadvantage of only a 1-bit alpha channel.  This can be overcome 
in certain cases, as discussed in “Combining Types” on page 290.

Color Index (CI) Textures

Color index textures come in two sizes, 8-bit and 4-bit.  When using color 
index textures only half the Tmem is used for textures (2KBytes).  The other 
half is used to store the lookup table (TLUT) that converts the index texel 
into either 16-bit RGBA or 16-bit IA types.  It is also possible to copy 8-bit CI 
textures directly to an 8-bit framebuffer as discussed in “Color Index Frame 
Buffer” on page 298.  

4-bit CI textures must select one of 16 possible palettes.  Each palette has 16 
entries.  The g*DPLoadTLUT_pal16 can be used to load an individual 
palette. The palette to use is defined in the tile descriptor (normally you 
would define the palette in the g*DPLoadTexture* command), so different 
tiles can select different palettes.

You can use a 4-bit CI texture to provide more alpha bits than is possible 
with the 4-bit IA type, because the TLUT can hold 16-bit IA values.  
Therefore, you could look up 16 levels of alpha with a 4-bit CI sprite as 
compared to 1 level for a 4-bit IA sprite.

Combining Types

As mentioned previously, 16-bit RGBA textures have only a 1-bit alpha 
channel.  If you want to have a smoothly antialiased texture edge using the 
16-bit RGBA type, you must combine two types of texture. Example 15-21 
shows how a separate alpha texture with a 4-bit I type is combined with a 
16-bit RGBA type to get smoother edges on a sprite.

Example 15-21 Interpolate Between Two Tiles

#define MULTIBIT_ALPHA  0, 0, 0, TEXEL0, 0, 0, 0, TEXEL1

gsDPSetCyleType(G_CYC_2CYCLE),
gsDPSetTextureLOD(G_TL_TILE),
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gsDPSetCombineMode(MULTIBIT_ALPHA, G_CC_PASS2),
gsDPSetRenderMode(G_RM_AA_TEX_EDGE, G_RM_AA_TEX_EDGE2),
/* load color part of texture */
gsDPLoadMultiTile(color, 

0, /* Tmem address in 64-bit words */
G_TX_RENDERTILE, /* tile */
G_IM_FMT_RGBA, G_IM_SIZ_16b,
32, 32, 
0, 0, 31, 31,
0,
G_TX_NOMIRROR, G_TX_NOMIRROR, 
G_TX_NOMASK, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

/* load alpha part of texture */
gsDPLoadMultiTile_4b(alpha, 

256, /* Tmem address in 64-bit words */
G_TX_RENDERTILE+1, /* tile */
G_IM_FMT_I,
32, 32, 
0, 0, 31, 31,
0,
G_TX_NOMIRROR, G_TX_NOMIRROR, 
G_TX_NOMASK, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(glistp++,
50<<2, 50<<2, 82<<2, 82<<2, 
G_TX_RENDERTILE, 
0, 0, 
1<<10, 1<<10);

The idea here is that  in two-cycle mode we get two texel values, one from 
the 16-bit RGBA texture and one from the 4-bit I texture.  In the color 
combiner, we program the alpha combiner to use the 4-bit I texture (the 1-bit 
A of the RGBA texture is not used).  In the color combiner, we select the RGB 
texture as the color source.  Since we are using both cycles for this trick, it is 
not possible to use mipmapping or other two-cycle modes simultaneously.  
Note that you could have used an 8-bit I texture for the alpha channel if you 
needed more alpha resolution.
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Multi-Tile Effects

There are eight tile descriptors available in the tile memory of the RDP.  
These tile descriptors contain information about the type and size of tiles 
and where these tiles are located in Tmem.  In two-cycle mode, texture from 
two tiles is available for each pixel.  Many effects are possible by 
manipulation of tile descriptors and combining of the textured pixels.

In the g*DPLoadTexture* commands, a simple two-tile system is used for 
loading and rendering.  In this system, the G_TX_LOADTILE is used for 
loading a tile starting at Tmem address 0 and the tile descriptor 
G_TX_RENDERTILE is set up for rendering the tile.  This is a 
double-buffering scheme which avoids having to insert tile sync commands 
in the load macro.  Notice that since each tile is loaded at Tmem address 0 
and the G_TX_RENDERTILE is always used for rendering, we cannot use 
these macro for loading multiple tiles into Tmem.

In order to allow the user to manage Tmem for multi-tile effects, the load 
macros g*DPLoadMultiTile and g*DPLoadMultiBlock were created.  These 
macros allow the user to specify the Tmem address of the tile and the tile 
descriptor number to use when rendering this tile.

Simple  Morph

One simple use of two tiles is to  linearly interpolate,  using a parameter to 
indicate the blend amount,  between the tiles.  A register value in the color 
combiner, such as primitive alpha, can be used as the ‘slider’ to blend 
between the two textures as shown in Example 15-22.  Notice that we define 
our own color combine mode to achieve this effect, since gbi.h didn’t have 
the mode we needed.

Example 15-22 Interpolate Between Two Tiles

#define MY_MORPH TEXEL1, TEXEL0, PRIMITIVE_ALPHA, TEXEL0, \
TEXEL1, TEXEL0, PRIMITIVE, TEXEL0

gsDPSetCyleType(G_CYC_2CYCLE),
gsDPSetTextureLOD(G_TL_TILE),
gsDPSetPrimColor(0, 0, 0, 0, 0, 128), /* 0.5 blend */
gsDPSetCombineMode(MY_MORPH, G_CC_PASS2),
gsDPLoadMultiTile(face0, 

0, /* Tmem address in 64-bit words */
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G_TX_RENDERTILE, /* tile */
G_IM_FMT_RGBA, G_IM_SIZ_16b,
32, 32, 
0, 0, 31, 31,
0,
G_TX_NOMIRROR, G_TX_NOMIRROR, 
G_TX_NOMASK, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPLoadMultiTile(face1, 
256, /* Tmem address in 64-bit words */
G_TX_RENDERTILE+1, /* tile */
G_IM_FMT_RGBA, G_IM_SIZ_16b,
32, 32, 
0, 0, 31, 31,
0,
G_TX_NOMIRROR, G_TX_NOMIRROR, 
G_TX_NOMASK, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(glistp++,
50<<2, 50<<2, 82<<2, 82<<2, 
G_TX_RENDERTILE, 
0, 0, 
1<<10, 1<<10);

By making the primitive alpha an animation variable, a simple ‘morph’ 
effect can be achieved.

Smoothing Flip-Book Animations

Often sprite animations are a sequence of key frames which are selected at 
the appropriate time by some animation variable.  The linear interpolation 
between two images as described in “Simple Morph” above can be used to 
smoothly transition between two key frames.  Imagine a series of n images 
in an animation selected using an animation variable frame.  The integer part 
of frame is called frame_i and the fractional part is called frame_f.     An 
algorithm for smoothing the sequence is described in Example 15-23.

Example 15-23 Smoothing an Animation Sequence

Load tiles frame_i and frame_i+1 into Tmem
Set primitive alpha = 256 * frame_f
Render the rectangle using MY_MORPH combiner mode
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The frames do not necessarily have to be related in time.  For example,  you 
could  interpolate between different flame images that are randomly 
selected to create a fire effect.

Shrinking Sprites

In the previous discussion of scaling in “Bilinear Filtering” on page 273 we 
only discussed scaling a sprite to a larger size since scaling it smaller would 
result in aliasing effects.  It is possible to effectively shrink an image by 
interpolating between two tiles, one of which is a half the size of the other 
tile.  This is shown in Figure 15-15.  Prim_lod_frac is a register in the color 
combiner that can be used to indicate the fractional distance between the two 
‘levels-of-detail’ of the sprite.  Note that there is no special reason we used 
this register as the interpolation parameter, other than it’s name suggests 
this use.

Figure 15-15Shrinking a Sprite

One of the tile descriptor parameters is the shift (see “Shift S,T” on page 223) 
that describes how many places to bitwise shift the tile coordinates for the 
primitive.  This implies that one tile’s size is related to the other’s by some 
integer shift, but the tiles don’t necessarily have to be power of two sizes.   
Example 15-24 shows the code to create a sprite that is 0.75 the size of the 
larger image.  The user must scale the size of the rectangle primitive by the 
desired amount as well.

Example 15-24 Shrinking a Sprite

#define MY_LOD TEXEL1, TEXEL0, PRIM_LOD_FRAC, TEXEL0, \
TEXEL1, TEXEL0, PRIM_LOD_FRAC, TEXEL0

gsDPSetCyleType(G_CYC_2CYCLE),
gsDPSetTextureLOD(G_TL_TILE),

Tile 0 Tile 1prim_lod_frac
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gsDPSetPrimColor(0, 128, 0, 0, 0, 0), /* 0.5 lod_frac */
gsDPSetCombineMode(MY_LOD, G_CC_PASS2),
gsDPLoadMultiTile(face0, 

0, /* Tmem address in 64-bit words */
G_TX_RENDERTILE, /* tile */
G_IM_FMT_RGBA, G_IM_SIZ_16b,
32, 32, 
0, 0, 31, 31,
0,
G_TX_NOMIRROR, G_TX_NOMIRROR, 
G_TX_NOMASK, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPLoadMultiTile(face1, 
256, /* Tmem address in 64-bit words */
G_TX_RENDERTILE+1, /* tile */
G_IM_FMT_RGBA, G_IM_SIZ_16b,
16, 16, 
0, 0, 15, 15,
0,
G_TX_NOMIRROR, G_TX_NOMIRROR, 
G_TX_NOMASK, G_TX_NOMASK,
G_TX_NOLOD, G_TX_NOLOD),

gsDPTextureRectangle(glistp++,
50<<2, 50<<2, 82<<2, 82<<2, 
G_TX_RENDERTILE, 
8<<5, 8<<5, 
1<<10, 1<<10);

Texture Decals

We can use the alpha of one tile to select between the texel color of two 
different tiles to create a texture decal.  Figure 15-16  shows an example of a 
flag created using textures decals.  The insignia of the flag has transparency 
around it’s edges.  After mirroring and wrapping once, the texture is 
clamped.  In the color combiner, the texture alpha is used to interpolate 
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between the flag stripes and the insignia.  Where the alpha is zero, the stripes 
will show, where the alpha is one, the insignia will show.

Figure 15-16Texture Decals

Need example code...

Interference Effects

Multiplying two textures together, especially while sliding the textures 
relative to each other can create interference patterns.  For example, a 
horizontal stripe pattern multiplied by a vertical stripe pattern creates a set 
of bright spots at the intersection of the points.  If the stripes are slid relative 
to each other, the points will move also.  Multiplying can also be used to 
modulate one image with another.  For example, Figure 15-17 shows a 
complex wave resulting from the modulation of two simple waves.

Figure 15-17Modulation

tile 0

tile 1

alpha 0.0
alpha 1.0

X

=

texture 0

texture 1

result
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 Tiling Large Images

Sometimes it is desirable to render large textures, i.e. textures to large to fit 
entirely into Tmem.  This can be accomplished via ‘tiling’ or breaking the 
large image up into smaller rectangular tiles that do fit into Tmem.  These 
tiles are rendered onto primitives that form a mesh coincident with the 
texture tiling.  The textured rectangle primitive is a useful primitive for tiling 
a background image in a sprite game, for instance.  If you point sample the 
texture tile, it is only necessary to load the number of texels you wish to 
display.  However, if you want to bilinearly filter the texture, you must load 
a border region of one texel around the tile so that the interpolation works 
correctly at the edges of the tile.  See “Bilinear Filtering and Point Sampling” 
on page 236 for more information.
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Color Index Frame Buffer

You might have noticed that one of the color image types that is available is 
the 8-bit I type.  You can use this mode to render color index images into the 
framebuffer.  Before displaying the 8-bit image, however, you must read the 
8-bit image into Tmem and dereference into a 16-bit RGBA image.  Note that 
the 8-bit frame buffer can share the same memory as the 16-bit frame buffer 
by placing the 8-bit buffer in the high half of the 16-bit buffer.This technique 
can give better performance than rendering directly to a 16-bit framebuffer 
because the memory accesses are more efficient.  Also, the initial clear of the 
framebuffer is faster because the buffer is half the size.

There are, however, restrictions when using this technique.  Since we are 
rendering an 8-bit CI image, you must texture map objects with 8-bit CI 
textures (but don’t dereference yet) and use shade colors that fit into your 
palette. You cannot filter the textures since the texture values in the pipeline 
are indices.  You also cannot blend with memory colors (unless your palette 
is laid out specifically to allow this), although you can achieve cut-out type 
transparency.  Antialiasing is also not available for this framebuffer type, 
because no coverage is stored. 

These restrictions sound severe, but may be practical for some sprite games, 
especially those that use sort priority and can render totally in copy mode.  
In copy mode (and 1 or 2-cycle mode)  you can get cut-out transparency by 
using the alpha compare logic and reserving an index (0 is a good choice) 
that indicates transparency.  If the index 0 means transparent, then setting 
the blend alpha to 1 and enabling alpha compare (G_AC_THRESHOLD) 
would allow all pixel with any index greater than or equal to 1 to be written 
to the framebuffer but pixels with index 0 would not be written.
298



NINTENDO DRAFT TEXTURE RECTANGLES (HARDWARE SPRITES)
Z-Buffering Texture Rectangles

Normally, sprites are rendered in a  Z sorted list and rendered from back to 
front.  The Z of each sprite must be maintained by the application and the 
application must do the sort each frame.  Another technique is to use the 
z-buffer to determine priority.

Primitive Z

The texture rectangle has no Z value associated with it directly, however you 
can use the primitive Z register (g*DPSetPrimDepth()).  To force the z-buffer 
logic to use primitive Z rather than pixel Z, you must use the following 
command:

gsDPSetDepthSource(G_ZS_PRIM)

You must also use a RenderMode that enables z-buffering, such as 
G_RM_ZB_OPA_SURF.  To z-buffer sprites, you would have to insert a 
g*DPSetPrimDepth() command before the rectangle command of each 
sprite.  Because the primitive Z is explicitly buffered in the pipeline, it is not 
necessary to insert pipe sync commands before setting the register.

Note that z-buffering can only be used in 1 and 2-cycle mode.  In copy and 
fill mode, you should use the RenderMode G_RM_NOOP to effectively 
disable z-buffering and put the pipeline logic in a safe state.
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Chapter 16

16. Antialiasing and Blending

Aliasing is a signal-processing term describing  sampling errors that occur 
when a continuous function containing sharp changes in intensity is 
approximated using discrete intensity values.  Antialiasing is a method for 
minimizing these errors by using gradations in intensity of neighboring 
pixels at edges of primitives, rather than setting pixels to maximum or zero 
intensity only.  There are many references on antialiasing as it applies to 
graphics.  This chapter will discuss the method of antialiasing used by the 
Reality Co-Processor (RCP).  In addition, we will discuss other uses of the 
blender hardware.  The blender plays a key role in antialiasing, z-buffering, 
and transparency effects.   After understanding the blender hardware, it 
may be possible for a user to come up with new effects by clever 
programming of the blender pipeline.
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Antialiasing

Antialiasing is an algorithm that attempts to minimize sampling errors that 
occur when an edge of a primitive is displayed on a raster image.  Visually, 
these errors cause the edge to be stair-cased or look jaggy.   For scenes with 
moderate complexity and/or animation, these jaggies are the source of 
high-frequency noise, which is annoying and distracting to users.

Figure 16-1 Edge With and Without Antialiasing

In Figure 16-2, “Unweighted Area Sampling,” on page 303, antialiasing is 
achieved by weighting the intensity of the pixel  in proportion to the area of 

Aliased Edge

Antialiased Edge

Edge

Primitive
302



NINTENDO DRAFT ANTIALIASING AND BLENDING
the pixel covered by the edge.  In signal-processing terms, this is called 
unweighted area sampling.

Figure 16-2 Unweighted Area Sampling

High-end graphics machines typically use an antialiasing  technique known 
as super-sampling, in which the pixel is divided into a grid of sub-pixels.  A 
color is computed for each subpixel and the subpixels that are covered by a 
primitive are averaged to produce the final pixel color.  In the case where 
more than one primitive covers a pixel, each primitive’s color is weighted by 
the number of subpixels it covers.  Also, depth (Z) can be found for each 
subpixel which allows  antialiased  interpenetrations between primitives.  
While super-sampling is straightforward and effective, it is also expensive 
in terms of memory and memory bandwidth.  For a 4x4 subpixel grid, 16 
color and Z values must be stored for each pixel.  In addition, to achieve 
required fill rates, each of these values must be accessed every clock.  

Because the Nintendo 64 machine has very severe cost and memory 
requirements, a new and novel technique for antialiasing that avoided (as 
much as possible) the storage requirements of super-sampling but yet 
provided satisfactory antialiasing was needed.  This method relies heavily 
on the notion that different objects have different antialiasing needs, and 
that the hardware can be simplified by requiring that different 
RenderModes are configured as appropriate for a particular object.  As well, 
there are display-order restrictions for rendering certain types of objects.  
For example, transparent objects must be rendered after all the opaque 
objects.  Finally, it was recognized that antialiasing of silhouettes could be 
done as a post process during video output.  A data flow diagram of the 
analogizing algorithm is shown in Figure 16-3, “Antialiasing Data Flow,” on 
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Pixel
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Edge
Primitive Color

Background Color
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page 304.  Note that this method requires, in addition to the pixel color and 
Z value, three bits of coverage and four bits of deltaZ per pixel, quite small 
when compared with super-sampling methods.

Figure 16-3 Antialiasing Data Flow
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The antialiasing data flow shows the most general case for  z-buffered and 
antialiased primitives.  Other techniques are possible.  For example, if the 
database is sorted and rendered in  back to front order, non-z-buffered 
antialiasing can be used.  All of the various types of antialiasing are 
discussed in detail in  “Blender Modes and Assumptions” on page 327.

For each pixel, a subpixel mask is computed.  This mask is a 4x4 grid of bits 
where the bit is one if the subpixel is covered by the primitive and zero if the 
subpixel is not covered.  The mask is converted to a coverage value by 
adding all the bits of the mask together.  Since we only have three bits of 
coverage, the sixteen subpixels must be dithered to eight.  The coverage 
value is optionally combined with the pixel’s alpha value.  This is useful for 
antialiasing edges created by a texture cut-out.  In the blender, the pixel color 
and the last value  stored for the pixel in memory are combined.  The blender 
also combines the pixel coverage and memory coverage and does 
z-buffering.  The blender typically performs operations such as antialiasing 
the interior edges of objects and transparency.  The new pixel’s color, 
coverage, and Z are stored in the frame buffer.  The Video Interface (VI) 
reads the pixel color and coverage and antialiases the silhouettes of objects. 

We will now discuss each hardware unit in the antialiasing datapath in 
isolation, before considering how these units work together to render a 
complete image.
305



NINTENDO 64 PROGRAMMING  MANUAL DRAFT
Coverage Unit

The coverage calculation, as described previously, produces a 4-bit number 
for each pixel that indicates how much of the pixel was covered by a 
primitive.  For example, a value of 8 (1.0) indicates the pixel was fully 
covered.  A value of 1 (0.125) indicates only one subpixel was covered. An 
example of the coverage calculation is shown in Figure 16-4, “Coverage 
Calculation,” on page 306

Figure 16-4 Coverage Calculation

Note that it is very important that primitives sharing an edge have 
complementary subpixel masks, otherwise cracks may appear between 
edges.  In the RCP, if primitives use the same vertices to create the primitive, 
then the pixel mask will be complementary.  There are, however, cases 
where  bad modelling can lead to cracks, as in Figure 16-5, “Complementary 
Edges,” on page 307. These cases can occur when (incorrectly) fractalizing 

Coverage Dither Mask
2x2 Pixels

coverage = sum(0x037f & 0xa5a5) = 4 

0xa5a5

coverage = sum(0xffff & 0xa5a5) = 8 

coverage = sum(0x8cce & 0xa5a5) = 4 

coverage = sum(0xffff & 0xa5a5) = 8 
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terrain or (incorrectly) generating triangles from NURBs surfaces, for 
example.

Figure 16-5 Complementary Edges

Edges that share vertices will join correctly Edges that do not share vertices are not guaran-
teed to join correctly
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Z Stepper

The Z-stepper calculates an 18-bit fixed point depth value (Z) for each pixel 
of a primitive.  The value is of Z is normally zero at the near plane and 
maximum at the far plane, assuming a proper g*SPViewport() command.  
By manipulating the g*SPViewport()  command, it is possible to split the 
z-buffer into separate Z-planes, see Figure 16-6, “Z-Buffer Planes,” on 
page 308.

Figure 16-6 Z-Buffer Planes

No attempt will be made to justify why one would do this, only that it is 
possible.  Also, note that the g*SPPerspNormalize() command can be used 
to maximize Z precision.  See  Figure 12-2, “Perspective Normalization 
Calculation,” on page 146 for more details about  g*SPPerspNormalize().

Z

Near, Z=0 Far, Z=MAXZ

static Vp vp = {
    SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/2, 0,  /* scale */
    SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/2, 0,  /* translate */

};
...gsSPViewport(&vp), 

Z

Near0, Z=0 Far0/Near1, Z=MAXZ/2 Far1, Z=MAXZ

static Vp vp0 = {
    SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/4, 0,  /* scale */
    SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/4, 0,  /* translate */

};
static Vp vp1 = {
    SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/4, 0,  /* scale */
    SCREEN_WD*2, SCREEN_HT*2, G_MAXZ/2, 0,  /* translate */

};

...gsSPViewport(&vp1), /* render object in second Z-plane */

...gsSPViewport(&vp0), /* render object in first Z-plane */

obj 0
obj 1

obj 0
obj 1
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There is also a source of constant Z (from a register) that can set using the 
g*DPSetPrimDepth() command.  To select the constant depth, use the 
g*DPSetDepthSource() command.  This may be useful when z-buffering 
sprites, for example.

The Z value is subpixel corrected so that it is always calculated on the 
primitive.  To see why this is necessary, consider Figure 16-7, “Subpixel 
Correction of Z,” on page 309:

Figure 16-7 Subpixel Correction of Z

In this case, if you calculate Z at the center of the pixel, the Z value will be 
negative because Z will be projected behind the viewpoint.  A better solution 
is to calculate the Z value at the subpixel, below the center of the pixel in this 
case, which intersects the primitive.

Center of the pixel, Z negative (projects behind VP) 

Horizon line, Z = infinity

Primitive

View Frustum

Projected View

VP

Primitive

Z
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Blender

Color Blend Hardware

The blend mux selects input operands for the blender hardware. The 
controls for these muxes are in the RDP’s SetOtherModes modeword.  There 
are two sets of mux controls, one for each of the two possible rendering 
cycles.

The blend equation is of the form:

Equation 1      Blend Equation

The reasoning behind this equation will become evident in the discussion of 
the antialiasing algorithm discussed later in this document.

The four input operands (p, a, m, b) each have four possible sources so two 
bits are needed to control each mux.  This gives a total of 8 bits per cycle of 
blend mux control.  Since the pipeline can operate in one or two cycle mode 
( see g*DPSetCycleType()) the blender must select which of the sets of mux 
controls to use depending on the cycle type (G_CYC_1CYCLE or 
G_CYC_2CYCLE)  and an internal cycle counter.  The sources for the p and 
m muxes are identical and are shown in Table 16-1, “P and M Mux Inputs,” 
on page 310.

Table 16-1 P and M Mux Inputs

Mux Select Source

0 first cycle - pixel RGB, second cycle - 
blended RGB from first cycle

1 memory RGB

2 blend (register) RGB

3 fog (register) RGB

color a p b m+ 
a b+

---------------------------------------=
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For select 0, the cycle select is built into the hardware.  The ‘blended RGB’ 
refers to the numerator result  of the blend equation, Equation 1, on the first 
cycle (it’s fed back as an input). Note that this will only work if the b mux is 
set to 1.0 - a, since only the numerator of the blend equation is provided to 
the input mux. Register RGBs refer to colors which can be set using the 
g*DPSetFogColor() and g*DPSetBlendColor()  commands.  Colors set using 
these commands are stored in registers within the RDP.  Care must be taken 
to make sure that a g*DPPipeSync()  command is issued previous to setting 
these registers.  The g*DPPipeSync()  command inserts a  delay into the RDP 
pipe so that a previous primitive is guaranteed to be finished processing 
before the register is updated. It is anticipated that the user will set a group 
of attributes, process many primitives, set a new group of attributes, etc.  The 
syncs are exposed to the user who can more likely determine the minimum 
number of syncs needed than would be possible in hardware. (Note that 
primitive color,g*DPSetPrimColor(),   primitive depth, 
g*DPSetPrimDepth(), and scissor, g*DPSetScissor(),  are attributes that do 
not require any syncs.

The sources for the a muxes are shown in Table 16-2, “A Mux Inputs,” on 
page 311. 

Table 16-2  A  Mux Inputs

The sources for the b muxes are shown in Table 16-3, “B Mux Inputs,” on 
page 311.

Mux Select Source

0 color combiner output alpha

1 fog (register) alpha

2 (stepped) shade alpha

3 0.0

Table 16-3  B  Mux Inputs

Mux Select Source

0 1.0 - ‘a mux’ output

1 memory alpha
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In general, the RDP pipeline operates on RGBA pixels with 8 bits per 
component. The 1.0 in Table 16-3, “B Mux Inputs,” on page 311 assumes the 
alpha is a number between 0.0-1.0.  These numbers are actually fixed point 
and the output of the a and b alpha muxes have less resolution (5 bits) than 
the color components (8 bits) to reduce  hardware cost. When this alpha is 
changing slowly across a face, Mach banding can occur due to the reduced 
number of discrete steps in the alpha channel.  

Two dither  commands  can be used to reduce Mach banding effects:  
g*DPSetColorDither(), and g*SetAlphaDither().  These commands basically 
add a small amount of randomness (1/2 of an LSB) to the color and/or alpha 
which makes the Mach banding less noticable. The g*DPSetColorDither()  
command also controls the dithering of RGB from 8 to 5 bits per component 
(for use in 5/5/5/1 pixel mode).  

There are two variations of dithering that can be set using the 
g*DPSetColorDither() command.  One is a screen coordinate based dither 
(G_CD_MAGICSQ or G_CD_BAYER) in which the dither matrix changes 
based on the location of the pixel on the screen.  In other words, the dither 
pattern is registered to the screen.  The noise dither (G_CD_NOISE), on the 
other hand, adds pseudo-random noise with a very long period into the 
LSBs of each pixel.  In this mode, the dithering is not registered to the screen 
and will vary from frame to frame.  Of course, you can disable color 
dithering altogether using the G_CD_DISABLE parameter.

Alpha dithering (g*DPSetAlphaDither()) for screen-based dither patterns  
uses the same matrix that is selected by the g*DPSetColorDither() command. 
However, the user may  invert the pattern, G_AD_NOTPATTERN, or 
simply pass the pattern through unchanged, G_AD_PATTERN.  The user 
may also select the noise pattern using G_AD_NOISE, or disable alpha 
dithering altogether using G_AD_DISABLE.

2 1.0

3 0.0

Table 16-3  B  Mux Inputs

Mux Select Source
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Note:  The dithering of the RGB from 8 bits to 5 bits by adding 3 lsbs of noise 
to the original 8 bits (with clamping to prevent wrapping) is enabled even in 
32 bit mode (8/8/8/8), where there is no truncation to be done. Since this 
one mode bit controls both RGB dither and alpha dither (which always is 
needed, even in 32 bit mode), opaque things should have the dither bit off in 
32 bit mode (so the 3 lsbs don’t get stepped on), but transparent things 
should have this bit on in 32 bit mode, since the noise from the alpha will be 
of the same order as the noise gratuitously added to the RGB.

Fog

Suppose we want to “fog out” from an image to a constant color as a 
function (set up in the RSP) of depth. We will assume the fog parameter is 
set up (per vertex) in the stepped alpha of the shaded triangle primitive (see 
“Vertex Fog State” on page 170). We will use the fog register color 
(g*DPSetFogColor()) as the color to fade too.  We will use the stepped shade 
alpha as a control to determine how much of the fog color is used.  The  first 
cycle blend mux selects in Table 16-4, “Fog Mux Controls,” on page 313 will 
achieve this effect.

Table 16-4  Fog Mux Controls

From the blend equation, Equation 1, you can see that these selects perform 
a linear interpolation between the fog color and the color combiner output 
color.

Mux Source Selected

P select 0, pixel RGB

A select 2, stepped shade alpha

M select 3, fog register color

B select 0, 1.0 - stepped shade alpha
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Equation 2 Fog Blend Equation

The command g*DPSetRenderMode() is used to control these muxes as well 
as other blender modes.  The command 
g*DPSetRenderMode(G_RM_FOG_SHADE_A, G_RM_FOG_SHADE_A)  
implements the mux controls for this fog effect in G_CYC_1CYCLE mode. 
Typically, this effect would  be used only in G_CYC_2CYCLE mode, with 
the second cycle performing  the blend  of the pixel with memory. For 
example, g*DPSetRenderMode(G_RM_FOG_SHADE_A, 
G_RM_AA_ZB_OPA_SURF2)  enables fog while rendering antialiased, 
z-buffered, opaque surfaces.  In G_CYC_1CYCLE mode, only the fogging  
operation would be performed (no blend).

Coverage Calculation

 From the previous discussion in “Coverage Unit” on page 306, coverage is 
a 4-bit value that indicates how many subpixels are occluded by a primitive. 
Note that a coverage of zero indicates that no subpixels were covered and 
the pixel does not need to be written to the frame buffer.  Because there are 
only 3 bits of coverage available in the frame buffer, the coverage stored is 
actually:

Equation 3 Stored Coverage

When the pixel is read from memory, a one is automatically added to restore 
the actual coverage before it is used in calculations.

It is interesting to note that the Video Filter is concerned primarily with 
partially covered pixels around the silhouette edges of objects (see “Video 

color fogparam pixclr 1.0 fogparam–  fogclr+
fogparam 1.0 fogparam–+

--------------------------------------------------------------------------------------------------------------------------------=

memcvg coverage 1–=
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Filter” on page 326).  Also, the antialiasing performed by the blender uses 
information about coverage wraps, i.e. when the sum of memory coverage 
and pixel coverage are greater than 1.0.  Because of this, the frame buffer is 
initially cleared such that the coverage bits are all one, see “Color Image 
Format” on page 318.

Alpha Compare Calculation

From “Fill Mode” on page 180 and “Copy Mode” on page 180, you will 
notice that in G_CYC_COPY  and G_CYC_FILL  modes the blender 
hardware is bypassed and the fill color or image is written with no 
opportunity for read/modify operations.  

Note:  When rendering in G_CYC_COPY or G_CYC_FILL, you should use 
the RenderMode G_RM_NOOP to make sure that reading of Z and color is 
disabled.

You can achieve a  texture edge effect in G_CYC_COPY  mode, however, by 
using the pixel alpha thresholded with the blend register  alpha 
(g*DPSetBlendColor()).  Figure 16-8, “Alpha Compare in Copy Mode for 
8-bit Framebuffer,” on page 316 shows that write enables are generated 
when the texel alpha is greater than or equal to  blend alpha for 8-bit 
framebuffers.  Also, note that for 16-bit RGBA texels there are no compares, 
the alpha bit simply acts as a write enable.  Threshold alpha compare mode 
may be set  by the following command: 
g*DPSetAlphaCompare(G_AC_THRESHOLD).
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Note:  Alpha compare only works in G_CYC_COPY mode for the 16-bit 
RGBA color and 8-bit image types.  You cannot copy the 32-bit RGBA color 
image type.

Figure 16-8 Alpha Compare in Copy Mode for 8-bit Framebuffer

Another alpha compare mode uses a hardware generated pseudo-random 
number as the threshold alpha.  To set this mode, use  
g*DPSetAlphaCompare(G_AC_DITHER).

Both G_AC_DITHER and G_AC_THRESHOLD can be used in 
G_CYC_1CYCLE or G_CYC_2CYCLE mode as well.  In these modes, you 
can readily change the pixel’s alpha from frame to frame, allowing various 
fade effects.  In order to get the alpha of the pixel to the comparators, you 
must set the ALPHA_X_CVG and ALPHA_CVG_SEL bits properly.  
Figure 16-9, “Alpha Compare in One/Two-Cycle Mode,” on page 317 
shows a block diagram of the coverage/alpha combiner and alpha 
comparator logic. These controls are usually set as part of the 
g*DPSetRenderMode command.  For example, the command 
g*DPSetRenderMode(G_RM_TEX_EDGE, G_RM_TEX_EDGE2) will do the 
right thing with these mode bits.  See Table 16-6 for details on which bits are 
set for a particular RenderMode.

For rendering effects such as smoke, clouds, or explosions, set the texture 
alpha to the outline of the smoke orexplosion and render the texture onto a 
transparent polygon so that one can see through the smoke to the objects 
behind.

Blend Alpha

Random Alpha

gDPSetAlphaCompare

Texture Memory

>= >= >= >=

A0 A1 A2 A3

we0 we1 we2 we3

8
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In this situation, the correct g*DPSetRenderMode() to use is 
G_RM_ZB_CLD_SURF or G_RM_CLD_SURF.

This ‘cloud’ mode preserves the antialiasing of objects behind the cloud 
primitive, unlike TEX_EDGE and XLU_SURF modes.

Figure 16-9 Alpha Compare in One/Two-Cycle Mode

Blender ADD Mode

A special blender mode has been implemented that allows the pixel color to 
be added to the memory color:

#define RM_ADD(clk) \
    IM_RD | CVG_DST_SAVE | FORCE_BL | ZMODE_OPA |       \
    GBL_c##clk(G_BL_CLR_IN, G_BL_A_FOG, G_BL_CLR_MEM,   \
               G_BL_1)
#define G_RM_ADD       RM_ADD(1)
#define G_RM_ADD2      RM_ADD(2)

Blend Alpha

Random Alpha

gDPSetAlphaCompare

>=

we

Combined Alpha

Key

Coverage

1.0

Key Mode CVG_X_ALPHA

ALPHA_CVG_SEL

Pixel Coverage, to Blender 

Pixel Alpha, to Blender
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Several notes about this mode:

• You must set fog alpha equal to 0xff for this mode to work,  e.g. 
gsDPSetFogColor(255, 255, 255, 255).

• Since the blender does not clamp the final color (all the inputs  are 
clamped and normal interpolation operations won’t under/over  
flow) the user must guarantee that the results will not overflow  or 
“special effects” may occur.

Color Image Format

The are three color image formats: 32-bit RGBA, 16-bit RGBA, and 8-bit.  In 
addition, there are hidden bits that are available to the RDP memory 
interface but not readily visible to the programmer, see Figure 16-10, 
“Hidden Bits,” on page 319.  These hidden bits come from the fact that the 
RCP uses 9-bit RDRAMs.  For 16-bit RGBA types, the hidden bits are used 
for storing coverage.  For 32-bit RGBA types, the 3 coverage bits are stored 
as the 3 MSBs of the 8-bit alpha channel and the hidden bits are ignored.  
Note that the 32-bit RGBA mode does not provide increased alpha 
resolution.  For 8-bit color images, the hidden bits are ignored.

There hidden bits are logically the 2 LSBs of each 18-bit word.  For memory 
accesses from other than the RDP memory interface (MI), only a 16-bit word 
is read/written.  Other masters can indirectly set or clear the hidden bits by 
setting or clearing the LSB of the 16-bit word, respectively. For example, if 
the CPU writes the 16-bit binary value 10101010_10101010 to memory, the 
memory interface will actually write the 18-bit binary value 
10101010_10101010_00.  On the other hand, if the CPU writes the 16-bit 
binary value 01010101_01010101, the memory interface will actually write 
the 18-bit binary value 01010101_01010101_11.
318



NINTENDO DRAFT ANTIALIASING AND BLENDING
Figure 16-10Hidden Bits

Figure 16-11, “Color Image Formats,” on page 320 describes the logical 
frame buffer formats.

R G B A R G B A
Number of Bits
Components

5 5 5 3 5 5 5 3
Byte Ordering0 1 2 3

0 1 Pixel Ordering

Bit Ordering15 10 5 0 15 10 5 0

Hidden Bits (2)

16-bit RGBA Format Showing Hidden Bits

Note: Hidden bits are only read/written directly by the RDP memory 
Interface.  They are logically positioned as the LSBs of every 16-bit 
word, independent of Color Image type.

0 1
0 1 2 3

Short Ordering
Byte Ordering

Hidden Bits (2)

15 7 0 15 7 0 Bit ordering
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Image Alignment Requirements

The color image pointer, g*DPSetColorImage(), and the depth image 
pointer, g*DPSetDepthImage(), should be aligned to 64-bits, i.e. the 3 LSBs 
of the pointer should be zero.

Figure 16-11Color Image Formats

Z Calculation

As mentioned in the “Z Stepper” section,  g*DPSetDepthSource()  selects the 
source  of Z  for the depth compares used in the z-buffer algorithm. This 
selects between primitive Z (a register), g*DPSetPrimDepth(), and stepped  

R G B A
Number of Bits
Components

5 5 5 1
Byte Ordering0 1

0 Pixel Ordering

Bit Ordering15 10 5 1

Number of Bits
Components

Byte Ordering0 1 2 3
0 1 Pixel Ordering

Bit Ordering31 23 15 7 0/31 23 15 7

4 5 6 7
8 8 8 8 8 8 8 8
R G B A R G B A

Number of Bits
Components

Byte Ordering0 1 2 3
Pixel Ordering

Bit Ordering7 0/7 0/7 0/7 0/7 0/7 0/7 0/7

4 5 6 7
8 8 8 8 8 8 8 8
I I I I I I I I

0 1 2 3 4 5 6 7

0

0

16-bit RGBA Format

32-bit RGBA Format

8-bit I Format

R G B A
5 5 5 1

2 3
1

0/15 10 5 1 0
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Z (from the triangle or line). G*DPSetDepthSource() also selects between 
primative DeltaZ (a register) and stepped DeltaZ. The 16 bit primitive Z 
register can supply the 15 integer bits of the Z value and the 16 bit deltaZ 
register can supply the 16 bits of the DeltaZ value.

For each z-buffered primitive, the change in Z per pixel change in the X and 
Y directions are calculated in the RSP as part of setup.  These values are used 
in the z-buffer logic of the blender to create a composite DeltaZ for the pixel:

Equation 4  DeltaZ Calculation

DeltaZpix = |dZdx| + |dZdy|

The DeltaZ value is important in determining surface correlation-- that is, 
whether this pixel is part of the same surface as the pixel that is stored in 
memory.  When computing whether the pixel is part of the same surface, the 
worst case DeltaZ is used:

Equation 5  Max DeltaZ Calculation

The z-buffer compare equations are:

Equation 6  Max Z Test

Equation 7  Farther Compare

DeltaZpix dZdx dZdy+=

DeltaZmax MAX DeltaZpix DeltaZmem( )=

MaxZ MemZ MAXZ =

Farther PixZ DeltaZmax+  MemZ=
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Equation 8  Nearer Compare

Equation 9  In Front Compare

These signals are used along with coverage information to determine 
surface correlation for various antialiasing modes.  See “Blender Modes and 
Assumptions” on page 327.

Z Image Format

The Z-buffer logic in the blender uses a fixed point, 0,15.3, 18 bit number for 
Z calculations.  The delta Z is a 16 bit quantity that is used as a  s15 number.  
The linear 18-bit Z that is stepped, is converted to a 14 bit floating point 
format before being stored.  This encoding is shown in Figure 16-12, “Z 
Encoding,” on page 322.

Figure 16-12   Z Encoding

Three bits are stored for the exponent and 11 bits are stored for the mantissa. 
Here is some psuedo code for converting from the format stored in memory 
to the Z format used in calculations:

Nearer PixZ DeltaZmax–  MemZ=

InFront PixZ MemZ=

0 0 m m m m m m m m m m m 0 0 0 0 0 0
0 1 0 0 0 0 0 0m m m m m m m m m m m
0 1 1 m 0 0 0 00 m m m m m m m m m m
0 1 1 m m 0 0 01 0 m m m m m m m m m
0 1 1 m m m 0 01 1 0 m m m m m m m m
0 1 1 m m m m 01 1 1 0 m m m m m m m
0 1 1 m m m m m1 1 1 1 0 m m m m m m
0 1 1 m m m m m1 1 1 1 1 m m m m m m

Exponent, 3 bits

0
1
2
3
4
5
6
7

Mantissa, 11 bits

Stepped Z 0,15.3
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/*
 * Convert 11 bit mantissa and 3 bit exponent
 * to 0,15.3 number
 */
struct {
    int shift;
    long add;
} z_format[8] = {
    6, 0x00000,
    5, 0x20000,
    4, 0x30000,
    3, 0x38000,
    2, 0x3c000,
    1, 0x3e000,
    0, 0x3f000,
    0, 0x3f800,
};

    zvalue = (mantissa << z_format[exponent].shift) +
              z_format[exponent].add;

Notice that converting from a 18 bit fixed point number to a 14 bit floating 
point number, some precision may be  lost. The lose of precision is greatest 
for small exponents.  The highest precision is saved for large Z values, that 
is, for objects that are far away from the eye.

The DeltaZ is also encoded into 4 bit integer for storage into the Z-buffer 
using the following equation:

Equation 10  DeltaZ Encoding

This is just a priority encoding of the DeltaZ value.  The bit number of the 
most significant bit that has a value of one is stored.

DeltaZmem 2 DeltaZpix log=
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The memory format for the Z and DeltaZmem is shown in Figure 16-13, “Z 
Memory Format,” on page 324.

Figure 16-13Z Memory Format

Zexp Zmantissa dZ
Number of Bits
Components

3 11 4
Byte Ordering0 1

0 Pixel Ordering

Bit Ordering15 12 1

Hidden Bits (2)

Zexp Zmantissa dZ
3 11 4

2 3
1

15 12 1

Note: Hidden bits are only read/written directly by the RDP Memory 
Interface.  They are logically positioned as the LSBs of every 16-bit 
word.

0 0
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Z Accuracy

The plot in   shows the worst-case percent error in Z relative to the near and 
far planes.

Figure 16-14   Z Worst-Case Error
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Video Filter

The video filter performs the second pass of the analogizing algorithm.  The 
first pass is done in the blender and involves antialiasing of internal or 
non-silhouette edges.  After the image is rendered into the frame buffer, all 
pixels except those that are on the silhouettes of objects will be fully covered 
(coverage = 1.0).  For partially covered pixels, the video filter performs a 
linear interpolation between the foreground color and the background color:

Equation 11  Video Filter Interpolation

The ForeGround color is always the color stored in the frame buffer for that 
pixel.  The BackGround color is found by examining fully covered pixels in 
a 5x3 pixel area around the current pixel.  Note that Z is not used in 
determining the BackGround color and so it is safe for Z to be 
single-buffered.

OutputColor cvg ForeGround 1.0 cvg–  BackGround+=
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Blender Modes and Assumptions

Opaque Surface Antialiased Z-Buffer Algorithm, 
OPA_SURF

The main goal of this algorithm is to produce an antialiased rendering of 
polygonal surfaces without the need for sorting. The key to achieving this 
goal is to split the antialiasing problem up into several pieces, each of which 
is readily implemented.

There are basically three different kinds of antialiasing. The first is the 
antialiasing of textures within polygons. This is accomplished outside of the 
blender by the texture hardware, using the industry standard mipmapping 
technique. This uses tri-linear interpolation to produce a correctly sampled 
texture lookup. See “MIP Mapping” on page 232 for more details.

The second kind of antialiasing is the blending of polygon  fragments within 
the pixels they share. The classic example of this is the pinwheel, where 
alternating black and white triangles meet at a center vertex. The pixel 
within which this vertex lies should be the average of the colors of all the 
triangles which share this vertex, weighted by the area of the pixel at the 
vertex covered by each of the triangles.

This blending is done in the blender hardware by computing Equation 1, 
where p is the color of the pixel of the new poly, m is the color of the pixel in 
the frame buffer memory, a is the coverage value of the new poly, and b is 
the sum of the coverage values of all the polygons already blended into that 
pixel in the frame buffer. Note that no matter what order the polygon 
fragments come in, they will all average in correctly.

The third kind of antialiasing is the blending of the silhouette of a 
foreground object against the background. This is traditionally done at 
rendering time in the blend unit. Unfortunately, doing it at this time has bad 
consequences for hidden surfacing.

Consider an internal edge of a surface (i.e., an edge shared by two visible 
polygons not at the silhouette). A priori, when the first of the two polygons 
is rendered, the blender does not yet know whether it is a silhouette edge 
(and hence needs to be blended with the background), or an internal edge 
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(and hence should not be blended with the background). Note that if an 
internal edge does blend with the background, there will be a line along the 
edge left when the second polygon  blends with the first. Once the blending 
is done, there is no way to undo it. Also, note that the background may not 
even have been rendered yet, unless the rendering of polygons is done in 
depth-sorted order, which defeats the purpose of z-buffering.

The only way to deal with this is to postpone the blending of silhouette 
edges until after the whole scene is rendered. In fact, the final blending of the 
silhouette edges is done at display time by the video interface. While the 
details of this are beyond the scope of this document, the main point is that 
to do this blend on video output, there needs to be a coverage value left 
behind in the frame buffer, with which to interpolate between the 
foreground (the color of which is in the frame buffer) and the background 
(which is assumed to be in one or more of the neighboring pixels in the frame 
buffer). This interpolation is described in Equation 11.

Note that for this approach to work, we must be able to distinguish between 
internal edges within a surface and silhouette edges between an object and 
its background. This is only possible in the context of z-buffering. (If 
z-buffering is disabled, the internal edge blending must also be disabled, 
since we can no longer distinguish between internal and silhouette edges.)

In order to distinguish between an internal and a silhouette edge, we need 
in addition to the normal z-buffer  containing depth information, some 
additional information so that we can tell if two polygons sharing a pixel are 
within the same surface or not. This added information is the slope of Z 
(depth) in screen space. This is computed as  shown in Equation 4.  The delta 
for the old polygon  is stored in the frame buffer with the Z. The rule is then 
if the absolute difference in Z between the new polygon  and the frame 
buffer is less than the max of the new DeltaZ and the frame buffer DeltaZ, 
then the new polygon  is considered to be part of the same surface as the old 
polygon  already in the frame buffer. If the new Z is clearly in front, it 
overwrites the frame buffer. If it is clearly behind, it is not written at all.

In fact, while this algorithm works as described above, it has some problems. 
First off, we are only representing one fragment per pixel. If there are 
multiple silhouettes within one pixel, there will be a slight artifact. There is 
some specialized hardware to reduce this effect (the divot circuit). However, 
some artifacts remain, and are simply tolerated.
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The other, and considerably more visually obvious artifact is 
“punchthrough”, where part of an object which should have been occluded 
“punches through” the object in front of it. This is caused by the z-buffer 
blending range being too large, usually due to large DeltaZ’s from polygons 
that are very “edge on” to the viewpoint. There are two different 
mechanisms to prevent this artifact.

The first mechanism is to weight the weighting factors in the internal edge 
blend by how “edge on” they are. Polygons that are more “flat” are 
weighted more heavily than polygons that are more “edge on”. Thus, the 
punching-through polygon  is attenuated relative the polygon  it is punching 
through.

The second mechanism to prevent punchthrough is to use the wrapping of 
the coverage value to distinguish between contiguous surfaces and a “new” 
polygon  that is not part of that surface. Basically, if the coverage wraps (i.e., 
new cvg + old cvg > 1.0),  then the new polygon  must not be part of the 
previously rendered surface (or background). In that case, instead of using 
the DeltaZ range, the z-buffer  does a strict compare between the new and 
old z, ignoring the deltas, since we know the new polygon  is not part of the 
old surface.

Note:  Note that the silhouette antialiasing part of this algorithm depends on 
not having shared edges across the silhouette (shared with the backfacing 
polygons adjacent to the silhouette). Consequently, back-facing polygons 
must be rejected (culled), or the coverage values at the silhouette edge will 
be incorrect for the display-time pass of the antialiasing algorithm. This is 
generally desirable in any case, since this saves the rendering time for the 
back-facing polygons, which should be invisible. Note that this is only a 
problem for closed polygonal surfaces (hulls), but not for “open” surfaces, 
like flags, which have “external” edges.  So flag-like objects need to be 
represented in the display list twice, once frontfacing and once backfacing.

Transparent Surfaces, XLU_SURF

In addition to opaque surfaces, we would like to be able to do transparent 
surfaces with antialiasing and without the need to sort. There are two 
problems with this.
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The first problem is avoiding sorting. Strictly speaking, this is impossible. In 
order for the colors to be correctly blended from multiple colored 
transparent surfaces, the surfaces need to be depth sorted (or carry around a 
lot of extra information, more than we have memory for), so we just don’t do 
the right thing. 

We do require all the transparent surfaces to be rendered after the opaque 
surfaces, but aside from that segregation, there is no sorting of the 
transparent (or opaque) surfaces. So multiple colored transparent surfaces 
will not be quite right. First off, this case doesn’t come up much (most 
transparent surfaces are not colored, and it is rare for multiple transparent 
surfaces to line up). Secondly, even if it does, most people have had so little 
experience with multiple colored transparency that they don’t know what to 
expect. Generally speaking, rendering the transparent surfaces in the same 
order, regardless of depth, looks just fine.

The second problem with transparency is internal edges. Here, we cannot do 
what we did in the opaque surface case. The pixels at an internal edge of a 
transparent surface are now blended with the (previously rendered, 
opaque) background, as are all the pixels in the interior of the transparent 
poly. So if we render one polygon  sharing an internal edge, and then render 
the other polygon  sharing that same edge, we must be sure not to blend any 
pixel twice, or there will be a noticable line on the internal edge as a 
consequence of blending twice. So we just don’t blend internal edges of 
transparent surfaces.

In fact, this is a bit tricker than it seems. We still want the silhouette of a 
transparent object to be properly antialiased, so we need to be able to get the 
partial coverage values for the silhouette edges, without double blending 
the internal edges. This is done with a special mechanism provided just for 
transparency.

Under control of a special mode bit (CLR_ON_CVG), we can inhibit the 
writing of color (but not coverage) unless the coverage wraps (i.e., the sum 
of the old coverage in the frame buffer and the new coverage of the currently 
rendering polygon  is greater than unity). On an internal edge of a 
transparent surface over a fully covered background, the first polygon  will 
write the color, since full coverage plus any non-zero partial coverage must 
wrap. The coverage value is always written with the wrapped sum of the old 
pixel and new polygon  coverage, which will be equal to the partial coverage 
of the new (first) poly. On the rendering of the second poly, however, the 
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coverage values will sum to unity on the shared edge, which is not a wrap. 
So the second polygon  will not write over the pixels on the shared edge of 
the first poly. Note that this works even if the underlying coverage is not 
unity (i.e., the transparent surface is over a pre-rendered silhouette edge), 
since still only one of the two transparent polygons sharing an internal edge 
will get to write (although it could be the second one instead of the first).

The blender in transparent surface mode uses a different form of the blend 
equation than for the opaque surface case. The blend equation for 
transparency is:

Equation 12  

where p is the color of the pixel of the new poly, m is the color of the pixel in 
the frame buffer memory, a is the opacity (alpha) of the new poly. Note that 
this can be obtained from Equation 1 by setting b=(1-a).

Note that since we never blend across an internal edge, we do not need to 
use the DeltaZ used to condition blending in the opaque surface case. 
Instead, we just compare Z directly, since the transparent surface can only 
be either clearly in front (in which case it is written with the 
transparency-blended color) or clearly behind (in which case it is not written 
at all, including coverage).

Note also that unlike opaque surfaces, which modify depth, transparent 
surfaces do not modify depth (although they do read it, to test for occlusion 
by a previously-rendered opaque object). This is because transparent 
surfaces do not want to prevent the writing of other transparent surfaces 
which are behind them (but in front of any opaque surfaces).

Transparent Lines, XLU_LINE

In this system, there is no explicit line generation hardware. So lines are 
rendered as degenerate polygons (i.e., a triangle two of whose sides are 
parallel, and whose third vertex is at infinity) using the normal triangle 
hardware. Rendering is very much like the rendering of surfaces. However, 
unlike surfaces, lines have no internal edges (since by definition, a line is an 

color a p 1.0 a–  m+=
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edge). So here, we don’t have to worry about incorrectly blending internal 
edges at render time. So for lines, all the antialiasing is done at render time. 
Note, however, that as with transparent surfaces, lines must be rendered 
after any surfaces they may occlude. In fact, lines are considered intrinsically 
transparent. Opaque lines are simply transparent lines with an alpha of 
unity (or close to it).

The render-time antialiasing is done by multiplying the new polygon  (line) 
coverage value with the alpha value, and using that as the alpha to do the 
transparency blending. This produces the correct result, due to the absence 
of internal edges.

The coverage value written into the frame buffer in line mode is the clamped 
sum of the old pixel coverage and the new line’s coverage times its alpha. 
For nearly opaque pixels, the coverage will be clamped to unity, making any 
underlying silhouette edge not be modified by the video interface at the 
display-time part of the antialiasing algorithm. This prevents the overlying 
line from being disturbed by the underlying (and hence hidden) silhouette 
edge. However, if the coverage times alpha from the line is nearly zero, then 
the silhouette edge is not disturbed, since it should be visible through the 
line.

Lines do read depth, and thus can be occluded by opaque objects. However, 
lines, like transparent and decal surfaces, do not modify depth. They are 
thus blended in display list order, which for thin lines should not matter.

Note that “lines” need not be degenerate triangles. In particular, for a “ray” 
coming from somewhere in the foreground to a vanishing point at infinity, 
a normal triangle, with two vertices at the source of the ray, and the third at 
the vanishing point, produces the desired effect. Also note that these “rays” 
can be textured, to produce the effect of a diffuse particle beam (or “neon 
glow”), or even “tracer bullets” animated by changing texture coordinate 
mapping in the texture unit.

Texture Edge Mode, TEX_EDGE

Texture edge mode is the first of the special-purpose modes. It is a variation 
of opaque surface mode. It is intended mostly for ‘billboard’ type objects.
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A  textured ‘billboard’ uses alpha values of zero in the texture to define the 
outline of the tree. Either two billboards are crossed, or the one billboard 
moves to always face the eyepoint, so as to hide the two dimensional nature 
of the billboard. Frequently, only one bit of alpha (all or nothing) is available 
in the highly-packed texture modes usually used for billboards. 
Mipmapping can be used to maintain a properly antialiased tree texture, but 
at some point the eye can get close enough to the tree texture to exceed the 
highest level of detail.  In this case the alpha will be interpolated over several 
pixels, creating a ‘blurry’ effect around the texture edges.

Texture edge mode simply allows the blurred alpha to be written as 
coverage.  A blurryness in coverage does not produce a blurryness in the 
final image, since the backend filter simply ignores the internal partial 
coverage bits, recreating a sharp edge. 

Decal Surfaces, OPA_DECAL, XLU_DECAL

In order to make the creation of models with complex details as simple as 
possible, we added a special mode to allow the rendering of ‘decal’ polygons 
(usually with a texture on them, like a flag or logo) over a previously 
rendered opaque surface. Unlike normal rendering, here we only want to 
render the decal if it is coplanar with the existing surface. Since we have the 
hardware to tell if a surface is (roughly) coplanar from the opaque surface 
blend case, we can use that to condition the writes of the decal. Otherwise 
the rendering is just like the opaque surface case. Here we rely on the opaque 
surface mechanism which conditions blends on the coverage value not 
wrapping. This insures that a decal polygon  written over a fully covered 
surface will not blend with that surface, but will instead overwrite it. 
Internal edges of a decal will, however, be properly blended (with each 
other, but not with the underlying surface).

The coverage values of the decal surface wrap (as do opaque and 
transparent surfaces). Note that this only works well if the edge of the decal 
polygons   do not coincide with a silhouette edge of the underlying surface. 
If this is the case, it would help to use clamping for coverage since this will 
result in simple aliasing. Using wrap in this case fails miserably, since the 
coverage values are double what they should be, with some of them 
wrapping and some of them not. However, even clamping is wrong. So 
decals should never be allowed to exactly coincide with a silhouette edge of 
the underlying surface.
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Decal surfaces, like transparent surfaces do not modify depth, since they are 
supposed to be coplanar with the underlying surface, which already has the 
correct depth.

Note that there is also a transparent version of decals, for cases where some 
of the underlying surface should blend through. This uses the same decal 
z-buffering algorithm, but is otherwise like transparent surface mode.

Decal Lines, DEC_LINE

This mode also goes by the name “Tron mode”, since its main effect is to 
exaggerate the polygonalness of an object, making it look more artificial, and 
hence more “hi-tech” (at least in the eyes of some artists). Like decal surfaces, 
the decal lines are only rendered if they are within the depth range of the 
underlying surface, which must be rendered before the decal line.

Aside from the different z-buffer  algorithm, the only other difference 
between transparent lines and decal lines is the coverage written into frame 
buffer memory. For decal lines we do not modify coverage at all. This is so 
we do not disturb the antialiasing of the silhouette edges. Note that the half 
of the line which is “over the edge” of the silhouette will not be rendered. 
Consequently, while the inside edge of the decal line at the silhouette will be 
correctly antialiased at render time (as with transparent lines), the outside 
edge must still be antialiased at display time by the video interface. The 
coverage values at the silhouette are already correct before the decal lines are 
rendered. Internal edges are also already correct, since they are fully covered 
by the opaque surface rendering.

Note that the decal line case interacts poorly with one of the features of the 
video interface (the divot circuit). In particular, if a decal line is on the 
silhouette of an object, the divot circuit can disturb the decal lines at the 
silhouette. This can be avoided by not using decal lines anywhere they could 
be in the silhouette, or by turning off the divot circuit (at the loss of some 
antialiasing quality). Or it can simply be tolerated as it is. The effect is a 
thinning and breaking up of the decal line at the silhouette. In motion, the 
line doesn’t scintillate much, and so is probably tolerable.
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Interpenetration, OPA_INTER, XLU_INTER

Interpenetration is another special purpose mode, which allows antialiased 
interpenetration of polygons   to a reasonable approximation, at the cost of 
some loss of protection against “punchthrough”. This mode is intended for 
protrusions (“spikes”) through a normal opaque surface, and for terrain, so 
the placement of objects (like trees) on the surface of the terrain need not be 
precise. Note that in the latter case, the terrain should be the interpenetrating 
surface, rendered last (after all the other opaque objects in the foreground). 
This ordering both prevents unnecessary punchthrough, as well as 
rendering more quickly (since the background terrain does not get written if 
it is behind an already rendered foreground object). Interpenetration mode 
should not be used for articulated joints, or other purposes where the 
interpenetration is used to connect what is supposed to be a contiguous 
surface. If it is used in this way, unacceptable punchthrough will result. It is 
probably better in these cases to use normal opaque surface mode if this is 
really necessary. The lines of intersection will alias, but if the two surfaces 
are roughly the same color, this may not be too noticable. Interpenetration 
mode should not be used gratuitously. There is both an opaque and 
transparent version of interpenetration mode.

The only down side of this is that interpenetration mode requires using the 
wrapping of coverage to select whether to do the coverage adjustment (if it 
wraps, and hence is a potentially interpenetrating surface) or not (if it 
doesn’t wrap, and hence is assumed to be part of the same surface). This can 
result in unacceptable punchthrough if any previously rendered objects are 
behind and either very edge-on or very near the foreground interpenetration 
mode surface. This almost never happens for terrain (where an object is 
almost never both occluded and near the terrain surface), and is not terribly 
noticable in the case of small protrusions from a normal opaque surface 
object.

Note that interpenetrating polygons   must be rendered after the surfaces 
which they interpenetrate (which need not themselves have been rendered 
in interpenetration mode). Other than that, there are no sorting 
requirements.
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Particle System Mode, PCL_SURF

The so-called “particle system” mode is really just a clever use of the alpha 
dither compare function described above. This is not a true particle system, 
where a large number of discrete particles interact to produce some 
interesting effect (fire, explosions, water, etc.). This mode is just another 
polygonal rendering mode which can be used to make the surface of an 
object resemble the behavior of some kinds of particle systems. Note that this 
is much more efficient than a “true” particle system, since by this method, a 
large number of particles can be represented by a much smaller number of 
polygons. The remarkable thing about it is that it produces properly 
antialiased silhouettes with correctly rendered internal edges.

This mode is an odd hybrid of the normal 3D opaque surface mode and the 
2D alpha dither compare mode. As described in “Alpha Compare 
Calculation” on page 315, alpha dither compare (G_AC_DITHER) is a way 
of getting “stipple transparency”, on a pixel by pixel basis, by allowing a 
write of the pixel only if its alpha value is greater than the value of a random 
number between 0.0 and 1.0. This makes the probability of a write 
proportional to the alpha value, which averaging over many frames 
produces the effect of transparency. The most obvious use of this effect is a 
“transporter”, where the object starts out opaque (alpha = 1.0), but then 
fades to nothing (alpha = 0.0) in a cloud of sparkles. With some other effects 
added in (textures, inverse transparency, etc.), this mode can also be used for 
explosions, fire, and the like. By animating the alphas with texture mapping, 
propagating “waves” of alpha can be produced. Due to the human visual 
system’s predilection for finding patterns whether they are there or not (e.g., 
the “canals” on Mars), even though the “particles” are completely 
uncorrelated, the waves of alpha will create the perception of coordinated 
behavior among a large number of interacting particles.

In this mode, the interior of a polygon  is strictly under the control of the 
alpha dither compare. The probability of a write is proportional to the alpha 
value. The silhouette edge is handled as for opaque surfaces, at display time 
in the video interface. The tricky thing is what to do about the internal edges 
of a surface.

Note that in this alpha dither compare case, the density of the neighborhood 
is a function of alpha. This means that on a shared internal edge, a blend will 
only be likely to occur if the alpha value is quite high. In fact, the probability 
of a blend is proportional to the square of the alpha value. If the blend 
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doesn’t happen, then the internal edge is treated like a silhouette edge, and 
as long as the neighborhood has enough uncovered pixels, the display-time 
antialiasing of these partially covered internal edge pixels will do the right 
thing. So the only possible problem is with internal edges at high alpha 
values, and here, the weighted average will just merge the (nearly 
identically colored) fragments from the two polygons   with possibly the 
wrong weights. But since the two fragments are nearly identical, any error 
in weighting doesn’t matter.

Blender Modes Truth Table

The g*DPSetRenderMode() macro sets all of the blender state necessary for 
different types of surfaces and antialiasing.  The following tables map the 
RenderMode arguments to individual mode settings.  The macro names 
used are from the gbi.h header file.

Mode Bit Descriptions:

AA_EN:       if not force blend, allow blend enable - use cvg bits

 Z_CMP:       condition color write enable on depth comparison 

Z_UPD:        enable writing of Z if color write enabled

 IM_RD:      enable color/cvg read/modify/write memory access 

CVG_DST[1:0]:      0) clamp if blend_en, new if !blend_en  1) wrap always 2) 
zap (force to full cvg) 3) save (don’t overwrite memory cvg)

CLR_ON_CVG:       only update color on cvg overflow (transp surf)

CVG_X_ALPHA:    use alpha times cvg for pixel alpha and cvg

ALPHA_CVG_SEL:   use cvg (or alpha*cvg) for pixel alpha

FORCE_BL:        force blend enable

ZMODE:         0) opaque 1) interpenetrating  2) transparent 3) decal

alpha_compare_en:   condition color write enable on alpha compare, use the 
g*DPSetAlphaCompare() command to set.

dither_alpha_en:    compare alpha with pseudo-random noise (dithering), 
use the g*DPSetAlphaCompare() command to set.
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Blender Mux Selects described in Table 16-1, “P and M Mux Inputs,” on 
page 310, Table 16-2, “A Mux Inputs,” on page 311, and 
Table 16-3, “B Mux Inputs,” on page 311.

Note:   

(1) Interpenetration is only meaningful in antialiased z-buffered mode.

(2) Always zap coverage in point sampled modes.

(3) If CLR_ON_CVG, must also FORCE_BL.

(4) If not CVG_X_ALPHA and ALPHA_CVG_SEL, must not 
FORCE_BL.

(5) Always FORCE_BL on non-z-buffered modes.

(6) In opaque surface mode, clamp/new CVG_DST mode works better 
on the  edges of a decaled surface which closely corresponds to the 
edge of the underlying surface. Otherwise, use the wrap CVG_DST 
mode.

 (7) To place new color regardless of other conditions, use FORCE_BL 
with p=don’t care;  m=pixel_color;  a=zero;  b=one; and don’t enable  
Z_CMP.

Table 16-5 enumerates the recommended rendering modes for 3D graphics, 
discussed above in some detail. They are what the rendering engine was 
primarily designed to do. They produce the best visual quality at 
near-optimal efficiency.

Sub surface mode, SUB_SURF, is intended to be used as a way to get an 
opaque object upon which an antialiased transparent surface can be 
overlaid. The coverage values from the transparent surface will fill in the 
zapped coverage values from the initial opaque surface.

The terrain modes, *_TERR,  are to get around the modification of the 
blending weights by DeltaZ, which was intended for punchthrough 
reduction. This causes aliasing of internal edges in cases where the object 
faces are non-coplanar. These new modes use the normal lerp blender mode, 
which is free of DeltaZ dependence, and hence doesn’t alias. Note, however, 
that these modes do not handle “pinwheels” correctly, since they assume 
that only two polygons   meet at any pixel, which is generally not true. But 
in the case of terrains, which have very large polygons, this is more nearly 
correct.
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Table 16-5  Antialiased Z-buffered Rendering Modes, G_RM_AA_ZB

Mode

A
A

_E
N

Z
_C

M
P

Z
_U

PD

IM
_R

D

C
V

G
_D

S
T

 (
0:

cl
am

p,
 1

:w
ra

p,
 2

:z
ap

, 3
:s

av
e)

C
L

R
_O

N
_C

V
G

C
V

G
_X

_A
L

P
H

A

A
L

P
H

A
_C

V
G

_S
E

L

F
O

R
C

E
_B

L

Z
M

O
D

E
 (

0:
op

aq
ue

, 1
:i

nt
er

, 2
:t

ra
ns

, 3
:d

ec
al

)

al
ph

a_
co

m
pa

re
_e

n,
 g

*D
P

S
et

A
lp

ha
C

om
pa

re
 

di
th

er
_a

lp
ha

_e
n,

 g
*D

P
S

et
A

lp
ha

C
om

pa
re

B
le

nd
er

 M
ux

 P

B
le

nd
er

 M
ux

 M

B
le

nd
er

 M
ux

 A

B
le

nd
er

 M
ux

 B

OPA_SURF 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1

XLU_SURF 1 1 0 1 1 1 0 0 1 2 0 0 0 1 0 0

OPA_DECAL 1 1 0 1 1 0 0 1 0 3 0 0 0 1 0 1

XLU_DECAL 1 1 0 1 1 1 0 0 1 3 0 0 0 1 0 0

OPA_INTER 1 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1

XLU_INTER 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0

XLU_LINE 1 1 0 1 0 0 1 1 1 2 0 0 0 1 0 0

DEC_LINE 1 1 0 1 3 0 1 1 1 3 0 0 0 1 0 0

TEX_EDGE 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1

TEX_INTER 1 1 1 1 0 0 1 1 0 1 0 0 0 1 0 1

SUB_SURF 1 1 1 1 2 0 0 1 0 0 0 0 0 1 0 1

PCL_SURF 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0

OPA_TERR 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0

TEX_TERR 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0
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 Table 16-6 enumerates modes that are primarily for situations where the 
sorting by depth of a scene is trivial, for example, the terrain for a flight 
simulator (as long as it is not too mountainous). Otherwise, the cost of 
sorting the polygons   by depth would be prohibitive. These modes can be 
mixed and matched with any of the other rendering modes, z-buffered or 
not. Note that for proper antialiasing, polygons should be rendered in 
forward painter’s algorithm order (back to front), NOT inverse order. (This 
is NOT the “a-buffer” algorithm, which requires inverse painter’s algorithm 
order.) So in a mixed rendering mode scene, any non-z-buffered background 
polygons should be rendered first.

Note that there is no decal surface mode. Since there is no Z to condition the 
blend, decal surface mode is identical to opaque surface mode. There is a 
decal line mode, since it is slightly different in the way it handles silhouette 
edges. Also since there is no z, there are no interpenetration modes.

The line modes are very similar to the z-buffered line modes, except that 
decal line mode zaps coverage to unity. This is because in the non-Z case, 
both sides of the line are rendered, and are already correctly antialiased at 
render time. For the non-line modes, blending is based on coverage wrap, 
since there is no Z to discriminate between new and contiguous surfaces.

Sub surface mode is intended to be used as a way to get an opaque object 
upon which an antialiased transparent surface can be overlaid. The coverage 
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values from the transparent surface will fill in the zapped coverage values 
from the initial opaque surface.

The terrain modes are to get around the modification of the blending 
weights by DeltaZ, which was intended for punchthrough reduction. This 
causes aliasing of internal edges in cases where the object faces are 
non-coplanar. These new modes use the normal lerp blender mode, which is 
free of DeltaZ dependence, and hence doesn’t alias. Note, however, that 
these modes do not handle “pinwheels” correctly, since they assume that 
only two polygons meet at any pixel, which is generally not true. But in the 
case of terrains, which have very large polygons, this is more nearly correct.

Table 16-6  Antialiased Non-Z-Buffered Rendering Modes, G_RM_AA
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OPA_SURF 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1

XLU_SURF 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0

XLU_LINE 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0

DEC_LINE 1 0 0 1 2 0 1 1 1 0 0 0 0 1 0 0

TEX_EDGE 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1

SUB_SURF 1 0 0 1 2 0 0 1 0 0 0 0 0 1 0 1

PCL_SURF 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0

OPA_TERR 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0
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The point-sampled rendering modes in Table 16-7 are provided for 
completeness. They have no significant performance advantage over the 
antialiased modes. These modes can be mixed and matched with any of the 
other rendering modes, antialiased or not, and so could be used for “special 
effects” within an otherwise antialiased scene. Generally speaking, point 
sampling looks bad, and should be avoided.

Note that there is no distinction between point-sampled line and surface 
modes, since lines and surfaces only differ in the way they are antialiased. 
For the same reason there are no point-sampled interpenetration or texture 
edge modes.

For the point-sampled modes listed, coverage is usually zapped to unity to 
prevent the video interface from trying to antialias them. Note also that in 
these modes, because the coverage always wraps (since it is always fully 
covered to begin with), surfaces are never blended, and the DeltaZ range is 
never used in the z-buffering.

Cloud and overlay surface modes are versions of transparent surface and 
transparent decal surface which do not disturb coverage. These are intended 

TEX_TERR 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0

SUB_TERR 1 0 0 1 2 0 0 1 0 0 0 0 0 1 0 0
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as overlays, where the silhouette of the polygon  will have zero opacity, and 
hence should not affect the antialiasing of the image. (Note that textures can 
still be bilerped, which is the only kind of antialiasing that matters in this 
case.

Table 16-7  Point-Sampled Z-Buffered Rendering Modes, G_RM_ZB
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OPA_SURF 0 1 1 0 2 0 0 1 0 0 0 0 0 1 0 1

XLU_SURF 0 1 0 1 2 0 0 0 1 2 0 0 0 1 0 0

OPA_DEC 0 1 0 0 2 0 0 1 0 3 0 0 0 1 0 1

XLU_DEC 0 1 0 1 2 0 0 0 1 3 0 0 0 1 0 0

CLD_SURF 0 1 0 1 3 0 0 0 1 2 0 0 0 1 0 0

OVL_SURF 0 1 0 1 3 0 0 0 1 3 0 0 0 1 0 0

PCL_SURF 0 1 1 0 2 0 0 0 0 0 1 1 0 0 3 2

  

The point-sampled, non-z-buffered rendering modes in Table 16-8 are 
provided for completeness. They have no significant performance 
advantage over the antialiased modes.

Since there is neither antialiasing nor z-buffering, there is no difference 
between lines and surfaces, and no such thing as interpenetration, decals, or 
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texture edges. Only the transparent surface mode requires the reading of the 
frame buffer at render time. The opaque modes simply overwrite the color 
and zap the coverage in the frame buffer.

Cloud surface mode, CLD_SURF,  is a versions of transparent surface mode 
which does not disturb coverage. This is intended as an overlay, where the 
silhouette of the polygon  will have zero opacity, and hence should not affect 
the antialiasing of the image. (Note that textures can still be bilerped, which 
is the only kind of antialiasing that matters in this case.

The ADD render mode adds the pixel color to the memory color.  Note that 
you must set the fog alpha to 0xff for this mode to work, e.g. 
gsDPSetFogColor(255, 255, 255, 255).  Since the blender does not clamp it’s 
output values (all the inputs are clamped and the normal interpolation 
operations won’t under/overflow) the user must guarantee that the results 
of the add operation will not overflow or weird results (effects?) may occur.

The NOOP mode is simply a mode that disables reading of color and Z and 
zeros the rest of the blender state.  You should set this render mode when the 
cycle type is either G_CYC_FILL or G_CYC_COPY.

The PASS mode is used when the cycle type is G_CYC_2CYCLE.  In this case 
you may not want to do anything on the first cycle but blend in the second 
cycle. An example is:  gsDPSetRenderMode(G_RM_PASS, 
G_RM_OPA_SURF).
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Table 16-8  Point-Sampled Non-Z-Buffered Rendering Modes
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OPA_SURF 0 0 0 0 2 0 0 0 1 0 0 0 0 0 3 2

XLU_SURF 0 0 0 1 2 0 0 0 1 0 0 0 0 1 0 0

TEX_EDGE 1 0 0 0 0 0 1 1 1 0 0 0 0 0 3 2

CLD_SURF 0 0 0 1 3 0 0 0 1 0 0 0 0 1 0 0

PCL_SURF 0 0 0 0 2 0 0 0 1 0 1 1 0 0 3 2

ADD 0 0 0 1 3 0 0 0 1 0 0 0 0 1 1 2

NOOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PASS x x x x x x x x x x x x 0 0 3 2

, G_RM

Creating New Blender Modes

There are two types of mode bits in the blender, cycle-dependent and 
cycle-independent.  The blender mux controls are cycle-dependent since 
they may differ between cycle 0 and cycle 1.  All the other mode bits in the 
blender do not change between cycle0 and cycle 1.  The 
g*DPSetRenderMode() command is set up to take two arguments.  See the 
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discussion in “Antialiasing Modes” on page 204 for details on how to make 
calls with g*DPSetRenderMode().

To define a new RenderMode you must create a new macro that takes the 
cycle number (1 or 2) as an argument.  For example:
#define RM_AA_ZB_OPA_SURF(clk)                         \
    AA_EN | Z_CMP | Z_UPD | IM_RD | CVG_DST_CLAMP |     \
    ZMODE_OPA | ALPHA_CVG_SEL |                         \
    GBL_c##clk(G_BL_CLR_IN, G_BL_A_IN, G_BL_CLR_MEM, G_BL_A_MEM)

This macro OR’s the mode bits that are not cycle-dependent together with 
the blender mux controls that are cycle-dependent.  Next define two macros 
that instance the macro above for each clock cycle:
#define G_RM_AA_ZB_OPA_SURF     RM_AA_ZB_OPA_SURF(1)
#define G_RM_AA_ZB_OPA_SURF2    RM_AA_ZB_OPA_SURF(2)

To use this mode, you could make the following call:
gsDPSetRenderMode(G_RM_AA_ZB_OPA_SURF, G_RM_AA_ZB_OPA_SURF2)

Note:  Creating new controls for the blender mux is fairly straightforward.  
Setting the other blender modes, however, presumes a detailed 
understanding of the hardware since many of these modes are 
interdependent.

Visualizing Coverage

As a special bonus render mode, we have added G_RM_VISCVG.  This 
mode will display coverage in the frame buffer as gray-scale intensities.  To 
use this mode:

1. Render you entire scene, but don’t send FullSync yet.

2. Send the following display list:
    gsDPPipeSync(),
    gsDPSetCycleType(G_CYC_1CYCLE),
    gsDPSetBlendColor(255, 255, 255, 255),
    gsDPSetPrimDepth(0xffff, 0xffff),
    gsDPSetDepthSource(G_ZS_PRIM),
    gsDPSetRenderMode(G_RM_VISCVG, G_RM_VISCVG2),
    gsDPFillRectangle(0, 0, SCREEN_WD-1, SCREEN_HT-1),

Partial coverage will be displayed as darker shades of gray and full coverage 
will be displayed as almost white. Try experimenting with different 
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antialiasing methods while visualizing the coverage to increase your 
understanding of these algorithms.
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Chapter 17

17. Sprites

This chapter describes the use of Sprites. Sprites are rectangular images or 
textures that you draw on the screen. Large images must be drawn in small 
pieces called “tiles.” Managing these pieces is the task of the Sprite Library 
and associated data structures. This chapter explains how to do simple 
things, such as clear the framebuffer with a specified image; and how to do 
complex things, such as draw multi-colored text or explosions.

Here is a simple outline for this chapter:

• Application Programmers Interface (API)
Making
Manipulating
Drawing

• Data Structures and Attributes
Bitmaps
Sprites
Attributes

• Tricks and Techniques
Sparse Sprites
Early Ending
Variable Size Bitmaps
Explosions
Bitmap Re-use
Sprite Re-use
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• Examples
Backgrounds
Text (Fonts)
Simple Game
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Application Program Interface (API)

Making Sprites

Sprites are usually used to draw images onto the screen. For these simple 
cases, a few scripts are provided to automatically take a specified image and 
generate an appropriate sprite data structure. The generated sprite may then 
be edited manually or modified at run time to create dynamic behavior.

mksprite name imgfile.rgb tileX tileY overlap > sp_name.h

This program takes a Silicon Graphics image file and generates a sprite. This 
sprite consists of a number of individual bitmaps (tiles) that are tileX apart 
in the x direction and tileY apart in the y direction. If overlap is “0,” then 
these bitmaps are exactly tileX by tileY in size and should not be scaled (see 
spScale()). If overlap is “1,” then the tiles are (tileX+1) by (tileY+1) in size. 
These sprites may be scaled and the textures will be properly interpolated. 
This extra pixel of overlap, or “border,” provides the required data to create 
smooth transitions between tiles. The generated file may be included in an 
application and the sprite may be manipulated with the name “name.”

mkisprite name imgfile.rgb tileX tileY overlap > sp_name.h

This command is just like mksprite, except that it converts the image to an 
8-bit Color Index format, computes the TLUT, and generates the sprite with 
all the appropriate changes to support this format.

Manipulating Sprites

void spInit(Gfx **glistp)

This routine is called at the beginning of sprite drawing. Some GBI display 
list commands are added to the specified glistp to get the RCP into the 
correct mode for sprite rendering. This sets default texturing modes.

void spFinish(Gfx **glistp)
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This routine is called at the end of sprite drawing. Some GBI display list 
commands are added to the specified glistp to get the RCP to complete all 
pending drawing operations and reset the RCP to its regular state. It also 
tacks on a gEndDisplayList().

void spMove (Sprite *sp, s32 x, s32 y)

This routine sets the screen position of the upper left-hand corner of the 
sprite.

void spScale (Sprite *sp, f32 sx, f32 sy)

This routine sets the resizing amount for this sprite. Scales may be less than 
1.0 to produce a smaller image, or greater than 1 to create an expanded 
image.

void spSetZ (Sprite *sp, s32 z)

This routine sets the z-buffer depth of the sprite. This may cause the sprite 
to be obscured by previously drawn sprites that were drawn with a smaller 
value of Z.

void spColor (Sprite *sp,  u8 red,  u8 green, u8 blue,  u8 alpha)

This routine sets the color of the sprite. Based on how the sprite is to be 
drawn, this could be either the PRIMITIVE_COLOR or the FILL_COLOR.

void spSetAttribute (Sprite *sp, s32 attr)

This routine sets the indicated attributes. “attr” can be the bit-wise OR of 
many attributes.

void spClearAttribute (Sprite *sp, s32 attr)

This routine clears the indicated attributes. “attr” can be the bit-wise OR of 
many attributes.

void spScissor (s32 xmin, s32 xmax, s32 ymin, s32 ymax)
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This routine specifies the bounding region in which sprites will be drawn.  
By default, this region is initialized with xmin=0, 
xmax=319, ymin=0, and ymax=239.

Drawing Sprites

Gfx *spDraw (Sprite *sp)

This routine constructs a display list starting at sp->next_dl that draws the 
sprite into the framebuffer in the indicated way. This display list is 
terminated with an gEndDisplayList() entry, and the sp->next_dl entry is 
updated to point to one entry past this. The pointer to the start of this display 
list is returned.
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Data Structures and Attributes

Bitmap Structure

Here is the actual structure of a single bitmap:

typedef struct bitmap {

s16width;/* Size across to draw in texels */
/* Done if width = 0            */

s16width_img;/* Actual size across in texels */

s16s;/* Horizontal offset into bitmap */
/* if (s > width_img), then load only! */

s16t;/* Vertical offset into base    */

void*buf;/* Pointer to bitmap data       */
/* Don’t re-load if new buf     */
/* is the same as the old one   */
/* Skip if NULL */

s16actualHeight;/* True Height of this bitmap piece */

s16LUToffset;/* LUT base index (for 4-bit CI Texs) */

} Bitmap;

Sprite Structure

typedef struct sprite {

s16x,y;/* Target position */

s16width,/* Target size (before scaling */
height;

f32scalex,/* Texel to Pixel scale factor */
scaley;

s16expx, expy;/* Explosion spacing */

u16attr;/* Attribute Flags */
s16zdepth;/* Z Depth */
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u8red,/* Primitive Color */
green,
blue,
alpha;

u16startTLUT;/* Lookup Table Entry Starting index */

s16nTLUT;/* Total number of LUT Entries */

s16*LUT;/* Pointer to Lookup Table */

s16istart;/* Starting bitmap index */

s16istep;/* Bitmaps index step (see SP_INCY) */
/* if 0, then variable width bitmaps */

s16nbitmaps;/* Total number of bitmaps */

s16ndisplist;/* Total number of display-list words */

s16bmheight;/* Bitmap Texel height (Used) */

s16bmHreal;/* Bitmap Texel height (Real) */

u8bmfmt;/* Bitmap Format */

u8bmsiz;/* Bitmap Texel Size */

Bitmap*bitmap;/* Pointer to first bitmap */

Gfx*rsp_dl;/* Pointer to RSP display list */

Gfx*rsp_dl_next;/* Pointer to next RSP DL entry  */

} Sprite;

Attributes

Sprite attributes permit sprites to be used in a variety of different ways. The 
following detailed description of each attribute indicates how setting or 
clearing that attribute affects the appearance of the drawn sprite. Note also 
that these attributes are as independent as possible, thus greatly expanding 
the available variety and uses for sprites.
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SP_TRANSPARENT

This attribute permits the Alpha blending of the sprite texture with the 
background.

SP_CUTOUT

Use alpha compare hardware to not draw pixels with an alpha less than the 
blend color alpha (automatically set to 1).

SP_HIDDEN

This attribute makes spDraw() on the sprite return without generating a 
display list.

SP_Z

This attribute specifies that z-bufferering should be on while drawing the 
sprite.

SP_SCALE

This attribute specifies that the sprite should be scaled in both X and Y by the 
amount indicated in scalex and scaley.

SP_FASTCOPY

This attribute indicates that the sprite should be drawn in COPY mode. This 
produces the fastest possible drawing speed for background clears.

SP_TEXSHIFT

This attribute indicates that textures are to be shifted exactly 1/2 texel in 
both s and t before drawing it.  This creates a better antialiased edge along 
transparent texture boundaries when in cutout mode..
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SP_FRACPOS

This attribute indicates that the frac_s and frac_t fields of the sprite structure 
are to be used to fine-position the texture into the drawn pixels..

SP_TEXSHUF

This attribute indicates that the tile textures have their odd lines pre-shuffled 
to work around a LoadTextureBlock(3P) problem.  See the Texture Mapping 
chapter for more details on this problem..

SP_EXTERN

This attribute indicates that existing drawing modes are to be used rather 
than the sprite routines explicitly setting them.
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Tricks and Techniques

Sparse Sprites

The buf in a bitmap entry may be NULL, indicating that nothing should be 
drawn. This area will be 100% transparent.

Early-Ending Sprites

Setting the width of a bitmap entry to zero (0) signals an early exit to 
drawing the sprite’s bitmaps.

Variable Size Bitmaps

Each bitmap can have a different drawn “width” and the corresponding 
texture can have a different width_img. To vary the vertical size of a sprite, 
set the actual_height field. If this is bigger than the sprite’s bmHeightReal, 
then this actual_height is used for loading TMEM.

Explosions

Each sprite can specify the spacing between tiles in pixels by setting the 
explx and exply fields. The default value is zero (0). This spacing is not 
affected by the scaling of the sprite.

Bitmap Re-use

If the buf of the current bitmap matches the buf of the previous bitmap (not 
counting NULL bufs) in this sprite, then TMEM will not be re-loaded. This 
very simple form of texture caching is used in the font example.
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Sprite Re-use

Each sprite has an associated display list and an associated next_dl pointer. 
When spDraw is called, new display list entries are added to the area 
pointed at by next_dl. This doesn’t have to correspond to the pre-allocated 
display list allocated for the sprite; it could point somewhere else. 

This allows a sprite to get drawn multiple times, each with a different setting 
of some parameters (position, scale, color, solid/textured, and so on). 
Sufficient display list area must be allocated for this to operate correctly.
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Examples

A sample sprite library demonstration program is provided in under 
/usr/src/PR/spgame. The demo shows how to use sprite library to do 
backgrounds, texts and a simple animation.

Backgrounds

Setting up copy mode. Using TLUTs to animate it.

Scrolling Background example (up/down, left/right)

Text (Fonts)

void text_sprite(Sprite *txt, char *str, Font *fnt, int xlen, int ylen)

This creates the appropriate bitmap to render the specified string in the 
indicated sprite. You can use a two-pass approach to render a larger number 
of characters.

Simple Game

Anyone for a quick game of pong? Explosions, animated textures. Too much 
fun!
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Chapter 18

18. Sprite Microcode

This chapter describes the use and operation of the Sprite Microcode, an 
alternative to the Sprite C Library described in the previous section.

The motivations for the creation of the Sprite Microcode were to provide an 
API which was more familiar to traditional 2D content developers, as well 
as offloading expensive calculations from the CPU to the otherwise largely 
idle RSP. By making use of the Sprite Microcode, applications gain access to 
additional CPU cycles per frame to perform game related computations.

The Sprite Microcode can co-exist with the Sprite Library in an application.  
Depending on the situation, either the Sprite C Library or the Sprite 
Microcode will be more appropriate at particular points in the game. One 
example where the Sprite C library would be more appropriate is for 
drawing text on the screen. An example where the Sprite Microcode would 
be more appropriate is the display of large textured background images 
which would require a large amount of CPU time by the Sprite Library to 
setup. The two APIs are also fairly different in their styles and the features 
they support. Developers are encouraged to try both methods to see which 
fits their needs more closely
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Sprite Microcode Functionality

The functionality provided by the Sprite Microcode is the ability to display 
a subimage of arbitrary location and size out of a larger DRAM resident 
image of arbitrary texture type and size with optional scaling or mirroring 
in the X/Y axes.

                                                                                           

                                                                                          Larger than 4K subimage

Large DRAM texture image

X/Y Scaled/mirrored screen image
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Sprite Microcode API

The API provided for access to the Sprite Microcode is encapsulated into two 
new instructions illustrated by the following code fragment:

#include “gu.h”
#include “gbi.h”

uSprite MySprite;

guSprite2DInit(&MySprite, ImagePointer, TlutPointer, 
               ImageWidth, RectangleWidth,                          
RectangleHeight,
               ImageType, ImageSize, 
               TextureScaleX, TextureScaleY, 
               FlipTextureX, FlipTextureY,
               TextureStartS, TextureStartT,
               TranslateHorizontal, TranslateVertical);
  
gSPSprite2D(glistp++, OS_K0_TO_PHYSICAL(&MySprite));      

Where MySprite is defined as a structure of type:

typedef struct {
  void *SourceImagePointer, void *TlutPointer,
  short Stride,
  short SubImageWidth, short SubImageHeight,
  char  SourceImageType, char  SourceImageBitSize,
  short ScaleX, short ScaleY,
  char  FlipTextureX, char  FlipTextureY,
  short SourceImageOffsetS, short SourceImageOffsetT,
  short PScreenX, short PScreenY,
  char dummy[2]; 
} uSprite_t;

typedef union {
  uSprite_t  s;
    long long int         force_structure_allignment[4];
} uSprite;
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Where the parameters are defined as:

SourceImagePointer The address of the texture image in memory out of 
which a subrectangle is to be displayed

TlutPointer The address of an optional color index table for use with CI 
images. Use NULL for non-CI images

Stride The width in texels of the original base image in memory

SubImageWidth The width in texels of the subimage which is to be 
displayed

SubImageHeight The height in texels of the subimage which is to be 
displayed

SourceImageType The format of the texture image in memory. All 
supported hardware texture formats are allowed.

SourceImageBitSize The number of bits per texels of the input image. 
All supported hardware texture sizes are allowed.

ScaleX, ScaleY The s5.10 fixed point axis scaling  ratios which are to be 
applied to the input image. A value of 1024 specifies 1 to 1 scaling. A value 
of 512 specifies that each input texel  should be scaled up to 2 output screen 
pixels. Scale values should be <= 1024 in order to prevent sampling artifacts 
from occuring. Scale values must be positive. Use the FlipTextureX or 
FlipTextureY parameters to create negatively scaled images.

FlipTextureX, FlipTextureY Specifies whether the image should be 
mirrored in the X or Y direction before display

SourceImageOffsetS, SourceImageOffsetT The offset in texel rows 
or columns from the origin of the input base image where the texture 
subrectangle which is to be displayed starts

PScreenX, PScreenY Specifies the starting X or Y location in screen 
coordinates of the output image. The origin is in the upper left corner of the 
screen.
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The guSprite2DInit() call merely copies its parameters into the passed 
in uSprite structure. The call can be eliminated if the application sets up the 
structure directly. 

The Sprite Microcode automatically handles the division of the input 
subimage into 4K texture segments, loads them into TMEM and issues the 
appropriate RDP commands to setup and render a series of connected 
Texture Rectangles to display the subimage at the desired location and 
scaling. The Sprite Microcode keeps track of the s and t coordinates for the 
generated texture subRectangles.

The Sprite Microcode clamps the coordinates for the generated texture 
rectangles to prevent overflow of the RDP screen space registers. Texture 
Rectangles which have their X or Y starting values less than zero are clipped 
and their starting s and t texture coordinates adjusted so that they begin at 
the screen boundary. Texture rectangles which have their ending Y value 
less than zero or their starting Y value > 1023.75 are thrown away entirely.

More information about the Sprite Microcode can be found in the man pages 
for gspSprite2D (3P) and guSprite2DInit (3P)
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Chapter 19

19. The Audio Library

The Nintendo 64 Audio Library is a lightweight library of functions. It 
provides game developers with the ability to interactively synthesize and 
manipulate audio on the Nintendo 64. It provides support for both sampled 
sound playback and Wavetable synthesis. This is accomplished with four 
software objects: the Sound Player, the Sequence Player, the Synthesis 
Driver, and the Audio Synthesis Microcode. These are shown in Figure 19-1, 
“Audio Software Architecture,” on page 370.

• The Sound Player is useful for the playback of single sample sound 
effects or streamed audio. It is capable of playing back either ADPCM 
compressed sounds, or uncompressed 16 bit sound.

• The Sequence Player can exist in either of two types. The first type 
plays back Type 0 MIDI sequence files and the second type plays back a 
format of compressed MIDI unique to the Nintendo64. In both cases, 
the sequence player handles sequence, instrument bank, and 
synthesizer resource allocation, sequence interpretation, and MIDI 
message scheduling.

Note:  Both the Sequence Player and the Sound Player are clients of the 
Synthesis Driver. The Driver can support an arbitrary number of clients, 
including multiple Sound and Sequence Players.

• The Synthesis Driver is responsible for creating audio Command Lists, 
which are packaged into tasks by the Application program and passed 
on to the Audio Synthesis Microcode. It allows Driver clients to assign 
wave tables to synthesizer voices, and control the playback parameters. 
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• The Audio Synthesis Microcode processes the tasks passed to it by the 
application and synthesizes stereo 16- bit samples, which the 
application in turn passes to the Audio DACs. 

This chapter contains descriptions of the Sound Player, Sequence Player, 
and Synthesis Driver APIs . Many application programmers will be satisfied 
with the interfaces provided by the Sound and Sequence Players. Most of the 
Synthesis Driver API is intended for programmers who want to create their 
own players (see the section titled “Writing Your Own Player” for more 
information); however, all programmers should understand certain 
functions essential for the creation of audio Command Lists.

Figure 19-1 Audio Software Architecture 

Sequence 

Player

Sound

Player

Synthesis

Driver

Audio synthesis
Microcode

CPU

RCP

... Other players

MIDI Compressed Sound
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The following sections outline the data structures and API calls that are 
necessary to make use of the audio library. Further details on some of the 
data structures can be found in Chapter 15. The data structure definitions 
and function prototypes for the calls described are in the include file 
libaudio.h, which is part of the software release. Also included as a part of 
the software release are reference (man) pages for each of the function calls. 
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Generating Audio Output

The basic process for generating, and playing audio can be summed up by 
the following steps.

1. Create and initialize the neccessary resources. (Typically, an audio 
heap, a synthesizer, and a player)

2. Repeatedly make calls to alAudioFrame to generate the audio task lists.

3. Execute these audio tasks lists on the RSP.

4. Set the output DAC’s to point to the audio output, with a call to 
osAiSetNextBuffer().

The creation and initialization of the neccessary resources is somewhat 
dependent on your applications needs, but typically you will need to take 
the following steps.

1. Create an audio heap with a call to alHeapInit.

2. Set the hardware output frequency with a call to osAiSetFrequency.

3. Create a synthesizer with a call to alInit(). (alInit will require that you 
have a callback routine to initialize the audio dma structures)

4. Create message queues for receiving signals that allow you to time 
your audio processing.

5. Create a player, (such as a sound player or sequence player) to sign into 
the synthesizer. 

6. Initialize the resources specific to the player(s) that you have created.
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Sampled Sound Playback

Representing Sound

The Audio Library supports playback of both uncompressed and ADPCM 
compressed, 16-bit audio. An audio waveform is represented with the 
Sound object via the ALSound structure. The ALSound structure contains 
entries for the Envelope, Pan, and Volume, along with a pointer to the 
ALWaveTable structure (which contains the audio). 

Collections of sounds can be stored in an ALBankFile structure. The format 
of this structure is described in Chapter 21, “Audio File Formats”. The tools 
available to create Bank Files for inclusion in the ROM are described in 
Chapter 20, “Audio Tools”.

Note:  Currently, the only supported sample formats are single-channel, 
ADPCM compressed and 16-bit uncompressed.

Playing Sounds

The Sound Player is the mechanism by which the Audio Library plays back 
individual sounds, such as isolated sound effects. It is responsible for 
allocating the resources needed to play a sound and for controlling the 
performance of the sound data for the application.

There are certain steps you must take for your game to play a sound. At a 
minimum, you must:

1. Create and initialize the basic resources described in the section 
Generating Audio Output.

2. Instantiate the Sound Player with alSndpNew(). The Sound Player 
created also signs in as a client to the Synthesis Driver. 

3. Copy the sound bank’s .ctl file into RAM, and initialize it with a call to 
alBnkfNew.

4. Allocate a sound with a call to alSndpAllocate(). 

5. Set the Sound Player’s target sound to reference your sound with 
alSndpSetSound(). 
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6. Play the sound with alSndpPlay(). 

7. Stop the sound when you are finished with alSndpStop(). Note that if 
the sound is not looped, the sound player will take care of stopping the 
sound when it is finished playing. However, you can stop the sound at 
any time during playback with this call.

When the sound is no longer needed, the resources in the Sound Player can 
be freed with a call to alSndpDeallocate(). If the Sound Player itself is no 
longer required, it can be removed from the Synthesis Driver client list with 
alSndpDelete().

The Sound Player can play both looped and unlooped sounds. When 
playing a sound, the Sound Player steps through the Envelope states Attack, 
Decay, and Release. Envelope parameters are defined in the ALSound 
structure. The duration of the sound is determined by the sum of the Attack 
time, Decay time, and Release time, or the length of the wave table 
(whichever is shorter), scaled by the pitch. 

For looped sounds, the duration is always determined by the Envelope 
parameters and the pitch. If the Envelope Decay time is set to -1, the sound 
will continue playing (that is, it will never enter the Release phase) until it is 
stopped by the application with a call to alSndpStop(). Envelope times are 
scaled by the playback pitch so that regardless of pitch, finite-length sounds 
play to completion. For example, by default, a sound played an octave lower 
plays for twice as long as it does at unity pitch. Loop points for sounds are 
embedded in the ALWaveTable structure. (Loop points will be 
automatically extracted from the .aiff file when using the file conversion 
tools provided.)

Various parameters that affect the playback of a sound can be set before and 
during playback. When a sound is allocated to a Sound Player, an ID is 
returned that uniquely identifies that sound. Parameters for a particular 
sound are set by first setting the target sound with a call to 
alSndpSetSound(), and then making a subsequent call to set a parameter for 
the target sound. Available calls are detailed in Table 13-1.

Note:  Each sound allocated to a Sound Player has a unique ID and private 
parameter values and play state. To play the same sound simultaneously, 
possibly with different parameter settings, it must be allocated multiple 
times to the Sound Player.
374



NINTENDO DRAFT THE AUDIO LIBRARY
A summary of Sound Player functions is given below. Details can be found 
in the reference (man) pages.

Table 19-1Sound Player Functions

 

Function Description

alSndpNew Creates a new Sound Player.

alSndpDelete Removes a Sound Player from the 
Synthesis Driver’s client list.

alSndpAllocate Allocate a sound to a sound player.

alSndpDeallocate Deallocate a sound from the sound 
player.

alSndpSetSound Sets the Sound Player’s current sound.

alSndpGetSound Returns the Sound Player’s current 
sound.

alSndpPlay Plays the Sound Player’s current sound.

alSndpPlayAt Plays a sound at some specified time in 
the future.

alSndpStop Stops the current sound from playing.

alSndpGetStates Gets the current state (stopped or 
playing) of the current sound.

alSndpSetPitch Sets the pitch for the current sound.

alSndpSetVol Sets the playback volume of the current 
sound.

alSndpSetPan Sets the pan position of the current 
sound.

alSndpSetPriority Sets the sounds priority value.

alSndpSetFXMix Sets the wet/dry mix of the current 
sound.
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Sequenced Sound Playback

You will be concerned with three issues when using sequenced sound on the 
Nintendo 64:

• representing the sequence data

• representing the instruments or sounds that make up the sequence

• controlling the sequence playback

Representing the Sequence

The Audio Library supports two different sequence players. The first 
sequence player uses Type 0 MIDI sequences. Sequences are represented at 
runtime with the ALSeq structure. This structure encapsulates sequence 
data that conforms to the Standard MIDI Files 1.0 specification for Type 0 
MIDI files. The Type 0 MIDI file format contains a time-ordered MIDI 
message that specifies music events. It is described in detail in the “Standard 
MIDI Files 1.0” specification published by the MIDI manufacturers 
association.

The second sequence player uses a compressed format of sequence data 
unique to the Nintendo64. This format is detailed in Audio Formats chapter. 
Sequences are represented at runtime with the ALCSeq structure. Besides 
differences in the format of the data, the compressed MIDI sequence player 
handles loops in a different fashion and does not support markers. 

To use a Type 0 MIDI sequence in your game, you must first initialize an 
ALSeq structure with alSeqNew(). To use the compressed MIDI sequence 
player, you first initialize an ALCSeq structure with alCSeqNew(). After 
initializing the ALSeq structure, you can perform sequence operations. 

The alSeqNextEvent() call returns the MIDI event at a specified location in 
the sequence. The alSeqNewMarker() call creates a sequence position 
marker that can be used in conjunction with the Type 0 Sequence Player to 
set playback time and loop points. The convenience functions 
alSeqTicksToSec() and alSeqSecToTicks() convert between seconds and 
MIDI clock ticks.
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Note:  Normally, you won’t call alSeqNextEvent() directly, because it is 
called by the Sequence Player during sequence playback.

The sequence calls are described in detail in the reference (man) pages. Brief 
descriptions are given in Table 13-2.

Table 19-2Sequence Functions

Representing Instruments

Instruments are represented at runtime by the ALBankFile structure. This 
structure describes the instruments that sound in response to an event in the 
sequence. Bank Files are composed of Banks; which are composed of 
Instruments; which themselves are composed of groups of Sounds, 
KeyMaps, Envelopes, and gain and pan information. The Bank File format 
is described in detail in the Audio Formats chapter.

Type 0 MIDI 
Sequence Player 
Function

Compressed MIDI 
Sequence Player 
Function

Description

alSeqNew alCSeqNew Initializes the sequence control 
structure.

alSeqNextEvent alCSeqNextEvent Returns the next MIDI event from the 
sequence.

alSeqNewMarker alCSeqNewMarker Initializes a marker for a given event 
time.

alSeqGetLoc alCSeqGetLoc Sets a marker to the sequence’s current 
location.

alSeqSetLoc alCSeqSetLoc Sets the sequence to the location 
specified by the marker.

alSeqTicksToSec alCSeqTicksToSec Converts a time value from MIDI clock 
ticks to microseconds.

alSeqSecToTicks alCSeqSecToTicks Converts a time value from 
microseconds to MIDI clock ticks.
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To use a Bank File in your game, you must first create a runtime structure to 
represent it. This is accomplished with the alBnkfNew() function (See Table 
13-3). Both sequence players use the same function call for this operation.

Table 19-3Bank Functions

Playing Sequences

The Sequence Player is the mechanism by which the Nintendo 64 Audio 
Library plays back MIDI sequence files. It is responsible for allocating the 
hardware and software resources needed to play a sequence and for 
controlling the performance of the sequence data for the application.

Note:  A Sequence Player can play only one sequence at a time.

There are certain steps you must take for your game to play a music 
sequence. The minimum steps needed to use the Type 0 MIDI sequence 
player are listed below. Using the compressed MIDI sequence player is 
identical, only you use the calls specific to the compressed MIDI sequence 
player.

1. Create and initialize the basic resources described in the section 
Generating Audio Output.

2. Initialize the sequence by using alSeqNew(). 

3. Copy the bank file’s .ctl file into RAM, and initialize the bank by using 
alBnkfNew().

4. Initialize the sequence player by using alSeqpNew(). 

5. Set the sequence player’s bank by using alSeqpSetBank().

6. Set the sequence player’s target sequence by using alSeqpSetSeq(). 

7. Play the sequence by using alSeqpPlay(). 

8. Stop the sequence when you are finished with it, by using alSeqpStop(). 

Type 0 MIDI 
Sequence Player 
Function

Compressed MIDI 
Sequence Player 
Function

Description

alBnkfNew alBnkfNew Initializes a collection of banks for use 
with a Sequence Player.
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9. If the sequence player is no longer needed it can be removed from the 
Synthesis Driver’s client list by using alSeqpDelete().

Table 19-4Sequence Player Functions

Type 0 MIDI Sequence 
Player Function

Compressed MIDI 
Sequence Player 
Function

Description

alSeqpNew alCSPNew Initializes a Sequence Player.

alSeqpDelete alCSPDelete Removes a Sequence Player from 
the Synthesis Driver’s client list.

alSeqpGetState alCSPGetState Returns the current state of the 
Sequence Player.

alSeqpSetBank alCSPSetBank Assigns a bank of instruments to 
the sequence.

alSeqpGetSequence alCSPGetSequence Gets a reference to the sequence 
that is currently bound to the 
Sequence Player.

alSeqpSetSequence alCSPSetSequence Makes the specified sequence the 
target sequence.

alSeqpPlay alCSPPlay Starts the target sequence playing.

alSeqpStop alCSPStop Stops the target sequence if it is 
playing.

alSeqpGetTempo alCSPGetTempo Returns the current playback 
tempo for the target sequence.

alSeqpSetTempo alCSPSetTempo Sets the current playback tempo of 
the target sequence.

alSeqpGetVol alCSPGetVol Returns the overall volume for the 
sequence.

alSeqpSetVol alCSPSetVol Sets the overall volume for the 
sequence.

alSeqpGetChlPan alCSPGetChlPan Gets the pan on the specified MIDI 
channel.
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Loops in Sequence Players

The way in which loops are handled in the sequence players is different. 
When using the Type 0 MIDI sequence player, the programmer must create 
a marker at the loop start point, and a marker at the loop end point. Then the 
sequence can be looped between these two markers using alSeqpLoop(). 
Using the compressed MIDI sequence player, loops are constructed by the 

alSeqpSetChlPan alCSPSetChlPan Sets the pan for the specified MIDI 
channel.

alSeqpGetChlVol alCSPGetChlVol Gets the volume for the specified 
MIDI channel.

alSeqpSetChlVol alCSPSetChlVol Sets the volume for the specified 
MIDI channel.

alSeqpGetChlProgram alCSPGetChlProgram Returns the program assigned to 
the specified MIDI channel.

alSeqpSetChlProgram alCSPSetChlProgram Assigns the given program to the 
specified MIDI channel.

alSeqpGetChlFXMix alCSPGetChlFXMix Gets the wet/dry FX mix on the 
specified MIDI channel.

alSeqpSetChlFXMix alCSPSetChlFXMix Sets the wet/dry FX mix on the 
specified MIDI channel.

alSeqpGetChlPriority alCSPGetChlPriority Gets the priority value for the 
specified MIDI channel.

alSeqpSetChlPriority alCSPSetChlPriority Sets the priority value for the 
specified MIDI channel.

alSeqpLoop (Not Supported) Sets the loop points for the target 
sequence.

alSeqpSendMidi alCSPSendMidi Sends the specified MIDI message 
to the sequence player.

Table 19-4Sequence Player Functions

Type 0 MIDI Sequence 
Player Function

Compressed MIDI 
Sequence Player 
Function

Description
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musician, in the tracks of the sequence by inserting controllers. (This is 
discussed in the chapter “Using the Audio Tools”). This method allows 
different loops for different tracks, and allows for nesting of loops. 

Controllers in Sequence Players

The realtime controllers that the Sequence Player responds to are (control 
numbers in parenthesis): pan (10), volume (7), priority (16), sustain (64), and 
reverb amount (91). Note that because only one effects bus is supported, 
reverb amount is used to control effect amount no matter what the effect is.

The compact sequence player also uses controllers 102, 103, 104, and 105 for 
creating loops. Details of this are discussed in the chapter “Using the Audio 
Tools.”
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The Synthesis Driver

The Synthesis Driver is the Audio Library object used by the Sound Player, 
the Sequence Player, and application-specific players to create Audio 
Command Lists, which are passed to the Audio Microcode. This section 
defines various API calls which can be used by application programmers 
who want to create their own Players.

Programmers who use the Sequence Player and Sound Player need only be 
familiar with the initialization of the driver, the alAudioFrame() function 
that creates audio Command Lists, and the mechanism by which the 
Synthesis Driver satisfies the need for sound data.

Initializing the Driver

The Synthesis driver needs to be initialized in order to be used. This is 
accomplished by calling alSynNew() with a configuration structure that 
specifies the number of virtual voices, physical voices, and effects busses to 
instantiate. The configuration structure also provides information regarding 
the Audio DMA callback routines, the Audio Heap, FXType and the audio 
playback rate to use. (Audio DMA callbacks are discussed later in this 
chapter.)

Note:  The alInit() call will call alSynNew().

The configuration also specifies a callback procedure pointer of type 
ALDMANew, which is used by the synthesis driver initialization procedure to 
set up callbacks for sound data requests. The procedure specified in the 
configuration structure is called once during initialization for every physical 
voice that is instantiated. The Synthesis Driver expects the procedure to 
return another procedure pointer that defines a callback of type 
ALDMAproc, and a pointer to some state information that can be used in 
various ways to manage sound data requests. 

Note:  Only one driver may be instantiated at any given time.
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Building and Executing Command Lists

The main function of the Synthesis Driver is to build Audio Command Lists, 
which are executed by the microcode to synthesize audio. Command lists 
are built in frames. A frame is a number of samples—usually something 
close to the number of samples required to fill a complete video frame time 
at the regular video frame rate (e.g. 30 or 60 Hz).

From an application, the Command List (to synthesize a number of audio 
samples) is built by making a call to alAudioFrame(). Parameters for this call 
define the number of samples (which must be a multiple of 16), a physical 
address of an output buffer where the Microcode will put the audio samples, 
and a pointer to an array that can be used to store the Command List.

During the construction of the Command List, the Synthesis Driver makes 
callbacks to its clients (the players) to process the various events that 
determine the parameters and timing of the playback of sound effects and 
sequences. 

The Driver also makes callbacks to the defined ALDMAproc routine with 
requests for sound data (see below).

To execute an audio Command List, it is first put in OSTask structure and 
then passed to the microcode with a call to osSpTaskStart(). The OSTask 
structure specifies pointers to microcode and data along with the Command 
List which allows the RCP to execute.

Synthesis Driver Sound Data Callbacks

The application is responsible for making sure that the required sound data 
is located in RAM before the command list is executed by the audio 
microcode. The application programmer has the freedom to load complete 
compressed sounds from the ROM before playback, or, as is more likely, to 
initiate DMAs from ROM to RAM in response to callbacks from the 
Synthesis Driver. Initiating DMA’s in response to callbacks allows the 
application to only load the portion of the sound needed, and thus greatly 
reduce the RAM needed for audio.

The Audio DMA callback routines are initialized when alInit is called. The 
synthesizer configuration structure must contain a pointer to a routine for 
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initializing the Audio DMA’s. This routine will be called once for each 
physical voice. Typically this routine will initialize any state variables, and 
then must return a pointer to the ALDMAproc.

The ALDMAproc procedure is called by each physical voice during the 
construction of the command list when compressed sound data is required. 
The call specifies the required data address, the length, and the state pointer, 
and it expects to receive a physical memory address where the data can be 
(or at least will be) found in memory.

The example applications (playseq, and simple) provide examples of how 
these callback routines can be implemented.

Assigning Players to the Driver

In order to make calls to the driver interface, you must first make your 
player known to the driver. This is accomplished with the alSynAddPlayer() 
call. For more information on writing your own player, see the section 
“Writing Your Own Player”.

Note:  Both the Sequence Player and the Sound Player add themselves to the 
driver when they are initialized by calling alSynAddPlayer(). If you are not 
creating your own players you should not need to call alSynAddPlayer.

Allocating and Controlling Voices

The Synthesis driver manages two types of voices: virtual voices and 
physical voices. 

Virtual voices are described by the ALVoice structure, and represent the 
voice from the player’s perspective. In order to play a wavetable, players 
must allocate a virtual voice on which to play it. This is accomplished with 
the alSynAllocVoice() call. The voice configuration structure allows you to 
specify the voice priority and bus assignment. The number of virtual voices 
available is established when the driver is initialized, and you may specify 
more virtual voices than you have resources to play. There is no benefit to 
specifying more physical voices than virtual voices since the player will 
have no way to use them.
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Physical voices represent the actual sound processing modules available to 
the driver. They consist of an ADPCM decompressor, a pitch shifter, and a 
gain unit. The ADPCM decompressor converts mono ADPCM compressed 
(approximately 4:1) wavetables to mono 16-bit raw format. The pitch shifter 
resamples the resulting data (up one octave, down any number of octaves) 
to the desired pitch. The gain unit then applies a volume envelope, a pan 
value, and mixes the (stereo) output into the master bus and an effect bus at 
gains specified by the wet/dry parameters associated with the voice.

The driver maps virtual voices to physical voices based on virtual voice 
priority. If there are more active virtual voices than available physical voices, 
the driver allocates the physical voices to the highest priority virtual voices. 
The driver may “steal” a physical voice from a virtual voice if a higher 
priority virtual voice is allocated.

Note:  To prevent a voice from being stolen, you can set the voice priority to 
the highest priority with alSynSetPriority().

After you allocate a virtual voice, you can use it to play a wavetable with the 
alSynStartVoice() call. You can stop the playback with the alSynStopVoice() 
call.

Once you start a voice, you can control pitch, volume, and panning and 
effect mix with the appropriate calls listed in the section titled “Summary of 
Driver Functions”.

Effects and Effect Busses

Each voice can be assigned to one effects bus. Each effects bus can contain 
any number of effects units (up to the limit imposed by the processing 
resources). The number of busses and effects units are specified in the driver 
configuration structure and are established at initialization time.

Note:  The Audio Library currently only supports one effects bus. Future 
version may support multiple busses.
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Creating Your Own Effects

The Nintendo64 uses a general purpose effects implementation that 
manipulates data in a single delay line. A small number of default 
configurations have been supplied (see libaudio.h), but applications 
developers can also specify there own custom reverb and chorus/flange 
style effects. 

The way in which the data is manipulated is defined by a set of parameters 
specified in blocks where each block represents a single effects primitive. An 
effect is constructed by attaching an arbritrary number of effects primitives 
to a single delay line. There is one and only one input to this delay line which 
is the sum (slightly attenuated to minimize overflow) of the left and right 
effects send busses. The contribution of a voice to this bus can be specified 
by a call to alSynSetFXMix. This delay line is then operated on by the effect 
specified in the the fxType field of the synthesizer configuration structure. 
The delay memory will be allocated from the audio heap by a call to alInit, 
so the application must be sure that the audio heap is big enough to contain 
the delay memory and it’s associated effects primitive stuctures. The 
parameters for each primitive in the effect are specified in an array which is 
passed to the audio initialization code. Each primitive consists of an input 
offset, an output offset, coefficients specifying output contribution to input 
and input contribution to output, chorus rate and depth parameters which 
control modulation of the output offset, a DC normalized (unity gain at DC) 
single pole low-pass filter, and finally, an output gain specifying how much 
of this primitives output is to be contributed to the final effect output. 

The particular combination of values in each of the parameters for a 
primitive specifies the function of that primitive as a whole within the effect. 
For example, if the ffcoef and fbcoef are the same except for a sign change, 
that primitive will be an all pass; if ffcoef and fbcoef are different, or one or 
the other is zero, the primitive will be a filter of some kind. If both ffcoef and 
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fbcoef are zero, the primitive will be pure delay only, possibly modulated 
and low pass filtered.

Figure 19-2 Effects Primitives

The function of the effects primitives can be thought of in two ways, the first 
of which is as an individual signal processing block. The effect as a whole 
would then be thought of as a set of concatenated and/or nested primitives 
arranged to produce the overall desired effect. The second way of 
conceptualizing the primitive is the way it is actually implemented, which is 
to say, as an operator on a single longer delay line shared with all the other 
primitives. Both conceptualizations are illustrated in figure 13-2. By careful 
selection of the effects parameters, a large class of cascaded/nested all-pass 
and comb filter based effects can be created. (For a more detailed description 
of this class of effects, see Bill Gardner’s MIT masters thesis, “The Virtual 
Acoustic Room”, section 4.6, available from 

+ +

+ +
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http://sound.media.mit.edu/papers.html, and his Macintosh “Reverb” 
program and documentation in same location).

Builders of custom effects will also discover that the effect specification 
controls not only the nature of the effect, but the processing resources 
consumed by the effect. Only those functions which are driven by non-zero 
parameters actually generate any audio command operations in the RCP. 
This gives application developers a great degree of flexibility in defining an 
effect that is appropriate both in terms of sonic quality and efficiency. If a 
developer wishes to use one of the pre-defined effects, they need only 
specify that effect in the fxType field of the synthesizer configuration 
structure. If, on the other hand, they wish to build their own effect, they 
would specify an fxType of AL_FX_CUSTOM, and then allocate and fill in 
the fields for the primitives. See the PR/apps/playseq source for one 
example of how to use this capability to build a complex effect.

To create a custom effect, an application specifies the number of sections, the 
overall length of the delay memory used by the total effect, and then the 
input and output addresses, feedforward and feedback coefficients, gain, 
chorus rate and depth, and low-pass coefficient for each section. Following 
is a brief explanation of the significance of each parameter and what 
processing actually takes place as a result of it’s inclusion. Although 
parameters are interpreted in different ways, they are all stored in signed 
32-bit numbers.

Parameter Description

The following two parameters are specified only once for the entire effect:

sections: this parameter specifies the total number of sections in the effect. A 
section is one primitive and it’s associated parameters.

length: this parameter specifies the total length of delay memory used by the 
effect, and must be a multiple of 8 bytes. Since data is processed in blocks, 
this parameter should be greater than or equal to the largest output offset 
parameter PLUS the length of a processing buffer. This length is defined to 
be 160 samples, or 320 bytes. If the last section of the effect has a non-zero 
chorus rate parameter which corresponds to a slow modulation rate, and a 
deep modulation depth (> 1 semitone), the total delay length may need to be 
larger depending on the rate and depth of the chorus. 
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The rest of these parameters constitute one processing element, so there 
must be one set of these parameters for each section specified by the sections 
parameter.

The following two address parameters must be positive and must be on 8 
bytes (or 4 sample) boundaries. The application playseq.c shows an easy 
way to specify addresses in the convenient unit of milliseconds which are 
properly aligned.

input: this parameter specifies the address of the input of this section of the 
effect. This address must be on a 4 sample (or 8 byte) boundary.

output: this parameter specifies the address of the output of this section of 
the effect. This address must be on a 4 sample (or 8 byte) boundary.

The following three parameters, along with the lpfilt coef parameter, are 
interpreted as signed 16-bit fractional fixed point values. The upper sixteen 
bits should be sign extended:

fbcoef: this parameter specifies the coefficient of the feedback portion of the 
section. If this parameter is zero, no action takes place.

ffcoef: this parameter specifies the coefficient of the feedforward portion of 
the section. If this parameter is zero, no action takes place. If the chorus rate 
parameter is non-zero, because it is not possible to store the loaded output 
back into the delay line since it is not the same length), the ffcoef parameter 
controls how much of the input to add to the interpolated output allowing 
flange type effects.

gain: this parameter specifies how much of this primitives output to 
contribute to the total effect output, and can be thought of as a ‘tap’ value. If 
zero, no multiply is performed. Note that at least one section of the effect 
must have a non-zero gain value for the effect to be heard. If no section of an 
effect has a non-zero gain value, then no effect output will be heard.

chorus rate: this parameter specifies the modulation frequency of the output 
tap position of the delay line, i.e., how quickly the tap position will be 
modulated. The value of this parameter is (frequency/sample rate)*2^25. 
For example, a modulation frequency of .5Hz at a synthesizer sample rate of 
44.1kHz would be (.5/44100)*33,554,432 = 380
389



NINTENDO 64 PROGRAMMING  MANUAL DRAFT
chorus depth: this parameter specifies the modulation depth, or pitch 
change, of the effect. The parameter is specified approximately in 
hundredths of a cent. So a modulation depth of +/-25 cents, or a quarter of 
a semitone, would be 2500. The approximation to cents is good over the 
range useful for musical chorusing and flanging, i.e., less than a few 
semitones. The error at 1 semitone (100 cents) is about 3 cents and at 3 
semitones is about 30 cents. If you wish to know the “exact” value (in cents) 
of the modulation depth , use the following equation:

cents 1200
2 ln

-------------- 1 chorusdepth
120 000 2 ln
---------------------------------------– 

 ln=

lpfilt coef: this parameter specifies the single pole low-pass filter coefficient. 
The derivation of this value as a function of frequency and sample rate can 
be found in numerous signal processing texts, and is left as an exercise to the 
reader (doncha hate that). Generate a table once and forget about it. Only 
positive values will actually be low-pass. Negative values will generate DC 
normalized boost at high frequencies causing possible overflow.

Armed with this knowledge about primitive parameters, let’s look at some 
example effects:

Figure 19-3 A simple echo effect

.36 1.0

+

179 ms
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The effect in figure 13-3, which is a simple echo effect, and can be selected 
using AL_FX_ECHO, would be implemented using the following 
parameters:

#define ms *(((s32)((f32)44.1))&~0x7)
param[0] = 1; /*the number of sections in this effect */
param[1] = 200 ms; /* total allocated memory */
param[2] = 0; /* input is beginning of delay line */
param[3] = 179 ms; /* output location on delay line */
param[4] = 12000; /* fbcoef of .36 */
param[5] = 0; /* no feedforward coefficient */
param[6] = 0x7fff; /* full gain 1.0 - 1/2^15 */
param[7] = 0; /* no chorus rate */
param[8] = 0; /* no chorus depth */
param[9] = 0; /* no low-pass filter */

This is, in fact, the echo effect implemented when AL_FX_ECHO is specified 
in the fxType field of the synthesizer configuration structure.

Let’s try something a little more interesting:

Figure 19-4 A nested all-pass inside a comb effect

In Fig 13-4, we have used the more compact Gardner-style notation. Note 
that section 2 is “nested” inside section 1.This effect which is the 

+
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AL_FX_SMALLROOM effect, would be specified using the following 
parameters:

param[0] = 3; /*the number of sections in this effect */
param[1] = 100 ms; /* total allocated memory */
/* SECTION 1 */
param[2] = 0; /* input */
param[3] = 54ms; /* output */
param[4] = 9830; /* fbcoef */
param[5] = -9830; /* ffcoef */
param[6] = 0; /* no out gain */
param[7] = 0; /* no chorus rate */
param[8] = 0; /* no chorus delay */
param[9] = 0; /* no low-pass filter */
/* SECTION 2*/
param[10] = 19 ms; /* input */
param[11] = 38 ms; /* output */
param[12] = 3276; /* fbcoef */
param[13] = -3276; /* ffcoef */
param[14] = 0x3fff; /* gain */
param[15] = 0; /* chorus rate */
param[16] = 0; /* chorus depth */
param[17] = 0; /* low-pass filter */
/* SECTION 3*/
param[18] = 0; /* input */
param[19] = 60ms; /* output */
param[20] = 5000; /* fbcoef */
param[21] = 0; /* ffcoef */
param[22] = 0; /* gain */
param[23] = 0; /* chorus rate */
param[24] = 0; /* chorus depth */
param[25] = 0x5000; /* low-pass filter */
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Summary of Driver Functions

Table 19-5Synthesizer Functions

Function Description

alSynNew Opens and initializes the synthesizer 
driver.

alSynDelete NOT IMPLEMENTED

alSynAddPlayer Adds a client player to the synthesizer.

alSynRemovePlayer Removes a player from the synthesizer.

alSynAllocVoice Allocates and returns a synthesizer 
voice.

alSynFreeVoice Deallocates a synthesizer voice.

alSynStartVoice Starts a virtual voice playing.

alSynStartVoiceParams Starts a virtual voice with the specified 
parameters.

alSynStopVoice Stops a virtual voice from playing.

alSynSetVol Sets the volume for the specified voice.

alSynSetPitch Sets the pitch for the specified voice.

alSynSetPan Sets the pan values for the specified 
voice.

alSynSetFXMix Sets the wet/dry/effects/mix for the 
specified voice.

alSynSetPriority Sets the priority of the specified virtual 
voice.

alSynGetPriority Returns the priority of the specified 
virtual voice.

alSynAllocFx Allocates a new effect of the specified 
type to the specified bus.

alSynFreeFx NOT IMPLEMENTED
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Writing Your Own Player

A Player is an Audio Library software object that works through the 
Synthesis Driver to construct audio command lists. Both the Sequence 
Player and the Sound Player are examples of Players.

A Player operates by signing into the driver and then responding to driver 
callback with driver API calls, described in the section “The Synthesis 
Driver” on page 382. The initialization procedure and the callback routine 
are detailed below.

Initializing the Player

In order for your player to receive driver callbacks and to use the synthesis 
driver voice functions, you must first add the player as a driver client. This 
is accomplished with the alSynAddPlayer() call, which takes two 
arguments: a reference to the synthesis driver, and a reference to the 
ALPlayer structure that represents the player to be added. A reference to the 
synthesis driver may be obtained from the Audio Library globals structure 
alGlobals. The ALPlayer structure contains a reference to the voice handler 
callback function and a pointer that the player can use.

Example 19-1 Player Initialization

typedef struct MyPlayer_s {

    ALPlayer node; 

    /*
     * include other player specific state here

alSynGetFXRef Returns a pointer to the FX structure.

alSynSetFXParam Currently has no effect.

Table 19-5Synthesizer Functions

Function Description
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     */

} MyPlayer;

void playerNew(MyPlayer *p) 
{
    /*
     * Initialize any player specific state here
     */
    
    /*
     * Sign into the synthesis driver so that the next time
     * alAudioFrame is called, it will call the 
     * __voiceHandler function.
     */
    p->node.next       = NULL;
    p->node.handler    = __voiceHandler;
    p->node.clientData = p;
    alSynAddPlayer(&alGlobals->drvr, &p->node);
}

void playerDelete(MyPlayer *p) 
{
    /*
     * remove this player from the synthesis driver
     */
    alSynRemovePlayer(&alGlobals->drvr, &p->node);
}

In the previous example, you’ll notice that the player structure contains a 
reference to __voiceHandler. This field points to a callback procedure, of 
type ALVoiceHandler, which the driver calls in the process of building the 
audio command list.

Implementing a Voice Handler

When your application calls alAudioFrame(), the driver iterates through its 
list of players, calling the player’s voice handler functions at the appropriate 
offset (which translates to time) in the command list.

Typically, the player maintains a time-based list of events which the voice 
handler parses and translates into driver calls. The voice handler contributes 
to the construction of the command list by making driver voice calls. 
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Note:  Driver voice calls can be made only from within the voice handler 
function.

The voice handler returns the time, in microseconds, for the next callback.

Example 19-2 The Voice Handler

ALMicroTime __voiceHandler(void *node)
{
    MyPlayer    *p = (MyPlayer *)node;
    
    /*
     * You can now make calls to the following synthesis 
     * driver voice functions
     *
     *          alSynAllocVoice()
     *          alSynFreeVoice()
     *          alSynStartVoice()
     *          alSynStopVoice()
     *          alSynSetVol()
     *          alSynSetPitch()
     *          alSynSetPan()
     *          alSynSetFXMix()
     *          alSynSetPriority()
     *          alSynGetPriority()
     *          alSynSetFXParam()
     */
    
    return 1000;        /* call back in 1 millisecond */
}
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Implementing Vibrato and Tremolo

Note:  A full example of vibrato and tremolo implementation is given in the 
latest version of the playseq demo. GenMidiBank.inst has examples of how 
vibrato and tremolo would be set in the bank.

Vibrato and tremolo, are implemented by providing three callback routines; 
initOsc, updateOsc, and stopOsc. These routines act as the low frequency 
oscillator (LFO) that is modulated against either pitch or volume. When the 
sequence player determines that a note uses either vibrato or tremolo, it will 
call initOsc which will set a current value, and return a delta time specifying 
how long before it needs to update the value of the oscillator. After the delta 
time has passed, updateOsc will be called, which will set a current value and 
return a delta time until the next update. This will continue, until the note 
stops sounding, and at that time, stopOsc will be called, so that your 
application can do any necessary cleanup.

What each routine does, and how it does it is largely up to the application. 
All the sequence player expects is a delta time until the next callback, and a 
value to use as the current value. In addition the sequence player provides a 
mechanism for each note to have its own data, and for this data to be passed 
to subsequent calls of updateOsc. 

For vibrato or tremolo to be active, you must set the vibType or tremType of 
the instrument in the .inst file. A value of zero (the default) in these fields 
will be interpreted by the sequence player as either vibrato off or tremolo off. 
Any non-zero value will be considered as on. In addition to the type, the 
following fields can be used to specify parameters for the oscillator: vibRate, 
vibDepth, vibDelay, tremRate, tremDepth, tremDelay. These values are 
eight bit values and can be used in whatever way the oscillator callbacks 
deem appropriate.

When creating a sequence player, you must pass pointers to your callbacks 
through the ALSeqpConfig struct. The following code fragment 
demonstrates how to do this.

ALSeqpConfig    seqc;

seqc.maxVoices      = MAX_VOICES;
seqc.maxEvents      = EVT_COUNT;
seqc.maxChannels    = 16;
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seqc.heap           = &hp;
seqc.initOsc        = &initOsc;
seqc.updateOsc      = &updateOsc;
seqc.stopOsc        = &stopOsc;

alSeqpNew(seqp, &seqc);

The initOsc routine 

ALMicroTime initOsc(void **oscState, f32 *initVal, u8
oscType,u8 oscRate, u8 oscDepth, u8 oscDelay);

The initOsc routine is the first callback to occur when a note is started, and 
either the vibType or tremType is non-zero. Vibrato and tremolo are 
handled separately by the sequence player, so if an instrument has both 
vibrato and tremolo, two calls will be made, one for each oscillator. When 
called, initOsc is passed a handle, in which it may store a pointer to a data 
structure. This pointer will be passed back to subsequent calls of updateOsc 
and stopOsc. This is optional. The second argument is a pointer to an f32 that 
must be set with a valid oscillator value. The remaining arguments are the 
oscType, oscRate, oscDepth, and oscDelay. These values may be used as you 
wish.

Typically initOsc will allocate enough memory for its data structure, and 
store a pointer to this memory in the oscState handle. This is optional 
though, and if your oscillator doesn’t have any state information it may not 
need to do this. After performing any computation that it needs, the initOsc 
routine returns a delta time, in microseconds, until the first call to 
updateOsc. If a delta time of zero is returned, the sequence player interprets 
this as a failure, and will not making any calls to either updateOsc or 
stopOsc. If the initVal is changed, the new value will be used. If the initVal 
remains unchanged, vibrato will default to a value of 1.0 and tremolo will 
default to a value of 127.

If the oscillator is a vibrato oscillator, the return value is multiplied against 
the unmodulated pitch to determine the modulated pitch. A value of 1.0 will 
have no effect, a value of 2.0 will raise the pitch one octave, and a value of .5 
will lower the pitch one octave. If the oscillator is a tremolo oscillator, the 
returned f32 should be an integer value between 0 and 127. This value will 
be multiplied against the unmodulated volume to determine a modulated 
volume. A value of 127 will be full volume, and a value of 0 will be silent.
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The updateOsc routine

ALMicroTime updateOsc(void *oscState, f32 *updateVal);

The updateOsc routine will be called whenever the delta time returned by 
either initOsc or the previous updateOsc call has expired. When called, 
updateOsc is passed the value returned by initOsc in the oscState handle. 
UpdateOsc should make whatever calculations it needs, set the new 
oscillator value in updateVal, and return a delta time until the next time 
updateOsc needs to be called. Valid oscillator values are the same as in the 
case of initOsc.

The stopOsc routine

void stopOsc(void *oscState);

The main purpose of the stopOsc routine is to give the application the 
opportunity to free any memory stored in the oscState. StopOsc is not called 
until the note has completely finished processing. Even if your routine does 
nothing, you should still have a stopOsc routine if you have an initOsc 
routine.
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Chapter 20

20. Audio Tools

This chapter describes the various audio tools for the Nintendo 64. These 
include: an instrument compiler, which can be used to prepare banks of 
sounds and control information used by the sequence player and the sound 
player; a set of tools to compress and decompress sound data for the 
Nintendo 64 ADPCM format; and tools for converting and printing MIDI 
files.
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The Instrument Compiler: ic

The Nintendo 64 Audio Library synthesizes audio from MIDI events using 
information contained in the .ctl and .tbl data files. These files, along with the 
.sym file, are known collectively as Bank files, and are created by the “ic” 
tool.

The .tbl file contains the ADPCM compressed audio wavetable data.

The .ctl file contains information about how the wavetables are to be 
synthesized. It includes information about the wavetable’s envelope, pan 
position, pitch, mapping to MIDI note numbers, and velocity values. For 
more information about the format of the .ctl file, see the section “Bank Files” 
in Chapter 15

The .sym file contains the bank file’s symbol information, and is used mainly 
for development and debugging. It is used only by the audio bank tools, not 
by the Audio Library.

Note:  ic can also be used to collect sound effects into a single bank structure 
for inclusion in the ROM. In this case some of the features of the Bank format 
are not used (for example, Keymaps and Instrument parameters). 

Invoking ic

Invoke ic by entering this command:

ic [-v] -o <output file prefix> <source file>
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Table 20-1ic Command Line Options

Writing ic Source Files

Instrument Compiler source files consist of C-like definitions for the 
collection of objects that make up the Bank. There are objects to represent 
banks, instruments, sounds, keymaps, and envelopes. Each of these objects 
is detailed below.

The Bank Object

A bank object, denoted by the keyword “bank,” contains an array of 
instruments, a sample rate specification, and an optional default percussion 
instrument. In the example below, the bank defined as “GenMidiBank” 
contains one instrument, called “GrandPiano,” at instrument location 0. It is 
intended to operate at 44.1 kHz.

bank GenMidiBank
{
sampleRate = 44100;
program [0] = GrandPiano;
}

Note:  The General MIDI 1.0 Specification specifies that MIDI channel 10 is 
the default drum or percussion channel. As a result, many General MIDI 
sequences do not contain program change messages for channel 10. You can 
specify the default instrument (program) for channel 10 as follows:

Command Line Option Function

-v Turns on verbose mode, which causes 
the compiler to produce a quantity of 
largely useless information.

-o <output file prefix> Specifies the prefix for the .ctl, .tbl, and 
.sym files created by the compiler.

<source file> The name of the file containing the 
source code for the banks of instruments.
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bank GenMidiBank
{
sampleRate = 44100;
percussionDefault = Standard_Kit;
program [0] = GrandPiano;
}

The Sequence Player sets the default instrument for channel 10 messages to 
be “Standard_Kit.”

The Instrument Object

The instrument object, referenced by the bank object, contains the overall 
volume and pan for the instrument as well as the list of sounds that make up 
the instrument.

In the example below, the “GrandPiano” instrument contains eight sounds: 
“GrandPiano00”, “GrandPiano01”, “GrandPiano02”, “GrandPiano02”, 
“GrandPiano03”, “GrandPiano04”, “GrandPiano05”, “GrandPiano06”, and 
“GrandPiano07”.

The overall instrument volume is 127, or full volume, and is panned to the 
position 64, which is center.

instrument GrandPiano
{
    volume = 127;
    pan    = 64;

    sound [0]  = GrandPiano00;
    sound [1]  = GrandPiano01;
    sound [2]  = GrandPiano02;
    sound [3]  = GrandPiano03;
    sound [4]  = GrandPiano04;
    sound [5]  = GrandPiano05;
    sound [6]  = GrandPiano06;
    sound [7]  = GrandPiano07;
}
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The Sound Object

The sound object specifies the volume and pan, keyboard mapping, and 
envelope for the sound. It also specifies the AIFF-C sound file containing the 
ADPCM compressed wavetable data. A description of the AIFF-C format 
expected by ic (which is generated by the ADPCM encoding tools) is given 
in the section titled “ADPCM AIFC Format” in Chapter 21.

Note:  The Sequence Player multiplies the instrument volume with the 
sound volume to get the overall volume. It adds the instrument pan with the 
sequence pan to get the sound’s overall pan.

In the example below, the GrandPiano00 sound specifies that the wavetable 
data is to come from the file ../sounds/GMPiano_C2.18k.aifc. It is to be 
panned center (64) at full volume (127) and arranged on the keyboard 
according to the map specified in piano00key with the envelope specified in 
GrandPianoEnv. 

sound GrandPiano00
{
    use (“../sounds/GMPiano_C2.18k.aifc”);
    pan    = 64;
    volume = 127;
    keymap = piano00key;
    envelope = GrandPianoEnv;
}

Keymaps and envelopes are described in the following sections.

Note:  When using banks to collect sound effects, the keymap entry is not 
necessary.

The Keymap Object

The keymap object, referenced by the sound object, specifies the range of 
MIDI velocities and key numbers that the sound is intended to cover. It is 
used by the Sequence Player to determine which sound to map to a given 
MIDI note number, and at what pitch ratio to play the sound.
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In the example below, piano00key specifies a MIDI Note On message with 
a velocity between 0 and 127 and a note number between 0 and 43

In this example, the keyBase is 41, so a MIDI Note on message for key 41 
triggers the sound that references this keymap at unity pitch. A MIDI Note 
On message for key 42 triggers the same sound, but shifted up a half step in 
pitch.

Note:  You can set the keyBase value outside the range of keyMin to keyMax. 
This is useful if you want to critically resample a wavetable to conserve 
ROM space. You could, for instance, resample a wavetable from 44.1 kHz to 
22.05 kHz and adjust the keyBase up an octave to compensate. Remember, 
however, that quality degrades at larger pitch shift ratios.

The detune parameter indicates the number of cents that is to be added to 
the default tuning. A half step is equal to 100 cents.

keymap piano00key
{
    velocityMin = 0;
    velocityMax = 127;
    keyMin      = 0;
    keyMax      = 43;
    keyBase     = 41;
    detune      = 0;
}

The Envelope Object

The envelope object specifies the attack-decay-sustain-release (ADSR) 
envelope, or volume contour, for a sound. Volumes are specified in the 
range of 0 to 127, and the times are specified in microseconds.

In the example below, the sound’s envelopes would ramp from 0 to 127 in 
0 microseconds, decay to 0 in 400 milliseconds, wait for a MIDI Note Off, and 
then release to 0 in 200 milliseconds. The decay portion of the envelope 
decays to zero. For many acoustic instruments, especially percussion 
instruments, this gives the most realistic envelope.
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Note:  The Sound Player uses envelopes in a slightly different way. See 
Chapter 19 for details.

A Complete Example

The following example, taken from the General MIDI bank that is shipped 
with the development software, defines a bank with one instrument, the 
Grand Piano.

envelope GrandPianoEnv
{
    attackTime= 0;
    attackVolume= 127;
    decayTime= 4000000;
    decayVolume= 0;
    releaseTime= 200000;
    releaseVolume= 0;
}
 
keymap piano00key
{
    velocityMin = 0;
    velocityMax = 127;
    keyMin      = 0;
    keyMax      = 41;
    keyBase     = 51;
    detune      = 0;
}

sound GrandPiano00
{
    use (“../sounds/GMPiano_C2.18k.aifc”);
    pan    = 64;
    volume = 127;
    keymap = piano00key;
    envelope = GrandPianoEnv;
}

keymap piano01key
{
    velocityMin = 0;
    velocityMax = 127;
407



NINTENDO 64 PROGRAMMING  MANUAL DRAFT
    keyMin      = 42;
    keyMax      = 49;
    keyBase     = 63;
    detune      = 0;
}

sound GrandPiano01
{
    use (“../sounds/GMPiano_Bb2.16k.aifc”);    
    pan    = 64;
    volume = 127;
    keymap = piano01key;
    envelope = GrandPianoEnv;
}

keymap piano02key
{
    velocityMin = 0;
    velocityMax = 127;
    keyMin      = 50;
    keyMax      = 57;
    keyBase     = 67;
    detune      = 0;
}

sound GrandPiano02
{
    use (“../sounds/GMPiano_F3.19k.aifc”);    
    pan    = 64;
    volume = 127;
    keymap = piano02key;
    envelope = GrandPianoEnv;
}

keymap piano03key
{
    velocityMin = 0;
    velocityMax = 127;
    keyMin      = 58;
    keyMax      = 63;
    keyBase     = 72;
    detune      = 0;
}

sound GrandPiano03
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{
    use (“../sounds/GMPiano_C4.22k.aifc”);    
    pan    = 64;
    volume = 127;
    keymap = piano03key;
    envelope = GrandPianoEnv;
}

keymap piano04key
{
    velocityMin = 0;
    velocityMax = 127;
    keyMin      = 64;
    keyMax      = 69;
    keyBase     = 79;
    detune      = 0;
}

sound GrandPiano04
{
    use (“../sounds/GMPiano_G4.22k.aifc”);    
    pan    = 64;
    volume = 127;
    keymap = piano04key;
    envelope = GrandPianoEnv;
}

keymap piano05key
{
    velocityMin = 0;
    velocityMax = 127;
    keyMin      = 70;
    keyMax      = 75;
    keyBase     = 84;
    detune      = 0;
}

sound GrandPiano05
{
    use (“../sounds/GMPiano_C5.22k.aifc”);    
    pan    = 64;
    volume = 127;
    keymap = piano05key;
    envelope = GrandPianoEnv;
}
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keymap piano06key
{
    velocityMin = 0;
    velocityMax = 127;
    keyMin      = 76;
    keyMax      = 81;
    keyBase     = 91;
    detune      = 0;
}

sound GrandPiano06
{
    use (“../sounds/GMPiano_G5.22k.aifc”);    
    pan    = 64;
    volume = 127;
    keymap = piano06key;
    envelope = GrandPianoEnv;
}

keymap piano07key
{
    velocityMin = 0;
    velocityMax = 127;
    keyMin      = 82;
    keyMax      = 111;
    keyBase     = 99;
    detune      = 0;
}

sound GrandPiano07
{
    use (“../sounds/GMPiano_C6.18k.aifc”);    
    pan    = 64;
    volume = 127;
    keymap = piano07key;
    envelope = GrandPianoEnv;
}

instrument GrandPiano
{
    volume = 127;
    pan    = 64;

    sound [0]  = GrandPiano00;
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    sound [1]  = GrandPiano01;
    sound [2]  = GrandPiano02;
    sound [3]  = GrandPiano03;
    sound [4]  = GrandPiano04;
    sound [5]  = GrandPiano05;
    sound [6]  = GrandPiano06;
    sound [7]  = GrandPiano07;
}

bank GenMidiBank
{
sampleRate = 44100;
program [0] = GrandPiano;
}
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The ADPCM Tools: tabledesign, vadpcm_enc, vadpcm_dec

The ic tool requires wavetables to be compressed in ADPCM format before 
they are included in a sound bank. ADPCM compression is accomplished 
using the tabledesign, vadpcm_enc, and vadpcm_dec tools. These tools are 
described below.

Note:  The format described is used only as an interchange format between 
the compression tools and the instrument compiler. It is not used to store 
compressed sound data on the ROM.

tabledesign

tabledesign reads an AIFC or AIFF sound file and produces a codebook 
(written to standard output), which is used by the ADPCM encoder. The 
codebook is a table of prediction coefficients which the coder selects from to 
optimize sound quality. The procedure used to design the codebooks is 
based on an adaptive clustering algorithm.

Invoking tabledesign

tabledesign [-s book_size] [-f frame_size] 
[-i refine_iter] aifcfile
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Table 20-2tabledesign Command Line Options

Command-line options are described in Table 14-2.

vadpcm_enc

vadpcm_enc encodes AIFC or AIFF sound files and produces a compressed 
binary file, which is used by ic to prepare banks of sounds. The encoding 
algorithm is based on a switched ADPCM algorithm which uses a codebook 
to define a table of prediction coefficients. Coefficients from the table are 
selected adaptively during encoding to give the best sound quality.  The 
Nintendo 64 compressed sound format currently supports a single loop 
point, which should be defined in the input file’s Instrument Chunk.  The 
codebook and loop-point definitions are embedded in the final output file.

Command Line Option Function

-s <value> Value is the base 2 log of the number of 
entries in the table. Currently up to 8 
entries are supported, so the value can 
range from 0 to 3. The default value for 
this parameter is 2, giving 4 entries. This 
seems to be adequate for most sounds.

-f <value> Value is the size of the frames (in 
samples) used to estimate predictors.  
Since the ADPCM encoder operates on 
frames of 16 samples, this number 
should be a multiple of 16. The default 
value is 16. The main benefit of 
increasing the frame size is that design 
time is reduced.

-i <value> Value is the number of iterations used in 
the refinement step of the clustering 
algorithm. The default value is 2. 
Increasing this parameter increases 
design time, with some possible 
improvement in quality. The default is 
adequate for most sounds.
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Invoking vadpcm_enc

The vadpcm_enc tool is invoked as follows:

Table 20-3vadpcm_enc Command Line Options

vadpcm_enc -c codebook [-t] [-l minLoopLength]
aifcFile codedFile

Note:  The efficiency of wavetable synthesis is dependent on the length of 
loops. Longer loop lengths can be synthesized more efficiently. A minimum 
loop length can be set in the ADPCM encoder. The currently defined default 
minimum loop length is 800 samples. This default length can be changed 
(see above), with the absolute minimum being 16 samples. Loops shorter 
than the minimum loop length are repeated until the total loop length is 
larger than the minimum length. If possible loops should be longer than a 
single audio frame which is equal to the (SampleRate)/(FrameRate).

vadpcm_dec

vadpcm_dec decodes a sound file that has been encoded in the Nintendo 64 
ADPCM format using vadpcm_enc, and writes it to standard output as raw 
mono 16-bit samples.

Command Line Option Function

-c <filename> Define a file that contains the prediction 
coefficient codebook constructed by 
tabledesign(1).

-t Truncate the encoded file after the loop 
end point. The portion of the sound after 
the loop end-point is never used in audio 
playback.

-l <value> Set the minimum loop length in the 
encoded file (see Note below).
414



NINTENDO DRAFT AUDIO TOOLS
Invoking vadpcm_dec

The vadpcm_dec tool is invoked as follows:

Table 20-4vadpcm_dec Command Line Options

vadpcm_dec [-l] codedfile

Command Line Option Function

-l If the sound has a loop, play the loop 
repeatedly until a key is pressed on the 
standard input. 
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The MIDI File Tools: midicvt, midiprint & midicomp

midicvt

The Audio Library plays only Type 0 Standard MIDI files. You can use 
midicvt to convert from Type1 (which are generally output by most MIDI 
sequencers) to Type0.

Invoking midicvt

midicvt is invoked as follows:

Table 20-5midicvt Command Line Options

midicvt [-v] [-s] <input file> <output file>

midiprint

The midiprint tool prints a text listing of the time-based MIDI events in a 
Type 0 or Type 1 Standard MIDI file.

Invoking midiprint

midiprint [-v] -o <output file> <input file>

Command Line Option Function

-v turns on verbose mode

-s strips out any messages that are not used 
by the Audio Library. These include text 
messages and system exclusives.

input file the name of a Type 0 or Type 1 Standard 
MIDI file.

output file the name for the Type 0 output file.
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Table 20-6midiprint Command Line Options

midicomp

The midicomp tool is used to compress midi files of either Type 0 or Type 1 
to a format recognized by the compact sequence player. 

Invoking midicomp

midicomp is invoked as follows:

midicomp <input file> <output file>

Making files that will compact better.

Different midi files will be compressed by different percentages, based on 
the content of the files. All files (except very small files) should be 

Command Line Option Function

-v verbose mode.

-o <output file> the optional output file for the MIDI 
event text.

<input file> the name of the Type 0 or Type 1 
Standard MIDI file to list.

Table 20-7midicomp Command Line Options

Command Line Option Function

<input file> the name of the Type 0 or Type 1 
Standard MIDI file to compress.

<output file> the name to use for the output file.
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compressed at least somewhat. Because midicomp achieves compression by 
recognizing patterns and then compressing these, the greatest amounts of 
compression occur when the files are repetitive. Patterns and sections 
created in a sequencer using cut and paste are the ones most likely to be 
compressed.
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Midi Receiving with Midi Daemon: midiDmon

Midi Daemon is no longer supported. All functionality from Midi Daemon 
is now incorporated into Instrument Editor.
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Instrument Editor

The tool Instrument Editor provides three primary uses. First, as an editor, 
it allows realtime editing and auditioning of instrument banks and effects. 
Second, as a player, it allows external MIDI devices to playback MIDI on the 
Nintendo 64 Development Hardware. Third, as a profiler, it profiles and 
measures audio resources that are being used during playback. With its 
support for MIDI playback, the ie tool is intended to replace the 
functionality of the Midi Daemon tool.

Instrument Editor is invoked with the command:

ie [-b <.inst file>] [-c <.cnfg file>] [-v]

Editor

The editor portion of the ie tool is a simple application for editing .inst files 
as well as effects.  A Nintendo 64 development board does not have to be 
present to open and edit .inst files.  However, you will not be able to audition 
your changes without the Nintendo 64.

Bank Editing

The ie tool can read, write, and edit .inst files.  .inst files contain a description 
of a Nintendo 64 bank which can be compiled into actual Nintendo 64 bank 
files with ic, the instrument compiler tool.  The .inst bank description is 

Table 20-8ie Command Line Options

Command Line Option Function

-b <.inst file> specifies the name of the instrument 
bank file to open in the editor. If this 
option is not used, the editor opens with 
a new .inst file.

-c <.cnfg file> specifies the name of the configuration 
file used to configure the N64 Audio 
Library used by ie.

-v turns on verbose mode. (for debugging.)
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made up of several components such as instruments, sounds, envelopes, etc.  
Each of these bank components, or assets, have one or more parameters 
associated with it. For example, an instrument asset as volume, pan, and 
bend range parameters associated with it among others. Assets can also 
reference each other in a sort of parent-child relationship.  For instance, bank 
assets reference instruments assets so instruments are children of a bank.  
Similarly, instrument assets reference sounds assets so sounds are children 
of an instrument. Furthermore, if a child asset is never referenced by another 
asset (ie. it has no parent), it is called an orphan.  So if an envelope asset is 
never used by a sound asset, the envelope is an orphan and can be deleted 
from the .inst file without affecting the bank.

Viewing Assets

The editor displays all these bank assets and supports viewing and editing 
the parent-child relationships within a bank. The editor’s view contains 
several folders for each type of bank asset.  Each folder contains a list of all 
the assets of the given type.  For example, to view a bank’s instruments, 
simply select the instrument’s folder tab to open up the instrument folder. 
The folder contains a list of all the names of the instruments as well as 
columns for each of an instrument’s parameters, such as volume, pan, 
priority, and bend range.  Each asset also contains an icon column which 
helps identify the type of asset.

Editing Assets

To edit the value of an asset’s parameters, simply click on the corresponding 
column to activate the default editing for the parameter.  Names are always 
text edited.  Numbers can be scrolled up or down to increase or decrease 
their value.  References to other child assets are edited with popup menus.  
However, all assets can be text edited by clicking on them with the “Alt” key 
held down. This pops up a text edit field which can be moved around from 
field to field using the arrow keys and the “Alt” key.  (Without the Alt key, 
the arrow keys move the cursor within the text field.) Values won’t be 
accepted if the value is out of range or is illegal. Use the “ESC” key to cancel 
any text editing.  Note that some fields cannot be edited (eg. a wavetable’s 
sample rate) and only display information.  Icon fields are used for a variety 
of purposes such as asset selection, asset audition, and others.  Integer fields 
can be double-clicked to quickly set the value to a preset default value.
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Viewing and Editing Children

Some of the assets contain a “#” column.  This column displays the number 
of children that the asset has.  If the asset has one or more children, 
double-clicking on the “#” column will open up the parent and display its 
children.  Since the children have different parameters than the parent, only 
the common fields such as the name field are displayed for children.  
Double-clicking the “#” column again will close the asset.  The “#” field can 
be edited by clicking on the field.  This will bring up a popup menu showing 
a list of assets that are currently not children of the selected asset.  Choosing 
one of these assets will add it to the parent’s list of children.  Double-clicking 
on the icon of a child, will automatically open up the children’s folder for 
editing of their parameters.  For example, double-clicking an instrument’s 
sound will open up the sound folder for editing.  Likewise, double-clicking 
a sound’s envelope will open up the envelope folder for editing.

Auditioning Assets

In order to audition assets, the current bank being edited must be “valid” 
and must be “online” on the Nintendo 64.  For a description of what it means 
for a bank to be valid and online, see the Nintendo 64 Playback section. 
When a bank is online, bank assets can be auditioned by clicking on their 
icon.  Pressing the button down sends a MIDI note on event.  Releasing the 
button sends a MIDI note off event.  This makes it easy to audition the 
sustain portion of a sound.  Currently, auditioning instrument assets will 
always play a C4 note.  Auditioning sounds, keymaps, envelopes, and 
wavetables will play the asset’s parent instrument at the sound’s key base. 
Note that if the keymaps for an instrument’s sounds are not specified and 
ordered properly, an auditioned asset may not get mapped to the correct 
sound.  This is a potential source of confusion when auditioning assets so 
make sure that the auditioned sound’s keymap is correct and complete 
before auditioning.

The File Menu

The file menu contains commands for opening, closing, and saving .inst 
files.  The “Open” command brings up a dialog for selecting a .inst file to 
edit.  Only one .inst file can be open at a time so choosing “Open” while 
another .inst file is currently open will first close the file before opening a 
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new one.  The “Close” command removes all bank assets and allows a new 
file to be edited. The “Save” and “Save As” command write the file to disk.

The Edit Menu

The edit commands are currently not supported.

The Asset Menu

The Asset menu contains commands for inserting and deleting assets. 
Selecting the insert command will create a new asset and place it at the end 
of the list.  The asset will automatically have default parameter values.  To 
insert an asset in the middle of the list, select the asset where you want the 
asset to appear and select the insert command.  The selected asset will 
appear below the newly created one.  To delete assets, simply select one or 
more assets and select the delete command. A short cut for creating an asset 
and adding it to a parent is provided by the “Insert Child” command.  This 
command will insert a new child asset to the selected parent.  The “Remove 
Child” command removes the selected child(ren) from the parent, but does 
NOT delete them.  Choose the “Delete” command to remove and delete 
them.  Finally, the “Import” command allows importing of other .inst files 
as well as .aiff-c files.  This is currently the only way to create wavetable 
assets.

The Select Menu

The select menu contains useful commands for selecting certain types of 
assets.  The “Select Parents” command will select all the parents of the 
currently selected asset.  This command works only if exactly one asset is 
selected.  For example, if a keymap is selected, the “Select Parents” 
command will select all the sound assets that use the given keymap and will 
automatically display the sound folder. The “Select Orphans” commands 
will select all the folder’s assets that do not have any parents.  This is useful 
for determining which assets aren’t being used anywhere and which can be 
deleted.

Effects

The ie tool supports creating, editing, and auditioning effects on the 
Nintendo 64. Since effects are tightly coupled to the N64 Audio Library, they 
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will only appear for editing if N64 development hardware is present. 
Otherwise, only bank components can be edited.  If N64 development 
hardware is present, ie will automatically create five built-in effects for 
auditioning and editing.  These effects are small room, big room, chorus, 
flange, and echo.  In addition to the built-in effects, custom effects can be 
created from scratch.

Effects Viewing

Similar to banks, effects are made up of two components, the effect asset and 
the effect section asset.  Simple effects may contain only one or two sections, 
while more complicated effects may contain eight or more sections.  Similar 
to banks, effects are parents to effect section children.  As a result, effects can 
be viewed just like bank assets can be viewed.  All effects parameter values 
are displayed in their native data format (the format that the N64 requires 
them in) except for the delay fields (length, input, and output).  The delay 
parameters are displayed in milliseconds and must be converted to samples 
and aligned to an 8 sample boundary before being used to configure a game. 
(ie does this automatically when it loads an effect for auditioning.)

Effects Editing

Effects and effect sections can be edited just like bank assets. However, there 
are some special considerations when editing effects.

First, the delay parameters (length, input, output) are displayed and editing 
in msecs.  The N64 requires that these values occur at 8 sample boundaries 
and that the length is greater than both the input and output delays by about 
160 samples (depending on the chorus rate). (See the section on audio effects 
for a more detailed explanation of the 160 sample restriction). The ie tool 
automatically enforces the 8 sample boundary rule when it loads the effect 
on the N64, however it does not enforce the 160 sample rule.  Be careful 
when editing input or output delays so that they do not approach within 160 
samples (depending on the chorus rate) of the delay line’s length. Normally, 
if this limit is exceeded, you will hear artifacts in the audio such as clicks and 
pops.

Secondly, when an effect is “online” (ie. it is loaded into the N64), the effect’s 
length parameter cannot be edited.  In addition, you cannot insert or delete 
424



NINTENDO DRAFT AUDIO TOOLS
sections to an online effect. In order to make these changes to an online 
effect, you must offline the effect first.

Thirdly, effect sections can only have one parent.  Once it is being used by a 
parent effect, it will not be available for other effects to use it.

Finally, to use chorus or the low pass filter, you must make sure that the 
respective parameters are non-zero before loading the effect.  The Audio 
Library will not allocate the required memory to implement chorus or the 
low pass filter if the parameters are initially zero (this saves unneeded 
memory).

Effects Auditioning

Initially, no effects are loaded onto the N64.  In order to load an effect and 
make it “online”, double-click the desired effect’s icon.  To offline the effect, 
double-click it again or double-click another effect.  When an effect is placed 
online, the N64 must be fully reconfigured since the Audio Library must be 
initialized with an effect.  This may take a few seconds since it must reload 
the entire bank to the N64.  Once the effect is online, its icon should appear 
in red to indicate that it is online.  From now on, auditioning bank assets will 
be played through the effect.  Note that the wet/dry amount can be 
controlled for each MIDI channel by sending an FX1 control message to the 
channel.

Effects Saving and Restoring

Currently, effect assets can not be saved to disk.  This is because there is no 
standard “.fx” file like there is an “.inst” file for bank assets. However, effects 
can be restored from disk with a configuration (.cnfg) file. (See the section on 
the N64 Configuration for a description of the configuration file.) Since the 
Audio Library treats effects as part the the configuration data you can edit 
the configuration file to include a custom effect.  An effect is defined with the 
keyword “REVERB_PARAMS” and is followed by a bracketed {...} set of 
parameters describing the effect and its sections. Below is an example of an 
effect with 8 sections and a total delay line length of 325 msecs. Note that 
comments are bracketed by /* ... */.

REVERB_PARAMS = { 
/*  sections      length*/
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       8,           325, 
/* chorus chorus fltr*/
/* input output fbcoef ffcoef gain rate depth coef*/

0, 8, 0, -9830, 3600, 0, 0, 0,
8, 12, 9830, -9830, 0x2b84, 0, 0, 0x5000,
41, 128, 16384, -16384, 0x11eb, 0, 0, 0,
45, 103, 8192, -8192, 0, 0, 0, 0,
162, 282, 16384, -16384, 0x11eb, 0, 0, 0x6000, 
166, 238, 8192, -8192, 0, 0, 0, 0, 
238, 268, 8192, -8192, 0, 0, 0, 0, 

0, 299, 18000, 0 0, 380, 2000, 0x7000} 

Nintendo 64 Player and Profiler

When ie is launched, it automatically looks for an N64 development board 
and if it finds one, it will boot it up with MIDI playback code and profiling 
code.  If it can’t find the N64 board or if it fails to boot it up, it will report an 
error and ie will not be able to audition any instruments or edit effects.  In 
addition, ie will also boot up the gload tool which acts as a print server for 
any error or debugging messages. This is useful for detecting when an audio 
library resource has been exceeded.  If another gload is running at the time 
that ie is launched, ie will fail to run.

.Nintendo 64 Configuration

The Nintendo 64 Audio Library is configured using default configuration 
information.  This default configuration can be edited either by using the 
configuration dialog or by specifying a configuration file on the command 
line when the tool is run.  For information on how to use the configuration 
dialog see the section on the Nintendo 64 Menu. To configure the tool using 
a configuration file, simply specify the file on the command line.  The 
configuration file should contain reserved words that specify the values of 
certain configuration parameters, such as output rate or the number of 
available virtual voices. For an example of a .cnfg file and its reserved words, 
refer to the file /$ROOT/usr/src/PR/assets/banks/ie.cnfg.

Nintendo 64 MIDI Playback

Once it is up and running, the Nintendo 64 waits for incoming MIDI 
messages.  MIDI messages can be sent from an external MIDI device or from 
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the ie tool itself.  In order for the Nintendo 64 code to respond to the MIDI 
messages, it needs to have a valid bank downloaded to it by ie. When ie is 
launched with a new file, there is no bank in the editor and the Nintendo 64 
will be “offline” which means it does not have a bank installed.  The 
profiling screen on the Nintendo 64 monitor indicates the state of the bank 
at the top of the screen. As soon as ie has a valid bank in the editor, it will 
download the bank data and the Nintendo 64 will then be “online” and it 
will be able to respond to MIDI events.  As the bank is edited, it continually 
checks to see whether the bank is still “valid” and as soon as the bank fails 
to be valid, it will take the bank offline.  The reason for this is simply that the 
Audio Library requires complete and correct bank data in order to work 
properly.  A bank is determined to be valid if the following conditions are 
met:

1) a bank asset exists
2) the bank contains at least one instrument 
3) the bank’s instruments contain at least one sound 
4) the bank’s sounds must all have keymaps, envelopes, and wavetables

When a bank is online, bank assets can be auditioned from the editor by 
clicking on their icon.  MIDI messages can also be sent from external devices.  
To use external devices, a MIDI interface must be properly attached to one 
of the host computer’s serial ports and it must be properly configured using 
the startmidi tool.

Nintendo 64 Profiling

The Nintendo 64 screen displays current readings for various audio 
resources.  These readings are useful to monitor when playing back a 
sequence targeted for the Nintendo 64 from an external MIDI sequencer.  
The readings will measure how much of each resource is used in order to 
playback the sequence. The profiler keeps track of the following resources:
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Table 20-9ie Profiled Resources

Profiled 
Resource

Description

cmds the number of audio commands used to synthesize a frame of 
samples. Profiles both current and maximum values.

syn upds the number of parameter update blocks used by the synthesis 
driver to store changes in control parameters.  The number of 
available update blocks is specified during the Audio Library 
configuration. Profiles both current and maximum values.

seq evts the number of event message blocks used by the sequence 
player.  The number of available message blocks is specified 
during the Audio Library configuration. Profiles both current 
and maximum values.

DMAs the number of DMA requests made during an audio frame. 
Displays both current and maximum values. The maximum 
number of DMA requests is specified during the audio system 
configuration. Profiles both current and maximum values.

DMA bufs the number of DMA buffers needed during an audio frame. 
The number of availabe DMA buffers is specified during the 
audio system configuration. Profiles both current and 
maximum values.

Vcs this graph profiles virtual voice usage during playback. Each 
pixel represents one used virtual voice.  The number of 
available virtual voices is specified during the Audio Library 
configuration. The maximum number of virtual voices used is 
displayed in the corner of the voice graph.

RSP this graph profiles the percentage of a frame period being used 
to execute the audio synthesis microcode on the RSP.
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Be aware that the resource demands for audio synthesis varies on a frame by 
frame basis.  This is because it must share the processing resources with the 
other parts of the system.  This means that the profile values will vary each 
time a given sequence is played.  Therefore, the readings should be used as 
an approximation, not as an accurate measurement of resource usage. Also 
note that the CPU measurements can be affected by any debugging 
messages produced by the audio library.  Also the N64 code was not 
optimized by gcord and so is not displaying best case performance.

The Nintendo 64 Menu

If the N64 development board is available, an N64 menu will appear in the 
editor.  This menu provides control over some of the N64 functionality.  The 
“Clear Profile Values” item resets the MIDI player and causes all the 
maximum values to be reset to zero. The “Configure Hardware” menu 
brings up a dialog which can be used to set some of the Audio Library 
configuration parameters.  See Table 20-9 on page 428 for a description of 
the various configuration parameters.  After setting the configuration 
parameters, press the okay or apply button to make the changes take affect.  
Reconfiguration may take a few seconds since any open bank file must be 
fully reloaded to the N64.  Configurations can be saved and reloaded at a 
later time using the “Save Configuration...” and “Load Configuration...” 
commands.  These commands ask you to name the configuration file you 

CPU this graph profiles the percentage of a frame period being used 
by the CPU during the call to alAudioFrame.

output meters this profiles the peak output levels of the final output samples 
that are sent to the audio DACs.  The scale is in dBs with the 
top of the meter at 0 dB and then decreasing in 3 dB increments 
per LED.  Signal levels above -3 dB are indicated by a yellow 
caution LED. Signal presence is indicated by the bottom LED 
(ie any non-zero sample will turn on the bottom LED).  Signal 
clipping is indicated by a red LED that appears above the 
meter.  Note that the clip detector does not detect true clipping, 
rather it detects when a sample magnitude value of 0x7fff 
appears.  This could be a legitamite value from a normalized 
sound or it could be a limited value caused by overflow.

Table 20-9ie Profiled Resources

Profiled 
Resource

Description
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want to save or load before proceeding. Finally, the “Reset Hardware” 
command resets the entire N64 hardware forcing the N64 code to be 
reloaded and the audio reconfigured.  Use this command to try to recover 
the N64 if it crashes for any reason.

Here is a description of each of the configuration parameters:

Table 20-10ie Configuration Parameters

Configuration 
Parameter

Description

output rate the requested sampling rate of the audio interface in Hz.

samples per 
frame

the requested number of samples to be synthesized per audio 
frame.  For maximum efficiency use a value that is a multiple 
of 160 samples (eg. 640).  A larger number means a slower 
frame rate while a smaller number means a faster frame rate.  
This number, along with the output rate can be used to 
simulate a game running at 60 Hz or 30 Hz.  For example, at an 
output rate of 44100 Hz, setting this value to be 735 will 
produce an frame rate of 60 Hz.

max commands 
per frame

the maximum number of ABI commands that can be executed 
per audio frame.  This directly corresponds to the size of the 
audio command list buffer that stores the ABI commands.

DMA buffers the number of available buffers for performing DMA requests.

DMA buffer size the size of each DMA buffer.  Smaller buffer sizes normally 
require more DMA requests while larger buffer sizes normally 
require fewer DMA requests.

max DMA 
requests

the maximum number of DMA requests that can be made. This 
value directly affects the size of the DMA message queue set 
up by the N64 code.

# frames to hold 
DMA buffers

the number of frames that must elapse before the N64 code will 
free a DMA buffer for reuse.  While the buffer is being “held”, 
its samples remain available for other requests that may ask for 
the same samples.  In some cases, the same samples may be 
used over and over again so holding them in memory is faster 
than performing a DMA from ROM.

max virtual 
voices

the maximum number of virtual voices available to both the 
synthesis driver and the MIDI player.
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Note that since audio sample DMA is implemented by the game application, 
the DMA configuration parameters may not be applicable to your game.  
Keep this in mind when setting these parameters.

Bugs

For a list of known bugs and problems, consult the man page for the ie tool.

max physical 
voices

the maximum number of physical voices available. If this is 
less than virtual voices then voice stealing is enabled.

max control 
updates

the maximum number of control updates each physical voice 
is able to store.  Control updates store data such as volume 
changes, pitch changes, etc.  This value directly affects the 
memory allocated for control data.

max channels the maximum number of channels available for MIDI 
messages. Normal MIDI systems support 16 channels.  This 
affects how much memory is allocated to store channel 
information.

max events the maximum number of event updates that the synthesizer is 
able to store.  Event updates store sequence data such as start 
commands, MIDI commands, etc.  This value directly affects 
the memory allocated for event data.

Table 20-10ie Configuration Parameters

Configuration 
Parameter

Description
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Midi and the Indy

Before using Midi Daemon, you will have to correctly configure your Indy 
for midi. Because there have been changes in both the midi software, and the 
serial ports, on the motherboard, it is recommended that only a recently 
purchased Indy and the latest software releases be used. 

Motherboards need to be of version 013 or newer. To determine the version 
of your motherboard, open your Indy, and on the front right of the 
motherboard, you will find a version number. The first four digits should be 
8123 and they are followed by three more digits that are the version number. 
The revision number that follows the version number is not important. If 
you find that you have an Indy with an older version motherboard, contact 
SGI field service for a replacement board.

The Indy uses a standard Macintosh Computer Midi Interface. Because there 
are differences between the interfaces sold for the Mac, (particularly in the 
voltage levels necessary) not all Mac Midi Interfaces will work correctly. 
Insufficient testing has been done to recommend a particular brand. We 
have seen cases where interfaces that do not supply their own power, but 
instead draw their power from the Indy serial port will drop midi messages 
sent back to back. For that reason we do recommend that you purchase a 
midi interface that has its own power supply.

At present, we are recommending the installation of the DMedia 5.5 
package, which contains the necessary midi drivers.

To configure your Indy for midi, you can use either of two methods. The first 
method, is to run startmidi. This utility is started from the command line, 
with arguments specifying which midi ports to turn on. This is the only way 
to turn on the internal midi port.

Alternately, you can turn on midi by using the Serial Port manager, in the 
System Manager tools. This provides a more user friendly interface, and 
once configured, a serial port will remain configured even after a reboot. If 
you find that selecting the System Manager or the Serial Port manager 
generates error messages pertaining to the object server, try the following 
sequence of commands:

/etc/init.d/cadmin stop

/etc/init.d/cadmin clean
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/etc/init.d/cadmin start

You can verify that your midi is working, by starting Midi Daemon with the 
-v (verbose) option. If midi is working, you will get a message printed in the 
window for every midi message received.

If you wish to use serial port number one for receiving midi, it is important 
to turn off automatic spawning of getty’s on that port. To do this, you must 
edit the file /etc/inittab. Find the line that starts with:

t1:23:respawn:/sbin/getty ttyd1

Change this to:

t1:23:off:/sbin/getty ttyd1

Save the file and reboot the Indy.
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The sbc Tool

sbc

sbc is used to combine any number of MIDI sequences into a MIDI sequence 
bank (a .sbk file). A sequence bank file contains the sequences, one after the 
other (8-byte aligned), with a header at the front that allows indexing into 
the bank to retrieve individual sequences.

sbc is invoked as follows:

sbc -o <output file> file0 [file1 file2 file3 ....]
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Chapter 21

21. Audio File Formats

This chapter describes the file formats used for Nintendo 64 audio 
development.

The first section details the bank format used by the Sequence Player. The 
second section provides information about the Standard MIDI File format as 
it relates to Project Reality.

Note:  All multi-byte data types (short, long, and so on) are stored with the 
high byte first. This is the opposite of the Intel ordering found in PCs.
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Bank Files

Bank files store the audio and control information needed to create audio 
from sequencer MIDI events. On the Nintendo 64, this information is 
encapsulated in two files: the bank file and the wavetable file.

The Bank (.bnk) file contains control information such as program number 
to instrument assignment, key mapping, tuning, and envelope descriptions. 
It is loaded into the Nintendo 64 DRAM during playback. 

The Wavetable (.tbl) file contains ADPCM compressed audio data. Because 
of the size of the data, it is streamed into DRAM (and then to the RCP) only 
when it is needed.

The formats for both files are optimized for the Nintendo 64 to be efficiently 
used with the Sequence Player and the Sound Player. They are not intended 
to be interchange file formats, and contain no textual information or other 
data not directly related to playing back audio. Many features commonly 
found in standard patch and wavetable formats (for example, AIFF files) 
were sacrificed in favor of smaller files in ROM.

Note:  References to objects are stored as offsets in the Bank files, but the 
alBnkfNew() call converts the offsets to pointers.

ALBankFile

Bank files must begin with an ALBankFile structure. This structure allows 
the software to locate data for a specific bank.

typedef struct {
s16revision; 
s16bankCount; 
s32bankArray[1]; 
} ALBankFile;
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The ALBankFile fields are summarized in Table 15-1.

Table 21-1ALBankFile Structure

ALBank

The ALBank structure specifies the instruments that make up the bank, as 
well as the default sample rate and percussion instrument. Banks may 
contain any number of programs. 

Note:  The percussion field specifies an instrument for the Sequence Player 
to use as a default MIDI channel 10 (drum channel) instrument.

typedef struct { 
s16instCount; 
u8flags;
u8pad;
s32sampleRate;
s32percussion;
s32instArray[1]; 
} ALBank;

Field Description

revision File format revision number.

bankCount Number of banks contained in the Bank 
file.

bankArray Array of offsets of the ALBank structures 
in the bank file.

Table 21-2ALBank Structure

Field Description

instCount Number of programs (instruments) in 
the bank.

flags =0 if instArray contains offset, and =1 if 
instArray contains pointers.

pad Currently unused byte.
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ALInstrument

The ALInstrument structure contains performance information. 

typedef struct { 
u8volume;
u8pan;
u8priority;
u8flags;
u8tremType;
u8tremRate;
u8tremDepth;
u8tremDelay;
u8vibType;
u8vibRate;
u8vibDepth;
u8vibDelay;
s16bendRange;
s16soundCount;
s32soundArray[1];
} ALInstrument;

sampleRate The sample rate at which this bank is 
inteded to be played.

percussion The offset (or pointer) to the default 
percussion instrument.

instArray Array of offsets (or pointers) to 
ALInstrument structures that make up 
this bank.

Table 21-3ALInstrument Structure

Field Description

volume Overall instrument playback volume. 
0x0 = off, 0x7f = full scale

pan Pan position. 0 = left, 64 = center, 127 = 
right.

Table 21-2ALBank Structure

Field Description
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ALSound

The ALSound structure contains information about the individual sounds 
that make up an instrument. 

typedef struct Sound_s { 
s32envelope; 
s32keyMap; 
s32wavetable;
u8samplePan; 
u8sampleVolume; 
u8flags
} ALSound;

priority The priority for voices for this 
instrument. 0 = lowest priority, 10 = 
highest priority.

flags If soundArray values are offsets, flags = 
0. If they are pointers, flags = 1.

bandRange Pitch bend range in cents.

soundCount Number of sounds in the soundArray 
array.

soundArray Offsets of (or pointers to) the ALSound 
objects in the instrument.

Table 21-4ALSound STructure

Field Description

envelope Offset of (or pointer to ) the ALEnvelope 
object assigned to the sound.

keyMap Offset of (or pointer to) the ALKeyMap 
object assigned to this sound.

wavetable Offset of (or pointer to) ALWavetable 
objects assigned to the sound.

Table 21-3ALInstrument Structure

Field Description
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ALEnvelope

The ALEnvelope structure describes the attack-decay-sustain-release 
(ADSR) envelope for a sound.

Note:  Release volume is assumed to be 0.

typedef struct { 
s32 attackTime; 
s32 decayTime; 
s32 releaseTime; 
s16 attackVolume; 
s16 decayVolume; 
} ALEnvelope;

samplePan Pan position of the sound in the stereo 
field: 0 = full left, 0x7f = full right

sampleVolume Overall sample volume. 0 = off, 0x7f = 
full scale.

flags If envelope, keyMap, and wavetable are 
specified as offsets, flags = 0. If they are 
pointers, flags = 1.

Table 21-5ALEnvelope Structure

Field Description

attackTime Time, in microseconds, to ramp from 
zero gain to attackVolume.

attackVolume Target volume for the attack segment of 
the envelope.

decayTime Time, in microseconds, to ramp from the 
attackVolume to the decayVolume.

Table 21-4ALSound STructure

Field Description
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ALKeyMap

The ALKeyMap describes how the sound is mapped to the keyboard. It 
allows the sequencer to determine at what pitch to play a sound, given its 
MIDI key number and note on velocity.

Note:  C4 is considered to be middle C (MIDI note number 60).

Note:  Bank files may not contain keymaps that have overlapping key or 
velocity ranges.

typedef struct { 
u8 velocityMin; 
u8 velocityMax; 
u8 keyMin; 
u8 keyMax; 
u8 keyBase; 
u8 detune; 
} ALKeyMap;

decayVolume Target volume for the decay segment of 
the envelope. The sustain loop holds at 
the decayVolume.

releaseTime Time, in microseconds, to ramp to zero 
volume.

Table 21-6ALKeyMap Structure

Field Description

velocityMin Minimum note on velocity for this map. 
0 = off, 0x7f = full scale.

velocityMax maxumum note on velocity for this map. 
0 = off, 0x7f = full scale.

keyMin Lowest note in this key map. Notes are 
defines as in the MIDI specification.

Table 21-5ALEnvelope Structure

Field Description
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ALWavetable

The ALWavetable structure describes the sample data to be played for the 
given sound. It is described in detail below, along with the structures it 
contains.

enum    {AL_ADPCM_WAVE = 0,
         AL_RAW16_WAVE};

typedef struct {
    s32 order;
    s32 npredictors;
    s16 book[1];        /* Must be 8-byte aligned */
} ALADPCMBook;

typedef struct {
    u32         start;
    u32         end;
    u32         count;
    ADPCM_STATE state;
} ALADPCMloop;

typedef struct {
    u32         start;
    u32         end;
    u32         count;
} ALRawLoop;

typedef struct {
    ALADPCMloop *loop;
    ALADPCMBook *book;

keyMax Highest note in this key map. Notes are 
defined as in the MIDI specification.

keyBase The MIDI note equivalent to the sound 
played at unity pitch.

detune Amount, in cents, to fine-tune this 
sample. Range is -50 to +50.

Table 21-6ALKeyMap Structure

Field Description
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} ALADPCMWaveInfo;

typedef struct {
    ALRawLoop *loop;
} ALRAWWaveInfo;

typedef struct { 
s32base; 
s32len;*/
u8type;
u8flags;
union {
ALADPCMWaveInfo adpcmWave;
ALRAWWaveInfo   rawWave;
} waveInfo;
} ALWaveTable;

Table 21-7ALWavetable Structure

Field Description

base Offset of (or pointer to) the start of the 
raw or ADPCM compressed wavetable 
in the table (.tbl) file.

len Length, in bytes, of the wavetable.

type the type (AL_ADPCM_WAVE or 
AL_RAW16_WAVE) of the wavetable 
structure.

flags If the base field contains an offset, flags 
=0. If it contains a pointer, flags = 1.

waveInfo Wavetable type specific information.

Table 21-8ALADPCMWaveInfo structure

Field Description

loop Offset or pointer to the ADPCM-specific 
loop structure.

book Offset or pointer to the ADPCM-specific 
code book.
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Table 21-9ALRawWaveInfo structure

Field Description

loop Offset or pointer to the raw sound loop 
structure.

Table 21-10ALADPCMLoop structure

Field Description

start Sample offset of the loop start point.

end Sample offset of the loop end point

count Number of times the wavetable is to 
loop. A value of -1 means loop forever.

state ADPCM decoder state information.

Table 21-11ALADPCMBook structure

Field Description

order Order of the ADPCM predictor.

npredictors Number of ADPCM predictors.

book Array of code book data.

Table 21-12ALRawLoop structure

Field Description

start Sample offset of loop start point.

end Sample offset of loop end point.

count Number of times the wavetable is to 
loop. A value of -1 means loop forever.
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ADPCM AIFC Format

The compressed ADPCM file format is based around AIFC. It uses a 
non-standard compression type and two application-specific chunks that 
contain the codebook and loop point information. This file is generated by 
the ADPCM encoding tool from standard AIFC and AIFF sample files, and 
is used by the Instrument Compiler to generate Bank and Table files.

As in AIFC, chunks are grouped together in a FORM container chunk:

typedef struct { 
ID ckID; /* ‘FORM’ */
s32 ckDataSize;
s32 formType; /* ‘AIFC’ */
Chunk chunks[]
}

where ckID is always FORM and formType is AIFC. The standard AIFC 
chunks, which are essential, are the Common chunk, which contains 
information about the sound length; and the Sound data chunk.

typdef struct {
u32 ckID; /* ‘COMM’ */
s32 ckDataSize;
s16 numChannels;
u32 numSampleFrames;
s16 sampleSize;
extended sampleRate;
u32 compressionType; /* ‘VAPC’ */
pstring compressionName; /* ‘VADPCM ~4:1’ */
}

The current format accepts only a single channel. The numSampleFrames 
field should be set to the number of samples represented by the compressed 
data, not the the number of bytes used. The sampleRate is an 80 bit floating 
point number (see AIFC spec).

The Sound data chunk contains the compressed data:

typedef struct { 
u32 ckID; /* ‘SSND’ */
s32 ckDataSize;
u32 offset;
435



NINTENDO 64 PROGRAMMING  MANUAL DRAFT
u32 blockSize
u8 soundData[];
}

Both offset and blockSize are set to zero. 

The encoded file will include two application-specific chunks. The common 
Application Specific data chunk format in AIFC is:

typedef struct { 
u32 ckID; /* ‘APPL’ */
s32 ckDataSize;
u32 applicationSignature; /* ‘stoc’ */
u8 data[];
}

where data[] contains the application-specific data. 

The Codebook application-specific data defines a set of predictors that are 
used in the decoding of the compressed ADPCM data.

typedef struct { 
u16 version; /* Should be 01 */
s16 order;
u16 nEntries; /* ‘stoc’ */
s16 tableData[];
}

The order and nEntries fields together determine the length of the 
tableData field. In the current implementation, order, which defines the 
ADPCM predictor order, must be 2. nEntries can be anything from 1 to 8. 
The length of the tableData field is order*nEntries*16 bytes.

The Loop application-specific data contains information necessary to allow 
the ADPCM decompressor to loop a sound. It has the following structure: 

typedef struct { 
u16 version; /* Should be 01 */
s16 nLoops;
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adpcmLoop loopData[];
}

nLoops defines the number of loop points and hence the number of 
adpcmLoop structures in the chunk. In the current library, only one loop 
point can be specified. loopData has the following structure:

typedef struct { 
u16 state[16];
s32 start;
s32 end;
s32 count;
} adpcmLoop

state defines the internal state of the ADPCM decoder at the start of the 
loop and is necessary for smooth playback across the loop point. The start 
and end values are represented in samples. count defines the number of 
times the loop is played before the sound completes. Setting count to -1 
indicates that the loop should play indefinitely.
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Sequence Banks

To provide a convenient way of collecting multiple MIDI sequences and 
accessing them from the ROM, Silicon Graphics has defined a simple 
Sequence Bank format. Files of this format are produced by the Sequence 
Bank Compiler (sbc), which takes multiple MIDI files and collects them with 
a simple header.

The format for the Sequence Bank file header is:

typedef struct { 
u16 version; /* Should be 01 */
s16 seqCount;
ALSeqData seqArray[];
} 

where seqCount is the number of sequences in the file, and the seqArray 
gives a list of offsets into the file and lengths for the individual sequences.

typedef struct { 
u8 *offset;
s32 seqLen;
} ALSeqData

The offsets represent the position of the start of the sequence from the 
beginning of the file. Note that the start of all sequences are 8-byte aligned 
when the Sequence Bank Compiler is used.
438



NINTENDO DRAFT AUDIO FILE FORMATS
Compressed Midi File Format

The compressed midi file format is composed of a header and up to sixteen 
individual tracks. Each midi channel will have its own track. If there are no 
midi events for a particular channel, the track will not be created, and the 
offset to that track will be set to zero.

The compressed midi file header is a collection of 16 offsets and a division 
value.

typedef struct {
    u32      trackOffset[16];
    u32      division;
} ALCMidiHdr;

The offset is specified in bytes from the begining of the file to the begining of 
the track. The division value is taken from the input midi file.

The format for the individual tracks is similar to the format used in a 
standard midi file. Each track consists of a series of events, seperated by 
delta times in ticks. Ticks are specified using variable length numbers, and 
ever event must have a delta value, even if that value is zero. Midi events are 
of the same format as that used in the standard midi file except as specified 
below.

1. There are no note offs, instead note ons are followed by a variable 
length number that specifies the number of ticks duration. As an 
example, a note on of middle C with a velocity of 80 and a duration of 
240 ticks would be expressed by the following sequence of hex bytes: 
0x90 0x3C 0x50 0x81 0x70. Note that when calculating the deltas 
between events, the duration is not taken into account.

2. Only two types of meta events are supported, tempo events and end of 
track events, and they are both slightly altered. Tempo events are 
composed of a meta status byte, (0xFF) a subtype byte (0x51) and three 
bytes that contain the new tempo. (Note that the len byte has been 
removed.) The end of track event is composed of only two bytes, a meta 
status byte, (0xFF) and a subtype byte (0x2F). Care should be taken to 
see that the end of track event occurs after all the notes in the track have 
played out their full duration.
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3. Loops are allowed using a combination of loop start and loop end 
events. A track can have up to 128 loops which can be nested. Each loop 
within a track has a unique loop number. The loop start event is 
composed of four bytes; a meta status byte (0xFF), a loop start subtype 
byte (0x2E), a loop number (0-127), and an end byte (0xFF). A loop end 
event is composed of eight bytes, a meta status byte (0xFF), a loop end 
subtype byte (0x2D), a loop count byte (0-255), a current loop count 
(should be the same as the loop count byte), and four bytes that specify 
the number of bytes difference between the end of the loop end event, 
and the begining of the loop start event. (note that if this value is 
calculated before the pattern matching compression takes place, this 
value will have to be adjusted to compensate for any compression of 
data that takes place between the loop end and the loop start.) The loop 
count value should be a zero to loop forever, otherwise it should be set 
to one less than the number of times the section should repeat. (i.e. to 
hear a section eight times, you would set the loop count to seven.)

4. Running status is supported for all events except across meta events 
and across loop points.

The compressed midi file format uses a system of matching patterns in the 
data, and replacing them with markers, instead of repeating the data. When 
constructing tracks, any pattern of data may be replaced by any previous 
track data with a marker. A pattern marker consists of four bytes. The first 
byte is 0xFE. The second two bytes are an unsigned 16 bit value that specifies 
the difference, in bytes, between the begining of the marker, and the 
begining of the pattern. The last byte is the length of the pattern. In order to 
distinguish between a data byte of 0xFE and a pattern marker’s first byte, 
any data byte of 0xFE will be followed by another byte of 0xFE. 

Note:  The maximum pattern length is 0xFF and the maximum distance 
between the marker and the pattern is 0xFDFF.

Nesting of patterns is not supported. If a marker is encountered within a 
repeated pattern, the marker data will be returned to the sequence player, as 
actual midi data.

Note:  Patterns replaced with markers may not contain bytes of value 0xFF 
or the current loop count byte of a loop end event.
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Chapter 22

22. Nintendo 64 Audio Memory Usage

The following sections discuss the memory used by the audio system in a 
typical application. Memory requirements, and optimization are discussed 
in detail.
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Overview of audio RDRAM usage.

The amount of RDRAM needed by the audio system is dependent on 
numerous factors. Most importantly, the number of sounds being played at 
any given time will determine the size of most buffers. Most buffers must be 
large enough to accommodate the worst case scenario. Applications with 
fewer voices will need fewer buffers. The sample rate and frame rate chosen 
will effect the size of several important buffers.

Audio Buffers

The majority of memory used by the audio, that can be optimized, comes 
from the following buffers:

• The Sample DMA Buffers.

• The Command List Buffers.

• The Audio Output Buffers.

There are several other buffers, but the gains obtained by optimizing them 
are less significant. These include:

• The Audio Thread Stacksize.

• The Synthesizer Update Buffers

• The Sequencer Event Buffers

In addition to optimizing the buffers listed above, it is important that several 
other buffers are no larger than they need to be. While you can’t optimize 
them per se, you should check to make sure that their size is no bigger than 
need be. Important buffers of these type include:

•  The Audio Heap, 

• The Sequence Buffer

• The Bank Control File Buffer

• The Reverb Delay Line Buffer

Because the heap size is dependent on the size of the buffers allocated from 
the heap, it is important to optimize the other buffers first.
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Sample Rate, Frame Rate, and Other Factors

In order to determine the size of most of the buffers, you will need to 
determine several factors first. Most importantly, sample rate and frame 
rate. Higher sample rates will require larger output buffers, more DMA 
space, and larger command list buffers. Likewise, slower frame rates require 
larger output buffers, more DMA buffer space, and larger command list 
buffers.

Note:  Audio frame rate can be different from video frame rate. It is possible 
for the audio to be operating at 60 frames per second, while the graphics are 
operating at 30 frames per second.

In addition to the sample rate and frame rate, the specific sounds, and how 
they are set up can effect the size and number of DMA buffers, as can the 
individual sequences used.
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Optimizing Buffer Sizes.

Audio DMA Buffers

The first area to try and optimize is the number of DMA buffers. These 
buffers are used by the audio synthesizer to store samples from the cartridge 
during creation of the output buffers. In the worst case scenario you will 
need four buffers for every voice you have allocated. However, in practice 
you need only a portion of that. The actual number of buffers you will need 
is very dependent on the sequences and sound effects played. To optimize 
this value, you will need to allocate sufficient buffers to keep from crashing, 
and then play your game for a while. At the end of each frame you should 
be calling a routine that frees DMA buffers that have become stale. (Called   
__clearAudioDMA in example programs.) In this routine, before 
discarding stale buffers, step through the list of used DMA buffers and count 
how many there are. If you keep track of the maximum value, you can report 
this at the end of game play, using your choice of debugging method. The 
following code is an example of how to perform this count.

#ifdef AUD_MEM_PROF
    ampDMAcount = 0;
    dmaPtr = dmaState.firstUsed;
    while(dmaPtr)
    {
        ampDMAcount++;
        dmaPtr = (AMDMABuffer*)dmaPtr->node.next;
    }
    if(ampDMAcount > ampMaxDMABufs)
        ampMaxDMABufs = ampDMAcount;
#endif

Because the number of buffers used can vary slightly, even when playing the 
same music and sound effects, it is always a good idea to have a few more 
buffers than you ever found yourself needing.

In addition to the number of DMA buffers needed, it is helpful to know what 
is the maximum number of DMA’s performed in any frame. This number 
will allow you to optimize the number of DMA message buffers you will 
need. Because the size of a message buffer is substantially less than the size 
of a DMA buffer, the result of this optimization is not much. However, it is 
easily performed since there is a variable that reports the number of DMA’s 
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done each frame. All you need to do is record its maximum value, checking 
it once a frame, and then report that value at the same time you report the 
number of DMA buffers used.

Another place for optimization is the length of the DMA buffers. Longer 
buffers will require fewer buffers, and use fewer DMA’s. Conversely, 
smaller buffers will require more buffers and more DMA’s. Generally, the 
smaller buffers, even though more are required, will use memory more 
efficiently. However, the smaller buffer sizes will also generate more DMA’s 
and for that reason are less efficient in terms of processing time. It is up to 
the developer to decide what trade off between memory usage and 
processing time to pick. Optimal buffer sizes are probably ones that will 
handle enough samples to process one frame of audio. Below, is a table that 
compares the same music played back with various buffer sizes. (All other 
factors were the same.

Table 22-1 DMA Buffer Length.

)

As can easily be seen, the amount of buffer space needed goes up as the size 
of the buffers go up, even though fewer buffers are needed. However, at the 
same time, the number of DMA’s goes down. In this case, probably the value 
of 0x500 is optimal, since it causes the least number of DMA’s per frame in 
the worse case situation, but allows the memory allocated to buffers to be 
smaller than it would be with buffers of 0x600 size.

Another constant that can be changed is FRAME_LAG. This value defines 
how long a DMA buffer will be kept after it has been used. If you continually 
use the same sample, that sample will be kept in memory, and will not need 

DMABufLength MaxDMA/Frame MaxDMABuffers BufLen*MaxBufs

0x600 12 26 39936

0x500 12 30 38400

0x400 14 34 34816

0x300 16 38 29184

0x280 17 43 27520

0x200 22 50 25600
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to be DMA’ed again. Higher lag values will lower the number of DMA’s but 
will increase the number of DMA buffers needed.

Command List Size

Like the number of DMA buffers, the command list size is dependent on the 
sequences and sound effects used by the game. To optimize the command 
list size, simply record the maximum value used, and check that value at the 
end of game play. Because this can vary, even when playing the same audio, 
it is wise to leave a little more than you ever needed.

Output Buffer Size

The output buffer size is determined by the audio playback rate, and the 
frame rate. If you synch audio to the vertical retrace you will need to have 
three audio output buffers. If you synch the audio to the audio completion 
interrupt, you will only need to have two output buffers. Example code is 
included in the example applications demonstrating calculating the size of 
the output buffers.

Audio Thread Stacksize

The audio thread stacksize can be determined using the stacktool, and 
optimized accordingly.

Synthesizer Update Buffers and Sequencer Event Buffers

Synthesizer update buffers and sequencer event buffers are allocated from 
the audio heap when the synthesizer and sequencer are created. There is, at 
present, no way to efficiently optimize these values. However, because the 
size of each buffer is small, it is better to allocate a few too many, than not 
enough.
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The Audio Heap

Once all calls to alHeapAlloc have been completed, you can determine the 
amount of the heap that has been used by subtracting the heap’s current 
value from the heap’s base value. These values are part of the heap structure.

The Sequence Buffer

The sequence buffer needs to be large enough to hold the largest sequence 
that will be used. 

The Bank Control File Buffer

The bank control file buffer needs to be large enough to hold the bank 
control file. This is the <bank>.ctl file.
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Chapter 23

23. Using The Audio Tools

This chapter instructs the musician and sound designer in how to use the 
audio development tools currently available for the Nintendo 64. It is 
divided into the following sections:

• An overview of the audio system. 

• Discusion of the constraints and decisions that should be made in 
conjunction with the programmer or game designer. 

• Suggestions for creating samples. 

• Playback parameters and the .inst file. 

• How to create bank files. 

• MIDI files and MIDI implementation. 

• Music development tools.
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Overview of Audio System

In order for the musician or sound designer to produce sounds and music 
for the Nintendo64, a short explanation of the audio system is helpful, 
though not necessary. To that end, a brief description of the audio system is 
included here. (The audio system is discussed in greater detail in the 
programmers documentation.) In addition to a brief description of the audio 
system, several important items the musician should be aware of are listed 
below.

Brief description of audio system

The audio system for the Nintendo 64 is composed of a Sound Player (for 
playing single samples, such as sound effects) and a Sequence Player (for 
playing music). When the game starts up, it creates and initializes a sound 
player and a sequence player. It then assigns a bank of sound effects to the 
sound player, and assigns a bank of instruments and a bank of MIDI 
sequences to the sequence player. To play a sound effect, the game sends a 
message to the sound player, telling it what sound effect to set as its target, 
and then sends another message to the sound player, telling it to play the 
target sound. To play a MIDI sequence, the game must load the sequence 
data, then attach the sequence to the sequence player, and then send a 
message to the sequence player to start playing the music. 

Note:  Musical sequences can be stored as either type 0 MIDI files, or in a 
compressed midi format unique to the Nintendo64. It is very important that 
the programmer and the musician agree on which file format to use.

There are several components to the sound system. First, there are the 
samples that are stored in ROM. Accompanying the samples are a group of 
parameters used for playback (Key Mappings, Envelopes, Root Pitch, and so 
on). In order to process the sounds, a section of the RAM must be allocated 
for the audio system. 

In software, there are two main sections. One part runs on the CPU and the 
other part runs on the RSP. The audio system must share the RSP with the 
graphics processing. The RSP is where most of the low-level processing 
takes place, and this is where the samples are mixed into an output stream. 
This output stream is then fed to a pair of DACs for stereo output.
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There are four types of files used by the game for audio production: .ctl, .tbl, 
.seq, and .sbk. Before the game can play back either sound effects or music, 
the musician and sound designer must create these files. The .tbl files 
contain the compressed samples. The .bnk files contain the associated 
control information necessary for playback. .bnk files and .tbl files are 
always paired. 

The .seq files are MIDI files that have all unneeded events removed, and the 
.sbk files are banks of .seq files. Typically, there will be at least one pair of 
.bnk and .tbl files for music, and a seperate pair for sound effects. (Although 
it would be possible to put all sounds into one pair, or alternatively, have 
numerous pairs.)

The reason that banks are stored in two files is that then the raw audio data 
doesn’t need to be loaded into RAM; only the information pointing to the 
samples, and the values for the playback parameters. When a sound is to be 
played, only a small portion of the sample is loaded into a RAM buffer. After 
it has been used for playback, it can be discarded, and the buffer reused for 
the next portion of the sample. The result is that a comparatively small 
amount of RAM is needed for sound.

Typical Development Process

When creating audio for an Nintendo 64 game, the musician typically 
follows these steps:

1. Create the samples as AIFF files.

2. Encode the samples into AIFC files.

3. Create a .inst file.

4. Compile the .inst file, with the samples into the bank files.

5. Create the MIDI sequence files.

6. Compile the MIDI sequence files into .seq files, and then compile the 
.seq files into a .sbk file.

7. Deliver the .tbl .bnk and .sbk files to the programmer.
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Common Values

Throughout this document and when referring to .inst files, several things 
are kept constant:

• Middle C (MIDI note 60) is referred to as C4. (Some synthesizer and 
software manufactures refer to Middle C as C3.)

• Pan values range from 0 to 127, with 0 being full left, 64 center pan, and 
127 full right.

• Volumes are from 0 to 127, with 0 meaning there will be no sound, and 
127 being full volume.
452



NINTENDO DRAFT USING THE AUDIO TOOLS
Dealing With Constraints and Allocating Resources

When you use the Nintendo 64 system, there are several choices that you 
must make. Most of these choices center around how to use the fewest 
system resources, while still maintaining a sufficient level of quality. 
Unconstrained by limits on available resources, the Nintendo 64 system is 
capable of audio rivaling top-of-the-line samplers.

Most of the limits in the software system are easily changed. However, in 
most cases a great deal of time can be saved if the programmer, game 
designer, and musician all agree beforehand what these values are going to 
be set to.

The limits on resources will fall into several categories:

• determining hardware playback rate

• limits of voices and processing time

• division of sounds and music into banks

• limits of ROM space

Determining Hardware Playback Rate

The principle decision to make about software is deciding what playback 
rate the hardware should be set to. Typically, rates from 22050 Hz to 
44100 Hz are chosen. Higher rates require the software to produce more 
samples, and consequently take more processing time. Although there are 
no hard rules to follow, values of 44100 Hz are ideal, but values of 32000 Hz 
and 22050 Hz do not produce a substantial loss of audio quality. Values 
below 22050 Hz quickly begin to degrade the quality of the audio. 

Also of considerable importance is the fact that samples sound better if the 
output rate is as close as possible to their sample rate. If all the samples in the 
game are sampled at 22050 Hz, the output quality will be best with a 
playback rate of 22050 Hz. If there is uncertainty in the planning process, it 
is better to start with a higher rate, and resample down later, than to start 
with a lower rate and resample up later.
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Limits of Voices and Processing Time

The factor limiting the number of voices available for playback is the amount 
of time the audio will have for processing. Obviously, the more voices, the 
more processing time needed, and the higher the audio playback rate, the 
more time needed. As a rough guideline, it is estimated that 1% of RSP time 
is needed for each voice, when playing at 44.1k. So, if the audio is given 20% 
of RSP processing time, then fifteen to twenty voices will be possible. 
However, if the audio is given 40% of processing time, then 30 to 40 voices 
will be possible. Remember that a lower output playback rate reduces 
processing time, thus increasing the number of voices available for 
playback.

Division of Sounds and Music Into Banks

There are no formal rules specifying how the sounds and music will be 
organized. However, in most cases it is best to organize the sound effect 
samples into a bank (or banks) separate from the music samples. 

There are two ways that the sequences may be stored in the game. They may 
be stored as separate sequences, or they may be compiled into a .sbk file. The 
music samples and MIDI files should be organized so that each sequence (or, 
if used, each bank of MIDI files) has a corresponding bank of music samples. 
If samples are shared by different MIDI files, they should be stored in the 
same bank. If the sequences do not share the same sample bank, duplicates 
of the samples will be produced in the different bank files.

Limits of ROM

The amount of space available for audio is strictly up to the game developer.
454



NINTENDO DRAFT USING THE AUDIO TOOLS
Creating Samples

Creating samples for the Nintendo 64 is similar to creating samples for any 
sample player. However, there are several additional facts to keep in mind.

To be recognized by the ADPCM tools, the samples should be stored as AIFF 
files, or uncompressed AIFC.

Samples benefit from being sampled at the same sample rate as the output 
playback sample rate. Because all samples are compressed with a variation 
of ADPCM, when they are played back at rates significantly different from 
their sampled rate, the noise can become rather obvious. 

As an example, if the output sample rate is set to 44100 Hz, but the sample 
is sampled at only 22050 Hz, then to playback the sample at its original pitch, 
the sample converter must create two samples from each sample. Worse, if 
the sample is to be played an octave below its original pitch, the sample 
converter must create four samples for each sample. Because of the noise 
and distortion introduced from ADPCM, this will not be nearly as good 
quality as it would be if samples were recorded at 44100 Hz, or if the output 
playback rate were changed to 22050 Hz. For this reason, you may want to 
resample all samples to match the output sample rate, before performing the 
ADPCM conversion

Samples may be looped at any location in the sample. Although many 
ADPCM systems require you to loop samples at specific boundaries (the 
Super Nintendo, for example, required that loop points be multiples of 16), 
the Nintendo 64 makes no such requirement. If a sound is looped, it will loop 
as long as the sound is playing. When a looped sound’s envelope enters the 
release phase, then the sound will still continue to loop. 

All looped samples should last until the next multiple of 16, after the loop 
end. (This is because the ADPCM encoding stores the samples in blocks of 
16.) For this reason, it is prudent to leave at least 16 samples after the loop 
end, on any sample that loops. As a nice feature, the adpcm tools provided 
have an option that truncates any sample to the shortest viable length, so 
there is no benefit to the musician calculating and truncating looped 
samples. 

In other words, when creating looped samples, find your loop points, and 
don’t worry about the release portion of the sample. If you want to truncate 
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the sample, to keep samples on your hard disk smaller, but always leave at 
least 16 samples after the loop end. Then when you encode the samples, 
make sure you use the -t option, and the samples will be automatically 
truncated for you.
456



NINTENDO DRAFT USING THE AUDIO TOOLS
Playback Parameters and .inst Files

This section contains information about how to create the .inst file.

Setting Sample Parameters in the .inst File

In order for the Nintendo 64 audio system to playback samples correctly, it 
must have information for controlling aspects such as pitch and volume. 
These parameters are set by creating and editing a .inst file. Although some 
discussion of parameters follows, it is highly recommended that you review 
an example .inst file, because many of the parameters will be much clearer 
then.

The .inst file is a collection of objects, defined by text using C language 
syntax. The objects are:

• envelopes

• keymaps

• sounds

• instruments

• banks

The objects are related as follows: The basic unit representing a sample is a 
sound. That sound has an associated keymap, which specifies the velocity 
range, key range, and tuning of the sample. Also, the sound has an 
associated envelope that specifies the ADSR used to control the sample’s 
volume. Sounds can be grouped into an instrument. Instruments are then 
grouped into a bank. Currently, there is only one bank in a .inst file. Because 
program control changes are limited to values from 1 to 128, MIDI sequences 
can only use the first 128 instruments in a bank. Game applications can select 
higher values by calls to the audio API.

Differences Between Sound Player and Sequence Player 
Use of .inst Files

The sound player and sequence player use the bank files created from the 
.inst files in different ways. While the sequence player uses the bank to 
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identify instruments, and then uses the keymaps to identify which sound to 
play for what MIDI notes, the sound player does none of this. The sound 
player does not use the bank structure, the instrument structure, or the 
keymap parameters. However, for the .inst file to compile, every .inst file 
must have a bank and an instrument. Also, every sound must point to a 
keymap. This keymap may be shared by all the sounds in the .inst file, so 
only one keymap is needed. 

For these reasons, the example .inst sound effects files are set up with one 
bank, with only one instrument, that lists the sounds in sequential order. 
There is no concern for overlapping of keymaps in this case, because the 
sound player ignores them. However, there is one default keymap, in order 
to allow the file to compile. In order for the pitch of a sound effect to be 
altered from its recorded pitch, the application must set the pitch, not the 
.inst file.

Envelopes

The Nintendo 64 audio system supports the use of ADSR envelopes for 
controlling volume. Envelope time values are in microseconds. (Because 
microseconds are a much finer control than most synthesizers and samplers 
use, musicians will have to adjust their thinking to accommodate much 
larger numbers than are usually used by samplers. Remember, an 
attackTime of 100,000 will produce an attack of one tenth of a second.) 
Maximum volume values are 127. In order to avoid any pops or clicks at the 
ends of sounds, you should always end an envelope with a release volume 
of zero. This is particularly true in the case of looped samples.

When using the sound player to play sound effects, if the decay time is set to 
-1, then the envelope will never enter the release phase. (In other words, it 
will loop forever.) To stop the sound, the game will have to call 
alSndpStop(). 

Keymaps and Velocity Zones

Note:  Keymaps are used only by the sequence player. They are ignored by 
the sound player.
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In addition to an envelope, every sample has a keymap. This keymap defines 
what keys and velocities the sample will respond to. By using different 
keymap settings, it is possible to create instruments that play different 
samples for different keys and velocities.

In the keymap object, you set the minimum and maximum velocity values, 
as well as the minimum and maximum keys to respond. Note that you 
cannot create overlapping keymap zones. When the sequence player is 
trying to map a note to be played, it will search through the possible 
keymaps, and when it finds one that it can use, it will not continue to search.

Note:  The Nintendo 64 imposes an upper limit on the keyMax value of one 
octave more than the keyBase.

Tuning for Samples Recorded at the Hardware Playback 
Rate

In addition to the velocity and key zone information contained in the 
keymap structure, all samples have a keyBase and a detune value. The 
keyBase sets the sample’s pitch in semitones, and the detune value is used to 
fine-tune the sample in cents. (A cent is 1/100th of a semitone.) If the sample 
rate of the sound matches the hardware playback rate, the keyBase is the 
MIDI note value of the sample’s original pitch. If the sample rate does not 
match the hardware playback rate, the keyBase must be altered to 
compensate for the difference in rates. 

As an example, if a note of F4 is recorded at 44100, and the playback rate is 
also 44100, then the keybase should be set to 65 (since 65 is equivalent to 
MIDI note F4) and the detune is set to zero.

Tuning for Samples Recorded at Varying Rates

One of the more complicated aspects of the .inst files is the tuning of samples 
that are not sampled at the same rate as the hardware output rate. 
(remember that the hardware output rate is determined by software, and 
can 
be changed). Although the sample rate will be extracted from the AIFF file, 
you must adjust the keyBase parameter and the detune parameter if you 
want the sample to play back at the correct pitch.
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In order to calculate keyBase and detune from a given sample rate, use the 
following formula:

N = semitones to add to keybase

N= 12log2(HardwareRate/SampleRate)

A much easier way to deal with the tuning issue is to use Table 16-1. In this 
case, pick an acceptable rate from the column that corresponds to your 
hardware rate. Record your sample at that rate (or resample your sample at 
that rate), and then add the number of semitones in the leftmost column to 
the MIDI note value of the samples pitch. Notice that this method insures a 
value of zero for the detune.

As an example, suppose that you had a hardware playback rate of 44100, but 
you wished to critically resample a sample of a trumpet playing Bb4 to a 
sample rate of about 32000 Hz. Instead of using 32000, you would resample 
to a rate of 33037, and then in your .inst file, you would add 5 semitones to 
the midivalue. Since Bb4 is the same as MIDI note number 70, you would 
add 5 and your keyBase value would be 75.

Table 23-1 Tuning to hardware playback rates.

Add to MIDI Value Hardware Playback 
Rate of 44100

Hardware Playback 
Rate of 32000

Hardware Playback 
Rate of 22050

0 semitones 44100 32000 22050

1 semitones 41624.857 30203.978 20812.429

2 semitones 39288.633 28508.759 19644.317

3 semitones 37083.532 26908.685 18541.766

4 semitones 35002.193 25398.417 17501.097

5 semitones 33037.671 23972.913 16518.836

6 semitones 31183.409 22627.417 15591.705

7 semitones 29433.219 21357.438 14716.609

8 semitones 27781.259 20158.737 13890.626

9 semitones 26222.017 19027.314 13111.008

10 semitones 24750.288 17959.393 12375.144
460



NINTENDO DRAFT USING THE AUDIO TOOLS
To extend the above table, or produce a table with a different hardware 
playback rate, use the following formula:

Sample Rate = S

Hardware Rate = H

Number of semitones to add to MIDI value = N

Sounds

A sound structure is simply a reference to the sample, the keymap, the 
envelope, a value for pan, and a value for volume. Pan values are in the 
range of 0 to 127, with 0 equal to full left, 64 equal to center pan, and 127 
equal to full right. Volumes are specified by values of 0 to 127.

Instruments

The instrument structure is a list of sounds grouped into an instrument. If 
the instrument is a musical instrument to be used by the sequence player, it 
is limited to 128 sounds, since that is the maximum number of MIDI notes. 
However, if the instrument is for use by the sound player, it may have as 
many sounds in it as you like. In addition to the list of sounds, the 
instrument has an overall volume and pan. (The sound player ignores these 
volume and pan values. Instead the sound player uses the pan and volume 
values specified in the sound object.)

11 semitones 23361.161 16951.410 11680.581

12 semitones 22050 16000 11025

Table 23-1 (continued)        Tuning to hardware playback rates.

Add to MIDI Value Hardware Playback 
Rate of 44100

Hardware Playback 
Rate of 32000

Hardware Playback 
Rate of 22050

S H

2
N 12

----------------=
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The instrument structure can be used to create Drum Kits. In this case, you 
create an instrument that uses multiple sounds and associated keymaps. 
(There is a good example of this in the General MIDI Bank provided with the 
developer’s package.) 

Banks

At the top level of the .inst file is the bank structure. A .inst file may contain 
as many banks as needed. The bank must be selected by the application, 
since there is currently no way to switch banks via MIDI.

Creating Bank Files

The process for creating sample bank files is as follows:

1. Record the samples and save as .AIFF files.

2. Encode the samples using tabledesign and vadpcm_enc.

3. Create the .inst file.

4. Compile the bank using ic.
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MIDI Files

Sequences can be stored in the game in one of two ways. Either as MIDI file 
Type 0, or in a compressed MIDI file format. To use MIDI Type 0, save the 
file as either a Type 0 or Type 1 MIDI file, and then use midicvt. To use the 
compressed sequence format, save the file as either a Type 0 or Type 1 MIDI 
file, and then use midicomp.

The process for creating MIDI sequence bank files is as follows:

1. Create the sequences and save them as MIDI files of either Type 0 or 
Type 1.

2. Convert the sequences using either midicvt or midicomp.

3. Compile the sequences using sbc.

The following MIDI messages are supported by both file formats:

• Note on

• Note off

• Polyphonic key pressure

• Midi Controllers:

? Controller 7: Channel volume

? Controller 10: Channel Pan

? Controller 64: Sustain

? Controller 91: FXMix

• Program Control changes 0-127

• Pitch Bend Change

In addition to the above MIDI messages, the MIDI file meta tempo event is 
supported. 

Loops in the sequences.

The way loops are implemented in the two sequence formats are very 
different. If a game uses MIDI Type 0 format, the loops must be created by 
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the programmer using audio library calls from within the game code. If the 
compressed sequence type is used, loops are inserted by the musician. This 
is done using midi controllers.

The compressed sequence format supports looping within tracks. A track 
can have as many as 128 loops, which can be sequential or nested. Each loop 
is numbered, and must have a loop start and a loop end. Optionally, it can 
have a loop count, that specifies the number of times the looped section 
should play. Loop counts are limited from 1 to 255. A loop count of zero, the 
default, will loop forever.

Although the format used in the compressed midi file is not detailed here, it 
should be noted that when a file is compressed, midi events are rearranged 
into tracks based on channel. All midi events for channel 1 are put in the first 
track, and all midi events for channel 2 are put in the second track, and 
so on. This is particularly important when considering loops. If a loop is put 
in a track, all midi events from that channel will loop.

To insert loops into a compressed midi sequence, you will need to insert 
extra controllers. These controllers serve as markers for the loop. A loop start 
is defined as a controller number 102. A loop end is defined as a controller 
103. Within a channel, each loop start and loop end pair must have a unique 
number between 0 and 127. This number is what the loop start and loop end 
controller’s value should be set to. A loop count between 0 and 127 is created 
with a controller 104, using values 0 to 127. A loop count between 128 and 
255 is created using controller 105, with values 0 to 127. (When a loop count 
controller 105 is encountered, the value is added to 128 to produce loop 
counts from 128 to 255.)

As a simple example, consider the following sequence:
loop 0 start (controller 102 with value 0)

loop count of 6 (controller 104 with value 6)

loop 0 end (controller 103 with value 0)

In this case the section between the loop start and the loop end will be played 
six times. 

It is important to understand that the loop count is not associated with a start 
and end pair. When a loop end is encountered, it uses the most recent loop 
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count, even if there has already been a loop end for another loop. Consider 
the following sequence: 

loop 0 start (controller 102 with value 0)

loop count of 8(controller 104 with value 8)

loop 0 end (controller 103 with value 0)

loop 1 start (controller 102 with value 1)

loop 1 end (controller 103 with value 1)

In this case, the first loop (loop 0) will have a loop count of 8. The second loop 
(loop 1) will also have a loop count of 8, since once set, the loop count 
continues until changed. If there has never been a loop count in the 
sequence, the loop count is set at its default of 0, which is interpretted as loop 
forever.

Warning:  All loops must have a loop start and a loop end with at least 
one valid midi event in between.

Nesting Loops.

In the compact sequence format it is easy to nest loops. Consider the 
following sequence:

loop 0 start (controller 102 with value 0)

loop 1 start (controller 102 with value 1)

loop count of 8(controller 104 with value 8)

loop 1 end (controller 103 with value 1)

loop 2 start (controller 102 with value 2)

loop 2 end (controller 103 with value 2)

loop 3 start (controller 102 with value 3)

loop count of 4(controller 104 with value 4)

loop 3 end (controller 103 with value 3)

loop forever (controller 104 with value 0)

loop 0 end (controller 103 with value 0)

In this case loop 1 will loop eight times, before the sequence proceeds to loop 
2, which will also loop eight times. After that, loop 3 will loop 4 times, and 
then the entire sequence will loop infinitely.
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Putting Things Together Into Makefiles

In the developer’s kit, there is a directory named viper that shows how files 
would be arranged to build a bank of music samples. The makefile in this 
directory shows examples of setting up rules for files, and dependencies in 
a logical order. When you start a project, you can use these files as a 
template.
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General MIDI and the Nintendo 64

Although the Nintendo 64 is not specifically a General MIDI device, it can be 
configured as one. As part of the developer’s kit, there is a General MIDI 
Bank that demonstrates this. All the sound files used in this bank are also 
provided and may be used by licensed developers in any Nintendo 64 
project.

Currently, MIDI channel 10 is configured to default to program 128. In the 
General Midi Bank, this is the Standard Drum Kit. If you send a program 
change on channel 10, the specified program will be selected, and channel 10 
will no longer be the Standard Drum Kit.
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Chapter 24

24. Scheduling Audio and Graphics

The Nintendo64 audio and graphics chores are shared between the host 
CPU and the RCP. The work to be performed is expressed using an array of 
primitives called a command list. 

The host CPU is responsible for command list generation. Audio command 
lists are generated by calling alAudioFrame(). Graphics command lists are 
generated by calling the various graphics macros defined in gbi.h. In 
addition, the host CPU is responsible for assembling command lists into 
RCP tasks (which consist of command lists, RCP microcode and execution 
state information), and for downloading the task at the appropriate time to 
the RCP.

The RCP is responsible for command list processing. The RCP microcode 
loaded by the host CPU parses the command list, executes the appropriate 
core rendering routines, and writes the results to the video frame or audio 
buffer.

Since the video frame buffer must be updated at a regular rate (usually 30 
frames per second) and the audio buffers must be updated before they are 
emptied by the audio DAC to prevent clicks and pops, the application must 
make schedule the command list generation and processing chores so that 
they happen in a “timely manner”. This chapter identifies the relevant 
scheduling issues and describes the libultra Scheduler that addresses them.
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Scheduling Issues

Command List Generation

Command lists are usually generated during the frame before they are to be 
processed. Though command list generation should take less than a frame 
time to complete, there are infrequent occasions when it may take longer. 
When the host CPU misses its completion deadline, host overrun is said to 
have occurred. 

The effects of host overruns are usually undesirable. If an audio command 
list is not ready to be processed during the next frame time, clicks and pops 
will be introduced into the audio stream. If a graphics command list is not 
ready to be processed, the video frame buffer will not be updated until the 
following frame, which may cause the graphics stream to appear “jerky”.

The effects of host overruns on the audio stream can be minimized if the 
audio and graphics command lists are generated in separate threads. 
Specifically, if the audio thread runs at a higher priority than the graphics 
thread, the host CPU can schedule the audio task even though the graphics 
task may not be completely generated, preventing clicks and pops from 
being introduced into the audio stream. 

Alternately, one could implement a dynamic buffering scheme to prevent 
overrun by dynamically varying the audio data buffer size to accommodate 
any graphics overrun. This approach would require somewhat larger 
buffers and is more difficult to implement since overrun is dependent on 
things that are not known until runtime.

Note:  Calls to alAudioFrame() generate DMA requests, which are assumed 
to be complete when the audio command list is processed. The DMA latency 
depends on the operation of the audio DMA callback which is implemented 
by the application.

Command List Processing

While audio command list processing time is deterministic (based on the 
number of active voices), the graphics command list processing time is 
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variable (based on the complexity of the scene and the perspective of the 
viewer). Unless great care is taken in the construction of the graphics 
command lists, they may require more than a frame time to process. This is 
call graphics (RCP) overrun.

The effects of graphics overrun can be minimized by suspending the 
overrunning task and running the waiting audio task at the beginning of a 
video frame. Graphics tasks can be suspended with the osSpTaskYield() 
function. See the osSpTaskYield man pages for more information.
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Using the Scheduler

The Scheduler is a host CPU thread that addresses the issues discussed 
above. It is responsible for executing audio and graphics tasks on the RCP 
such that host and RCP overrun is minimized or eliminated. 

Each video retrace, the Scheduler reads the new tasks generated by client 
threads from the task queue and adds them to the end of a real-time (audio) 
or non-real-time (graphics) task schedule list. 

If the previous frame’s graphics task has overrun, the Scheduler causes the 
task to yield. It then runs the next audio task, resuming the yielded task 
when the audio task has completely processed, and any additional graphics 
tasks that are to be run to be run in the current frame.

When a task completes, the Scheduler sends a message to the client 
indicating that the work it requested is complete.

Creating the Scheduler: osCreateScheduler()

In order to use the Scheduler, you must first call osCreateScheduler() to 
initialize the OSSched data structure, its message queues and the Vi 
Manager. The osCreateScheduler() function spawns a thread to schedule 
and manage task execution. One of the parameters to this call is the thread 
priority, which should be higher than that of the threads which generate the 
command lists.

Adding Clients to the Scheduler: osScAddClient()

The Scheduler instantiates the Vi Manager and receives all retrace messages. 
However, clients of the Scheduler can receive a copy of the retrace message 
by providing a message queue when they sign in. This is accomplished by 
calling the osScAddClient() function. 

Note:  One of the parameters to this call is the message queue on which you 
wish to receive retrace messages. Make sure that the queue is big enough if 
you don’t want to lose messages, as the Scheduler does not block when the 
queue is full.
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Creating Scheduler Tasks: The OSScTask Structure

In order to send tasks to the Scheduler for execution, you must first create 
and initialize an OSScTask structure. The structure and a description of its 
fields is listed below.

typedef struct OSScTask_s {
    struct OSScTask_s   *next;
    s32                 state;
    u32flags;
    void*framebuffer;

    OSTask list;
    OSMesgQueue*msgQ;
    OSMesg msg;
} OSScTask;

Table 24-1OSScTask structure fields

Field Description

next Not used by client (used by the 
scheduler for list management).

state Not used by client (used by the 
scheduler for state management).

framebuffer Address of the frame buffer for this task 
(if it is a graphics task).

list Structure containing task code and 
command list data (described below).

msgQ The message queue on which the client is 
to receive the task done message.

msg The message that the client is to receive 
when the task in done.
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Table 24-2OSTask structure fields

Field Description

type Task type; should be initialized to 
M_AUDTASK for audio tasks or 
M_GFXTASK for graphics tasks.

flags Various task state bits; should be 
initialized to 0 for audio tasks, or 
OS_TASK_DP_WAIT for most graphics 
tasks

ucode_boot Pointer to boot microcode; should be 
initialized to rspbootTextStart.

ucode_boot_size Pointer to boot microcode size in bytes; 
should be initialized to 
((u32)rspbootTextEnd - 
(u32)rspbootTextStart).

ucode Pointer to task microcode. Should be set 
to one of gspFast3DTextStart, 
gspFast3D_dramTextStart, 
gspLine3DTextStart, or 
gspLine3D_dramTextStart for graphics 
tasks; otherwise aspMainTextStart for 
audio tasks.

ucode_size Size of microcode; should be initialized 
to SP_UCODE_SIZE.

ucode_data Pointer to task microcode. Should be set 
to one of gspFast3DDataStart, 
gspFast3D_dramDataStart, 
gspLine3DDataStart, or 
gspLine3D_dramDataStart for graphics 
tasks; otherwise aspMainDataStart for 
audio tasks.

ucode_data_size Size of microcode data; should be 
initialized to SP_UCODE_DATA_SIZE.
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dram_stack Pointer to DRAM matrix stack; should 
be initialized to 0 for audio tasks and to 
memory region of size 
SP_DRAM_STACK_SIZE8 bytes.

dram_stack_size DRAM matrix stack size in bytes; should 
be initialized to 0 for audio tasks or 
SP_DRAM_STACK_SIZE8 for graphics 
tasks.

output_buff Pointer to output buffer. The “_dram” 
versions of the graphics microcode will 
route the SP output to DRAM rather 
than to the DP. When this microcode is 
used, this should point to a memory 
region to which the SP will write the DP 
command list.

output_buff_size Pointer to store output buffer length. The 
SP will write the size of the DP command 
list in bytes to this location.

data_ptr SP command list pointer. For graphics 
tasks, this is the application constructed 
display list. For audio tasks, this 
command list is created by 
alAudioFrame(3P).

data_size Length of SP command list in bytes.

Table 24-2OSTask structure fields

Field Description
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Note:  Refer to the osSpTaskLoad man page for information about the 
alignment restrictions of the data pointers.

Sending Tasks to the Scheduler: osScGetTaskQ()

Once you have created and initialized a Scheduler task, you can send it to 
the Scheduler thread via the Scheduler’s task queue. You can obtain a 
pointer to this queue by calling osScGetTaskQ(). 

The Scheduler will read this task queue after the next retrace message from 
the Vi Manager. Normally, you will send one audio and one graphics task to 
the Scheduler each frame.

Note:  After you send the task to the Scheduler, you should not modify it 
until you receive the “done” message.

yield_data_ptr Pointer to buffer to store saved state of 
yielding task. If the application is going 
to support preemption of graphics tasks, 
the graphics tasks should have this 
structure member set. This should point 
to a memory region of size 
OS_YIELD_DATA_SIZE bytes. If task 
preemption is not supported by the 
application, this field be initialized to 0. 
Audio tasks should always set this field 
to 0

yield_data_size Size of yield buffer in bytes. When task 
yielding is to be supported by the 
application, this should be initialized to 
OS_YIELD_DATA_SIZE for the 
graphics task. This should always be 0 
for audio tasks.

Table 24-2OSTask structure fields

Field Description
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Chapter 25

25. GameShop Debugger

This chapter describes the game debug environment for the Nintendo 
Nintendo 64 system. It briefly explains the hardware and software 
environments, illustrates recommended programming model, tells you how 
to get started with the debug environment, and introduces you to the most 
commonly used debugger features.

Hardware Environment

For the development system, the ROM on the game cartridge is replaced by 
RAM on the development board; in this chapter, we refer to it as “virtual 
ROM.” This allows the game developer to load the game program into 
memory, control its execution, and observe the effects of modifying the 
game without having to rebuild from source.

The development board plugs into the GIO bus of the workstation. Audio 
and video output connections are provided. Communication facilities 
between the workstation (referred to as the host in the rest of this chapter) 
and the development board (called the target) are via the RAM devices that 
emulate the cartridge ROM and several registers provided for handshaking 
and synchronization.

Software Environment

The software debug environment consists of a number of software modules 
that must be present to support debugging. Some of these will also be 
present in the final game system, but many will not. A good understanding 
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of the software architecture will enable the game developer to deal with 
unexpected situations that arise during a debugging session.

At the highest level, the debugger consists of two major parts. On the 
development host, a graphically oriented source-level debugger called gvd 
is provided. In the target system, a small in-circuit debug monitor called 
rmon acts as the agent for gvd. The operator of the debugger sees only gvd, 
but requests are actually fulfilled by rmon. That is, you may open a window 
on the host for the purpose of looking at memory contents. The host cannot 
access such memory directly, but it can ask rmon to fetch the memory 
contents from the target so that the host can display them. rmon runs as 
three threads under the OS, but these threads spend most of their time either 
blocked (awaiting a host request) or stopped. Thus, they do not interfere 
with the operation of the game (other than taking up some memory) unless 
they are processing debugging commands under operator control.

Like the OS and other library routines, rmon is included in a build only if the 
game developer specifically asks for it. This is done by creating a thread with 
rmonMain specified as the function to be started when that thread is run. 
The rmon program is part of libultra, the Nintendo 64 run-time library. You 
do not need to have any special files to include rmon in a build. Referencing 
rmonMain automatically includes all code and data for all three of rmon’s 
threads.

On the host side, the main program you see is gvd, the debugger. However, 
there are a number of support programs that run in conjunction with the 
debugger. Since gvd is designed to work in other environments as well, it 
uses a separate program called dbgif (for debugger interface) to 
communicate with the target environment. Only dbgif knows the actual 
means of communication with the target system; gvd is independent of such 
concerns. 

Since we wish to share the GIO interface between the host and target with 
other programs (for example, diagnostics), a third module is provided on the 
host. This is a device driver built into the UNIX kernel, and functions as the 
target manager. When any program (such as dbgif) wishes to communicate 
with the target, it issues requests to the u64 device driver. In this way, it is 
possible for two pairs of programs running on the host and target to 
communicate through a single channel without interference.
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Rmon Theory of Operation

As mentioned in the previous section, rmon consist of three threads that run 
under the operating system, but these threads run very infrequently. The 
rmon main thread consists of a command parser, a command dispatcher, 
and a collection of service routines. In operation, the debugger sends a 
request to the target. This request consists of a number of 32-bit words that 
describe the work to be done; for example, “read 40 words starting at 
address 0x10000000 in the address space of thread 6.” 

Note:  All threads run in the same address space in this environment, but the 
debugger could support a more complex environment where this was not 
the case. The debugger does consider the RCP to be a separate address space 
internally.

This request is passed through dbgif to the driver. The host (through 
operation of the driver) alerts the target that it wishes to send a message. A 
very small, high-priority thread called the rmon IO thread responds to the 
interrupts that occur when the driver writes to one of the GIO registers. Only 
one access to the “virtual ROM” is allowed at a time, so the host must wait 
until any DMA access in progress is completed.

When this has happened, the target notifies the host that it is now possible 
to use the memory. At this point, the target system starts a high-priority 
system thread (the rmon spin thread) that keeps the game from running and 
starting any more accesses to virtual ROM. Since the game is not accessing 
this memory, the host is now free to load the request packet into a 
predetermined location at the high end of memory. When the packet has 
been deposited in memory, the host notifies the target that a request has 
arrived. This stops the rmon spin thread. The rmon IO thread notifies the 
main rmon thread and waits for the next interrupt.

The rmon main thread wakes up in response to the message from the rmon 
IO thread. It fetches the incoming packet and dispatches a service routine 
based on what service was requested. In our example, rmonReadMem will 
be called. This function examines the arguments, reads the memory, and 
deposits the contents in another section of virtual ROM as part of a reply 
packet. It then sends an interrupt to the host, alerting it to the arrival of the 
reply packet in memory. The host responds to this interrupt by copying the 
reply packet out of virtual ROM and sending another interrupt to the target. 
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This provides feedback to the target that the host has finished with the reply 
buffer and the target may use it again.

Most transactions between the host and target follow this model, but there 
are a few exceptions. It is likely that the target will asynchronously send a 
packet to the host that is not a reply to a host request. This occurs whenever 
a breakpoint has been encountered, for example. Both host and target “sign 
on” when starting, and each has a reply that it sends to the other when such 
a sign-on is received. The debugger can also process notification that a 
thread has been created and destroyed. While not currently used, these may 
be added in the future.

Target-generated interrupts are received by the driver on the host system 
and routed to processes (for example, dbgif) that have registered that they 
would like to receive a given set of interrupts. (Interrupts are associated with 
a six-bit value identifying which interrupt occurred.) Thus, rmon sends a 
specific interrupt code to the host. This code indicates that the message 
should be send to dbgif and not some other process. The driver does not read 
the communication buffers except as an agent for dbgif or another 
application process.

Programming Model

While a game may use any programming style desired by its author(s), there 
are certain restrictions imposed by the debugger. Those developers who 
want to use the debugger must conform to the rules of the programming 
model to obtain the benefits of source-level debugging. This section 
discusses the restrictions that apply.

The most obvious requirement is that you must use the OS, since the 
debugger depends on it. It will not work under an OS of your own design, 
because it is designed for the Nintendo 64 OS.

Use of the debugger also requires that you restrict thread priorities to a 
specific range. User threads (those that are part of the game) are assigned the 
range 1 through 127, with 127 being the highest-priority thread. The OS does 
not prevent you from assigning thread priorities higher than 127, but you 
will be unable to debug them. In fact, use of priorities in this range may 
prevent the debugger from working at all. While the OS does not impose any 
restrictions on the idlethread (other than the requirement that there be one), 
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the debugger requires that the idlethread be assigned priority level zero. It 
is not sufficient that it be the lowest priority thread in the system: it must be 
zero. Otherwise, the debugger may attempt to suspend it, which will lock up 
the system. The rmon main thread should be set to priority 
OS_PRIORITY_RMON.

The boot procedure for the system is described elsewhere, but some parts of 
it are repeated here because a review is helpful. Each application has a boot 
function, which is called at startup (after security checking, of course). The 
boot function initializes the operating system, and then creates and starts the 
main thread. The boot procedure may also do other things, such as hardware 
initialization, if desired. It can also create other threads, but starting a thread 
is always the last thing the boot procedure does. The reason for this is 
simple; once control is transferred to a thread, there is no way to get back to 
the boot procedure. To enable as much debugging of your start-up code as 
possible, the boot procedure should be minimal—probably just the three 
function calls that are required to start the main thread.

The main thread starts other threads within the system, including the 
debugger thread. There is more flexibility here, although the ability to debug 
system startup is significantly better if the recommended model is followed. 
The recommended model is for the main thread to create all other threads in 
the system, start only the rmon thread(s), and then lower its own priority 
and become the idle thread. Again, you don’t have to do this, but debugging 
will work much better if you do. 

Clearly, you can’t debug any code that comes before starting the debugger 
(rmon) thread. It is also the case that you can’t really debug code that has 
already executed by the time the debugger starts up. This is not so much a 
function of time as it is of the traditional approach used in debugging 
embedded systems like the Nintendo 64. That is, if you want to watch the 
system start from inside the debugger, then you can’t really start running the 
application. Since the debugger is just another thread under the OS, it does 
not keep your application from running off and executing the game 
application. Some debuggers may “hold off” the application until the 
debugger is ready; this one doesn’t.

Of course, this does not mean that you can’t debug the startup of your 
application. It just means you must bring up your system in a stopped state 
and start it running from within the debugger. To do this, your code should 
start only two threads (although it can create as many as it wants, since 
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creating a thread does not cause it to run). The two threads are the rmon 
thread, which is considered to be only one thread for now, and the idle 
thread. Comment out or conditionally compile in the osStartThread calls for 
other threads so that they do not run until told to do so. Running a thread 
from the debugger is exactly like calling osStartThread.

What happens if you don’t follow this procedure and you start all the 
threads in your system? Unfortunately, in most cases the debugger will be 
harder to start, since it needs a stopped thread to connect to. The idle thread 
and the debugger threads will be running, but it is likely that all your 
application threads will be blocked on some event. Since the OS now allows 
waiting threads to be stopped, you may bring up the application in a 
running state, use the multithread view to stop the thread to which you will 
attach, and then use Switch Thread to connect.

Using the Debugger

Once you have all the required software installed on your system, you can 
modify your application to include rmon. Since rmon is rather passive, it 
does not require you to run the debugger. It just waits for incoming requests 
and does not interfere with the game operation unless requests arrive. An 
include file, rmon.h, is provided as part of the distribution. It should be 
included by the file that creates and starts the rmon thread.

Once you have built your application, you are ready to debug it. 

1. Start dbgif in a window of its own. 

2. Download your application with gload. 

3. You may now start gvd itself. 

For the Nintendo 64, it is required that gvd be started with the name of 
your executable (the boot executable, if there is more than one) on the 
command line. For example, if your executable is named sample, you 
would enter:

gvd sample &

The debugger starts. It makes no attempt to contact the target system 
yet.
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You should have a source window and a small status window (which 
may be minimized if desired). Now you must establish a link to the 
target. 

4. Select the Admin pulldown menu and click Switch Thread. 

You will be prompted for the ID of the thread to which you wish to 
connect. Under the OS, threads do not really have small integer ID’s; 
instead, they are referenced by the address of their thread control 
blocks. When you created the thread initially, you assigned it an ID for 
the debugger to use. 

5. Specify the ID you assigned to the thread to which you will be 
attaching. 

You may only attach to a thread that is in a stopped state. If you start 
the application with all threads stopped as recommended above, you 
will not have any problems attaching. 

Once you have successfully attached, the host and target will communicate 
to pass information about the system state back and forth. This takes a few 
seconds, or even longer if you have many threads. Once completed, you may 
bring up other views as appropriate to your debug session. Open views by 
selecting the Views pulldown menu and then clicking on the view you wish 
to see. The most frequently used of these are:

• register view

This is where you may examine or modify the contents of all R4300 
registers (except for some system control registers). Note that these 
registers apply to the thread to which you are currently attached. 
Switching threads with this view open refreshes it with the register 
contents for the new thread. You can only examine and modify the 
registers of a thread that is stopped. 

• memory view

As you would expect, this is where you examine and modify memory 
contents. You may specify the window origin by address or symbol. 
This window has two modes. In single-word mode, it displays and 
modifies exactly one memory word without touching any other 
locations. This is the mode you would use for dealing with 
memory-mapped registers. In block mode, it displays a block of 
memory from the specified starting address. The size of the block is 
mostly determined by the size of the window on your screen. 
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Stretching the window gives you more memory to look at. Shrinking it 
gives you less. You may specify the base in which you wish memory to 
be displayed.

• disassembly view

This view shows you memory contents as disassembled code based on 
the current PC value, or else disassembled from some address you 
specify. The source line corresponding to the disassembled memory is 
also displayed. There are a number of configuration options for this 
window that let you customize it to the display that you find most 
useful. 

• trap manager 

This view shows you all breakpoints that are set. Breakpoints also show 
up in the source and disassembly windows as pink lines. The current 
PC shows up as a green line.

The source view, which is the main view of gvd, consists of a set of control 
buttons for running and stopping the selected thread, plus two other 
windows. The source window (the middle portion of the view) displays the 
source at the current PC (by default), and tracks the program counter to keep 
it on screen whenever possible. You may set breakpoints here by clicking in 
the margin to the left of the line at which you wish to set the breakpoint.

The bottom of the source view is a small command line window where you 
may enter commands and see the results. The mouse cursor must be in this 
window to use it. This window is usually used to examine data objects like 
structures. For example, if you wish to look at a message queue called 
audioMQ, you can enter print audioMQ, and the contents of the structure 
(including all its members) will be printed. Since the compiler and debugger 
were designed to work together, the debugger has quite good type 
information for displaying complex structures like this. 

If you plan to use this window much, it is probably a good idea to move the 
debugger higher on the screen and stretch the bottom down to enlarge the 
command portion of the view. The default size is a bit small. This window 
accepts most dbx commands, for those of you familiar with this popular 
UNIX debugger.

The command window is also useful for setting breakpoints in functions 
that are not on screen because they are in a different source file. While you 
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can always change source files and set a breakpoint, it is more convenient 
(providing you wish to stop at the start of a function) to use the “stop in” 
command. If you know that you are trying to isolate a problem in a function 
called sendDisplayList, then it is probably best to type stop in 
sendDisplayList in the command window, then click Continue. This 
will run your application until any thread enters the specified function. 

Note:  Encountering a breakpoint stops all threads with priorities in the user 
range (1 through 127). In general, coprocessor interrupts are blocked while 
rmon is running, and CPU interrupts are enabled.

The Admin pulldown menu also contains a few other useful items. First, this 
is how you exit the debugger. You may also change to a different executable 
here, but you should then do another Switch Thread command. There is a 
multithread view in this menu, which is useful to have opened if you use 
more than one thread. It allows you to start and stop threads as a group, and 
indicates whether a given thread is running or stopped. If stopped, it shows 
you which function it was executing. It also shows you the name of the 
thread data structure used in thread system calls.

You will probably find gvd to be fairly intuitive, especially if you have used 
other source level debuggers. The online help should answer most questions 
that arise in debugger operation.
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Chapter 26

26. Performance Tuning Guide

The following sections will discuss

• Data Reduction

• Geometry Tuning

• Raster Tuning

• CPU Tuning
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Data Reduction

Game World Organization

The most important performance tuning technique in graphics is to discard 
as much geometry as possible before animation computation and rendering. 
Depending on your game, you can organize the geometry in several ways 
that enable rapid culling of large quantities of data. One example is a simple 
grid of fixed-sized regions:

Figure 26-1 Fixed Size Grid Database Organization
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You could also build a hierarchy of different-sized grids to give you a 
quadtree:

Figure 26-2 Quadtrees

You can extend this into 3D and get either a fixed size cube organization or 
octrees. Keep in mind that you are trying to eliminate work; not just graphics 
rendering but also texture loads and animation processing such as collision 
detection.

The grid need not be regular either, you could also use other boundaries if it 
suits your data. One example of this is a “portal connectivity” organization 
inside of a building. In a building with rooms and hallways, the possible list 
of things that you can see can be represented by a portal connectivity 
description, which lists which rooms of the building are possibly visible.
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You can further reject more data by testing a list of screen projected portal 
rectangles against visibility to determine whether to consider data in a 
particular room or hallway.

Figure 26-3 Portals Connectivity Visibility
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Hierarchical Culling

Throwing away geometry to eliminate processing does not have to stop at 
the top level. A common organization at the object level is a bounding 
volume test to eliminate objects (see gSPCullDisplayList()).

Figure 26-4 Bounding Sphere Test
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Geometry Tuning (gspFast3D - Precise Microcode)

The standard gspFast3D microcode contains very precise subpixel x,y 
calculations for antialiasing and precise s,t calculations for large screen area 
textures. This precision is required for terrain or background polygons that 
are large.

This microcode is full featured, including lighting, clipping, texture 
coordinate generation (reflection mapping).

Vertex Grouping

The geometry microcode has a local vertex cache. Loading a block of 
vertexes can amortize the cost of per vertex calculations (transformation, 
lighting, texture coordinate computation).

Careful organization of the database can minimize these calculations. In 
general, it is best to load the vertex cache with as many vertices as possible, 
then draw all the geometry which uses those vertices.

Pre Lighting

For non-dynamic lighting effects, lighting computations can be calculated at 
model time, then rendered with simple Gouraud shading.

Clipping and Lighting

This microcode does not have enough instruction space to hold lighting and 
clipping code. It swaps them in from the dram using a least recently used 
algorithm. Since lighting occurs during vertex load and clipping occurs 
during polygon drawing, there are natural blocks of work following each 
ucode load. Loading just a few vertices and then drawing a small number of 
triangles will cause this microcode loading to “thrash”.
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Note:  We have not seen performance degradation due to this swap in any 
games. Game developers did not realize that this was happening until we 
told them. Large block DMA transfers (such as microcode loads) are very 
efficient.

Kinds of Polygons

The cost of geometric processing in the RSP is listed below in the order of 
decreasing performance.

• Flat Shade (using gDPSetPrimColor (3P) to select the color)

• Gouraud Shade

• Gouraud Shade + Z- buffer

• Gouraud Shade + Texture

• Gouraud Shade + Z-buffer + Texturing

Textures instead of Geometry

When possible, use textures to represent complex geometry. The RCP is 
designed to draw high-quality textured primitives. Achieving complexity 
by using additional geometry will always be slower than using textures.

Geometric Level of Detail

When objects get far away or have rapid animation, you can render it with 
less detail without noticeable loss of detail.
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Geometry Tuning (Turbo Microcode)

The gspTurbo3D microcode is a feature-limited, precision-reduced, 
optimized version of the 3D polygon microcode. It uses a completely 
different display list organization that is more efficient, but less general.

Because of the reduced precision, the turbo microcode is not suitable for 
drawing backgrounds or objects with precise textures. It is designed to draw 
“characters”, objects that generally remain in the middle of the viewing 
frustum.

The following features are not supported with the turbo microcode:

• clipping

• dynamic lighting

• perspective-corrected textures

• matrix stacks

• antialiasing (anti-alising is supported, but not as well).

Current performance measurements of this microcode are >5K polygons per 
frame @ 60 Hz. For more information, consult the man page for gspTurbo3D 
(3P).

This microcode is in it’s first release and may change.
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Raster Tuning (Fillrate)

Disable Atomic Primitives

Atomic primitive mode (gPipelineMode(G_PM_1PRIMITIVE)) is intended 
to avoid span buffer coherency problems which can be caused by sucessive 
primitives with overlapping spans during “read-modify-write” modes 
(z-buffered or blended modes). The 1PRIMITIVE mode inserts a delay into 
the pipeline  between each primitive to make sure there are no overlaps.

In reality, the overlap case is very rare, and would be hard to see unless you 
were looking for it. In the worst case, the lost cycles between primitives can 
add up to about 1-1.5Mpixels/sec of lost fillrate. 

To disable the atomic primitive mode, use the command 
gPipelineMode(G_PM_NPRIMITIVE).

Partial Sorting for Z-Buffer

A “partial sorting” of objects being drawn can accelerate rendering when 
using z-buffering. The z-buffer test is a conditional write, so if objects are 
drawn in roughly front-to-back order, this test will often prevent the write 
to update the z-buffer value.

No Z-Buffer

Z-buffer causes major penalty in fillrate. Antialiasing also causes some 
performance loss in fillrate. We have included a simple performance tool 
(blockmonkey) in the release to give you a feel for geometry and fillrate 
performance.

There are many visibility sorting algorithms available and even more 
hybrids of these algorithms. There are also properties of particular games 
that impart valuable information about depth order. If a game can use these 
techniques and avoid z-buffering, performance will improve.
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Convex Objects

If a group of objects are all convex, a centroid or bounding volume sort and 
back-face rejection will give the proper rendering order.

Meshed Objects

Many meshed objects have a small number of mesh traversal orders which 
are correct sorts at arbitrary orientation, even though they are concave. 
Meshed object are topologically 2D, for example, a torus, a terrain height 
field, building corridors, etc. With one batch of vertex points, one of several 
polygon descriptor display lists could be selected by view location. For 
example, the polygons in a terrain mesh might have four orders across the 
mesh, S+T+, S-T+, S+T-, S-T-. The two sides of the mesh then closest to the 
view point select the order.

Cell Based Scenes

Cells are simply a higher level of mesh, where the cell draw order can be 
determined from view.

Layered Scenes

Often layers of data are known never to be behind another (buildings on a 
landscape, furniture in a room). then the layers can be drawn in this order, 
with only a sort within each layer.

Bucket Sort

Attractive since data need only be accessed once. A linked list of buckets can 
avoid local overflow without excessive memory usage. the bucket can be a 
display list, for example, of calls to clumps.

Avoid Cyclic Objects

Clumps of polygons in which NO sort order is correct (three long triangles 
arranged in a triangle in which at each corner a different triangle is in front) 
have no visibility solution without subdivision.
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 Game-Specific Visibility

Many game situations provide implied visibility order between objects or 
even within objects. Consider a jet fighter flight simulator game: The player 
is always moving “forward” (in general) and targets attack from a limited 
number of directions. This could allow you to model the targets carefully 
and achieve correct surface visibility determination, even if they are not 
strictly convex.

No Antialiasing

Turning off antialiasing can help increase fillrate. To minimize the aliasing 
effects, you can increase the horizontal resolution of the framebuffer. 
Performance tests (blockmonkey) show that 512x240 “no AA no ZB” is faster 
than 320x240 “AA no ZB” on large polygons. In some cases, this is better 
than a 25% gain, in exchange for an increase in framebuffer size.

On smaller polygons, you will pay a 5% to 10% fixed overhead due to 
additional video bandwidth. Both antialiasing and dither filter video 
hardware require fetching 3 scanlines and filter down to produce a single 
scanline of video.

Reduced Aliasing

Reduced Aliasing refers to a blender mode (see the G_RM_RA* macros in 
gbi.h)  in which the color and the pixel coverage  are only written instead of 
the normal read/modify /write cycle.  In this mode  silouette edges will be 
antialiased, but internal edges of an object will not be antialiased.   This 
mode works with and without z-buffering.

 Silouettes can also have artifacts in this mode when displayed on top of a 
surface which has edges through it, such as a tesselated background, which 
has also been rendered in this mode.  This is because the edges in the 
background will be partial, rather than fully covered.  In this case, the pixel 
will have multiple partial fragments, and the antialiasing on the silouette 
will look wrong.  A possible workaround for this problem is to  render the 
background in non-antialiased mode, which will write full coverage to the 
framebuffer.  Then render the foreground characters using this reduced 
antialiasing mode.
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CPU Tuning

Parallel Execution of the CPU and the RCP

Full speed rendering in the Nintendo64 can only be accomplished by fully 
utilizing all of it’s resources. One of the most powerful is the coarse-grain 
parallelism that can be achieved between the CPU and the RCP.

There are many ways you can exploit this parallelism, here are some ideas:

• compute game and animation parameters for frame (n+1) while 
frame (n) is rendered with the RCP.

• compute game and animation parameters while another RCP task 
is computing. If your game includes several RCP tasks per frame, 
you can pipeline them so the CPU and the RCP are always busy at 
the same time.

• instruct the RDP to render from a DRAM display list while the RSP 
is used to compute another task, such as audio.

Sorting

A detailed analysis of sorting algorithms is beyond the scope of this 
document. The reader is referred to texts by Knuth1 or Sedgewick2, among 
others. It is useful to review major properties of sorting algorithm analysis 
and see how they relate to real-time system performance.

Properties of sorting algorithms which we want to compare include:

• best case sorting time

• worst case sorting time

• average case sorting time

1 Knuth, D. E., The Art of Computer Programming, Volume 3: Searching and Sorting, Addison-Wesley 
Publishing, 1973, ISBN: 0-201-03803-X.

2 Sedgewick, R., Algorithms in C, Addison-Wesley Publishing, 1990, ISBN: 0-201-51425-7.
502



NINTENDO DRAFT PERFORMANCE TUNING GUIDE
• additional memory requirements

• size of the code to implement

• ability to exploit coherence.

The time to sort is probably the most important; obviously we want to 
choose an algorithm that is fast. But it is not that easy. Some of the fastest 
sorting algorithms have the widest disparity between their average time and 
their worst-case time. This makes it difficult to predict performance 
necessary for a real-time system.

Often the difference between worst-average-best-case performance is the 
initial order of the data. By knowing what we are sorting (and why) we can 
choose a better sort. For example, if we are sorting Z-values in order to 
determine visibility drawing order, we can reason that this order varies only 
slightly from frame to frame (objects do not move “dramatically” and sort 
interchanges are local). By exploiting this frame to frame coherence, we can 
choose a sort with linear performance for the “already nearly sorted” case, 
speeding up our sort tremendously.

Additional memory requirements are also a major concern in an embedded 
system. They must be minimal, and most of all, predictable. Consider the 
sorting problem when designing your data structures.
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Symbols
.aiff file 374
.bnk file 426
.ctl file 373, 378, 402, 447, 451
.inst file 76, 397, 449, 451, 457, 458, 459, 462
.sbk file 423, 451, 454
.seq file 451
.sym file 402
.tbl file 402, 426, 451
/usr/sbin 31
/usr/src/PR 30
/usr/src/PR/assets 30
/usr/src/PR/conv 31
/usr/src/PR/libultra 31
/usr/src/PR/relnotes 30
__clearAudioDMA 444
_gsDPLoadTextureBlock_4b 262

Numerics
0x0 122, 139
0x80000400 120
1/w 184, 186
3D transformations 63
4Dgifts 70
64-bit, R4300 46
9-bit RDRAM 318

A
AA_EN 337
a-buffer 340
accuracy, z 325
active page register 58
ADD render mode 344, 345
address 47
ADPCM 369, 373, 385, 401, 402, 405, 412, 413, 414, 426, 435, 

455
ADPCM decoder 437
ADPCM decompressor 436
ADPCM predictor 436
ADPCM tools 455
ADSR 406, 430, 457, 458
AI 48, 86, 95, 102, 111, 114
AIFC 76, 412, 413, 435, 451, 455
AIFC spec 435
AIFF 76, 374, 405, 412, 413, 426, 435, 451, 455, 462
AIFF file 459
AIFF-C 405
AL_FX_CUSTOM 388
AL_FX_ECHO 391

AL_FX_SMALLROOM 392
alAudioFrame 65, 372, 382, 383, 395, 469, 470, 475
ALBank 427
ALBankFile 373, 377, 426
alBnkfNew 373, 378, 426
ALCSeq 376
alCSeqGetLoc 377
alCSeqNew 376, 377
alCSeqNewMarker 377
alCSeqNextEvent 377
alCSeqSecToTicks 377
alCSeqSetLoc 377
alCSeqTicksToSec 377
alCSPDelete 379
alCSPGetChlFXMix 380
alCSPGetChlPan 379
alCSPGetChlPriority 380
alCSPGetChlProgram 380
alCSPGetChlVol 380
alCSPGetSequence 379
alCSPGetState 379
alCSPGetTempo 379
alCSPGetVol 379
alCSPNew 379
alCSPPlay 379
alCSPSendMidi 380
alCSPSetBank 379
alCSPSetChlFXMix 380
alCSPSetChlPan 380
alCSPSetChlPriority 380
alCSPSetChlProgram 380
alCSPSetChlVol 380
alCSPSetSequence 379
alCSPSetTempo 379
alCSPSetVol 379
alCSPStop 379
ALDMANew 382
ALDMAproc 382, 383, 384
ALEnvelope 430
alHeapAlloc 447
alHeapInit 372
Alias 70, 71, 72
aliased 271
aliasing 271, 301
alignment 48
alignment, 16-bit 37, 58
alignment, 16-byte 48
alignment, 64 byte 36
alignment, 64-bit 37, 58, 139, 320
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alignment, 64-byte 210
alignment, color index palette 244
alignment, image 320
alignment, memory 58
alignment, screen 272
alInit 372, 382, 383, 386
ALInstrument 428
ALKeyMap 431
alpha 287, 332, 336
alpha combiner 291
alpha compare 205, 278, 298, 356
alpha dither 312, 336
alpha times coverage 337
ALPHA_CVG_SEL 337, 338
ALSeq 376
alSeqGetLoc 377
alSeqNew 376, 377, 378
alSeqNewMarker 376, 377
alSeqNextEvent 376, 377
ALSeqpConfig 397
alSeqpDelete 379
alSeqpGetChlFXMix 380
alSeqpGetChlPan 379
alSeqpGetChlPriority 380
alSeqpGetChlProgram 380
alSeqpGetChlVol 380
alSeqpGetSequence 379
alSeqpGetState 379
alSeqpGetTempo 379
alSeqpGetVol 379
alSeqpLoop 380
alSeqpNew 378, 379
alSeqpPlay 378, 379
alSeqpSendMidi 380
alSeqpSetBank 378, 379
alSeqpSetChlFXMix 380
alSeqpSetChlPan 380
alSeqpSetChlPriority 380
alSeqpSetChlProgram 380
alSeqpSetChlVol 380
alSeqpSetSeq 378
alSeqpSetSequence 379
alSeqpSetTempo 379
alSeqpSetVol 379
alSeqpStop 378, 379
alSeqSecToTicks 376, 377
alSeqSetLoc 377
alSeqTicksToSec 376, 377
alSndpAllocate 373, 375

alSndpDeallocate 374, 375
alSndpDelete 374, 375
alSndpGetSound 375
alSndpGetStates 375
alSndpNew 373, 375
alSndpPlay 374, 375
alSndpPlayAt 375
alSndpSetFXMix 375
alSndpSetPan 375
alSndpSetPitch 375
alSndpSetPriority 375
alSndpSetSound 373, 374, 375
alSndpSetVol 375
alSndpStop 374, 375, 458
ALSound 373, 429
alSynAddPlayer 384, 393, 394
alSynAllocFx 393
alSynAllocVoice 384, 393
alSynDelete 393
alSynFreeFx 393
alSynFreeVoice 393
alSynGetFXRef 394
alSynGetPriority 393
alSynNew 382, 393
alSynRemovePlayer 393
alSynSetFXMix 386, 393
alSynSetFXParam 394
alSynSetPan 393
alSynSetPitch 393
alSynSetPriority 385, 393
alSynSetVol 393
alSynStartVoice 385, 393
alSynStartVoiceParams 393
alSynStopVoice 385, 393
ALVoice 384
ALVoiceHandler 395
ALWaveTable 373, 374
ALWavetable 432
ambient 156
animation, sprite 273, 293
antialiasing 46, 63, 74, 119, 175, 203, 204, 207, 301, 302, 327, 

340, 342, 343, 356, 496, 498, 501
application thread 33
artifacts, aliasing 271
artifacts, antialiasing 328
artifacts, filtering 274
aspMainDataStart 474
aspMainTextStart 474
attack 374
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attack-decay-sustain-release 406, 430
audio 33, 372
audio buffers 442
audio command list 383
audio DAC 41
audio development tools 449
audio DMA callback 383, 470
audio heap 372, 382, 386, 442, 447
audio interface 43, 46, 86, 102
audio library 64, 65, 369
audio playback 52
audio playback rate 382
audio processing 45
audio system 449
audio tools 401
audio waveform 373
Autodesk 3DStudio 71

B
back-face rejection 63, 154, 500
back-facing polygon 329
background image 297
bank 447, 457, 462
bank control file 447
bank file 377, 426, 449, 451, 454
bank object 403
bank, MIDI 30
bilinear filter 193
billboard 205, 262, 286, 332, 333
binary separating planes (BSP) 70
bitmap 354
BL 45, 176, 203, 204, 205
blend 337
blend color 205, 206
blender 45, 203, 301, 305, 310, 317, 327, 331, 345
blender equation 310
blender mode bits, cycle-dependent 345, 346
blender mode bits, cycle-independent 345
blender mode, creation 345
blending 63
blockmonkey 499
blue screen photography 201
Boot 87
boot location 120
bounding volume 495
bounding volume sort 500
box filter 193
breakpoint 93, 486
bss 123

buffers, audio command list 442, 446
buffers, audio output 442
buffers, audio sample DMA 442, 444
buffers, audio sequence 442
buffers, sequence 447
buffers, sequencer event 442, 446
buffers, synthesizer update 442, 446
bus bandwidth 48
byte ordering 425
bzero 119, 123

C
C programming language 38, 47, 58, 67, 77, 137, 457
C, middle C 431, 439, 452
c_dev 30
C3 452
C4 452
cache coherency 55
cache flushing 54
cache invalidate 48
cache line 55, 118
cache line tearing 48
cache, data 118
cache, two-way set-associative 55
cache, vertex 72, 149
cache, write back 118
cached address 128
cached, unmapped 47
CART 95
CaseVision 30
CAUSE register 93
CC 45, 176, 195, 200
cell based scenes 500
centroid sort 500
chroma key 201
CI 190, 215, 221, 290
clamp, coverage 333
CLD_SURF 343, 344, 345
clip ratio 152
clipping 63, 152, 496, 498
clock speed 48
cloud 287, 336
cloud surface 342
cloud surface mode 344
clouds 316
CLR_ON_CVG 330, 337, 338
codebook 436
codecs 65
coherency, span buffer 182
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color combiner 45, 193, 195, 200, 278, 288, 291, 295
color combiner input 196
color combiner registers 197
color combiner sources 195
color index 188, 290
color index texture 240
color space conversion 194
command buffer, RDP 109
command list size, audio 446
command list, audio 469
command list, graphics 469
comp.graphics 70
comp.sys.sgi 70
compare, Z 320
compiler, C 77
compiler_dev 30
compressed audio 373
compression 281
Computer Midi Interface 421
computer monitor 74
concave 500
controller input 66
controller interface 86
controllers, sequence player 381
conversion tools 31
convex 501
convex objects 500
coordinate system 146
coprocessor 0, R4300 56
Coprocessor Unusable 93
copy mode 180, 277, 298
copy pipeline mode 276
COUNTER 95
coverage 184, 304, 306, 314, 333, 335, 337, 340, 342
coverage overflow 337
coverage unit 306
coverage value 331, 332
coverage, zap 338
CPU 41, 45, 48, 52, 54, 84, 89, 91, 113, 127, 450, 469, 502
CPU Fault 37
CPU_BREAK 95
cracks 306
culling 492
culling, hierarchical 495
culling, polygon 154
culling, volume 154
CVG_DST 337, 338
CVG_DST_SAVE 317
CVG_X_ALPHA 337, 338

cyclic objects 500

D
DAC 370, 372, 450, 469
data cache, R4300 46, 47, 54, 118, 139
dbgif 31, 67, 480, 481, 482, 484
dbx 486
debugger 67, 90, 93, 124, 479, 480, 481, 482, 484
debugging 37
DEC_LINE 339, 341
decal 295, 337, 343
decal line mode 334, 340
decal surface 332, 333, 334
decay 374
degenerate polygons 331
delta Z 304, 321, 323, 328, 341
depth compare 320
detail texture 229, 230, 233
detune value 459
dev 30
development board 479
development system 48
device driver 101, 480
Device Manager 107
DI 95
diffuse 156
disassembler 37
display list 61, 115, 116, 135, 137, 141, 218
display list, audio 65
display list, optimal 142
display list, RDP 45
dither filter 501
dither, alpha 312
dither, color 210
dither, noise 312
dither, screen coordinate based 312
dithering, color 211
divot 334
DM 107
DMA 37, 44, 46, 48, 54, 55, 56, 58, 101, 112, 114, 139, 383, 

445, 470
DMA, audio 445
DMedia 5.5 421
dmedia_eoe (version 5.5) 30
DMEM 44, 115, 135
DP 86, 109, 114
DRAM 60, 63, 239, 475
DRAM, 9-bit 119, 210
dynamic memory allocation 58
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E
effects 386
envelope 373, 377, 402, 406, 457, 458, 461
environment color 197
environment mapping 168
error, Z 325
event 84
example application 384
exception 37, 85, 93
exception handler 85
executable 484
explosions 316

F
far plane 325
fast clears 45
FAULT 34, 95
fault handler 34, 93
file system 87
fill color 211
fill mode 180
FILL_COLOR 352
filter 271
filter, average 276
filter, bilinear 193, 272, 274
filter, bilinear restrictions 193
filter, box 193
filter, point sampling 193
filter, triangular 275
filter, video 314
fixed-point 144, 147, 185, 271
flip, texture 279
floating-point, R4300 46
flt2c 31, 72
fog 169, 179, 203, 205, 206, 313
fog alpha 318
fog color 205
FORCE_BL 317, 337, 338
format, image 318
fractal 234
frame rate, audio 443
FRAME_LAG 445
framebuffer 41, 43, 45, 46, 48, 49, 119, 203, 205, 210, 298
framebuffer alignment 210
framebuffer, color 58
framebuffer, depth 58
frequency, texture 271
FRUSTRATIO_1 152
frustum clipping 63

ftp 70

G
G_AC_DITHER 206, 316, 336
G_AC_NONE 206
G_AC_THRESHOLD 206, 298, 315
G_AD_DISABLE 312
G_AD_NOISE 312
G_AD_NOTPATTERN 312
G_AD_PATTERN 312
G_BL_1 317
G_BL_A_FOG 317
G_BL_CLR_IN 317
G_BL_CLR_MEM 317
G_CC_ADDRGB 198
G_CC_ADDRGBDECALA 198
G_CC_BLENDI 199
G_CC_BLENDIA 199
G_CC_BLENDIDECALA 199
G_CC_BLENDPEDECALA 289
G_CC_BLENDRGBA 199
G_CC_BLENDRGBDECALA 199
G_CC_CHROMA_KEY2 202
G_CC_DECALRGB 198
G_CC_DECALRGBA 198
G_CC_HILITERGB 199
G_CC_HILITERGBA 199
G_CC_HILITERGBDECALA 199
G_CC_INTERFERENCE 200
G_CC_MODULATEI 199
G_CC_MODULATEI_PRIM 199, 288
G_CC_MODULATEI2 200
G_CC_MODULATEIA 199
G_CC_MODULATEIA_PRIM 199
G_CC_MODULATEIDECALA 199
G_CC_MODULATEIDECALA_PRIM 199
G_CC_MODULATERGB 199
G_CC_MODULATERGB_PRIM 199
G_CC_MODULATERGBA 199
G_CC_MODULATERGBA_PRIM 199
G_CC_MODULATERGBDECALA 199
G_CC_MODULATERGBDECALA_PRIM 199
G_CC_PASS2 200
G_CC_PRIMITIVE 198
G_CC_REFLECTRGB 199
G_CC_REFLECTRGBDECALA 199
G_CC_SHADE 198
G_CC_SHADEDECALA 198
G_CC_TRILERP 200
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G_CD_BAYER 312
G_CD_DISABLE 312
G_CD_MAGICSQ 312
G_CD_NOISE 312
G_CK_KEY 202
G_CULL_BACK 154
G_CULL_BOTH 154
G_CULL_FRONT 154
G_CV_K0 194
G_CV_K1 194
G_CV_K2 194
G_CV_K3 194
G_CV_K4 194
G_CV_K5 194
G_CYC_1CYCLE 181, 206, 310, 314
G_CYC_2CYCLE 181, 207, 263, 290, 310, 314, 344
G_CYC_COPY 181, 205, 276, 277, 315, 316, 344
G_CYC_FILL 181, 205, 315, 344
G_FOG 169, 207
G_IM_FMT_CI 189
G_IM_FMT_I 189, 288
G_IM_FMT_IA 189
G_IM_FMT_RGBA 189
G_IM_FMT_YUV 189
G_IM_SIZ_16b 189
G_IM_SIZ_32b 189
G_IM_SIZ_4b 189
G_IM_SIZ_8b 189
G_LIGHTING 168
G_MAXFBZ 211
G_MTX_LOAD 145
G_MTX_MODELVIEW 145, 157
G_MTX_MUL 145
G_MTX_NOPUSH 145
G_MTX_PROJECTION 145, 157
G_MTX_PUSH 145
G_OFF 150
G_ON 150
G_PM_1PRIMITIVE 183, 499
G_PM_NPRIMITIVE 183, 499
G_RM_AA_TEX_EDGE 287, 289, 291
G_RM_AA_ZB_OPA_SURF 204
G_RM_AA_ZB_OPA_SURF2 204
G_RM_CLD_SURF 317
G_RM_FOG_PRIM_A 204, 205, 207
G_RM_FOG_SHADE_A 204, 205, 206, 314
G_RM_NOOP 299, 315
G_RM_OPA_SURF 344
G_RM_PASS 204, 205

G_RM_TEX_EDGE 289, 316
G_RM_VISCVG 346
G_RM_VISCVG2 346
G_RM_ZB_CLD_SURF 317
G_RM_ZB_OPA_SURF 299
G_RM_ZB_OPA_SURF2 206
G_TD_CLAMP 192
G_TD_DETAIL 192
G_TD_SHARPEN 192
G_TEXTURE_GEN 168
G_TEXTURE_GEN_LINEAR 168
G_TF_AVERAGE 194, 276
G_TF_BILERP 194, 273, 275
G_TF_CONV 194
G_TF_FILT 194
G_TF_FILTCONV 194
G_TF_POINT 194, 272, 273
G_TL_LOD 192
G_TL_TILE 192, 290
G_TP_NONE 191, 269
G_TP_PERSP 191
G_TT_IA16 192
G_TT_NONE 192
G_TT_RGBA16 192
G_TX_CLAMP 189
G_TX_LOADTILE 225, 248, 292
G_TX_MIRROR 189, 279
G_TX_NOLOD 190, 279
G_TX_NOMASK 189
G_TX_NOMIRROR 189, 279
G_TX_RENDERTILE 225, 248, 273, 275, 276, 292
G_TX_WRAP 189, 283
G_ZS_PRIM 299
gain 377
game controller 29, 43, 46, 112
game timing 55
GameShop 30, 67
gamma correction 74
GBI 61, 62, 188, 216, 218, 248, 351
GBI assembly 62
gbi.h 137, 139, 337, 501
gdis 37
gDPFullSync 36
gDPSetColorImage 35
gDPSetMaskImage 35
gDPSetPrimColor 497
gDPSetTextureImage 35, 216
gDPSetTextureLUT 244, 246
gdSPDefLights0 157
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gEndDisplayList 353
General MIDI 467
generation of the MIP maps 232
geometric level of detail 497
geometry 61
ginv 28
GIO 48, 49, 479, 480, 481
GIO board 27
gl_dev 30
gload 31, 34, 37, 78, 87
Gouraud 496
GPACK_RGBA5551 211
GPACK_ZDZ 211
graphics 33
graphics binary interface 61, 62, 72, 137, 216
graphics overrun 471
graphics pipeline 45, 135
gsDPFillRectangle 172
gsDPFullSync 182
gsDPLoadMultiBlock 292
gsDPLoadMultiTile 291, 292
gsDPLoadMultiTile_4b 291
gsDPLoadSync 192, 216, 248
gsDPLoadTextureBlock 163, 166, 216, 225, 262
gsDPLoadTextureTile 189, 248, 282
gsDPLoadTextureTile_4b 189, 288
gsDPLoadTile 216, 225, 248
gsDPLoadTLUT 216, 225
gsDPPipelineMode 183
gsDPPipeSync 181, 311
gsDPSetAlphaCompare 206, 316, 337
gsDPSetAlphaDither 312
gsDPSetBlendColor 311, 315
gsDPSetColorDither 312
gsDPSetCombineKey 202
gsDPSetCombineMode 262, 288, 291
gsDPSetCycleType 169, 181, 206, 263, 276, 277, 310
gsDPSetCyleType 290
gsDPSetDepthSource 299, 309
gsDPSetEnvColor 289
gsDPSetFogColor 169, 205, 207, 311, 313, 318, 344
gsDPSetKeyGB 202
gsDPSetKeyR 202
gsDPSetPrimColor 207, 288, 311
gsDPSetPrimDepth 299, 309, 311
gsDPSetRenderMode 169, 204, 205, 206, 291, 314, 337, 344, 345, 

346
gsDPSetScissor 185, 311
gsDPSetTextureConvert 217

gsDPSetTextureDetail 192, 217
gsDPSetTextureFilter 217, 272, 273, 275, 276
gsDPSetTextureImage 248
gsDPSetTextureLOD 192, 217, 290
gsDPSetTextureLUT 216
gsDPSetTexturePersp 191, 216, 269, 270
gsDPSetTile 216, 225, 248, 263
gsDPSetTileSize 216, 225, 248, 263
gsDPTextureRectangle 269, 273, 275, 276, 288
gsDPTextureRectangleFlip 280
gsDPTileSync 192, 216
gsLoadTLUT 191
gSPCullDisplayList 495
gSPDisplayList 35
gSPEndDisplayList 36
gspFast3D 63, 137, 156, 161, 496
gspFast3D_dramDataStart 474
gspFast3D_dramTextStart 474
gspFast3DDataStart 474
gspFast3DTextStart 474
gsPipelineMode 499
gspLine3D 63
gspLine3D_dramDataStart 474
gspLine3D_dramTextStart 474
gspLine3DDataStart 474
gspLine3DTextStart 474
gSPMatrix 35
gSPSegment 138
gSPSetGeometryMode 206
gspTurbo3D 63, 498
gSPVertex 35
gSPViewport 35, 152
gsSetAlphaDither 312
gsSetConvert 194
gsSetFillColor 211
gsSetPrimColor 198
gsSetTextureConvert 194
gsSetTextureFilter 194
gsSetTextureLUT 192
gsSP1Triangle 171
gsSPBranchList 142
gsSPClearGeometryMode 154
gsSPClipRatio 153
gsSPCullDisplayList 154
gsSPDisplayList 141
gsSPEndDisplayList 142, 154
gsSPFogPosition 169, 206, 207
gsSPLine3D 171
gsSPMatrix 145
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gsSPPerspNormalize 146, 308
gsSPPopMatrix 145
gsSPSetGeometryMode 154, 168, 169, 206, 207
gsSPSetLights0 159
gsSPTexture 150, 216, 228
gsSPTextureRectangle 172, 216
gsSPTextureRectangleFlip 172, 173
gsSPVertex 149, 160
gsSPViewport 308
guLookAt 144, 152, 163
guLookAtHilite 162
guLookAtReflect 166
guOrtho 144
guParseGbiDL 35
guParseRdpDL 35
guPerspective 144, 146, 152
gvd 31, 34, 67, 87, 124, 480, 484, 486

H
heap library 58
hidden bits 318, 324
high resolution 46
hinv 28
host overrun 470
HW2 interrupt 96

I
I 188, 215, 221, 240, 247, 288
I/O 56, 86, 101, 103
I/O, asynchronous 104
I/O, synchronous 104
IA 188, 215, 221, 240, 247, 289
ic 76, 402, 403, 413, 462
idle thread 33, 90
ie 420
IM_RD 317, 337
image conversion 70
image conversion software 74
image format 318
IMEM 44, 115, 135, 138
immediate mode rendering 61
Indy video input 29
Indy workstation 27, 28, 29, 30, 48, 49, 421
Indy, and MIDI 421
initOsc 397, 398, 399
instruction cache, R4300 46
instrument 376, 377, 398, 404, 427, 429, 457, 461
instrument compiler 362, 402, 403, 412, 435
Instrument Editor 420

integration 33
Intel 425
interference pattern 296
interference texture 261
internal edge 326, 327, 328, 330, 332, 333, 336
interpenetration 303, 337, 338, 342, 343
interpenetration mode 335
interpolation, bilinear 193, 274
interpolation, video filter 326
interrupt 54, 85, 91, 93, 482
interrupt messages 54
inverse kinematics 71
IRIX 30, 67, 77

K
kernel 83
kernel mode 47
keymap 377, 405, 457, 458, 461
Knuth 502
KSEG0 34, 47, 114, 117, 121, 122, 126

L
layered scenes 500
ld 58
level of detail, geometric 70, 497
level of detail, texture 186, 232
libaudio.h 386
libultra 469
libultra.a 31, 77, 78
libultra_d.a 77, 78
light structure 156
lighting 63, 156, 157, 261, 496, 498
line 331
line mode 340
load block 253
load block, line limits 264
load block, restrictions 254
load tile 250
LOD 186, 200, 228, 229, 235
LOD, restrictions 259
log 87
loop 414, 436, 440, 455, 463
loop point 440, 455
low resolution 46

M
M_AUDTASK 474
M_GFXTASK 474
Mach band 211, 312
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Macintosh 421
makerom 77, 88, 115, 119, 123, 126
matrix stack 144, 475, 498
matrix stack operations 63
memory allocation 58, 125
memory interface 45, 210, 318
memory management 85, 113
memory map 58
memory, block transfer 250
memory, texture 239
meshed objects 500
message 54, 56, 84, 85, 89, 91, 93
message passing 54
message queue 93, 104, 372, 472
MI 45, 176, 210, 318
microcode, audio 44, 369
microcode, boot 137
microcode, graphics 44, 61, 63
microcode, RSP 43, 45, 47, 60, 137, 216, 469
microcode, task 137
MIDI 30, 64, 79, 369, 376, 378, 401, 402, 403, 407, 416, 423, 454, 

457
Midi 421
MIDI file 449, 463
MIDI file format 425
MIDI implementation 449
MIDI key number 405
MIDI message 463
MIDI note 458, 460, 461
MIDI note number 402, 405
MIDI note off 406
MIDI note on 406
MIDI port, Indy 421
MIDI sequence 450
MIDI sequence bank 423
MIDI sequence file 451
MIDI velocities 405
MIDI, compressed 376, 463
MIDI, compressed file format 439
MIDI, standard 376
MIDI, type 0 376
midicmp 75
midicomp 416, 417, 463
midicvt 75, 416, 463
midiDmon 419
midiprint 416
MIP 232
MIP maps, generation 232
mipmapping 150, 179, 184, 223, 229, 232, 291, 333

MIPS R4300 41
mirror, texture 280, 281, 295
mksprite 351
mode, copy 180
mode, decal line 334
mode, fill 180
mode, interpenetration 335
mode, one cycle 177
mode, particle system 336
mode, point sample 338
mode, texture edge 333
mode, two cycle 178
modeling matrix 144
modeling software 70
modulate, color 288
morphing 71, 228, 292
MULTIBIT_ALPHA 262
MultiGen 31, 70
multiple tile effects 261
Music Composition 75
mutual exclusion 105

N
near plane 325
Nichimen Graphics 71
NinGen 70, 72
Nintendo 64 development board 27, 28, 31
NMI 95, 96
noise 302, 312, 337
non-maskable interrupt 96
non-preemptive execution 54
NOOP render mode 344, 345
NTSC 46
NURB 71
Nyquist’s Law 271

O
ocean waves 261
octree 493
one cycle mode 177
OPA_DEC 343
OPA_DECAL 339
OPA_INTER 339
OPA_SURF 339, 341, 343, 345
OPA_TERR 339, 341
opaque surface 327, 329, 330, 332, 333, 335, 337, 338, 341
OpenGL 62, 138
operating system 33, 43, 47, 55, 83, 85, 89, 91, 93
OS 480, 482, 484
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OS_EVENT_PRENMI 96, 97
OS_K0_TO_PHYSICAL 121
OS_PRIORITY_RMON 483
OS_TASK_DP_WAIT 474
OS_YIELD_DATA_SIZE 476
osAiGetLength 111
osAiGetStatus 111
osAiSetFrequency 111, 372
osAiSetNextBuffer 111, 372
oscDelay 398
oscDepth 398
oscillator 397, 398, 399
osContGetQuery 112
osContGetReadData 112
osContInit 112
osContReset 112
osContStartQuery 112
osContStartReadData 112
oscRate 398
osCreatePiManager 111
osCreateRegion 125
osCreateScheduler 472
osCreateThread 59, 92
osCreateViManager 109
oscState 398
oscType 398
osDestroyThread 92
osDpGetStatus 109
osDpSetNextBuffer 109
osDpSetStatus 109
osFree 126
__osGetCause 98
__osGetCompare 99
__osGetConfig 99
__osGetCurrFaultedThread 34, 100
__osGetFpcCsr 99
osGetIntMask 96
__osGetNextFaultedThread 34, 100
osGetRegionBufCount 126
osGetRegionBufSize 126
__osGetSR 99
osGetThreadId 93
osGetThreadPri 93
osGetTime 55
__osGetTLBASID 99
__osGetTLBHi 99
__osGetTLBLo0 99
__osGetTLBLo1 99
__osGetTLBPageMask 99

osInitialize 88
osInvalDCache 119, 123
osInvalICache 123
osMalloc 125
osMapTLB 127
osPiGetStatus 111
osPiRawReadIo 111
osPiRawStartDma 111
osPiRawWriteIo 111
osPiReadIo 111
osPiStartDma 112
osPiWriteIo 111
osScAddClient 472
osScGetTaskQ 476
OSScTask 473
__osSetCause 98
__osSetCompare 99
__osSetConfig 99
osSetEventMesg 96, 97, 106
__osSetFpcCsr 99
osSetIntMask 96
__osSetSR 99
osSetThreadPri 93
osSetTLBASID 127
osSpTaskLoad 476
osSpTaskStart 109, 383
osSpTaskYield 109, 471
osSpTaskYielded 109
osStartThread 91, 92, 484
osStopThread 93
osSyncPrintf 33, 87
OSTask 137, 383
OSThread 90
osUnmapTLB 127
osUnmapTLBALL 127
osViGetCurrentField 110
osViGetCurrentFramebuffer 110
osViGetCurrentLine 110
osViGetCurrentMode 110
osViGetNextFramebuffer 110
osViGetStatus 109
osVirtualToPhysical 121
osViSetEvent 110
osViSetMode 46, 110
osViSetSpecialFeatures 110
osViSetXScale 110
osViSetYScale 110
osViSwapBuffer 110
osYieldThread 92
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output buffer size, audio 446
overlay segments 123
OVL_SURF 343

P
paint software 70, 74
painter’s algorithm 340
PAL 46
pan 373, 377, 381, 402, 461
pan values 452
parallel interface 46
particle system mode 336
particle systems 71
PASS render mode 344, 345
patch format 426
PBMPLUS 70
PBUS 49
PC 486
PCL_SURF 339, 341, 343, 345
percussion instrument 406
performance profiling 55
performance tuning 491
performance, CPU 54
peripheral interface 56, 86, 102
peripherial device 43
perspective correction 215, 277, 498
perspective normalization 144
physical address 44, 45, 47, 114, 115, 122, 139
physical voice 384
PI 48, 56, 86, 95, 102, 106, 111, 114
PI manager 46, 56, 86, 90, 95, 111
PIF 46, 102
pinwheel 327, 338, 341
pipeline mode, copy 205, 276
pipeline mode, fill 205, 210
pipeline mode, one cycle 205
pipeline mode, two cycle 187, 200, 203, 228, 232, 244
pitch 402, 405
pixel 46
pixel format, color 210
pixel format, z 210
playback rate 453, 459
player 372
playseq 384, 388, 389
point sample mode 338
point sample, restrictions 259
point sampling 193, 271, 342
polygon fragment 327
polygon rasterization 61, 63

portal connectivity 493
position 402
PRE_NMI_MSG 97
precision, z 308
preemption 54
preemptive 84, 92
PRENMI 95, 96
PRIM_TILE 235
primitive 269, 297
primitive color 197, 288
primitive tile number 228
PRIMITIVE_COLOR 352
priority 381
program crash 38
projection matrix 144
punchthrough 329, 335

Q
quadrication 254
quadtree 493

R
R4000 44, 46, 135
R4300 42, 47, 54, 55, 61, 77, 89, 93, 96, 113, 127, 137, 485
R4300 CPU 46
RAM 373
ramrom 49
rasterization setup 63
rasterizer 45, 184
RCP 41, 48, 49, 55, 60, 61, 65, 94, 102, 113, 135, 301, 351, 383, 

388, 426, 469, 497, 502
rcp.h 110, 111
RDP 43, 45, 52, 60, 86, 102, 150, 175, 178, 213, 269
RDP attribute 182
RDP pipeline 178
RDP primitive 182
RDRAM 48, 49, 58, 102, 105, 109, 318, 442
Reality CoProcessor 41, 43, 113
Reality Display Processor 43, 45, 102, 175, 213, 269
Reality Signal Processor 43, 44, 102
real-time scheduling 55
rectangle 45, 184, 269
rectangle, texture 269
reduced aliasing 501
reduction, polygon count 70
reflection mapping 63, 165, 168, 496
region allocation 125
region allocation library 58
region library 86
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register, R4300 46
release 374
release notes 30
render mode 303
render mode, visualizing coverage 346
render modes 339, 341, 343, 344, 345
rendering mode 338
rendering order 333, 334, 335, 340, 500
rendering order, for antialiasing 204
RESET 96
retrace message 472
reverb 381
reverb amount 381
RGB, SGI image format 70, 72
rgb2c 72
RGBA 188, 215, 221, 240, 247, 290
RJ-11 29
RM_ADD 317
rmon 33, 34, 67, 95, 480, 481, 484
rmon.h 484
rmonMain 480
rmonPrintf 67, 68
rmonReadMem 481
ROM 58, 77, 105, 373, 383, 402, 426, 450, 453, 479
ROM cartridge 46, 48
ROM image 77
ROM packing 77
RS 45, 176, 184
RSP 34, 43, 44, 45, 47, 52, 60, 61, 102, 135, 206, 372, 450, 454
RSP data memory 44
RSP instruction memory 44
RSP Scalar Unit 44
RSP Vector Unit 44
rspbootTextEnd 474
rspbootTextStart 474

S
s/w 184, 186
sample converter 455
sample rate 459
sample rate, audio 443
sampled sound playback 369, 373
sampling 271
sampling, point 271
sampling, super 303
sampling, unweighted area 303
sbc 423, 438, 463
sbk 75
scaling, rectangle 271

scaling, sprites 294
scheduler 65, 469, 472
scheduler thread 65
scheduler, CPU 54
scheduling, priority 54
scintillate 271
scissor rectangle 185
scissoring 184
scissoring, rectangle 185
scissoring, restrictions 185
scrolling, of rectangles 275
scrolling, texture 286
Sedgewick 502
segment address 34, 44, 121, 127
segment number 121
segment offset 121
segment table 47
segmented address 45, 47, 115, 138, 174
semaphore 85
semitone 459, 460
sequence back compiler 438
sequence bank file 423
sequence bank format 438
sequence buffer 442
sequence data 376, 450
sequence loop point 376
sequence loops 380
sequence playback 376
sequence player 75, 369, 370, 372, 376, 378, 394, 398, 401, 404, 

405, 425, 426, 450, 458, 461
sequence, audio 447
sequenced sound 376
sequencer 431
serial interface 46, 102
serial port manager, Indy 421
SETOTHERMODE 174
sgi.com 70
SH 284
sharpened texture 229, 230, 235
SI 48, 95, 102, 114
silhouette 303, 314, 327, 328, 330, 332, 343, 344
silhouette edge 204, 328, 333, 334, 337, 340
simple 384
simple, demo application 65
size, texture 289
SL 284
slide, texture 283
smoke 316
SNES 29, 74, 455
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SoftImage 71
sort 330, 500
sorting 298, 330, 502
sorting algorithms 502
sound 457
sound bank 401
sound duration 374
sound effect 64, 450
sound loop point 374
sound pitch 374
sound playback rate 453
sound player 369, 370, 372, 373, 394, 401, 407, 426, 450, 458, 461
sounds, looped 374
sounds, unlooped 374
source file 487
SP 95, 109, 114, 122
SP_BREAK 95
SP_CUTOUT 356
SP_DRAM_STACK_SIZE8 475
SP_EXTERN 357
SP_FASTCOPY 356
SP_FRACPOS 357
SP_HIDDEN 356
SP_SCALE 356
SP_TEXSHIFT 356
SP_TEXSHUF 357
SP_TRANSPARENT 356
SP_UCODE_DATA_SIZE 474
SP_UCODE_SIZE 474
SP_Z 356
span buffer coherency 182, 499
sparkles 336
spClearAttribute 352
spColor 352
spDraw 353, 356, 359
specular 156
specular highlight 161
spFinish 351
spgame 360
spInit 351
spMove 352
sprite 45, 70, 262, 269, 273, 279, 293, 294, 297, 298, 349
sprite library 349
sprites, attribute 352, 355
sprites, bitmap structure 354
sprites, color 352
sprites, creating 351
sprites, cutout 356
sprites, drawing 353

sprites, examples 360
sprites, in COPY mode 356
sprites, moving 352
sprites, re-use 359
sprites, scaling 352, 356
sprites, scissoring 353
sprites, structure 354
sprites, transparent 356
sprites, z-buffered 352
spScale 352
spScissor 352
spSetAttribute 352
spSetZ 352
sptask.h 137
stack overflow 55
stack, thread 59
stacktool 446
stereo 46
stipple transparency 336
stopOsc 397, 398, 399
SU 44
SUB_SURF 338, 339, 341
SUB_TERR 340, 342
subpixel 306
subpixel mask 306
Super Famicom 74
Super Nintendo Entertainment System 29
surface types 203
sustain 381
SW1 95
SW2 95
sync command 45
sync, pipe 45
synchronization, of rendering pipeline 181
synthesis driver 369, 370, 382, 394
synthesizer 372

T
t/w 184, 186
tabledesign 76, 412, 462
task 65, 89, 109, 137, 469, 502
task header 137
task list 43, 60, 137
tasks 42, 43
terrain 335, 340, 496
terrain mode 338, 341
TEX_EDGE 317, 332, 339, 341, 345
TEX_INTER 339
TEX_TERR 339, 342
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texel 271
texel format 215, 221, 247, 287
texel size 215, 221
texture clamping 224, 255
texture coordinate 150, 215, 219, 236, 269, 284
texture coordinate mask 223
texture coordinate shift 223
texture coordinate transformation 166, 167
texture coordinate, accuracy 260
texture coordinate, automatic generation 156
texture coordinate, bilerp 236
texture coordinate, high 224
texture coordinate, low 224
texture coordinate, point sampled 236
texture coordinate, restrictions 260
texture copy, restrictions 259
texture edge 344
texture edge mode 332, 333
texture engine 186
texture filter 193, 289
texture filter unit 45
texture filter, restrictions 259
texture format 188
texture line 222
texture line stride 222
texture loading 188, 248
texture loading, 4-bit 254
texture loading, block 188
texture loading, tile 188
texture mapping 213
texture memory 45, 214, 239
texture mirroring 222, 223, 255
texture palette 222
texture sampling 191
texture synchronization 192
texture tile 186, 219
texture tile coordinates 219
texture tile descriptor 225, 228
texture tile line padding 250
texture tile restrictions 220
texture tile, multi tile textures 187
texture tile, multiple 261
texture tile, restrictions 187, 260
texture unit 45
texture wrapping 189, 224, 255
texture wrapping (large texture) 251
texture, 4-bit 254
texture, alignment 259
texture, clamped 215

texture, color index 190, 240
texture, color lookup 190
texture, detail 233
texture, high frequency 232
texture, how stored in TMEM 249
texture, interference 261
texture, level of detail 229
texture, load block 253
texture, mirrored 215
texture, quadricated 254
texture, restrictions 259
texture, sharpen 235
texture, wrapped 215
texture, YUV 242
textured rectangle 297
textures, large 297
texure load padding 222
TF 45, 176, 193
TH 284
thread 54, 84, 89, 480
thread ID 485
thread priority 482
thread stacksize, audio 446
thread, audio manager 65
thread, data structure 90, 92
thread, debug 67, 68
thread, game 66, 106
thread, idle 90
thread, priority 90, 92, 93
thread, runnable 91
thread, running 91
thread, scheduler 65
thread, state 90
thread, stopped 91
thread, switch 485
thread, waiting 91
THREAD_STATUS 95
threads 42
tile descriptor 186, 192, 221, 225, 228, 282, 283, 292, 294
tile selection 228
tile, loading 250
tiling, large texture 297
timer 55
timers 87
TL 284
TLB 34, 47, 55, 85, 114, 126
TLB miss 128
TLUT 189, 190, 244, 245, 290, 351, 360
TLUT restrictions 191
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TMEM 45, 150, 186, 188, 190, 214, 222, 239, 292, 297, 298, 358
TMEM address 222
Translation Lookaside Buffer 85
translation lookaside buffer 55, 114, 126
translation, rectangle 271
transparency 182, 203, 205, 278, 289, 298, 301, 331, 336
transparent decal surface 342
transparent line 334
transparent lines 332
transparent surface 329, 330, 331, 333, 334, 337, 340, 341, 342
transparent texture 356
tremolo 397, 398
triangle 45, 184
tri-linear interpolation 327
trilinear MIP mapping 229, 233
Tron mode 334
two cycle mode 178
TX 45, 176, 186, 187
type, texture 288

U
ultra 30
ultra64.h 78, 137
union, C 139
UNIX 480, 486
updateOsc 397, 398, 399

V
vadpcm_dec 412, 414, 415
vadpcm_enc 76, 412, 413, 414, 462
vertex 327
vertex buffer 149
vertex cache 496
vertex normal 157
vertex normals 164, 166
vertex transformation 144
vertical retrace 57, 86, 110, 446
VI 48, 57, 86, 95, 102, 109
VI manager 57, 95, 109, 110, 472, 476
VI mode 110
vibrato 397, 398
video filter 314, 326
video interface 43, 46, 86, 102, 110, 328, 334
video mode 46, 57
video retrace 472
video, composite 29, 46
video, RGB 29, 46
video, S-video 29, 46
viewing frustum 498

viewing matrix 144
virtual address 47, 113, 114
virtual ROM 479, 481
virtual voice 384
visibility 494, 499
visibility, game-specific 501
visual complexity 497
voice 384, 395, 453
voice processing estimate 454
voice stealing 385
voice, physical 384
voice, virtual 384
volume 373, 381, 452, 461
VU 44

W
w coordinate 145, 147
waves, ocean 261
wavetable data 402, 405
wavetable file 426
wavetable format 426
wavetable synthesis 64, 369, 414
weather map effect 201
WorkShop 30, 67
wrap, coverage 333, 335, 337, 340
wrap, texture 282, 295

X
XLU_DEC 343
XLU_DECAL 339
XLU_INTER 339
XLU_LINE 331, 339, 341
XLU_SURF 317, 339, 341, 343, 345

Y
yield 60, 84, 89, 109, 476
yield buffer 476
yielding 65
YUV 188, 215, 221, 240

Z
Z compare 320
Z_CMP 337, 338
Z_UPD 337
zap coverage 338, 341
z-buffer 48, 58, 63, 70, 72, 119, 170, 171, 175, 179, 182, 184, 203, 

204, 210, 270, 299, 301, 305, 320, 328, 329, 338, 340, 
352, 356, 499

z-buffer, alignment 210
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z-buffer, format 322
z-buffer, lines 171
ZMODE 337
ZMODE_OPA 317
Z-stepper 308
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