
hadows of the Empire is an action

game originally developed for the

Nintendo 64 video game console. It

formed part of a multimedia Star

Wars event consisting of a novel,

soundtrack, toy line, comic books,

trading cards, and other related merchan-

dising. The Nintendo 64 version was

released in December of 1996, and has

proven to be very popular with over one

million copies shipped to date. The IBM

PC version was released in early September

of 1997, and has enhanced cut scenes, Red

Book audio (both music and voice), and

high-resolution graphics. It requires the

use of a 3D accelerator card.

G A M E D E V E L O P E R J A N U A R Y 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

56

STAR WARS: SHADOWS OF THE EMPIRE

SS
b y M a r k H a i g h - H u t c h i n s o n

Dinner in Kyoto, Japan, August 1996. (Left to right: Don

James, Hiro Yamada, Mark Haigh-Hutchinson, Shigeru

Miyamoto, Kenji Miki.)

P O S T M O R T E M

Why Shadows?

B ack in the summer of 1994,
LucasArts was exploring the pos-

sibility of developing a new 3D title for
one of the emerging “next-generation”
platforms. After some discussion, the
Nintendo 64 was decided upon as the
platform of choice, even though there
was no hardware available at the time.
Due to our close relationship with
Lucasfilm, we were aware that
Lucasfilm Licensing was planning the
Shadows of the Empire event. Jon
Knoles, the lead artist and designer on
the Nintendo 64 game, took an active
part in deciding the timeline of
Shadows. He suggested that it take
place between The Empire Strikes Back
and Return of the Jedi.

The Shadows story line deals mainly
with the criminal underworld of the
Galaxy, and the new period allowed us
to explore some of the things that
weren’t explained in Return of the Jedi.
It also opened up some new characters
that were not bound to the original
story, which gave us more creative free-
dom than using established figures. A
bonus was that it allowed us to make
use of everyone’s favorite bounty
hunter, Boba Fett.

Since we were developing one of the
premier titles for an entirely new game
machine, there was a conscious deci-
sion to attempt to stretch out and cover
a number of different game-play styles.
We wanted to ensure that the player
would have as much variety as possible,
yet still enjoy a satisfying experience.

A Reality Engine for $200?

B y early September 1994, we had
received our Silicon Graphics

workstations and the core team was
working. Initially the three program-
mers were using Indigo 2 Extremes,
with 200mhz CPUs, 64MB of RAM, and

24-bit graphics. Eventually, we would
have to change our programmers’ com-
puters to INDYs (still powerful
machines) to install the Nintendo 64
development systems.

In addition, we were fortunate that
LucasArts allowed us to obtain a Silicon
Graphics ONYX supercomputer. This
impressive and somewhat expensive
refrigerator-sized computer boasted
Reality Engine 2 graphics hardware, four
R4000 CPUs, and 256MB of RAM. It
became an essential part of our develop-
ment equipment, as it was the only
hardware available that could possibly
emulate how the final Nintendo 64
hardware would perform. Indeed,
Nintendo and SGI supplied us with soft-
ware that emulated most of the features
that the real hardware would support.

In late September, the programmers
took a trip down to Silicon Graphics to
discuss the Nintendo 64 hardware
design with its chief architect, Tim Van
Hook. The SGI engineers were rightly
proud of their design, and promised
that they would deliver hardware
matching the ambitious specifications.
Nine months later, we learned that they
had indeed met those specifications.

By Christmas of 1994, we had the
basis of the first level of the game, The
Battle of Hoth, running quite nicely on
the ONYX — “quite nicely” being in
high resolution (1280×1024), 32-bit
color, and at 60 frames a second. By this
point, we had also received a very early
prototype of the Nintendo 64 con-
troller. This consisted of a modified
Super Nintendo controller with a primi-
tive analogue joystick and Z trigger. Due
to our strict nondisclosure agreement,
we were unable to discuss the hardware
or the project with anyone outside the
core team. Consequently, we would
furtively hide the prototype controller
in a cardboard box while we used it. In
answer to the inevitable questions about
what we were doing, we replied jokingly
that it was a new type of controller — a
bowl of liquid that absorbed your
thoughts through your fingertips. Of
course, you had to think in Japanese….

In July of 1995, we received our first
actual hardware as a plug-in board for

the INDY. This later became known as
the Revision 1 board, but on inspection
it was extremely “clean” — no wire
wraps or other temporary items in
sight. Within three days, technical lead
Eric Johnston and second programmer
Mark Blattel had ported the game to
the actual hardware. It was an awe-
inspiring moment when we first saw
the Battle of Hoth running on the
“real” machine. The first revision of
the hardware was very close to the orig-
inal specifications supplied by SGI.
Other than the RCP (Reality
CoProcessor) not running at quite the
final speed, and one of the special
video “dither modes” not being avail-
able, it performed extremely well.

Over the next few weeks, we would
receive an additional two boards, so
that all the programmers were devel-
oping in a similar fashion. Three
months later, we would receive
Revision 2 boards, which brought the
RCP up to full speed as well as fixing a
few minor bugs. Another pleasant sur-
prise was the doubling of the amount
of RAM to 4MB.

A further development was the hard-
ware “dither modes” that perform sev-
eral different kinds of functions at the
video back end — mostly to reduce the
effect of Mach banding, which is com-
mon when using 16-bit color.

Technology

S ince Eric Johnston and Mark
Blattel had extensive experience

with the SGI platform, we undertook to
prototype the game using the
Performer 3D API. This is an OpenGL-
based system that is very flexible.
Eventually, we would write our own

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 7 G A M E D E V E L O P E R

57

Im
ages courtesy of LucasA

rts Entertainm
ent Com

pany LLC, ©
 1997.

Mark Haigh-Hutchinson is a Project Leader and Senior Programmer at LucasArts
Entertainment Company. He has been developing computer and video games as a
hobby since 1979, and professionally since 1984. Cutting his teeth on numerous 8-bit
computers such as the Sinclair ZX Spectrum, he has contributed to 32 published
games, 16 as sole programmer. He may be reached at mhh@lucasarts.com.

subset of Performer’s functionality on
the Nintendo 64. This allowed us to
move the game from a $140,000 SGI
ONYX to a $200 Nintendo 64 in a mat-
ter of just three days.

Level designers used the tool set from
DARK FORCES to construct the first-per-
son levels for the game. This allowed a
crude form of preview using the actual
DARK FORCES engine on an IBM PC. This
worked fairly well, although later in the
project we were able to have a single
SGI for dedicated use by the level
designers. The PC solution, however,
was also useful because the level design-
ers were already familiar with the
processes involved. Unfortunately,
since the game engine wasn’t running
on the PC at that point, the develop-
ment cycle was somewhat slow.

Additionally, the ONYX calculated
the preculling visibility tree for each of
these levels. The way it works is quite
elegant, thanks to Eric and Mark. The
world is subdivided into “sectors” —
that is, polygonal regions defined by
either geometry or some other criteria.
These sectors control collision detec-
tion, have properties relating to game
play, and perform several other related
functions. The visibility program tra-
verses the world rendering the scene
from the center of every sector in a 360-
degree arc as well as three elevations.
For every polygon to be rendered in the
scene from a particular sector, an identi-
fying 32-bit value, rather than texture
information, fills the appropriate pixels
in the frame buffer. It’s then a simple
matter of reading the frame buffer to
determine which sectors are visible from
that location. This process became
known as “pastelization” because the
identifiers written into the frame buffer

(effectively as RGBA values)
caused the scene to appear
as purely pastel colors.

Motion Capture

In the spring of 1995, we
decided to experiment

with the use of motion cap-
ture to control the anima-
tions of the main character
as well as enemies such as
Stormtroopers. Fortunately
for us, our sister company,
Industrial Light & Magic
(ILM), had a capture system

available for use. It was a tethered sys-
tem, using a magnetic field to deter-
mine the position of each of the sen-
sors. The sensors were attached to the
actor at 11 locations using a combina-
tion of a climbing harness, sports joint
supports, bandages, and Velcro strips.

The nature of the system presented
several problems. First, the actor had to
perform on a raised wooden platform,
since the metal construction supports
in the concrete floor would affect the
capture system. Secondly, since the
actor was on a platform as well as teth-
ered, we couldn’t obtain a “clean” run
cycle. Some of our more ambitious
motions also proved problematic. On
the positive side, once the system was
calibrated, we were able to capture over
100 motions in a single day, each with
two or three different “takes.” We
viewed the motions in real time on a
SGI Indigo 2 Extreme computer run-
ning Alias PowerAnimator. This
allowed us to quickly ensure that every
capture was “clean” before continuing
with the next action.

Unfortunately, we were to discover
that after analysis, the motion data
proved to be unusable. This was mainly
because the angle information for the
joints wasn’t consistent on its represen-
tation of the direction around each
axis. Consequently, all the animation
for the characters was redone by hand,
a somewhat time-consuming task.

MIDI Music

O ur initial approach to music for
the game was similar to that

taken on some of our PC titles —
namely, a MIDI-based solution.

However, the first problem that we
came across was hardware incompati-
bilities between the MIDI keyboards
used by our musicians and the Silicon
Graphics computers used to develop
the game. The theory was that the
compositions could be previewed
directly on the Nintendo 64 hardware
as a musician played them on a key-
board. Naturally, this would provide
the best possible feedback to the musi-
cian. Unfortunately, for some
unknown reason(s), note on/off pairs
were lost, causing chords to sound as
one note. Additionally, note releases
were sometimes missed completely.
Before long, other unwelcome behav-
iors surfaced. We worked around these
mysteries by having the musicians cap-
ture the sample set and play it solely
on their keyboards.

After some experimentation, though,
we felt that the MIDI music was good,
but didn’t capture the essence of the
John Williams orchestral soundtrack
that is so closely associated with Star
Wars. Furthermore, each additional
instrument channel would require more
CPU time than we wanted to allocate.

At this point, we tried an experiment
using uncompressed digital samples of
the Star Wars main theme. The quality
was extremely good, even after subse-
quent compression with the ADPCM
encoder provided by Nintendo. After a
little persuasion, Nintendo generously
agreed to increase the amount of car-
tridge space from 8MB to 12MB. This
allowed us to include approximately 15
minutes of 16-bit, 11khz, mono music
that sounded surprisingly good.
Considering that most users would lis-
ten to the music through their televi-
sions (rather than a sophisticated audio
system), the results were close to that
of an audio CD, thereby justifying the
extra cartridge space required.

Art Path

A continuing problem throughout
the development of SHADOWS was

the inability to import and export data
between the various 3D packages we
were using. Eventually, we managed to
circumvent these problems with a
number of translation utilities as well
as by using Alias Power Animator as
our central “hub” format. However,
there were still issues with scale, model

G A M E D E V E L O P E R J A N U A R Y 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

Jon Knoles directs actor Amos Glick who recoils

from an imaginary shot. Mark Haigh-Hutchinson

wrangles the cables and provides a supporting

hand.

hierarchies, and animation data. It was
sometimes difficult for the artists to see
what their artwork really looked like
until it had been through the hands of
our polygon wrangler (thanks Tom!).
Initially, it was difficult for our texture
artist to visualize the restrictions on
texture size required by the hardware,
as well as color reduction issues.

New Hardware

T here were a number of other issues
that we had to deal with in devel-

oping the game, not the least of which
was that for the first nine months of
the project, we didn’t have any real
hardware on which to run the game.
This deficiency wasn’t insurmountable
by any means, but it restricted our
choices in certain ways, especially in
level design. We were forced to make
some assumptions, especially regarding
to performance. Fortunately, this was-
n’t quite the bugbear that we anticipat-
ed. Still, as is well known, those on the
bleeding edge of technology are often
sacrificed upon it.

Other Issues

There was considerable pressure to
finish the game in time for the

Christmas 1996 deadline. This reality
meant many, many late nights, with
some team members regularly working
over 100 hours every week for the best
part of a year. Hopefully, this sort of
workload can be avoided in future pro-
jects. Time pressure is, of course, a com-
mon thing in the computer games
industry — and we were certainly no
strangers to the phenomenon. However,
since we had to release our game shortly
after launch of the machine, we were
under more pressure than might usually
have been encountered. Game testing
also became an issue because there were
very few machines with which to actu-
ally test the game.

Game Play Variety

W e were able to include a very
wide variety of game play styles

in SHADOWS. In retrospect, this meant
that we couldn’t tune each type of game
play as much as we would have liked. It

also meant an almost Herculean pro-
gramming task in trying to write and
debug what amounted to five different
game engines. These consisted of low
flight over terrain, gunnery action in
space, first/third person on foot or with
jet pack (including a moving train
sequence), high-speed chases on a
speeder bike, and full 360-degree space
flight. Nonetheless, the result was that
most players’ experiences with the game
were always interesting, at the expense
of displeasing some of the more hard-

core game players. A variety of game
play was important for a game that, for
many players, would be one of their first
experiences in a fully 3D environment.

Hardware Performance

A s mentioned before, for the first
nine months of SHADOWS, we had

no real hardware with which to gauge
the performance of the game — other
than a rather nice Silicon Graphics

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 7 G A M E D E V E L O P E R

59

Game Designer/Lead Artist - Jon Knoles

Project Leader/Senior Programmer -

Mark Haigh-Hutchinson

Technical Lead - Eric Johnston

Programmer/Lycanthrope - Mark Blattel

Polygon Wrangler - Tom Harper

Level Designer - Jim Current

Level Designers - Matthew Tateishi and

Ingar Shu

3D Artists - Paul Zinnes, Andrew

Holdun, and Garry M. Gaber

3D Animator - Eric Ingerson

Texture Artist - Chris Hockabout

3D/Background Artist - Bill Stoneham

Storyboard Artist - Paul Topolos

Music Editor - Peter McConnell

Sound Designers - Larry the O and Clint

Bajakian

Lead Tester - Darren Johnson.

Production Manager - Brett Tosti

Extra thanks go to Don James, Henry

Sterchi, Hiro Yamada, Kensuke Tanabe,

and Shigeru Miyamoto. Special thanks

as always go to the staff at LucasArts,

and particularly to George Lucas for his

gift of the Star Wars universe.

The Core Team

Back Row (left to right): Steve Dauterman, Peter McConnell, Jon Knoles,

Andrew Holdun, Paul Topolos, Mr. B. Fett; Middle Row (left to right): Jim

Current, Matthew Tateishi, Bill Stoneham, Brett Tosti, Ingar Shu, Tom Harper,

Chris Hockabout; Front Row (left to right): Garry Gaber, Mark Blattel, Eric

Johnston, Mark Haigh-Hutchinson; Not shown: Paul Zinnes, Larry the O, Clint

Bajakian, Eric Ingerson, and Darren Johnson.

The core team developing SHADOWS from inception to completion consisted of

mainly six people, although twenty people contributed to the game for varying

lengths of time, and to varying degrees. Nonetheless, everyone played a vital role

in the production of the game.

ONYX. Nonetheless, when we finally
received the real hardware, we were
pleased to find that the performance
estimates given to us by SGI proved to
be very accurate. In fact, in large part
due to the parallel nature of the graph-
ics hardware, we were able to use float-
ing-point mathematics throughout
SHADOWS with no significant impact
upon performance.

Additionally, SHADOWS was pro-
grammed entirely using the C language
— it wasn’t necessary for us to use
assembler (a first as far as I was con-
cerned, and a pleasant surprise even
though I’m a long-time hardcore
assembler fan). Since our scene com-
plexity was relatively high (usually
kept to around 3,000 polygons or so,
but variable according to the level type
and design), the graphics task took
longer to execute than the program
code (that is, we were graphics-bound).
Consequently, optimizations to the
program code didn’t significantly
improve overall performance.

NTSC to PAL Conversion

A fter completing the American and
Japanese versions of the game, it

was my task to convert the game so that
it could run on the European PAL televi-
sion standard. Being British, I had a vest-
ed interest in making sure that the con-
version was a good one. This meant two
things: first, that the game used the
whole of the vertical resolution of the
PAL display (625 lines vs. 525 lines of
NTSC); second, I wanted to ensure that
the speed of the PAL game was the same
as the NTSC one, even though the PAL
refresh rate is 50hz rather than 60hz.

Fortunately, when we started work on
SHADOWS, we realized that one of the
most important things to consider was
that it had to be a time-based game,
rather than a frame-based one. This
would allow for update rates that could

vary considerably depending upon scene
complexity, as well as the simple fact
that we didn’t have any real hardware
from which to measure performance
characteristics. Essentially, the program
keeps track of the absolute time between
each update of the game. This value,
which we called delta time, became a
multiplicand for any movement or other
time-based quantity. By this method,
the game runs independent of the video
refresh rate, with all objects moving and
responding at the correct frequency.

The other issue had to do with the
“letterbox” effect that is common to
many NTSC to PAL conversions. In most
cases, there is no extra rendering or
increase in the vertical frame buffer size,
leaving unsightly black bands above and
below the visible game area. Since the
vertical resolution is now greater than
the original NTSC display, the aspect
ratio will also change, causing the graph-
ics to appear stretched horizontally.

While I wasn’t willing to accept this, I
had presumed that I couldn’t afford the
extra CPU time necessary to render a
larger frame buffer, even with the extra
time available due to the 50hz video
refresh rate. There was also a question of
the additional RAM usage required by
our triple buffering of the frame buffer.
My first attempt, therefore, was simply
to change both the field of view and
aspect ratios of the 3D engine. This sim-
ple fix solved the “stretching” problem
quite nicely, although the display
remained letter-boxed, of course.
Unfortunately, it also meant that any
2D-overlay status information remained
“stretched.” There was the potential that
game play could be affected because the
field of view, by definition, would affect
the player’s perception of the 3D world.

Again, this just wasn’t good enough.
What I needed was a solution that did-
n’t require extra rendering, yet would
fix the aspect ratio problems. After a lit-
tle bit of research, I realized that I had
discovered earlier that it was possible to
change the size of the final visible dis-
play area on the output stage of the dis-
play hardware. In reality, it’s possible to
shrink or enlarge the display both hori-
zontally and vertically. To compensate
for the letterboxing, all I had to do was
change the vertical display size by a fac-
tor of 625/525 or 1.19. Once I did this, I
immediately had a full-screen PAL ver-
sion. Or so I thought….

One of things about SHADOWS is that

we had to compress everything in the
game to fit it into the cartridge space
available. This included the thin operat-
ing system that SGI provides as part of
the development system. Therefore,
upon machine reset, it’s necessary to
decompress this OS to run the game. To
perform this decompression, we wrote a
small bootstrap program, which intro-
duced a small amount of time between
the hardware being initialized and the
OS starting. This lag introduced a one-
time glitch on the screen as the video
hardware started. Not very noticeable,
except to me. After many late nights, I
discovered a way to remove the glitch
by directly accessing the Nintendo 64
video hardware registers.

Bad Idea

W e then discovered that because
we had accessed the hardware

directly, it caused an infrequent bug.
Rarely (1 out of 50 times) the Nintendo
64 would crash if the reset button were
pressed at a particular point in the
game. Not only that, I couldn’t repeat
the bug on my hardware (I hate it
when that happens).

After a number of very late nights
(over the Christmas holiday), with the
help of Nintendo of America’s techni-
cal staff (thanks Mark and Jim), we
finally resolved the problem: first, by
removing the code that directly
accessed the video registers, and sec-
ond, by restoring the registers control-
ling the scaling of the output in the
vertical axis upon reset. Sometimes, the
simplest solution is the best.

Support from SGI and Nintendo

W e were very lucky to receive
excellent support from both SGI

and Nintendo during the production of
the game. The SGI engineers (thanks in

G A M E D E V E L O P E R J A N U A R Y 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

60

P O S T M O R T E M

particular to “Acorn”) were very helpful
and would normally have an answer to
our questions within a day, sometimes
within the hour. I would like to thank
Nintendo for their assistance in the pro-
duction of the game. Nintendo of
America’s technical support and QA
departments also proved invaluable. In
addition, three of Nintendo of Japan’s
staff spent some time working directly
with us at our offices.

I was also fortunate enough to visit
Nintendo’s head quarters in Kyoto,
Japan, to discuss SHADOWS with Shigeru
Miyamoto, creator of MARIO 64. His
insights were both fascinating and
extremely relevant. He is simply a
genius with an instinctive understand-
ing of video games.

Of Wampas and Men

W hen developing a project on
the scale of SHADOWS, there will

always be some things that didn’t
progress as smoothly as they could
have…
1) The motion capture process proved

to be a red herring for us. While
originally promising a much more
realistic animation solution, in our
case the data proved unusable.
However, I still believe that it has
great potential and deserves further
investigation, even though we didn’t
get to the point of dealing with the
potential problems matching the
motions to the character’s environ-
ment and so forth. Caveat emptor.

2) Attempting to use a MIDI-based
music solution also proved incorrect
for this game. While it promised to
be an efficient solution in terms of
memory (an important considera-
tion for a cartridge-based game), it
simply wasn’t suitable for an orches-
tral soundtrack such as Star Wars.

3) When we started work on SHADOWS,

a major problem (that continued
throughout the duration of the pro-
ject) was the inability of various 3D
packages to import and export data.
Although we were able, for the most
part, to write our own conversion
utilities, it still proved to be a stum-
bling block and prevented us from
having an efficient art path.
Fortunately, the companies supply-
ing these tools now recognize the
need for importing and exporting
data to other packages, and are tak-
ing steps to remedy the situation —
VRML, for example, is proving to be
a useful format.

4) Time was the biggest enemy of all in
producing the game. This is nothing
new, but was exacerbated by the fact
that we were working on a non-exis-
tent machine for nine months.
Nonetheless, even though this was,
for the most part, out of our control,
we were still able to produce a quali-
ty game.

5) With hindsight, probably the most
important lesson to be learned from
the game’s development is that of
focus. Do one or two things and do
them extremely well. Although our
ambitions were well placed in trying
to provide the player with as much
variety as possible, we effectively
had to write five different game
engines. Additionally, we could have
also used a fourth programmer dedi-
cated to all aspects of the front-end
of the game; that is, level selection,
controller options, and so forth. This
would have taken some of the pres-
sure away from the main program-
mers towards the end of the project.

Out of the Shadows…

T hanks to the talent, dedication,
and experience of the SHADOWS

team, many things went well during
the development process.
1) By using the powerful SGI comput-

ers (fairly uncommon in the games
industry in 1994) to prototype, com-
bined with our programmers’ knowl-
edge of 3D technology, we were able
to develop the game rapidly, yet
remain flexible in terms of perfor-
mance requirements.

2) Our ability to reuse tools from our
earlier DARK FORCES title saved us
time and resources because we did-

n’t have to build all new tools,
although a large number of data
conversion utilities were necessary.
In addition, by reusing familiar
tools, our level designers could be
more productive earlier in the pro-
ject than otherwise might have been
expected.

3) Our decision to use digitized music
proved to be a crucial one. Because
most users would listen to the music
through their televisions, the quality
approximated that of an audio CD as
far as many customers were con-
cerned. This alone justified the extra
cartridge space required and sur-
prised many players who didn’t
expect that level of quality from a
cartridge game.

4) The conversion of the game for the
PAL television standard went
extremely well and was much appre-
ciated by customers in those coun-
tries. It would be fair to say that
SHADOWS has set the standard in that
it runs both full screen and full
speed. There is no reason why all
games from this point on shouldn’t
run just as well on PAL systems as
they do on NTSC.

5) Given that we were working on
completely new hardware and for
the most part had to discover every-
thing that we needed to know by
ourselves, the support from both SGI
and Nintendo was invaluable to us
throughout the project.

Varying Shadows

E ven though we were not able to
spend as much time as we would

have liked tuning the game, SHADOWS

does succeed in supplying the player
with a variety of game-play styles. Its
popularity is a testament to the creativ-
ity and talent of the team of which I
was fortunate enough to be a part. ■

61

G A M E D E V E L O P E R J A N U A R Y 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

	back:

