
ame console programming is largely a secret

art. The technology and APIs are kept hidden

by nondisclosure agreements, and you won’t

find development kits for game consoles at

your local software store. As a result, pro-

gramming for game consoles is something

you just don’t hear much about.

While specific techniques for program-

ming Nintendo’s current game console are well-known within that particular devel-

oper community, they are virtually unknown among PC developers, or developers

looking to do cross-platform titles. This article will give you some insight into the

inner workings of the Nintendo 64 (N64). Much of what I’ll discuss in this article

hasn’t even been released to authorized N64 developers. Nintendo has chosen to

G A M E  D E V E L O P E R N O V E M B E R  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

30

P R O G R A M M I N GN 6 4

Mark A. DeLoura (markde01@noa.nintendo.com) is the software engineering lead for the Product Support Group at Nintendo. He’s
been working on the Nintendo 64 since the first hardware dev kits showed up, and he damn near cried the first time he booted up
SUPER MARIO 64. Now he’s working on high-tech wizardry for Nintendo’s next-generation console, Dolphin.

Putting Curved Surfaces to
Work on the Nintendo 64

b y  M a r k  A .  D e L o u r a



h t t p : / / w w w . g d m a g . c o m N O V E M B E R  1 9 9 9 G A M E  D E V E L O P E R



pull back the covers to help
developers squeeze the last
ounce of performance out of the
machine. We hope that this arti-
cle will help N64 developers do
just that, and encourage other
developers to explore N64 pro-
gramming.

After a quick discussion of the
N64 architecture, we’ll dig
down deep and design some
custom Reality Signal Processor
(RSP) microcode, which tessel-
lates a Bézier surface as shown
in Figure 1. The RSP is a very
powerful custom chip in the
N64, and until now the details
of programming this chip have
been kept secret. In a sense, we
at Nintendo have decided to let
the cat out of the bag. You’ll get
a feel for the incredible power of this
chip and see why N64 is capable of
great 3D graphics with features that
still aren’t available in consumer 3D
cards.

Nintendo 64 Architecture

The Nintendo 64 is designed around
two main processing components

(Figure 2). These two elements are a
MIPS R4300i CPU, and the Reality Co-
Processor (RCP), which is a custom chip.
The simplicity of this architecture
makes N64 programming very straight-
forward. In addition to these processors,
the N64 contains 4MB of Rambus
DRAM (RDRAM), four controller ports,
and a cartridge port. The memory is
expandable and a 4MB Expansion Pak is
currently available.

The N64’s custom RCP runs at
62.5MHz. It is pri-
marily composed
of two parts: the
Reality Signal
Processor (RSP)
and the Reality
Display Processor
(RDP). The RSP
processes display
lists which are sent
from the CPU. It
performs all
matrix and vertex
computations and
outputs triangle
commands to the
RDP. The RDP

takes this information, loads the tex-
ture cache from RDRAM, and renders
fully MIP-mapped, anti-aliased, Z-
buffered triangles to the frame buffer.
This design leaves the CPU free to per-
form physics calculations, advanced
artificial intelligence, sound process-
ing, and other game functions.

RSP Architecture

The RSP is modeled on a general-
purpose 32-bit RISC processor. It

includes 4KB of memory for code
(IMEM) and 4KB of memory for data
(DMEM). Programs which execute on
the RSP are known as microcode.
Nintendo provides a standard suite of
microcode to all N64 developers,
including 3D transformation and light-
ing code, line-drawing code, sprite rou-
tines, and audio processing. Due to

special features of the RSP, it is
very well-suited for computa-
tionally heavy tasks such as 3D
graphics calculation and audio
mixing. 

In addition to 32 32-bit
scalar registers, the RSP
includes 32 128-bit vector reg-
isters. These vector registers
can be addressed in a variety of
ways, but they are ideally used
as eight shorts (also called vec-
tor slices). Each slice has a 48-
bit accumulator associated
with it that can be used to
store intermediate results.
Using the vector registers and
accumulators, a vector opera-
tion can be performed which
multiplies two vectors and
adds the result to the current

accumulators, giving 16 calculations in
one cycle.

The RSP can actually execute a vector
operation and a scalar operation each
cycle. This means that it’s possible to
do 17 calculations per cycle. With care-
fully tuned microcode, it is possible to
reach a maximum of just over one bil-
lion operations per second.

The Microcode

This high-speed programmable
architecture was very forward-

thinking at the time the Nintendo 64
was designed. It has enabled Nintendo
to provide a set of standard microcode
libraries which make 3D programming
easier for the novice. At the same time,
elite programmers are able to code up
special routines which are optimized
for their own games or enable unique

functionality.
During the life span
of the N64, the 3D
performance has
nearly doubled as a
result of microcode
optimizations.

Microcode
Execution

F irst let’s talk a
little about the

structure of microc-
ode and how to use
it. Microcode is exe-

G A M E  D E V E L O P E R N O V E M B E R  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

32

N 6 4  P R O G R A M M I N G

F I G U R E  1 . This Bézier surface has been tessellated by

the microcode we develop in this article, and rendered

by a Nintendo 64.

F I G U R E  3 .  An example command

from the standard N64 3D graphics

microcode. This command turns on

texture mapping using a specific tex-

ture tile.

F I G U R E  2 . The Nintendo 64 architec-

ture is simple and elegant.



cuted through the use of an RSP
task. Tasks are command lists
(graphics display lists or audio
commands) which indicate a
series of operations for the
microcode to perform. They are
executed in parallel with the
CPU. In order to start an RSP
task, you create the command
list and pass it to the RSP along
with pointers to the microcode
and various buffers that the
microcode needs. Then you call
a simple function to start RSP
execution and control is imme-
diately returned to the main pro-
gram while the RSP begins pro-
cessing commands.

The RSP can communicate
with the RDP or CPU during
execution if necessary. For
example, most versions of the 3D
microcode communicate with the
RDP, feeding it triangles and other
data to render to the frame buffer.
Other versions of microcode commu-
nicate with the CPU when data is
ready. For example, the Z-Sort microc-
ode can be set up to alert the CPU
after a number of objects have been
processed so that the CPU can work
on these objects in parallel. When the
RSP completes the task, it signals the
CPU so that the user program can
send the next RSP task or use this
information for synchronization.

The Command Loop

T he microcode command loop
sequentially goes through com-

mands which have been DMA’d into
DMEM from the command list. Simi-
lar to assembly language instructions,
the commands have bitfields which
indicate the RSP function desired. In
the microcode command loop, the
opcode and subopcode bitfields are
masked off and used as an offset into
the function jump tables (also stored
in DMEM) to determine the IMEM
function location. 

In the standard graphics microco-
des, each command is a 64-bit double-
word. The opcode and subopcode are
contained in the upper bits, and lower
bits are reserved for data being passed
as function parameters as shown in
the example in Figure 3. The data bit-
fields are masked off in the main loop

and stored in separate registers before
jumping to the function requested.

The DMA Engine

The RSP includes a set of registers
which control the DMA engine.

Since there may be multiple requests
for DMA pending, the microcode must
check the DMA Busy register before
submitting its request. If a request is
being processed and there is already
another request pending, the micro-
code must wait
before sub-
mitting a
request. A
request is
made by
altering the
DMA Source,
DMA Destination,
and DMA Length
registers. Once the
length is written to the
DMA Length register, the
DMA engine queues the
request and begins the
transfer if no requests
are pending. The
transfer executes in
parallel with the
RSP so control
is immedi-
ately
returned
to the
micro-
code.

Using Curved Surfaces

W ith this basic under-
standing of the N64’s

workings behind us, let’s move
on to the main focus of this
article, using curved surfaces.
Curved surfaces are not sup-
ported in the standard N64
microcodes. But if you want to
render curved surfaces, it makes
a lot of sense to do the heavy
computations required on the
vector processor. Now, we’re
not actually going to render
curved surfaces. We’ll take a
curved surface representation
and tessellate the surface into
polygons which the N64 then
renders.

For our purposes here, we are
going to use Bézier surfaces. A Bézier
surface is a curved bicubic surface, sim-
ilar to Hermite surfaces, B-spline sur-
faces, and NURBS. The Bézier is mathe-
matically complex enough for us to be
able to create interesting surfaces,
while not being so difficult to compute
that we’re only going to be able to do a
couple per frame. If you need to brush
up on curved surface technology,
check out the list of references at the
end of this article. 

There are a number of algorithms
we could use to tessellate a Bézier sur-

face. First, let’s quickly look at the
standard equation and

the algorithm
we’ll use in

the micro-
code. 

If
you’re

inter-
ested in

the back-
ground of

Bézier surface
algorithms and

want to learn more about why I’ve
chosen this one, please see the

expanded version of this article (with 
Bézier surface derivation) on
Gamasutra.com.

G A M E  D E V E L O P E R N O V E M B E R  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

34

N 6 4  P R O G R A M M I N G

F I G U R E  4 . Bézier surfaces are defined in a biparamet-

ric space. Sixteen control points are used to define the

surface completely.



Bézier Surface Equation

A Bézier surface is a parametric sur-
face (u,v = [0,1], [0,1]) defined by

its 16 control points pij which form a
4×4 grid, as shown in Figure 4. The
common form for representing this
surface is:

The functions Bi(u) and Bj(v) are the
Bernstein polynomials which are also
used for Bézier curves. 

The edges of a Bézier surface are each
Bézier curves. Since only the end con-
trol points of Bézier curves lie on the
curve, we can extrapolate that the cor-
ner points of the surface are the only
control points which lie on the surface.
All twelve of the other control points
influence the shape of the surface, but
are not on the surface itself. For this
article, we’ll create a microcode that
tessellates a Bézier surface into an
8×8 grid of quadrilaterals. 

Tessellation by Evaluation

The most direct way to slice a
Bézier surface into polygons

is by calculating the above Q(u,v)
double summation on a regular
grid. Performing this in a very
optimized way, each surface
vertex we calculate requires 54
additions and 108 multiplies.
That’s a lot of work to do
when we’re planning to create
a 9×9 grid of vertices. 

Central Differencing

The way we’re going to generate
points on the Bézier surface in

this article is through the use of central
differencing. Central differencing gives
us an easy way to find the midpoint of
a Bézier curve without having to keep
track of control points for each sub-
curve. We can split the edge curves at
their midpoints, and then split the sur-
face across these midpoints to create
four subsurfaces. This process can be
repeated recursively to create an arbi-
trarily fine mesh. (For details on this
algorithm please see the previously-
mentioned article on Gamasutra.com,
or Brian Sharp’s series of articles on

curved surfaces, June–July 1999.)
The central differencing algorithm

has a hefty initialization cost due to
the computation of second partial
derivatives (Quu, Qvv, Quuvv) at each
corner control point. But every curve
subdivision after that will only cost us
18 additions and 18 multiplies. The
memory footprint is 24 bytes per subdi-
vision, and there are 77 subdivisions
necessary to create our mesh. This will
fit in our 4KB DMEM nicely.

Writing the Tessellation Microcode

Now that we’ve chosen the algo-
rithm to tessellate the surface,

let’s get back to work on the microcode
itself. The first things

we need to fig-
ure out are the

commands
we need
and the
com-
mand
struc-
ture.
We’re

going to
use a

64-bit
double

word for our
command size.
That will give us
plenty of 

room to store the data for each com-
mand inside the instruction. The com-
mands and parameters necessary for
our tessellation microcode are: 

1. Set RSP segment (segment number,
physical address).

2. Load control points (segment
address).

3. Perform tessellation.

4. Save surface vertices (segment
address).

5. End display list.
I’ll describe these commands further in
a moment.

Since we only have five commands,
we can just use a 3-bit field for the
opcode. Fortunately, the standard
graphics microcodes all use a 3-bit
opcode field and 6-bit subopcode field,
so we’ll use that. But we’ll just wedge all
our instructions into the subopcodes for
one primary opcode. Then we can reuse
a lot of the main command loop rou-
tines from the standard microcodes,
including the display list DMA routine
that loads commands into the DMEM
buffer for us. The low bit of the opcode
field and subopcode field are not used.
Since microcode function addresses
stored in DMEM take up two bytes
(address range 0–4095), our jump table
should be indexed on even bytes only.
Not using these low bits ensures that we
have an even index without performing
a shift or multiply for every command.

The parameters for our commands are
pretty straight-forward. The most com-
plicated command sets a segment regis-
ter for address computations. It requires
a segment number and physical address.
We’re using a 16-address segment table
in the RSP, so it’ll take four bits to hold
the segment number. The addresses are
32 bits, so we’ll use the second half of
the 64-bit double word for the address.
Then we’ll use the upper nine bits for

the opcode and sub-
opcode fields

and follow
it with

four bits
for the

segment
address.

You can see
our command

structure in Figure 5.

Getting Data In and Out

B efore we code up the tessellation
algorithm, let’s figure out how to

get data in and out of DMEM. The “set
RSP segment” command fills an entry
of our 16-entry segment/offset table,
which is stored in DMEM. This table
makes some programming tasks easier,
such as swapping the frame buffer each
frame. The segment table stores 24-bit

Q u v p B u B vij i j
ji

,( ) = ( ) ( )
==
∑∑

0

3

0

3

G A M E  D E V E L O P E R N O V E M B E R  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

36

N 6 4  P R O G R A M M I N G



offsets which are added to any address
sent to the RSP. The segment table
index is stored in bits 24–27 of the
addresses passed in. The low 24 bits of
the segment address are added to the
24 bits stored in the segment table.
Since our physical address range is
0–0x007fffff (8MB), 24 bits is enough.

Prior to tessellation we need to load
the control points into DMEM. Our
“load control points” command simply
takes an address as a parameter. The
address is passed to the segment
address translation routine, which uses
the segment table to convert the
address to a physical address. The DMA
engine is called to bring the 16 control
points into DMEM from this physical
address.

After tessellation, we need to save
the surface vertices we’ve computed,
using the “save surface vertices” com-
mand. We’ll pass in an address and the
segment address translation routine
will convert it to a physical address.
That physical address is used to pro-
gram the DMA engine to copy our 81
surface vertices to RDRAM.

The “end display list” command sim-
ply flags the RSP to quit. It executes a
break, which signals the CPU, and
alerts our main program.

Data Formats

T he first thing our “perform tessella-
tion” command does is perform a

simple translation from control point
format to surface vertex format. So let’s
talk about these formats. 

The Nintendo 64’s standard vertex
format uses 16-bit coordinate ranges,
which are s15 quantities (one sign bit
and 15 integer bits). This gives vertex

coordinates an effective range
of +/– 32KB. It makes sense for
us to use this same format for
control points, but since we’re
just tessellating, we really only
need the point position. Rather
than wasting the extra space
for colors and texture coordi-
nates when we DMA the con-
trol points into DMEM, our for-
mat will only represent the x, y,
and z position as signed shorts.

The surface vertex format is
more complicated. The central
difference algorithm describes
four sets of values that each ver-

tex needs to track. These are:
1. Q(u,v): Position
2. Quu(u,v): Second partial derivative

in u at this vertex.
3. Qvv(u,v): Second partial derivative

in v at this vertex.
4. Quuvv(u,v): Second partial derivative

in u of the second partial deriva-
tive in v at this vertex.

All of these values are vectors of x, y,
and z. Since the vector slice size of the
RSP is 16 bits, and the control point
coordinates are 16 bits, we’re going to
stick with 16 bits for these coordinate

values as well. We’ll have to tweak our
math to minimize overflow and under-
flow, but it will pay off in performance.

One final note on formats. Each vec-
tor register contains eight vector slices.
But each of our points contains three
values (x, y, and z). We’re really just
going to make things confusing if we try
to stuff two of three coordinates from
one vertex into a vector register, along
with two other vertices. So let’s insert a
junk (we’ll call it j) field at the end of
each of these vertices. This will also give
us much better alignment in DMEM.

Now that we have our formats
defined as in Listing 1, it’s a simple task
to convert from one to the other. Actu-
ally, all we need to do is copy the 64
bits from each corner control point (x,
y, z, and j) into the beginning of each
corner surface vertex.

Corner Initialization

Now we need to compute the sec-
ond partial derivatives described

above for each corner of the surface.
Fortunately, the second partial in u
and the second partial in v at each

G A M E  D E V E L O P E R N O V E M B E R  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

38

N 6 4  P R O G R A M M I N G

F I G U R E  5 .  Our command structure is similar to

the structure of standard N64 microcode com-

mands. We use this structure for all of our com-

mands.

struct ControlPoint {

s15 x, y, z, j;

};

struct SurfaceVertex {

s15 qx, qy, qz, qj;

s15 quux, quuy, quuz, quuj;

s15 qvvx, qvvy, qvvz, qvvj;

s15 quuvvx, quuvvy, quuvvz, quuvvj;

};

L I S T I N G  1 .  Formats for data storage in DMEM. The j fields are unused, we

include them for data alignment.

# Load the vector registers with point data

vload vectora, P[0,0], P[0,0] # = x y z j, x y z j

vload vectorb, P[1,0], P[0,1]

vload vectorc, P[2,0], P[0,2]

# Do vector computations to simultaneously compute quu and qvv.

vadd vectord, vectora, vectorc # D = A+C

vmul vectore, vectorb, vconst[5] # E = B*(-2)

vadd vinter, vectord, vectore # inter = A-2B+C

vmul v00, vinter, vconst[3] # v00 = 6*(A-2B+C)

vstore2 v00, v00uu, v00vv # Store results to uu and vv fields

L I S T I N G  2 .  Pseudocode for computing Quu(0,0) and Qvv(0,0) using vector

processing.



corner control point can be computed with similar equa-
tions that use different points. Here are the equations to
perform at control point (0, 0):

We need to do this computation in x, y, and z for each
equation. This is a great place to take advantage of vector
processing. We’ll do this operation in parallel, computing
both equations for x, y, and z simultaneously. First, we load
both sets of control point positions into the vectors, as
shown in pseudocode in Listing 2. Then just a few vector
computations are performed and all coordinates are simul-
taneously calculated.

Note that we have the constants –2 and 6 stored in a vec-
tor constants (vconst) register, which makes it easy to multi-
ply each slice in another vector by each
scalar. Using vector processing we’ve
reduced two additions and two
multiplies for each of six coordi-
nates to just two additions and
two multiplies total.

We can perform this same
process to compute Quuvv.
But we’ll have to pair up
the operations. We have
four control points, the
corner points, which we
need in order to calcu-
late Quuvv. We can com-
pute two separate con-
trol points
simultaneously by jam-
ming them into the same vector and doing
vector operations. So we’ll perform this
process twice in order to compute Quuvv for
all four points.

Surface Subdivision

For code simplicity, we’re going to subdivide
the surface iteratively, not recursively. We’re going to

subdivide many times, so let’s make a function out of it.
What do we need to pass to this function? Well, we’ll need
the data for the endpoints of the curve we’re splitting, and a
du value which is the distance in parametric space from the
midpoint to the endpoint. This is 0.5 for our first subdivi-
sion. For simplicity, we’ll pass in the value (du)2/2 so we
don’t have to compute the square and multiply by one-half
each time we use the function. We’ll also stuff this value in a
vector slice so that we can use it in vector computations.
We’ll call the vector which contains this value vecdusqhalf.
Our function ends up looking like this (there will be one for
u-curve splits, and one for v-curves):
void tesselSubdivide[U|V](Vertex v0, Vertex v1, Vector vecdusqhalf)

The microcode for the tesselSubdivideU function appears in
Listing 3. The function tesselSubdivideV will be very similar.

The first thing you’ll notice in this code is that we block
together the Quu and Quuvv computations. We also block

together the Q and Qvv computations. That’s because both of
these are very similar computations. For Quu and Quuvv we’re
doing this:

The computations for Q and Qvv depend on the prior com-
putations, so we do them second. They look like this:

Most of the opcodes you see in the microcode
listing make intuitive sense. But one that

bears explaining is vmudm. The RSP pro-
vides many multiplication opera-

tions. They vary depending on the
sign of the operands and whether

the operands are fractions or
integers. The vmudm opera-

tion performs multiplica-
tion of signed integers
by unsigned fractions.
The resulting integer
part of each vector slice
computation is stored in

the destination vector reg-
ister (first operand), and

the 32-bit integer/fraction
results are stored in the

accumulator slices.
This microcode currently is

not optimized for dual process-
ing, nor for accumulator storage

of intermediate results. Vector
loads and stores are scalar opera-

tions, so we could easily tighten this
microcode up by executing loads and stores in parallel with
vector operations. 

Performance Figures

C alculating a regular grid of points on the Bézier surface
using the standard double sum equation is a not a very

efficient way to tessellate. Using floating-point arithmetic on
the CPU, this process took 272,500 CPU cycles. While cen-
tral differencing has a large performance cost at initializa-
tion, the subdivision step is very fast. Implemented on the
CPU, it takes 70,400 CPU cycles to tessellate our surface.

When we moved this algorithm to the RSP, we made some
sacrifices. We used 16-bit fixed-point arithmetic and took a
hit for DMA-ing data to and from the RSP. But our algo-
rithm, including RSP load and save time, runs in just 16,600
CPU cycles. And the CPU itself is free during this process to
do other computations. 

Q u
Q u Q u

dusqhalf Q u

Q u
Q u Q u

dusqhalf Q u

mid uu mid

vv mid
vv vv

uuvv mid

( ) = ( ) + ( ) − ∗ ( )( )
( ) = ( ) + ( ) − ∗ ( )( )

0 1

0 1

2

2

Q u
Q u Q u

Q u
Q u Q u

uu mid
uu uu

uuvv mid
uuvv uuvv

( ) = ( ) + ( )

( ) = ( ) + ( )

0 1

0 1

2

2

Q P P P

Q P P P

uu

vv

0 0 6 2

0 0 6 2

00 10 20

00 01 02

,

,

( ) = − +( )
( ) = − +( )

 

 

G A M E  D E V E L O P E R N O V E M B E R  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

40

N 6 4  P R O G R A M M I N G



N64 Optimizations Keep the 
Platform Fresh

W e’ve examined how Bézier sur-
faces can be implemented on

the N64 using a central difference tes-
sellation algorithm in microcode. The
payback we got for choosing a more
efficient surface tessellation algorithm
and pushing it onto the RSP was sub-
stantial.

Technically, the N64 is still a power-
house. Programming the microcode
and taking advantage of vector pro-
cessing gives developers the ability to
implement algorithms that aren’t fea-
sible on much bigger and faster CPUs.
In addition, learning to program the
N64 now will give developers a big
advantage when it comes to next-gen-
eration console development (includ-
ing Nintendo’s upcoming system, cur-
rently known as Dolphin), many of
which use vector processing. If you’re
interested in becoming an N64 devel-
oper, or if you are an N64 developer
and you want to know about microc-
ode development kits, please contact
Nintendo by sending e-mail to 
support@noa.com.  ■

h t t p : / / w w w . g d m a g . c o m N O V E M B E R  1 9 9 9 G A M E  D E V E L O P E R

41

#########################################################

# tesselSubdivideU

#

# Subdivide this curve in the U direction

#

# Surface Vertex structure offsets

.symbol VERTEX_POS, 0

.symbol VERTEX_UU, 8

.symbol VERTEX_VV, 16

.symbol VERTEX_UUVV, 24

# Register aliases

.name pnew, $10 # Position of output surface vertex (u)

.name pminus, $11 # Position of input left surface vertex (u-du)

.name pplus, $12 # Position of input right surface vertex (u+du)

.name vecdusqhalf, $v6 # Vector which contains 0.5*du*du in slice 0

.name vecminus, $v7 # Vector for storing left surface vertex info

.name vecplus, $v8 # Vector for storing right surface vertex info

.name vecuus, $v9 # Temp vector for UU and UUVV computation

.name vecuushalf, $v10 # Final results of UU and UUVV computation

.name vecposvvsinter, $v11 # Temp vector for POS and VV computation

.name vecposvvshalf, $v12 # Temp vector for POS and VV computation

.name vecmulleduus, $v13 # Temp vector for POS and VV computation

.name vecposvvs, $v14 # Final results of POS and VV computation

.ent tesselSubdivideU

tesselSubdivideU:

# Do quu and quuvv computations together

ldv vecminus[0], VERTEX_UU(pminus)

ldv vecminus[8], VERTEX_UUVV(pminus)

ldv vecplus[0],  VERTEX_UU(pplus)

ldv vecplus[8],  VERTEX_UUVV(pplus)

vadd vecuus, vecminus, vecplus # Add endpoints

vmudm vecuushalf, vecuus, vecconst[1] # Mul by one-half

# Do qpos and qvv computations together

ldv vecminus[0], VERTEX_POS(pminus)

ldv vecminus[8], VERTEX_VV(pminus)

ldv vecplus[0],  VERTEX_POS(pplus)

ldv vecplus[8],  VERTEX_VV(pplus)

vadd vecposvvsinter, vecminus, vecplus # Add endpoints

vmudm vecposvvshalf, vecposvvsinter, vecconst[1] # Mul by one-half

vmudm vecmulleduus, vecuushalf, vecdusqhalf[0] # uus/2 *(du^2)/2

vsub vecposvvs, vecposvvshalf, vecmulleduus # Subtract...

# Store everything

sdv vecuushalf[0], VERTEX_UU(pnew)

sdv vecuushalf[8], VERTEX_UUVV(pnew)

sdv vecposvvs[0],  VERTEX_POS(pnew)

jr return

sdv vecposvvs[8],  VERTEX_VV(pnew)

.end tesselSubdivideU

L I S T I N G  3 .  Microcode for the tesselSubdivideU routine.

Books
Watt, Alan, and Watt, Mark. Advanced

Animation and Rendering Techniques:

Theory and Practice. New York: ACM

Press, 1992.

Periodicals
Clark, J. H. “A Fast Scan-Line Algorithm

for Rendering Parametric Surfaces.”

Computer Graphics Vol. 13 No. 2: pp.

289–299.

Game Developer
Sharp, Brian. “Implementing Curved

Surface Geometry” (June 1999) and

“Optimizing Curved Surface Geometry”

(July 1999).

Gamasutra
For a detailed derivation and compari-

son of Bézier surface algorithms, see

the expanded version of this article at

http://www.gamasutra.com.

Bézier Surface Microcode Source
If you're a Nintendo 64 developer, log

on to Nintendo’s developer web site at

https://www.warioworld.com.

FF OO RR   FF UU RR TT HH EE RR   II NN FF OO


	back: 


